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The Crab Nebula (NGC 1952), the remains of the supernova of July 1054, an event observed and recorded at the
Sung national observatory at K'ai-feng. In the intervening 900 years, the debris from the explosion has moved out
about three lightyears; i.c., with a speed about 1/300 of that of light. In 1934 Walter Baade and Fritz Zwicky pre-
dicted that neutron stars should be produced in supernova explosions. Among the first half-dozen pulsars found in
1968 was one at the center of the Crab Nebula, pulsing 30 times per second, for which there is today no acceptable
explanation other than a spinning neutron star. The Chinese historical record shown here lists unusual astronomical
phenomena observed during the Northern Sung dynasty. It comes from the “Journal of Astronomy,” part 9. chapter
56, of the Sung History (Sung Shih), first printed in the 1340°s. The photograph of that standard record used in this
montage is copyright by, and may not be reproduced without permission of, the Trustees of the British Museum.
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We dedicate this book

To our fellow citizens

Who, for love of truth,

Take from their own wants

By taxes and gifts,

And now and then send forth

One of themselves

As dedicated servant,

To forward the search

Into the mysteries and marvelous simplicities
Of this strange and beautiful Universe,
QOur home.




PREFACE

This is a textbook on gravitation physics (Einstein’s “general relativity” or “geo-
metrodynamics™). It supplies two tracks through the subject. The first track is focused
on the key physical ideas. It assumes, as mathematical prerequisite, only vector
analysis and simple partial-differential equations. It is suitable for a one-semester
course at the junior or senior level or in graduate school; and it constitutes—in the
opinion of the authors—the indispensable core of gravitation theory that every
advanced student of physics should learn. The Track-1 material is contained in those
pages of the book that have a 1 outlined in gray in the upper outside corner, by
which the eye of the reader can quickly pick out the Track-1 sections. In the con-
tents, the same purpose is served by a gray bar beside the section, box, or figure
number.

The rest of the text builds up Track 1 into Track 2. Readers and teachers are
invited to select, as enrichment material, those portions of Track 2 that interest them
most. With a few exceptions, any Track-2 chapter can be understood by readers
who have studied only the earlier Track-1 material. The exceptions are spelled out
explicitly in “dependency statements” located at the beginning of each Track-2
chapter, or at each transition within a chapter from Track 1 to Track 2.

The entire book (all of Track 1 plus all of Track 2) is designed for a rigorous,
full-year course at the graduate level, though many teachers of a full-year course
may prefer a more leisurely pace that omits some of the Track-2 material. The full
book is intended to give a competence in gravitation physics comparable to that
which the average Ph.D. has in electromagnetism. When the student achieves this
competence, he knows the laws of physics in flat spacetime (Chapters 1-7). He can
predict orders of magnitude. He can also calculate using the principal tools of modern
differential geometry (Chapters 8~15), and he can predict at all relevant levels of
precision. He understands Einstein’s geometric framework for physics (Chapters
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16-22). He knows the applications of greatest present-day interest: pulsars and

neutron stars (Chapters 23-26); cosmology (Chapters 27-30); the Schwarzschild

geometry and gravitational collapse (Chapters 31-34); and gravitational waves

(Chapters 35-37). He has probed the experimental tests of Einstein’s theory (Chap-

ters 38-40). He will be able to read the modern mathematical literature on differential

geometry, and also the latest papers in the physics and astrophysics journals about

geometrodynamics and its applications. If he wishes to go beyond the field equations,

the four major applications, and the tests, he will find at the end of the book

(Chapters 41-44) a brief survey of several advanced topics in general relativity.

Among the topics touched on here, superspace and quantum geometrodynamics

receive special attention. These chapters identify some of the outstanding physical |

issues and lines of investigation being pursued today. |
Whether the department is physics or astrophysics or mathematics, more students

than ever ask for more about general relativity than mere conversation. They want

to hear its principal theses clearly stated. They want to know how to “work the 1

handles of its information pump” themselves. More universities than ever respond ;

with a serious course in Einstein’s standard 1915 geometrodynamics. What a contrast !

to Maxwell’s standard 1864 electrodynamics! In 1897, when Einstein was a student

at Zurich, this subject was not on the instructional calendar of even half the

universities of Europe.! “We waited in vain for an exposition of Maxwell’s theory,”

says one of Einstein’s classmates. “Above all it was Einstein who was disappointed,”?

for he rated electrodynamics as “the most fascinating subject at the time” 3>—as many '

students rate Einstein’s theory today! i
Maxwell’s theory recalls Einstein’s theory in the time it took to win acceptance. !

Even as.late as 1904 a book could appear by so great an investigator as William

Thomson, Lord Kelvin, with the words, “The so-called ‘electromagnetic theory of

; light’ has not helped us hitherto . . . it seems to me that it is rather a backward

’ step . . . the one thing about it that seems intelligible to me, I do not think is

admissible . . . that there should be an electric displacement perpendicular to the

line of propagation.”* Did the pioneer of the Atlantic cable in the end contribute !

so richly to Maxwell electrodynamics—from units, and principles of measurement, i‘

to the theory of waves guided by wires—because of his own early difficulties with |

the subject? Then there is hope for many who study Einstein’s geometrodynamics |

today! By the 1920’s the weight of developments, from Kelvin’s cable to Marconi’s |

wireless, from the atom of Rutherford and Bohr to the new technology of high- |

frequency circuits, had produced general conviction that Maxwell was right. Doubt

dwindled. Confidence led to applications, and applications led to confidence.
Many were slow to take up general relativity in the beginning because it seemed

to be poor in applications. Einstein’s theory attracts the interest of many today

because it is rich in applications. No longer is attention confined to three famous

but meager tests: the gravitational red shift, the bending of light by the sun, and |

1G. Holton (1965). 3A. Einstein (1949a).
2] Kolbros (1956). 4W. Thomson (1904). |
Citations for references will be found in the bibliography.
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the precession of the perihelion of Mercury around the sun. The combination of
radar ranging and general relativity is, step by step, transforming the solar-system
celestial mechanics of an older generation to a new subject, with a new level of
precision, new kinds of effects, and a new outlook. Pulsars, discovered in 1968, find
no acceptable explanation except as the neutron stars predicted in 1934, objects with
a central density so high (~10%*g/cm?) that the Einstein predictions of mass differ
from the Newtonian predictions by 10 to 100 per cent. About further density increase
and a final continued gravitational collapse, Newtonian theory is silent. In contrast,
Einstein’s standard 1915 geometrodynamics predicted in 1939 the properties of a
completely collapsed object, a “frozen star” or “black hole.” By 1966 detailed digital
calculations were available describing the formation of such an object in the collapse
of a star with a white-dwarf core. Today hope to discover the first black hole is
not least among the forces propelling more than one research: How does rotation
influence the properties of a black hole? What kind of pulse of gravitational radiation
comes off when such an object is formed? What spectrum of x-rays emerges when
gas from a companion star piles up on its way into a black hole?? All such investi-
gations and more base themselves on Schwarzschild’s standard 1916 static and
spherically symmetric solution of Einstein’s field equations, first really understood
in the modern sense in 1960, and in 1963 generalized to a black hole endowed with
angular momentum.

Beyond solar-system tests and applications of relativity, beyond pulsars, neutron
stars, and black holes, beyond geometrostatics (compare electrostatics!) and station-
ary geometries (compare the magnetic field set up by a steady current!) lies geo-
metrodynamics in the full sense of the word (compare electrodynamics!). Nowhere
does Einstein’s great conception stand out more clearly than here, that the geometry
of space is a new physical entity, with degrees of freedom and a dynamics of its
own. Deformations in the geometry of space, he predicted in 1918, can transport
energy from place to place. Today, thanks to the initiative of Joseph Weber, detectors
of such gravitational radiation have been constructed and exploited to give upper
limits to the flux of energy streaming past the earth at selected frequencies. Never
before has one realized from how many kinds of processes significant gravitational
radiation can be anticipated. Never before has there been more interest in picking
up this new kind of signal and using it to diagnose faraway events. Never before
has there been such a drive in more than one laboratory to raise instrumental
sensitivity until gravitational radiation becomes a workaday new window on the
universe.

The expansion of the universe is the greatest of all tests of Einstein’s geometro-
dynamics, and cosmology the greatest of all applications. Making a prediction too
fantastic for its author to credit, the theory forecast the expansion years before it
was observed (1929). Violating the short time-scale that Hubble gave forthe expan-
sion, and in the face of “theories” (“steady state”; “continuous creation’) manufac-
tured to welcome and utilize this short time-scale, standard general -rélativity
resolutely persisted in the prediction of a long time-scale, decades before the astro-

>As of April 1973, there are significant indications that Cygnus X-1 and other compact x-ray sources
may be black holes.
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physical discovery (1952) that the Hubble scale of distances and times was wrong,
and had to be stretched by a factor of more than five. Disagreeing by a factor of
the order of thirty with the average density of mass-energy in the universe deduced
from astrophysical evidence as recently as 1958, Einstein’s theory now as in the past
argues for the higher density, proclaims “the mystery of the missing matter,” and
encourages astrophysics in a continuing search that year by year turns up new
indications of matter in the space between the galaxies. General relativity forecast
the primordial cosmic fireball radiation, and even an approximate value for its
present temperature, seventeen years before the radiation was discovered. This
radiation brings information about the universe when it had a thousand times smaller
linear dimensions, and a billion times smaller volume, than it does today. Quasistellar
objects, discovered in 1963, supply more detailed information from a more recent
era, when the universe had a quarter to half its present linear dimensions. Telling
about a stage in the evolution of galaxies and the universe reachable in no other
way, these objects are more than beacons to light up the far away and long ago.
They put out energy at a rate unparalleled anywhere else in the universe. They eject
matter with a surprising directivity. They show a puzzling variation with time,
different between the microwave and the visible part of the spectrum. Quasistellar
objects on a great scale, and galactic nuclei nearer at hand on a smaller scale, voice
a challenge to general relativity: help clear up these mysteries!

If its wealth of applications attracts many young astrophysicists to the study of
Einstein’s geometrodynamics, the same attraction draws those in the world of physics
who are concerned with physical cosmology, experimental general relativity, gravi-
tational radiation, and the properties of objects made out of superdense matter. Of
quite another motive for study of the subject, to contemplate Einstein’s inspiring
vision of geometry as the machinery of physics, we shall say nothing here because
it speaks out, we hope, in every chapter of this book.

Why a new book? The new applications of general relativity, with their extraor-
dinary physical interest, outdate excellent textbooks of an earlier era, among them
even that great treatise on the subject written by Wolfgang Pauli at the age of
twenty-one. In addition, differential geometry has undergone a transformation of
outlook that isolates the student who is confined in his training to the traditional
tensor calculus of the earlier texts. For him it is difficult or impossible either to read
the writings of his up-to-date mathematical colleague or to explain the mathematical
content of his physical problem to that friendly source of help. We have not seen
any way to meet our responsibilities to our students at our three institutions except
by a new exposition, aimed at establishing a solid competence in the subject, con-
temporary in its mathematics, oriented to the physical and astrophysical applications
of greatest present-day interest, and animated by belief in the beauty and simplicity

of nature. -

High Island Charles W. Misner
South Bristol, Maine Kip S. Thorne
September 4, 1972 John Archibald Wheeler
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PART I

SPACETIME PHYSICS

Wherein the reader is led, once quickly (§1.7),
then again more slowly, down the highways and
a few byways of Einstein’s geometrodynamics—
without benefit of a good mathematical compass.




CHAPTER 1

GEOMETRODYNAMICS IN BRIEF

§1.1. THE PARABLE OF THE APPLE

One day in the year 1666 Newton had gone to the country,

and seeing the fall of an apple, as his niece told me, let himself
be led into a deep meditation on the cause which thus

draws every object along a line whose extension would pass
almost through the center of the Earth.

VOLTAIRE (1738)

Once upon a time a student lay in a garden under an apple tree reflecting on the
difference between Einstein’s and Newton’s views about gravity. He was startled
by the fall of an apple nearby. As he looked at the apple, he noticed ants beginning
to run along its surface (Figure 1.1). His curiosity aroused, he thought to investigate
the principles of navigation followed by an ant. With his magnifying glass, he noted
one track carefully, and, taking his knife, made a cut in the apple skin one mm
above the track and another cut one mm below it. He peeled off the resulting little
highway of skin and laid it out on the face of his book. The track ran as straight
as a laser beam along this highway. No more economical path could the ant have
found to cover the ten cm from start to end of that strip of skin. Any zigs and
zags or even any smooth bend in the path on its way along the apple peel from
starting point to end point would have increased its length.

“What a beautiful geodesic,” the student commented.

His eye fell on two ants starting off from a common point P in slightly different
directions. Their routes happened to carry them through the region of the dimple
at the top of the apple, one on each side of it. Each ant conscientiously pursued




Einstein’s local view of
physics contrasted with
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distance’’

Physics is simple only when
analyzed locally

4 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.1.

The Riemannian geometry of the spacetime of general relativity is here symbolized by the two-dimen-
sional geometry of the surface of an apple. The geodesic tracks followed by the ants on the apple’s
surface symbolize the world line followed through spacetime by a free particle. In any sufficiently localized
region of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-dimensional
surface by the straight-line course of the tracks viewed in the magnifying glass (“local Lorentz character™
of geometry of spacetime). In a region of greater extension, the curvature of the manifold (four-dimen-
sional spacetime in the case of the real physical world; curved two-dimensional geometry in the case
of the apple) makes itself felt. Two tracks ¢ and @, originally diverging from a common point &, later
approach, cross, and go off in very different directions. In Newtonian theory this effect is ascribed to
gravitation acting at a distance from a center of attraction, symbolized here by the stem of the apple.
According to Einstein a particle gets its moving orders locally, from the geometry of spacetime right
where it is. Its instructions are simple: to follow the straightest possible track (geodesic). Physics is as
simple as it could be locally. Only because spacetime is curved in the large do the tracks cross. Geome-
trodynamics, in brief, is a double story of the effect of geometry on matter (causing originally divergent
geodesics to cross) and the effect of matter on geometry (bending of spacetime initiated by concentration
of mass, symbolized by effect of stem on nearby surface of apple).

his geodesic. Each went as straight on his strip of appleskin as he possibly could.
Yet because of the curvature of the dimple itself, the two tracks not only crossed
but emerged in very different directions.

“What happier illustration of Einstein’s geometric theory of gravity could one
possibly ask?” murmured the student. “The ants move as if they were attracted
by the apple stem. One might have believed in a Newtonian force at a distance.
Yet from nowhere does an ant get his moving orders except from the local geometry
along his track. This is surely Einstein’s concept that all physics takes place by
“local action.” What a difference from Newton’s ‘action at a distance’ view of physics!
Now I understand better what this book means.”

And so saying, he opened his book and read, “Don’t try to describe motion
relative to faraway objects. Physics is simple only when analyzed locally. And locally
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§1.2. SPACETIME WITH AND WITHOUT COORDINATES 5

the world line that a satellite follows [in spacetime, around the Earth] is already
as straight as any world line can be. Forget all this talk about ‘deflection’ and ‘force
of gravitation.” I'm inside a spaceship. Or I'm floating outside and near it. Do I
feel any ‘force of gravitation’? Not at all. Does the spaceship ‘feel’ such a force?
No. Then why talk about it? Recognize that the spaceship and I traverse a region
of spacetime free of all force. Acknowledge that the motion through that region
is already ideally straight.”

The dinner bell was ringing, but still the student sat, musing to himself. “Let me
see if I can summarize Einstein’s geometric theory of gravity in three ideas: (1)
locally, geodesics appear straight; (2) over more extended regions of space and time,
geodesics originally receding from each other begin to approach at a rate governed
by the curvature of spacetime, and this effect of geometry on matter is what we
mean today by that old word ‘gravitation’; (3) matter in turn warps geometry. The
dimple arises in the apple because the stem is there. I think I see how to put the
whole story even more briefly: Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve. In other words, matter here,”
he said, rising and picking up the apple by its stem, “curves space here. To produce
a curvature in space here is to force a curvature in space there,” he went on, as
he watched a lingering ant busily following its geodesic a finger’s breadth away from
the apple’s stem. “Thus matter here influences matter there. That is Einstein’s
explanation for ‘gravitation.””

Then the dinner bell was quiet, and he was gone, with book, magnifying glass—and

apple.

§1.2. SPACETIME WITH AND WITHOUT COORDINATES

Now it came to me: . . . the independence of the
gravitational acceleration from the nature of the falling
substance, may be expressed as follows. In a

gravitational field (of small spatial extension) things
behave as they do in a space free of gravitation. . . . This
happened in 1908. Why were another seven years required
for the construction of the general theory of relativity?

The main reason lies in the fact that it is not so easy to
free oneself from the idea that coordinates must have an
immediate metrical meaning.

ALBERT EINSTEIN [in Schilpp (1949), pp. 65-67.]

Nothing is more distressing on first contact with the idea of “curved spacetime” than
the fear that every simple means of measurement has Jost its power in this unfamiliar
context. One thinks of oneself as confronted with the task of measuring the shape
of a gigantic and fantastically sculptured iceberg as one stands with a meter stick
in a tossing rowboat on the surface of a heaving ocean. Were it the rowboat itself
whose shape were to be measured, the procedure would be simple enough. One
would draw it up on shore, turn it upside down, and drive tacks in lightly at strategic
points here and there on the surface. The measurement of distances from tack to

Space tells matter how to “
move 5

Matter tells space how to
curve

Problem: how to measure in
curved spacetime
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Figure 1.2.

The crossing of straws in a barn full of hay is a symbol for the world lines that fill up spacetime. By
their crossings and bends, these world lines mark events with a uniqueness beyond all need of coordinate
systems or coordinates. Typical events symbolized in the diagram, from left to right (black dots), are:
absorption of a photon; reemission of a photon; collision between a particle and a particle; collision
between a photon and a particle; another collision between a photon and a particle; explosion of a
firecracker; and collision of a particle from outside with one of the fragments of that firecracker.

tack would record and reveal the shape of the surface. The precision could be made
arbitrarily great by making the number of tacks arbitrarily large. It takes more daring
to think of driving several score pitons into the towering iceberg. But with all the
daring in the world, how is one to drive a nail into spacetime to mark a point?
Happily, nature provides its own way to localize a point in spacetime, as Einstein
was the first to emphasize. Characterize the point by what happens there! Give a
point in spacetime the name “event.” Where the event lies is defined as clearly and
sharply as where two straws cross each other in a barn full of hay (Figure 1.2). To
say that the event marks a collision of such and such a photon with such and such
a particle is identification enough. The world lines of that photon and that particle
are rooted in the past and stretch out into the future. They have a rich texture of
connections with nearby world lines. These nearby world lines in turn are linked
in a hundred ways with world lines more remote. How then does one tell the location
of an event? Tell first what world lines participate in the event. Next follow each
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Figure 1.3.

Above: Assigning “telephone numbers” to events by way of a system of coordinates. To say that the
coordinate system is “smooth™ is to say that events which are almost in the same place have almost
the same coordinates. Below: Putting the same set of events into equally good order by way of a different
ssstem of coordinates. Picked out specially here are two neighboring events: an event named “<” with
cvordinates (x°, x1) = (77.2,22.6) and (x0, x1) = (18.5,51.4); and an event named “#” with coordinates
vl xly = (79.9,20.1) and (x°, xT) = (18.4, 47.1). Events £ and & are connected by the separation “‘vector”
& (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in
which the two points have an indefinitely small separation [N-fold reduction of the separation ¥ — 2],
and. in the resultant locally flat space, multiplying the separation up again by the factor N [lim N — oo;
“tangent space”; “tangent vector”]. Forego here that proper way of stating matters, and forego complete
accuracy: hence the quote around the word “vector”.) In each coordinate system the separation vector
& 15 characterized by “components” (differences in coordinate values between & and 2):

(89, £1) = (799 — 77.2,20.1 — 226) = (2.7, — 2.5),
(B, £1) = (184 — 18.5,47.1 — 51.4) = (—0.1, —43).

See Box 1.1 for further discussion of events, coordinates, and vectors.

ov = .
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of these world lines. Name the additional events that they encounter. These events
pick out further world lines. Eventually the whole barn of hay is catalogued. Each
event is named. One can find one’s way as surely to a given intersection as the city
dweller can pick his path to the meeting of St. James Street and Piccadilly. No
numbers. No coordinate system. No coordinates.

That most streets in Japan have no names, and most houses no numbers, illustrates
one’s ability to do without coordinates. One can abandon the names of two world
lines as a means to identify the event where they intersect. Just as one could name
a Japanese house after its senior occupant, so one can and often does attach arbitrary
names to specific events in spacetime, as in Box 1.1.

Coordinates, however, are convenient. How else from the great thick catalog of
events, randomly listed, can one easily discover that along a certain world line one
will first encounter event Trinity, then Baker, then Mike, then Argus—but not the
same events in some permuted order?

To order events, introduce coordinates! (See Figure 1.3.) Coordinates are four
indexed numbers per event in spacetime; on a sheet of paper, only two. Trinity
acquires coordinates

(x°, x1, x2, x3) = (77,23, 64, 11).

In christening events with coordinates, one demands smoothness but foregoes every
thought of mensuration. The four numbers for an event are nothing but an elaborate
kind of telephone number. Compare their “telephone” numbers to discover whether
two events are neighbors. But do not expect to learn how many meters separate
them from the difference in their telephone numbers!

Nothing prevents a subscriber from being served by competing telephone systems,
nor an event from being catalogued by alternative coordinate systems (Figure 1.3).
Box 1.1 illustrates the relationships between one coordinate system and another, as
well as the notation used to denote coordinates and their transformations.

Choose two events, known to be neighbors by the nearness of their coordinate
values in a smooth coordinate system. Draw a little arrow from one event to the
other. Such an arrow is called a vector. (It is a well-defined concept in flat spacetime,
or in curved spacetime in the limit of vanishingly small length; for finite lengths
in curved spacetime, it must be refined and made precise, under the new name
“tangent vector,” on which see Chapter 9.) This vector, like events, can be given
a name. But whether named “John” or “Charles” or “Kip,” it is a unique, well-
defined geometrical object. The name is a convenience, but the vector exists even
without it.

Just as a quadruple of coordinates

(x% x%, x2, x%) = (77,23,64, 11)

is a particularly useful name for the event “Trinity” (it can be used to identify what
other events are nearby), so a quadruple of “components”

(80,61, £, 8) = (12, —0.9,0,2.1)




Box 1.1 MATHEMATICAL NOTATION FOR EVENTS, COORDINATES, AND VECTORS

Events are denoted by capital script, one-letter Latin names such as P, 2,4, 9.
Sometimes subscripts are used: Py, Py, Bg

Coordinates of an event #? are denoted by UP), X(P), (P), z2(P),
or by xXUP), xY(P), x¥P),

X9,

or more abstractly by XHP) or x4P),
where it is understood that Greek indices can take on any value O, 1,
2, or 3.

Time coordinate (when one of the four is picked to play this role) x%P).

Space coordinates are xY(P), x3(P), x}(P)
and are sometimes denoted by xH(P) or x¥(@P) or....

It is to be understood that Latin indices take on values 1, 2, or 3.

Shorthand netation: One soon tires of writing explicitly the functional depen-
dence of the coordinates, x#(%); so one adopts the shorthand notation xP
for the coordinates of the event %, and x7
for the space coordinates. One even begins to think of x# as representing
the event ¢ itself, but must remind oneself that the values of x% x!, x2%,
x3 depend not only on the choice of #? but also on the arbitrary choice
of coordinates!

Other coordinates for the same event ¥ may be denoted x*(%) or just x%,
x‘f'(&’p) or just xf",
x%(?) or just x*.

ExaMPLE: In Figure 1.3 (x°, x!) = (77.2,22.6) and (x°, x') = (18.5,51.4)

refer to the same event. The bars, primes, and hats distinguish one

coordinate system from another; by putting them on the indices rather
than on the x’s, we simplify later notation.

Transformation from one coordinate system to another is achieved by the four
functions xO(x%, x1, x%, x3),
x1(x0, x1, x2, x%),
x2(x°, x1, x2, x9),
x3(x0, x1, x2, x3),
which are denoted more succinctly x%(xP).

Separation vector* (little arrow) reaching from one event £ to neighboring event

% can be denoted abstractly by uorvorf§,or? — 2.
It can also be characterized by the coordinate-value differencest between
# and 2 (called “components” of the vector) &= x4(P) — x(2),

2= x¥(P) — x42).

Transformation of components of a vector from one coordinate system to another -
is achieved by partial derivatives of transformation equations o =

- 8xB
since &% = x¥P) — x4(2) = (Ox%/2xP)xF(P) — xP(D)]}
Einstein summation convention is used here:
any index that is repeated in a product is automatically summed on g 2 g
8xﬁ 2 xB

*This definition of a vector is valid only in flat spacetime. The refined definition (““tangent vector”) in curved spacetime
is not spelled out here (see Chapter 9), but flat-geometry ideas apply with good approximation even in a curved geometry,
when the two points are sufficiently close.

+ These formulas are precisely accurate only when the region of spacetime under consideration is flat and when in addition
the coordinates are Lorentzian. Otherwise they are approximate—though they become arbitrarily good when the separation
between points and the length of the vector become arbitrarily small.
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is a convenient name for the vector “John” that reaches from
(x% x1, x%, x3) = (77,23,64, 11)
to
(x% x1, x2, x%) = (78.2,22.1, 64.0, 13.1).

How to work with the components of a vector is explored in Box 1.1.

There are many ways in which a coordinate system can be imperfect. Figure 1.4
illustrates a coordinate singularity. For another example of a coordinate singularity,
run the eye over the surface of a globe to the North Pole. Note the many meridians
that meet there (“collapse of cells of egg crates to zero content”). Can’t one do better?
Find a single coordinate system that will cover the globe without singularity? A
theorem says no. Two is the minimum number of “coordinate patches” required
to cover the two-sphere without singularity (Figure 1.5). This circumstance empha-
sizes anew that points and events are primary, whereas coordinates are a mere
bookkeeping device.

Figures 1.2 and 1.3 show only a few world lines and events. A more detailed
diagram would show a maze of world lines and of light rays and the intersections
between them. From such a picture, one can in imagination step to the idealized
limit: an infinitely dense collection of light rays and of world lines of infinitesimal
test particles. With this idealized physical limit, the mathematical concept of a
continuous four-dimensional “manifold” (four-dimensional space with certain
smoothness properties) has a one-to-one correspondence; and in this limit continu-
ous, differentiable (i.e., smooth) coordinate systems operate. The mathematics then
supplies a tool to reason about the physics.

A simple countdown reveals the dimensionality of the manifold. Take a point &
in an n-dimensional manifold. Its neighborhood is an n-dimensional ball (i.e., the
interior of a sphere whose surface has #» — 1 dimensions). Choose this ball so that
its boundary is a smooth manifold. The dimensionality of this manifold is (n — 1).
In this (n — 1)-dimensional manifold, pick a point 2. Its neighborhood is an
(n — 1)-dimensional ball. Choose this ball so that..., and so on. Eventually one
comes by this construction to a manifold that is two-dimensional but is not yet known
to be two-dimensional (two-sphere). In this two-dimensional manifold, pick a point
9. Its neighborhood is a two-dimensional ball (“disc”). Choose this disc so that
its boundary is a smooth manifold (circle). In this manifold, pick a point 9. Its
neighborhood is a one-dimensional ball, but is not yet known to be one-dimensional
(“line segment”). The boundaries of this object are two points. This circumstance
tells that the intervening manifold is one-dimensional; therefore the previous mani-
fold was two-dimensional; and so on. The dimensionality of the original manifold
is equal to the number of points employed in the construction. For spacetime, the
dimensionality is 4.

This kind of mathematical reasoning about dimensionality makes good sense at
the everyday scale of distances, at atomic distances (1078 cm), at nuclear dimensions
(10713 cm), and even at lengths smaller by several powers of ten, if one judges by
the concord between prediction and observation in quantum electrodynamics at high




IRIEF

1.4
1ty,
ans

red

= —m

r=22m 24m 26m  28m  30m

Figure 1.4.
How a mere coordinate singularity arises. Above: A coordinate system becomes singular when the “cells
in the egg crate” are squashed to zero volume. Below: An example showing such a singularity in the
Schwarzschild coordinates r, ¢ often used to describe the geometry around a black hole (Chapter 31).
For simplicity the angular coordinates 6, ¢ have been suppressed. The singularity shows itself in two
ways. First, all the points along the dotted line, while quite distinct one from another, are designated
by the same pair of (r, ¢) values; namely, r = 2m, 1 = oo. The coordinates provide no way to distinguish
these points. Second, the “cells in the egg crate,” of which one is shown grey in the diagram, collapse
to zero content at the dotted line. In summary, there is nothing strange about the geometry at the dotted
line; all the singularity lies in the coordinate system (““poor system of telephone numbers”). No confusion
should be permitted to arise from the accidental circumstance that the ¢ coordinate attains an infinite
value on the dotted line. No such infinity would occur if r were replaced by the new coordinate 7, defined
by _

(¢/2m) = tan(t/2m).
When ¢ = oo, the new coordinate 7 is 1 = #m. The r, 1 coordinates still provide no way to distinguish
the points along the dotted line. They still give “cells in the egg crate” collapsed to zero content along
the dotted line.




Breakdown in smoothness of
spacetime at Planck length

Figure 1.5.

Singularities in familiar coordinates on the two-sphere can be eliminated by covering the sphere with
two overlapping coordinate patches. A. Spherical polar coordinates, singular at the North and South
Poles, and discontinuous at the international date line. B. Projection of the Euclidean coordinates of
the Euclidean two-plane, tangent at the North Pole, onto the sphere via a line running to the South
Pole; coordinate singularity at the South Pole. C. Coverage of two-sphere by two overlapping coordinate
patches. One, constructed as in B, covers without singularity the northern hemisphere and also the
southern tropics down to the Tropic of Capricorn. The other (grey) also covers without singularity all
of the tropics and the southern hemisphere besides.

energies (corresponding de Broglie wavelength 107'% cm). Moreover, classical general
relativity thinks of the spacetime manifold as a deterministic structure, completely
well-defined down to arbitrarily small distances. Not so quantum general relativity
or “quantum geometrodynamics.” It predicts violent fluctuations in the geometry
at distances on the order of the Planck length,

L* = (hG/c?)V?
= [(1.054 X 1027 g cm?/sec)(6.670 x 1078 cm3/g sec?)]/2 X

X (2.998 x 101° ¢cm/secy3/2  (1.1)
1.616 x 10733 cm.

No one has found any way to escape this prediction. As nearly as one can estimate,
these fluctuations give space at small distances a “multiply connected” or “foamlike”
character. This lack of smoothness may well deprive even the concept of dimension-
ality itself of any meaning at the Planck scale of distances. The further exploration
of this issue takes one to the frontiers of Einstein’s theory (Chapter 44).

If spacetime at small distances is far from the mathematical model of a continuous
manifold, is there not also at larger distances a wide gap between the mathematical
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idealization and the physical reality? The infinitely dense collection of light rays
and of world lines of infinitesimal test particles that are to define all the points of
the manifold: they surely are beyond practical realization. Nobody has ever found
a particle that moves on timelike world lines (finite rest mass) lighter than an electron.
A collection of electrons, even if endowed with zero density of charge (e* and e~
world lines present in equal numbers) will have a density of mass. This density will
curve the very manifold under study. Investigation in infinite detail means unlimited
density, and unlimited disturbance of the geometry.

However, to demand investigatability in infinite detail in the sense just described
is as out of place in general relativity as it would be in electrodynamics or gas
dynamics. Electrodynamics speaks of the strength of the electric and magnetic field
at each point in space and at each moment of time. To measure those fields, it is
willing to contemplate infinitesimal test particles scattered everywhere as densely
as one pleases. However, the test particles do not have to be there at all to give
the field reality. The field has everywhere a clear-cut value and goes about its
deterministic dynamic evolution willy-nilly and continuously, infinitesimal test
particles or no infinitesimal test particles. Similarly with the geometry of space.

In conclusion, when one deals with spacetime in the context of classical physics,
one accepts (1) the notion of “infinitesimal test particle” and (2) the idealization
that the totality of identifiable events forms a four-dimensional continuous manifold.
Only at the end of this book will a look be taken at some of the limitations placed
by the quantum principle on one’s way of speaking about and analyzing spacetime.

§1.3. WEIGHTLESSNESS

“Qravity is a great mystery. Drop a stone. See it fall. Hear it hit. No one understands
why.” What a misleading statement! Mystery about fall? What else should the stone
do except fall? To fall is normal. The abnormality is an object standing in the way
of the stone. If one wishes to pursue a “mystery,” do not follow the track of the
falling stone. Look instead at the impact, and ask what was the force that pushed
the stone away from its natural “world line,” (i.e., its natural track through space-
time). That could lead to an interesting issue of solid-state physics, but that is not
the topic of concern here. Fall is. Free fall is synonymous with weightlessness:
absence of any force to drive the object away from its normal track through space-
time. Travel aboard a freely falling elevator to experience weightlessness. Or travel
aboard a spaceship also falling straight toward the Earth. Or, more happily, travel
aboard a spaceship in that state of steady fall toward the Earth that marks a circular
orbit. In each case one is following a natural track through spacetime.

The traveler has one chemical composition, the spaceship another; yet they travel
together, the traveler weightless in his moving home. Objects of such different nuclear
constitution as aluminum and gold fall with accelerations that agree to better than
one part in 10, according to Roll, Krotkov, and Dicke (1964), one of the most
important null experiments in all physics (see Figure 1.6). Individual molecules fall
in step, too, with macroscopic objects [Estermann, Simpson, and Stern (1938)]; and
so do individual neutrons [Dabbs, Harvey, Paya, and Horstmann (1965)), individual

(continued on page 16)

Difficulty in defining
geometry even at classical
distances?

No; one must accept
geometry at classical
distances as meaningful

Free fall is the natural state
of motion

All objects fall with the same
acceleration
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Figure 1.6.

Principle of the Roll-Krotkov-Dicke experiment, which showed that the gravitational accelerations of
gold and aluminum are equal to 1 part in 10! or better (Princeton, 1964). In the upper lefthand corner,
equal masses of gold and aluminum hang from a supporting bar. This bar in turn is supported at its
midpoint. If both objects fall toward the sun with the same acceleration of g = 0.59 ¢cm/sec?, the bar
does not turn. If the Au mass receives a higher acceleration, g + Jg, then the gold end of the bar starts
to turn toward the sun in the Earth-fixed frame. Twelve hours later the sun is on the other side, pulling
the other way. The alternating torque lends itself to recognition against a background of noise because
of its precise 24-hour period. Unhappily, any substantial mass nearby, such as an experimenter, located
at M, will produce a torque that swamps the effect sought. Therefore the actual arrangement was as
shown in the body of the figure. One gold weight and two aluminum weights were supported at the
three corners of a horizontal equilateral triangle, 6 cm on a side (three-fold axis of symmetry, giving
zero response to all the simplest nonuniformities in the gravitational field). Also, the observers performed
all operations remotely to eliminate their own gravitational effects*. To detect a rotation of the torsion
balance as small as ~107% rad without disturbing the balance, Roll, Krotkov, and Dicke reflected a
very weak light beam from the optically flat back face of the quartz triangle. The image of the source
slit fell on a wire of about the same size as the slit image. The light transmitted past the wire fell on
a photomultiplier. A separate oscillator circuit drove the wire back and forth across the image at 3,000
hertz. When the image was centered perfectly, only even harmonics of the oscillation frequency appeared
in the light intensity. However, when the image was displaced slightly to one side, the fundamental
frequency appeared in the light intensity. The electrical output of the photomultiplier then contained
a 3,000-hertz component. The magnitude and sign of this component were determined automatically.
Equally automatically a proportional p.c. voltage was applied to the electrodes shown in the diagram.
It restored the torsion balance to its zero position. The D.c. voltage required to restore the balance to
its zero position was recorded as a measure of the torque acting on the pendulum. This torque was
Fourier-analyzed over a period of many days. The magnitude of the Fourier component of 24-hour
period indicated a ratio 8g/g = (0.96 = 1.04) X 107''. Aluminum and gold thus fall with the same
acceleration, despite their important differences summarized in the table.

Ratios Al Au

Number of neutrons

Number of protons 1.08 15
Mass of kineti f K-elect
inetic energy o electron 0.005 016
Rest mass of electron
Electrostati G- f 1
ectrostatic mass-energy of nucleus 0.001 0.004

Mass of atom

The theoretical implications of this experiment will be discussed in greater detail in Chapters 16 and 38.

Braginsky and Panov (1971) at Moscow University performed an experiment identical in principle
to that of Dicke-Roll-Krotkov, but with a modified experimental set-up. Comparing the accelerations
of platinum and aluminum rather than of gold and aluminum, they say that

dg/g <1 x 10712

*QOther perturbations had to be, and were, guarded against. (1) A bit of iron on the torsion balance
as big as 1073 cm on a side would have contributed, in the Earth’s magnetic field, a torque a hundred
times greater than the measured torque. (2) The unequal pressure of radiation on the two sides of a
mass would have produced an unacceptably large perturbation if the temperature difference between
these two sides had exceeded 107 °K. (3) Gas evolution from one side of a mass would have propelled
it like a rocket. If the rate of evolution were as great as 107® g/day, the calculated force would have
been ~ 10-7 g cm/sec?, enough to affect the measurements. (4) The rotation was measured with respect
to the pier that supported the equipment. As a guarantee that this pier did not itself rotate, it was anchored
to bed rock. (5) Electrostatic forces were eliminated; otherwise they would have perturbed the balance.
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electrons [Witteborn and Fairbank (1967)] and individual mu mesons [Beall (1970)].
What is more, not one of these objects has to see out into space to know how to
move.

Contemplate the interior of a spaceship, and a key, penny, nut, and pea by accident
or design set free inside. Shielded from all view of the world outside by the walls
of the vessel, each object stays at rest relative to the vessel. Or it moves through
the room in a straight line with uniform velocity. That is the lesson which experience
shouts out.

Forego talk of acceleration! That, paradoxically, is the lesson of the circumstance
that “all objects fall with the same acceleration.” Whose fault were those accelera-
tions, after all? They came from allowing a groundbased observer into the act. The

Box 1.2 MATERIALS OF THE MOST DIVERSE COMPOSITION FALL WITH
THE SAME ACCELERATION ('‘STANDARD WORLD LINE")

Aristotle: “the downward movement of a mass of
gold or lead, or of any other body endowed with
weight, is quicker in proportion to its size.”

Pre-Galilean literature: metal and wood weights
fall at the same rate.

Galileo: (1) “the variation of speed in air between
balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100
cubits [about 46 meters] a ball of gold would surely
not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that in a medium totally void of resistance
all bodies would fall with the same speed.” (2)
later experiments of greater precision “diluting
gravity” and finding same time of descent for
different objects along an inclined plane.

Newton: inclined plane replaced by arc of pendu-
lum bob; “time of fall” for bodies of different
composition determined by comparing time of
oscillation of pendulum bobs of the two materials.
Ultimate limit of precision in such experiments
limited by problem of determining effective length
of each pendulum: (acceleration) = (27/pe-
riod)?(length).

Lorand von Eotvos, Budapest, 1889 and 1922:
compared on the rotating earth the vertical defined
by a plumb bob of one material with the vertical
defined by a plumb bob of other material. The
two hanging masses, by the two unbroken threads
that support them, were drawn along identical
world lines through spacetime (middle of the labo-
ratory of Eotvos!). If cut free, would they also
follow identical tracks through spacetime (“normal
world line of test mass™)? If so, the acceleration
that draws the actual world line from the normal
free-fall world line will have a standard value, a.
The experiment of Edtvos did not try to test agree-
ment on the magnitude of a between the two
masses. Doing so would have required (1) cutting
the threads and (2) following the fall of the two
masses. E0tvds renounced this approach in favor
of a static observation that he could make with
greater precision, comparing the direction of a for
the two masses. The direction of the supporting
thread, so his argument ran, reveals the direction
in which the mass is being dragged away from its
normal world line of “free fall” or “weightless-
ness.” This acceleration is the vectorial resultant
of (1) an acceleration of magnitude g, directed
outward against so-called gravity, and (2) an ac-
celeration directed toward the axis of rotation of
the earth, of magnitude w? R sin § (w, angular ve-




§1.3. WEIGHTLESSNESS 17

push of the ground under his feet was driving him away from a natural world line.
Through that flaw in his arrangements, he became responsible for all those accelera-
tions. Put him in space and strap rockets to his legs. No difference!* Again the
responsibility for what he sees is his. Once more he notes that “all objects fall with

*“No difference” spelled out amounts to Einstein’s (1911) principle of the local equivalence between a
“gravitational field” and an acceleration: “We arrive at a very satisfactory interpretation of this law of
experience, if we assume that the systems K and K’ are physically exactly equivalent, that is, if we assume
that we may just as well regard the system K as being in a space free from gravitational fields, if we then
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for
us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity
Jorbids us to talk of the absolute velocity of a system; and it makes the equal falling of all bodies in a

gravitational field seem a matter of course.”

locity; R, radius of earth; 6, polar angle measured
from North Pole to location of experiment). This
centripetal acceleration has a vertical component
—w? Rsin? § too small to come into discussion.
The important component is w? R sin @ cos 8, di-
rected northward and parallel to the surface of the
earth. It deflects the thread by the angle

horizontal acceleration
vertical acceleration

_ w? Rsin @ cos
g

_ 3.4 cm/sec?

" 980 cm/sec?

= 1.7 x 1073 radian at§ = 45°

sin § cos 8

from the straight line connecting the center of the
earth to the point of support. A difference, dg, of
one part in 108 between g for the two hanging
substances would produce a difference in angle of
hang of plumb bobs equal to 1.7 X 1071! radian
at Budapest (§ = 42.5°). Eotvos reported 8g/g less
than a few parts in 10°.

Roll, Krotkov, and Dicke, Princeton, 1964: em-
ployed as fiducial acceleration, not the 1.7 cm/sec?
steady horizontal acceleration, produced by the
earth’s rotation at § = 45°, but the daily alternat-

ing 0.59 cm/sec? produced by the sun’s attraction.
Reported |g(Au) — g(Al)|/g less than 1 x 1011,
See Figure 1.6.

Braginsky and Panov, Moscow, 1971: like Roll,
Krotkov, and Dicke, employed Sun’s attraction as
fiducial acceleration. Reported lg(Pt) — g(Al){ /g
less than 1 x 10712,

Beall, 1970: particles that are deflected less by the
Earth’s or the sun’s gravitational field than a pho-
ton would be, effectively travel faster than light.
If they are charged or have other electromagnetic
structure, they would then emit Cerenkov radia-
tion, and reduce their velocity below threshold in
less than a micron of travel. The threshold is at
energies around 103 mc?. Ultrarelativistic particles
in cosmic-ray showers are not easily identified, but
observations of 10'* €V muons show that muons
are not “too light” by as much as 5 X 1075, Con-
versely, a particle P bound more strongly than
photons by gravity will transfer the momentum
needed to make pair production y - P + P occur
within a submicron decay length. The existence of
photons with energies above 1013 eV shows that
e* are not “too heavy” by 5 parts in 109, p* not
by 2 in 104, A, -, £2~ not by a few per cent.

y




Eliminate the acceleration by
use of a local inertial frame
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Figure 1.7.

“Weightlessness” as test for a local inertial frame of reference (““Lorentz frame”). Each spring-driven
cannon succeeds in driving its projectile, a steel ball bearing, through the aligned holes in the sheets
of lucite, and into the woven-mesh pocket, when the frame of reference is free of rotation and in free
fall (“normal world line through spacetime”). A cannon would fail (curved and ricocheting trajectory
at bottom of drawing) if the frame were hanging as indicated when the cannon went off’ (“frame drawn
away by pull of rope from its normal world line through spacetime”). Harold Waage at Princeton has
constructed such a model for an inertial reference frame with lucite sheets about 1 m square. The “fuses”
symbolizing time delay were replaced by electric relays. Penetration fails if the frame (1) rotates, (2)
accelerates, or (3) does any combination of the two. It is difficult to cite any easily realizable device
that more fully illustrates the meaning of the term *“local Lorentz frame.”

the same acceleration.” Physics looks as complicated to the jet-driven observer as
it does to the man on the ground. Rule out both observers to make physics look
simple. Instead, travel aboard the freely moving spaceship. Nothing could be more
natural than what one sees: every free object moves in a straight line with uniform
velocity. This is the way to do physics! Work in a very special coordinate system:
a coordinate frame in which one is weightless; a local inertial frame of reference.
Or calculate how things look in such a frame. Or—if one is constrained to a ground-
based frame of reference—use a particle moving so fast, and a path length so limited,
that the ideal, freely falling frame of reference and the actual ground-based frame
get out of alignment by an amount negligible on the scale of the experiment. [Given
a 1,500-m linear accelerator, and a 1 GeV electron, time of flight ~ (1.5 X 105 cm)/
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(3 X 101° cm/sec) = 0.5 X 1070 sec; fall in this time ~4 gr* = (490 cm/sec?)(0.5 X
1073 sec)? ~ 1078 cm.]

In analyzing physics in a local inertial frame of reference, or following an ant
on his little section of apple skin, one wins simplicity by foregoing every reference
to what is far away. Physics is simple only when viewed locally: that is Einstein’s
great lesson.

Newton spoke differently: “Absolute space, in its own nature, without relation
to anything external, remains always similar and immovable.” But how does one
give meaning to Newton’s absolute space, find its cornerstones, mark out its straight
lines? In the real world of gravitation, no particle ever follows one of Newton’s
straight lines. His ideal geometry is beyond observation. “A comet going past the
sun is deviated from an ideal straight line.” No. There is no pavement on which
to mark out that line. The “ideal straight line” is a myth. It never happened, and
it never will.

“It required a severe struggle [for Newton] to arrive at the concept of independent
and absolute space, indispensible for the development of theory. . .. Newton’s decision
was, in the contemporary state of science, the only possible one, and particularly the
only fruitful one. But the subsequent development of the problems, proceeding in a
roundabout way which no one could then possibly foresee, has shown that the resistance
of Leibniz and Huygens, intuitively well-founded but supported by inadequate argu-
ments, was actually justified. . . . It has required no less strenuous exertions subsequently

to overcome this concept [of absolute space]”
[A. EINSTEIN (1954)].
What is direct and simple and meaningful, according to Einstein, is the geometry
in every local inertial reference frame. There every particle moves in a straight line
with uniform velocity. Define the local inertial frame so that this simplicity occurs
for the first few particles (Figure 1.7). In the frame thus defined, every other free
particle is observed also to move in a straight line with uniform velocity. Collision
and disintegration processes follow the laws of conservation of momentum and
energy of special relativity. That all these miracles come about, as attested by tens
of thousands of observations in elementary particle physics, is witness to the inner
workings of the machinery of the world. The message is easy to summarize: (1)
physics is always and everywhere locally Lorentzian; i.e., locally the laws of special
relativity are valid; (2) this simplicity shows most clearly in a local Lorentz frame
of reference (“inertial frame of reference”; Figure 1.7); and (3) to test for a local

Lorentz frame, test for weightlessness!

§1.4. LOCAL LORENTZ GEOMETRY,
WITH AND WITHOUT COORDINATES

On the surface of an apple within the space of a thumbprint, the geometry is
Euclidean (Figure 1.1; the view in the magnifying glass). In spacetime, within a
limited region, the geometry is Lorentzian. On the apple the distances between point
and point accord with the theorems of Euclid. In spacetime the intervals (“proper
distance,” “proper time”) between event and event satisfy the corresponding theo-
rems of Lorentz-Minkowski geometry (Box 1.3). These theorems lend themselves

(continued on page 23)

Newton’s absolute space is
unobservable, nonexistent

But Einstein’s local inertial
frames exist, are simple

In local inertial frames,
physics is Lorentzian

Local Lorentz geometry is the
spacetime analog of local
Euclidean geometry.
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WITH AND WITHOUT COORDINATES

Local Euclidean Geometry

What does it mean to say that the geometry of
a tiny thumbprint on the apple is Euclidean?

A. Coordinate-free language (Euclid):

Given a line #¢. Extend it by an equal
distance ¢Z. Let 4 be a point not on £
but equidistant from ¢ and £. Then

2 _ o 2 2
Seq = Sge” + Spe”

(Theorem of Pythagoras; also other theo-
rems of Euclidean geometry.)

Language of coordinates (Descartes):
From any point & to any other point %
there is a distance s given in suitable (Eucli-
dean) coordinates by

Sga” = [x1(B) — xH@)F + [X*(B) — xH(@)]*.

If one succeeds in finding any coordinate
system where this is true for all points &
and % in the thumbprint, then one is guar-
anteed that (i) this coordinate system is
locally Euclidean, and (ii) the geometry of
the apple’s surface is locally Euclidean.

Local Lorentz Geometry

What does it mean to say that the geometry of
a sufficiently limited region of spacetime in the
real physical world is Lorentzian?

A,

Coordinate-free language (Robb 1936):

Let #£ be the world line of a free particle.
Let % be an event not on this world line.
Let a light ray from 4 strike ££ at the
event 2. Let a light ray take off from such
an earlier event ¥ along &£ that it reaches
9. Then the proper distance s, (spacelike
separation) or proper time r,,; (timelike
separation) is given by

2 — 2 _
Sed” = —Tea” = —TgoTgo-

&

x2=12
x2 =11
x2 =10
x? =
x2 =128
x2=7

Box 1.3 LOCAL LORENTZ GEOMETRY AND LOCAL EUCLIDEAN GEOMETRY:

~

B

& 4
B
/
/
I(f
;\l on <t ')
Il 1] i 1]
® R OkROR
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['

Proof of above criterion for local Lorentz
geometry, using coordinate methods in the
local Lorentz frame where particle remains
at rest:

o

Tpas = 12— x2 = (1 — x)(t + x)
= TaoTao

B. Language of coordinates (Lorentz, Poincarg,
Minkowski, Einstein):
From any event & to any other nearby
event 94, there is a proper distance s,., or
proper time 7,; given in suitable (local
Lorentz) coordinates by

Sy = — T = —XB) — XA R -
+ [XMB) — XH@)P o3 .
+ [XAB) — XD ) Pl
+ [x3(B) — X} =2 <
0

If one succeeds in finding any coordinate =l ?‘

system where this is locally true for all x =0T

neighboring events ¢ and %, then one is T TR TR

guaranteed that (i) this coordinate system =R Rk Tk

is locally Lorentzian, and (ii) the geometry
of spacetime is locally Lorentzian.

I1l. Statements of Fact

The geometry of an apple’s surface is locally Fu-
clidean everywhere. The geometry of spacetime is
locally Lorentzian everywhere.
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Box 1.3 (continued)

Local Geometry in the Language of
Modern Mathematics

A. The metric for any manifold:

At each point on the apple, at each event
of spacetime, indeed, at each point of any
“Riemannian manifold,” there exists a geo-
metrical object called the metric rensor g.
It is a machine with two input slots for the
insertion of two vectors:

slot 1 slot 2

{ {
g( , )-

Ifoneinserts the same vectoruinto both slots,
one gets out the square of the length of u:

g(u,u) = u>.

If one inserts two different vectors, u and v
(it matters not in which order!), one gets out
a number called the “scalar product of u on
v’ and denoted u - v:

guv)=gv,uy=u‘v=v-u.
The metric is a linear machine:

gQu + 3w, v) = 2g(u, v) + 3g(w, v),
g(u,av + bw) = ag(u,v) + bg(u, w).

Consequently, in a given (arbitrary) coordi-
nate system, its operation on two vectors can
be written in terms of their components as a
bilinear expression:

glu,v) = g, uvh
(implied summation on «, f3)
= gu'vt + gpu'v® + goutv' + -

The quantities g, = g4, (¢ and § running
from O to 3 in spacetime, from 1 to 2 on the
apple) are called the “components of gin the
given coordinate system.”

Components of the metric in local Lorentz and
local Euclidean frames:

To connect the metric with our previous de-
scriptions of the local geometry, introduce

~

local Euclidean coordinates (on apple) or
local Lorentz coordinates (in spacetime).

/' B
£ /
/

/

o/

Let & be the separation vector reaching from
& to 4. Its components in the local Eucli-
dean (Lorentz) coordinates are

£ = x4B) — x4Q)
(cf.Box 1.1). Then the squared length of u.;,

which is the same as the squared distance
from & to %, must be (cf. I.B. and I1.B. above)

§-8 =g &) = g8
= 5,42 = (§)% + (£%)? on apple
= =2 + () + (£H)? + (&¥)*

in spacetime.

Consequently, the components of the met-
ric are

o fu T E: T 1’g12:g21:Q;

Le., Zup = Oup on apple, in
local Euclidean
coordinates;

8o = —L gox = Q’ ik = §jk .
1n spacetime, 1n
local Lorentz
coordinates.

These special components of the metric in
local Lorentz coordinates are written here
ar.1d hereafter as g;, or m,5, by analogy
with the Kronecker delta §,5. In matrix
notation:

_B—-)—

0o 1 2 3

| ofj—1 0 0 O
I!gaBII:IInaBH:a 1 01 00
l 20 0 0 1 0

30 0 0 1
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to empirical test in the appropriate, very special coordinate systems: Euclidean
coordinates in Euclidean geometry; the natural generalization of Euclidean coordi-
nates (local Lorentz coordinates; local inertial frame) in the local Lorentz geometry
of physics. However, the theorems rise above all coordinate systems in their content.
They refer to intervals or distances. Those distances no more call on coordinates
for their definition in our day than they did in the time of Euclid. Points in the
great pile of hay that is spacetime; and distances between these points: that is
geometry! State them in the coordinate-free language or in the language of coordi-
nates: they are the same (Box 1.3).

§1.5. TIME

Time is defined so that motion looks simple.

Time is awake when all things sleep.
Time stands straight when all things fall.
Time shuts in all and will not be shut.
/s, was, and shall be are Time’s children.
O Reasoning, be witness, be stable.

VYASA, the Mahabarata (ca. A.D. 400)

Relative to a local Lorentz frame, a free particle “moves in a straight line with
uniform velocity.” What “straight” means is clear enough in the model inertial
reference frame illustrated in Figure 1.7. But where does the “uniform velocity” come
in? Or where does “velocity” show itself? There is not even one clock in the drawing!

A more fully developed model of a Lorentz reference frame will have not only
holes, as in Fig. 1.7, but also clock-activated shutters over each hole. The projectile
can reach its target only if it (1) travels through the correct region in space and
(2) gets through that hole in the correct interval of time (“window in time”). How
then is time defined? Time is defined so that motion looks simple!

No standard of time is more widely used than the day, the time from one high
noon to the next. Take that as standard, however, and one will find every good clock
or watch clashing with it, for a simple reason. The Earth spins on its axis and also
revolves in orbit about the sun. The motion of the sun across the sky arises from
neither effect alone, but from the two in combination, different in magnitude though
they are. The fast angular velocity of the Earth on its axis (roughly 366.25 complete
turns per year) is wonderfully uniform. Not so the apparent angular velocity of the
sun about the center of the Earth (one turn per year). It is greater than average
by 2 per cent when the Earth in its orbit (eccentricity 0.017) has come 1 per cent
closer than average to the sun (Kepler’s law) and lower by 2 per cent when the
Earth is 1 per cent further than average from the sun. In the first case, the momentary
rate of rotation of the sun across the sky, expressed in turns per year, is approximately

36625 — (1 + 0.02);

The time coordinate of a
iocal Lorentz frame is so
defined that motion looks
simple
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in the other,
366.25 — (1 — 0.02).

Taking the “mean solar day” to contain 24 X 3,600 = 86,400 standard seconds, one
sees that, when the Earth is 1 per cent closer to (or further from) the sun than average,
then the number of standard seconds from one high noon to the next is greater
(or less) than normal by

0.02 (drop in turns per year)

86,400 sec ~ 4.7 sec.
365.25 (turns per year on average) sec sec

This is the bookkeeping on time from noon to noon. No standard of time that varies
so much from one month to another is acceptable. If adopted, it would make the
speed of light vary from month to month!

This lack of uniformity, once recognized (and it was already recognized by the
ancients), forces one to abandon the solar day as the standard of time; that day
does not make motion look simple. Turn to a new standard that eliminates the motion
of the Earth around the sun and concentrates on the spin of the Earth about its
axis: the sidereal day, the time between one arrival of a star at the zenith and the
next arrival of that star at the zenith. Good! Or good, so long as one’s precision
of measurement does not allow one to see changes in the intrinsic angular velocity
of the Earth. What clock was so bold as first to challenge the spin of the Earth for
accuracy? The machinery of the heavens.

Halley (1693) and later others, including Kant (1754), suspected something was
amiss from apparent discrepancies between the paths of totality in eclipses of the
sun, as predicted by Newtonian gravitation theory using the standard of time then
current, and the location of the sites where ancient Greeks and Romans actually
recorded an eclipse on the day in question. The moon casts a moving shadow in
space. On the day of a solar eclipse, that shadow paints onto the disk of the spinning
Earth a black brush stroke, often thousands of kilometers in length, but of width
generally much less than a hundred kilometers. He who spins the globe upon the
table and wants to make the shadow fall rightly on it must calculate back meticu-
lously to determine two key items: (1) where the moon is relative to Earth and sun
at each moment on the ancient day in question; and (2) how much angle the Earth
has turned through from then until now. Take the eclipse of Jan. 14, A.D. 484, as
an example (Figure 1.8), and assume the same angular velocity for the Earth in
the intervening fifteen centuries as the Earth had in 1900 (astronomical reference
point). One comes out wrong. The Earth has to be set back by 30° (or the moon
moved from its computed position, or some combination of the two effects) to make
the Athens observer fall under the black brush. To catch up those 30° (or less, if
part of the effect is due to a slow change in the angular momentum of the moon),
the Earth had to turn faster in the past than it does today. Assigning most of the
discrepancy to terrestrial spin-down (rate of spin-down compatible with modern
atomic-clock evidence), and assuming a uniform rate of slowing from then to now
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Figure 1.8.

Calculated path of totality for the eclipse of January 14, A.D. 484 (left; calculation based on no spin-down
of Earth relative to its 1900 angular velocity) contrasted with the same path as set ahead enough to
put the center of totality (at sunrise) at Athens [displacement very close to 30°; actual figure of deceleration
adopted in calculations, 32.75 arc sec/(century)?]. This is “undoubtedly the most reliable of all ancient
European eclipses,” according to Dr. F. R. Stephenson, of the Department of Geophysics and Planetary
Physics of the University of Newcastle upon Tyne, who most kindly prepared this diagram especially
for this book. He has also sent a passage from the original Greek biography of Proclus of Athens (died
at Athens A.D. 485) by Marinus of Naples, reading, “Nor were there portents wanting in the year which
preceded his death; for example, such a great eclipse of the Sun that night seemed to fall by day. For
a profound darkness arose so that stars even appeared in the sky. This happened in the eastern sky
when the Sun dwelt in Capricorn” [from Westermann and Boissonade (1878)].

Does this 30° for this eclipse, together with corresponding amounts for other eclipses, represent the
“right” correction? “Right” is no easy word. From one total eclipse of the sun in the Mediterranean
area to another is normally many years. The various provinces of the Greek and Roman worlds were
far from having a uniform level of peace and settled life, and even farther from having a uniform standard
of what it is to observe an eclipse and put it down for posterity. If the scores of records of the past
are unhappily fragmentary, even more unhappy has been the willingness of a few uncritical “investigators”
in recent times to rush in and identify this and that historical event with this and that calculated eclipse.
Fortunately, by now a great literature is available on the secular deceleration of the Earth’s rotation,
in the highest tradition of critical scholarship, both astronomical and historical. In addition to the books
of O. Neugebauer (1959) and Munk and MacDonald (1960), the paper of Curott (1966), and items cited
by these workers, the following are key items. (For direction to them, we thank Professor Otto Neuge-
bauer—no relation to the other Neugebauer cited below!) For the ancient records, and for calculations
of the tracks of ancient eclipses, F. K. Ginzel (1882, 1883, 1884); for an atlas of calculated eclipse tracks,
Oppolzer (1887) and Ginzel (1899); and for a critical analysis of the evidence. P. V. Neugebauer (1927,
1929, and 1930). This particular eclipse was chosen rather than any other because of the great reliability
of the historical record of it.




Good clocks make spacetime
trajectories of free particles
look straight

Our choice of unit for
measuring time: the
geometrodynamic centimeter.
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(angular velocity correction proportional to first power of elapsed time: angle cor-
rection itself proportional to square of elapsed time), one estimates from a correction
of

30° or 2 hours 1,500 years ago

the following corrections for intermediate times:

30°/102, or 1.2 min 150 years ago,
30°/10%, or 0.8 sec 15 years ago.

Thus one sees the downfall of the Earth as a standard of time and its replacement
by the orbital motions of the heavenly bodies as a better standard: a standard that
does more to “make motion look simple.” Astronomical time is itself in turn today
being supplanted by atomic time as a standard of reference (see Box 1.4, “Time
Today™).

Look at a bad clock for a good view of how time is defined. Let 7 be time on
a “good” clock (time coordinate of a local inertial frame); it makes the tracks of
free particles through the local region of spacetime look straight. Let 7(¢) be the
reading of the “bad” clock; it makes the world lines of free particles through the
local region of spacetime look curved (Figure 1.9). The old value of the acceleration,
translated into the new (“bad”) time, becomes

0= L d(dTdc) dTdr , (dI):
drr "~ dr\di dT) ~ di® dT ' \dt ] dT?*

To explain the apparent accelerations of the particles, the user of the new time

introduces a force that one knows to be fictitious:

(dx)(d27>

d?x dT )\ di®

_ — AL AT s 1.

Fx_md ;= —m (d )2 (12)
dt

It is clear from this example of a “bad” time that Newton thought of a “good” time
when he set up the principle that “Time flows uniformly” (d27/ds? = 0). Time is
defined to make motion look simple!

The principle of uniformity, taken by itself, leaves free the scale of the time
variable. The quantity T = ar + b satisfies the requirement as well as ¢ itself. The
history of timekeeping discloses many choices of the unit and origin of time. Each
one required some human action to give it sanction, from the fiat of a Pharaoh to
the communique of a committee. In this book the amount of time it takes light to
travel one centimeter is decreed to be the unit of time. Spacelike intervals and
timelike intervals are measured in terms of one and the same geometric unit: the
centimeter. Any other decision would complicate in analysis what is simple in nature.
No other choice would live up to Minkowski’s words, “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”
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Figure 1.9.

Good clock (left) vs. bad clock (right) as seen in the maps they give of the same free particles moving
through the same region of spacetime. The world lines as depicted at the right give the impression that
a force is at work. The good definition of time eliminates such fictitious forces. The dashed lines connect
corresponding instants on the two time scales.

One can measure time more accurately today than distance. Is that an argument
against taking the elementary unit to be the centimeter? No, provided that this
definition of the centimeter is accepted: the geometrodynamic standard centimeter
is the fraction

1/(9.460546 x 1017) (1.3)

of the interval between the two “effective equinoxes” that bound the tropical year
1900.0. The tropical year 1900.0 has already been recognized internationally as the
fiducial interval by reason of its definiteness and the precision with which it is known.
Standards committees have defined the ephemeris second so that 31,556,925.974 sec
make up that standard interval. Were the speed of light known with perfect precision,
the standards committees could have given in the same breath the number of
centimeters in the standard interval. But it isn’t; it is known to only six decimals.
Moreover, the international centimeter is defined in terms of the orange-red wave-
length of Kr®¢ to only nine decimals (16,507.6373 wavelengths). Yet the standard
second is given to 11 decimals. We match the standard second by arbitrarily defining
the geometrodynamic standard centimeter so that

9.4605460000 X 1017

such centimeters are contained in the standard tropical year 1900.0. The speed of
light then becomes exactly

9.4605460000 x 10%7
31,556,925.974

geometrodynamic cm/sec. 14

This is compatible with the speed of light, as known in 1967, in units of “international
cm/sec”:

29,979,300,000 == 30,000 international cm/sec.




Box 1.4 TIME TODAY

Prior to 1956 the second was defined as the frac-
tion 1/86,400 of the mean solar day.

From 1956 to 1967 the “second” meant the
ephemeris second, defined as the fraction
1/(31,556,925.9747) of the tropical year
00h00m00s December 31, 1899.

Since 1967 the standard second has been the
SI (Syst¢éme International) second, defined as
9,192,631,770 periods of the unperturbed micro-
wave transition between the two hyperfine levels
of the ground state of Cs!33,

Like the foregoing evolution of the unit for the
time interval, the evolution of a time coordinate
has been marked by several stages.

Universal time, UTO, is based on the count of
days as they actually occurred historically; in other
words, on the actual spin of the earth on its axis;
historically, on mean solar time (solar position as
corrected by the “equation of time”; i.e., the faster
travel of the earth when near the sun than when
far from the sun) as determined at Greenwich
Observatory.

UT1, the “navigator’s time scale,” is the same
time as corrected for the wobble of the earth on
its axis (4t ~ 0.05 sec).

UT2 is UTI1 as corrected for the periodic fluc-
tuations of unknown origin with periods of one-
half year and one year (4t ~ 0.05 sec; measured
to 3 ms in one day).

Ephemeris Time, ET (as defined by the theory
of gravitation and by astronomical observations
and calculations), is essentially determined by the
orbital motion of the earth around the sun.
“Measurement uncertainties limit the realization
of accurate ephemeris time to about 0.05 sec for
a nine-year average.”

Coordinated Universal Time (UTC) is broadcast
on stations such as WWYV. It was adopted interna-
tionally in February 1971 to become effective Jan-
uary 1, 1972. The clock rate is controlled by atomic
clocks to be as uniform as possible for one year
(atomic time is measured to ~0.1 microsec in 1
min, with diffusion rates of 0.1 microsec per day
for ensembles of clocks), but is changed by the
infrequent addition or deletion of a second—called
a “leap second”—so that UTC never differs.more
than 0.7 sec from the navigator’s time scale, UT1.

Time suspended
for a second

Time will stand still throughout
the world for one second at mid-
night, June 30. All radio time
signals will insert a *“ leap second ”
to bring Greenwich Mean Time into
line with the earth’s loss of three
thousandths of a second a dayv.

THE TIMES The signal from the Royal Green-
wich Observatory to Broadcasting
Wednesday | House at midnight GMT (I am

BST July 1) will be six short pips
marking the seconds 55 to 60 inclu-
sive, followed by a lengthened sig-
nal at the following second to mark
the new minute.

June 21 1972

The foregoing account is abstracted from J. A.
Barnes (1971). The following is extracted from a
table (not official at time of receipt), kindly sup-
plied by the Time and Frequency Division of the
U.S. National Bureau of Standards in Boulder,
Colorado.

Timekeeping capabilities of some familiar clocks
are as follows:

Tuning fork wrist watch (1960),
1 min/mo.

Quartz crystal clock (1921-1930),
1 psec/day,
1 sec/yr.

Quartz crystal wrist watch (1971),
0.2 sec/2 mos.,
1 sec/yr.

Cesium beam (atomic resonance, Cs133), (1952~
1955),
0.1 psec/day,
0.5 psec/mo.

Rubidium gas cell (Rb®" resonance), (1957),
0.1 psec/day,
1-5 psec/mo.

Hydrogen maser (1960),
0.01 psec/2 hr,
0.1 psec/day.

Methane stabilized laser (1969),
0.01 usec/100 sec.
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Recent measurements [Evenson er al. (1972)] change the details of the foregoing
1967 argument, but not the principles.

§1.6. CURVATURE

Gravitation seems to have disappeared. Everywhere the geometry of spacetime is
bocally Lorentzian. And in Lorentz geometry, particles move in a straight line with
constant velocity. Where is any gravitational deflection to be seen in that? For
answer, turn back to the apple (Figure 1.1). Inspect again the geodesic tracks of
the ants on the surface of the apple. Note the reconvergence of two nearby geodesics
that originally diverged from a common point. What is the analog in the real world
of physics? What analogous concept fits Einstein’s injunction that physics is only
simple when analyzed locally? Don’t look at the distance from the spaceship to the
Earth. Look at the distance from the spaceship to a nearby.spaceship! Or, to avoid
any possible concern about attraction between the two ships, look at two nearby
test particles in orbit about the Earth. To avoid distraction by the nonlocal element
(the Earth) in the situation, conduct the study in the interior of a spaceship, also
in orbit about the Earth. But this region has already been counted as a local inertial
frame! What gravitational physics is to be seen there? None. Relative to the spaceship
and therefore relative to each other, the two test particles move in a straight line
with uniform velocity, to the precision of measurement that is contemplated (see
Box 1.5, “Test for Flatness”). Now the key point begins to appear: precision of
measurement. Increase it until one begins to discern the gradual acceleration of the
test particles away from each other, if they lie along a common radius through the
center of the Earth; or toward each other, if their separation lies perpendicular to
that line. In Newtonian language, the source of these accelerations is the tide-pro-
ducing action of the Earth. To the observer in the spaceship, however, no Earth
is to be seen. And following Einstein, he knows it is important to analyze motion
locally. He represents the separation of the new test particle from the fiducial test
particle by the vector &(k = 1,2, 3; components measured in a local Lorentz frame).
For the acceleration of this separation, one knows from Newtonian physics what
he will find: if the Cartesian z-axis is in the radial direction, then

d2€z Gmconv .

a? o &
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Proof: In Newtonian physics the acceleration of a single particle toward the center
of the Earth in conventional units of time is Gm,,,,/r?, where G is the Newtonian
constant of gravitation, 6.670 X 10~8 cm?3/g sec? and m,,,, is the,mass of the Earth
in conventional units of grams. In geometric units of time (cm of light-travel time),

Gravitation is manifest in
relative acceleration of
neighboring test particles



Relative acceleration is
caused by curvature
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the acceleration is Gm,,,,,/c2r?. When the two particles are separated by a distance
¢ perpendicular to r, the one downward acceleration vector is out of line with the
other by the angle £/r. Consequently one particle accelerates toward the other by
the stated amount. When the separation is parallel to r, the relative acceleration
is given by evaluating the Newtonian acceleration at 7 and at r + § and taking the
difference (¢ times d/dr) Q.E.D. In conclusion, the “local tide-producing acceleration”
of Newtonian gravitation theory provides the local description of gravitation that
Einstein bids one to seek.

What has this tide-producing acceleration to do with curvature? (See Box 1.6.)
Look again at the apple or, better, at a sphere of radius a (Figure 1.10). The

separation of nearby geodesics satisfies the “equation of geodesic deviation,”
d?¢/ds® + R§ = 0. (1.6)

Here R = 1/a? is the so-called Gaussian curvature of the surface. For the surface
of the apple, the same equation applies, with the one difference that the curvature

R varies from place to place.

Box 1.5 TEST FOR FLATNESS

1. Specify the extension in space L (cm or m)
and extension in time 7' (cm or m of light travel
time) of the region under study.

2. Specify the precision 6§ with which one can
measure the separation of test particles in this
region.

3. Follow the motion of test particles moving
along initially parallel world lines through this
region of spacetime.

4. When the world lines remain parallel to the
precision 8¢ for all directions of travel, then one
says that “in a region so limited and to a precision
so specified, spacetime is flat.”

EXAMPLE: Region just above the surface of the
earth, 100 m x 100 m X 100 m (space extension),
followed for 10°m of light-travel time (7., ~
3 sec). Mass of Earth, m,,, =598 x 10*7 g,
m = (0742 x 10728 cm/g) X (598 X 107 g) =
0.444 cm [see eq. (1.12)]. Tide-producing accelera-
tion R?,,, (relative acceleration in z-direction of
two test particles initially at rest and separated
from each other by 1 cm of vertical elevation) is

(d/dr)m/r?) = =2m/r?
= —0.888 cm/(6.37 X 10% cm)?
= —344 x 10727 cm™2

(“cm of relative displacement per cm of light-
travel time per cm of light-travel time per cm of
vertical separation”). Two test particles with a ver-
tical separation £&° = 10* cm acquire in the time
t = 101! cm (difference between time and proper
time negligible for such slowly moving test parti-
cles) a relative displacement

887 = —JR®,01%°
= 1.72 x 10727 cm™%(101! cm)? 104 cm
= 1.72 mm.

(Change in relative separation less for other direc-
tions of motien). When the minimum uncertainty
8¢ attainable in a measurement over a 100 m

.spacing is “worse” than this figure (exceeds 1.72

mm), then to this level of precision the region of
spacetime under consideration can be treated as
flat. When the uncertainty in measurement is
“better” (less) than 1.72 mm, then one must limit
attention to a smaller region of space or a shorter
interval of time or both, to find a region of space-
time that can be regarded as flat to that precision.

~
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Figure 1.10.

Curvature as manifested in the “acceleration of the separation” of two
nearby geodesics. Two geodesics, originally parallel, and separated by the
distance (“geodesic deviation”) &,, are no longer parallel when followed
a distance s. The separation is £ = £, cos ¢ = £, cos (s/a), where a is
the radius of the sphere. The separation follows the equation of simple
harmonic motion, &24/ds? + (1/a%) & = 0 (“equation of geodesic devia-
tion™).

The direction of the separation vector, &, is fixed fully by its orthogon-
ality to the fiducial geodesic. Hence, no reference to the direction of &
is needed or used in the equation of geodesic deviation; only the magni-
tude £ of § appears there, and only the magnitude, not direction, of the
relative acceleration appears.

In a space of more than two dimensions, an equation of the same general form
applies, with several differences. In two dimensions the direction of acceleration of
one geodesic relative to a nearby, fiducial geodesic is fixed uniquely by the demand
that their separation vector, &, be perpendicular to the fiducial geodesic (see Figure
1.10). Not so in three dimensions or higher. There § can remain perpendicular to
the fiducial geodesic but rotate about it (Figure 1.11). Thus, to specify the relative
acceleration uniquely, one must give not only its magnitude, but also its direction.

The relative acceleration in three dimensions and higher, then, is a vector. Call
it “D%&/ds%” and call its four components “D2%{%/ds2.” Why the capital D? Why
not “d%£*/ds?”? Because our coordinate system is completely arbitrary (cf. §1.2). The
twisting and turning of the coordinate lines can induce changes from point to point
in the components £ of &, even if the vector £ is not changing at all. Consequently,
the accelerations of the components d%*/ds? are generally not equal to the compo-
nents D2&%/ds? of the acceleration!

How, then, in curved spacetime can one determine the components D%%/ds? of
the relative acceleration? By a more complicated version of the equation of geodesic
deviation (1.6). Differential geometry (Part III of this book) provides us with a
geometrical object called the Riemann curvature tensor, “Riemann.” Riemann is

(continued on page 34)

ducial geodesic

Figure 1.11.

The separation vector § between two geodesics in a curved three-
dimensional manifold. Here £ can not only change its length from
point to point, but also rotate at a varying rate about the fiducidl
geodesic. Consequently, the relative acceleration of the geodesics must
be characterized by a direction as well as a magnitude; it must be
a vector, D2 /ds?.

Curvature is characterized by
Riemann tensor




Box 1.6 CURVATURE OF WHAT?

Nothing seems more attractive at first glance than
the idea that gravitation is a manifestation of the
curvature of space (A), and nothing more ridicu-
lous at a second glance (B). How can the tracks
of a ball and of a bullet be curved so differently
if that curvature arises from the geometry of
space? No wonder that great Riemann did not give
the world a geometric theory of gravity. Yes, at
the age of 28 (June 10, 1854) he gave the world
the mathematical machinery to define and calcu-
late curvature (metric and Riemannian geometry).
Yes, he spent his dying days at 40 working to find
a unified account of electricity and gravitation. But
if there was one reason more than any other why
he failed to make the decisive connection between
gravitation and curvature, it was this, that he
thought of space and the curvature of space, not

of spacetime and the curvature of spacetime. To
make that forward step took the forty years to
special relativity (1905: time on the same footing
as space) and then another ten years (1915: gen-
eral relativity). Depicted in spacetime (C), the
tracks of ball and bullet appear to have compara-
ble curvature. In fact, however, neither track has
any curvature at all. They both look curved in (C)
only because one has forgotten that the spacetime
they reside in is itself curved—curved precisely
enough to make these tracks the straightest lines
in existence (“geodesics”).

If it is at first satisfying to see curvature, and
curvature of spacetime at that, coming to the fore
in so direct a way, then a little more reflection
produces a renewed sense of concern. Curvature
with respect to what? Not with respect to the labo-

Photograph of stars

when sun (eclipsed

by moon) lies % *
as indicated  *

M‘me»m“l"

Photograph of stars
when sun swims
elsewhere

A. Bending of light by the sun depicted as a conse-
quence of the curvature of space near the sun. Ray of
light pursues geodesic, but geometry in which it travels
is curved (actual travel takes place in spacetime rather
than space; correct deflection is twice that given by
above elementary picture). Deflection inversely propor-
tional to angular separation between star and center of
sun. See Box 40.1 for actual deflections observed at time
of an eclipse.

[32]




ratory. The earth-bound laboratory has no simple
status whatsoever in a proper discussion. First, it
is no Lorentz frame. Second, even to mention the
earth makes one think of an action-at-a-distance
version of gravity (distance from center of earth
to ball or bullet). In contrast, it was the whole
point of Einstein that physics looks simple only
when analyzed locally. To look at local physics,
however, means to compare one geodesic of one
test particle with geodesics of other test particles
traveling (1) nearby with (2) nearly the same di-
rections and (3) nearly the same speeds. Then one
can “look at the separations between these nearby
test particles and from the second time-rate of
change of these separations and the ‘equation of
geodesic deviation’ (equation 1.8) read out the
curvature of spacetime.”

N

4 Ball

f 10 m

X

500 m/sec

B. Tracks of ball and bullet through space as seen in
laboratory have very different curvatures.

C. Tracks of ball and bullet through spacetime, as re-
corded in laboratory, have comparable curvatures.
Track compared to arc of circle: (radius) = (horizontal
distance)?/8 (rise).




Riemann tensor, through
equation of geodesic
deviation, produces relative
accelerations
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the higher-dimensional analog of the Gaussian curvature R of our apple’s surface.
Riemann is the mathematical embodiment of the bends and warps in spacetime.
And Riemann is the agent by which those bends and warps (curvature of spacetime)
produce the relative acceleration of geodesics.

Riemann, like the metric tensor g of Box 1.3, can be thought of as a family of
machines, one machine residing at each event in spacetime. Each machine has three
slots for the insertion of three vectors:

slot 1 slot 2 slot 3

LA

Riemann ( , , ).

Choose a fiducial geodesic (free-particle world line) passing through an event 2,
and denote its unit tangent vector (particle 4-velocity) there by

u = dx/dr; components, u* = dx*/dr. (1.7

Choose another, neighboring geodesic, and denote by £ its perpendicular separation
from the fiducial geodesic. Then insert & into the first slot of Riemann at 2, § into
the second slot, and u into the third. Riemann will grind for awhile; then out will
pop a new vector,

Riemann (u, §, u).

The equation of geodesic deviation states that this new vector is the negative of
the relative acceleration of the two geodesics:

D2f /dr* + Riemann (u, &, u) = 0. (1.8)

The Riemann tensor, like the metric tensor (Box 1.3), and like all other tensors,
is a linear machine. The vector it puts out is a linear function of each vector inserted
into a slot:

Riemann (Qu, aw + bv,3r)
=2 X a X 3 Riemann (u,w,r) + 2 X b X 3 Riemann (u, v, r). (1.9)

Consequently, in any coordinate system the components of the vector put out can
be written as a “trilinear function” of the components of the vectors put in:

r = Riemann (u,v, w) <= r® = R, uf v’ w. (1.10)

(Here there is an implied summation on the indices 8, v, &; cf. Box 1.1.) The
4 X 4 X 4 X 4 = 256 numbers R*;,; are called the “components of the Riemann
tensor in the given coordinate system.” In terms of components, the equation of
geodesic deviation states

dx?

dxB
Re, . — €&V — =0, 1.8’
+ R%ys pa £ px (1.8

DZéa
dr?
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In Einstein’s geometric theory of gravity, this equation of geodesic deviation
summarizes the entire effect of geometry on matter. It does for gravitation physics
what the Lorentz force equation,

D3x* e dx*
— —Fe,—=—— =0, 1.11
dr? m  ® odr (L.11)
does for electromagnetism. See Box 1.7.
The units of measurement of the curvature are cm~2 just as well in spacetime
as on the surface of the apple. Nothing does so much ‘to make these units stand
out clearly as to express mass in “geometrized units”:

= (0.742 x 10728 cm/g)m o, (8). (1.12)

Equation of geodesic
deviation is analog of Lorentz
force law

Geometrized units

-

Box 1.7 EQUATION OF MOTION UNDER THE INFLUENCE OF A GRAVITATIONAL FIELD
AND AN ELECTROMAGNETIC FIELD, COMPARED AND CONTRASTED

~

Acceleration depends on all
four components of the
4-velocity of the particle? Yes Yes

Universal acceleration for all
test particles in same
locations with same
4-velocity? i No; is proportional to e¢/m Yes

Ostensible number of distinct
components of driving
field 4x4=16 4* = 256

Actual number when allowance
is made for symmetries of

\_

Electromagnetism Gravitation [Equation of
[Lorentz force, equation (1.11)) geodesic deviation (1.8’)]
Acceleration is defined for
one particle? Yes No
Acceleration defined how? Actual world line compared to Already an uncharged test
world line of uncharged particle, which can’t
“fiducial” test particle accelerate relative to
passing through same point itself! Acceleration
with same 4-velocity. measured relative to a

nearby test particle as
fiduciary standard.

Driving field Electromagnetic field Riemann curvature tensor

tensor 6 20
Names for more familiar of 3 electric 6 components of local
these components 3 magnetic Newtonian tide-producing
acceleration
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This conversion from grams to centimeters by means of the ratio
G/c? =0.742 X 100® cm/g

is completely analogous to converting from seconds to centimeters by means of the
ratio

9.4605460000 x 107 cm
31,556,925.974 sec

-

(see end of §1.5). The sun, which in conventional units has m_,,, = 1.989 X 1033 g,
has in geometrized units a mass m = 1.477 km. Box 1.8 gives further discussion.

Using geometrized units, and using the Newtonian theory of gravity, one can
readily evaluate nine of the most interesting components of the Riemann curvature
tensor near the Earth or the sun. The method is the gravitational analog of deter-
mining the electric field strength by measuring the acceleration of a slowly moving
test particle. Consider the separation between the geodesics of two nearby and slowly
moving (v <c¢) particles at a distance r from the Earth or sun. In the standard, nearly
inertial coordinates of celestial mechanics, all components of the 4-velocity of the

Components of Riemann
tensor evaluated from relative
accelerations of slowly
moving particles

~

Box 1.8 GEOMETRIZED UNITS

Throughout this book, we use “geometrized units,”
in which the speed of light ¢, Newton’s gravita-
tional constant G, and Boltzman’s constant k are
all equal to unity. The following alternative ways
to express the number 1.0 are of great value:

from grams to centimeters to seconds to ergs to
.. .. For example:

Mass of sun = M, = 1.989 x 1033 g
= (1989 x 1033 g) X (G/c?)
= 1477 x 105cm
= (1.989 x 1033 g) X (c?)
= 1.788 x 10°% ergs.

10 = ¢ =2.997930 - .- x 101° cm/sec
1.0 = G/c? = 0.7425 X 10728 cm/g;

10 = G/c* = 0.826 X 107%° cm/erg;

1.0 = Gk/ct = 1.140 x 10785 cm/K;

1.0 = ¢2/GY/2 = 3.48 X 10?* cm/gauss 1.

The standard unit, in terms of which everything
is measured in this book, is centimeters. However,
occasionally conventional units are used; in such

One can multiply a factor of unity, expressed in
any one of these ways, into any term in any equa-
tion without affecting the validity of the equation.
Thereby one can convert one’s units of measure

cases a subscript “conv” is sometimes, but not
always, appended to the quantity measured:

Mgy, = 1989 x 103 ¢,
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fiducial test particle can be neglected except dx®/dr = 1. The space components of
the equation of geodesic deviation read

A% /dr? 4 R¥ 81 = 0. (1.13)

Comparing with the conclusions of Newtonian theory, equations (1.5), we arrive at
the following information about the curvature of spacetime near a center of mass:

Rigi Rigzy Régzol = lm/rs 0 0
R0 R'o Rop| =| 0 m/r® 0 (1.14)
R0 RYz: Rpll =1 0 0 =2m/r’

(units cm~2). Here and henceforth the caret or “hat” is used to indicate the compo-
nents of a vector or tensor in a local Lorentz frame of reference (“physical compo-
nents,” as distinguished from components in a general coordinate system). Einstein’s
theory will determine the values of the other components of curvature (e.g.,
Riéi,é = —m/r3); but these nine terms are the ones of principal relevance for
many applications of gravitation theory. They are analogous to the components
of the electric field in the Lorentz equation of motion. Many of the terms not
evaluated are analogous to magnetic field components—ordinarily weak unless the
source is in rapid motion.

This ends the survey of the effect of geometry on matter (“effect of curvature
of apple in causing geodesics to cross”—especially great near the dimple at the top,
just as the curvature of spacetime is especially large near a center of gravitational
attraction), Now for the effect of matter on geometry (“effect of stem of apple in
causing dimple”)!

§1.7. EFFECT OF MATTER ON GEOMETRY

The weight of any heavy body of known weight at a particular
distance from the center of the world varies according to the
variation of its distance therefrom; so that as often as it is
removed from the center, it becomes heavier, and when brought
near to it, is lighter. On this account, the relation of gravity to
gravity is as the relation of distance to distance from the center.

AL KHAZINT (Merv, A.D. 1115), Book of the Balance of Wisdom

Figure 1.12 shows a sphere of the same density, p = 5.52 g/cm3, as the average
density of the Earth. A hole is bored through this sphere. Two test particles, 4 and
B, execute simple harmonic motion in this hole, with an 84-minute period. Therefore
their geodesic separation §, however it may be oriented, undergoes a simple periodic
motion with the same 84-minute period:

d*l/dr? = — (%zr—p)é", j=xoryorz (1.15)
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~
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Box 1.9 GALILEO GALILEI
Pisa, February 15, 1564—Arcetri, Florence, January 8, 1642

“In questions of science the authority
of a thousand is not worth the humble
reasoning of a single individual.”’

GALILEQO GALILE! (1632)

""The spaces described by a body falling from rest
with a uniformly accelerated motion are to each other
as the squares of the time intervals employed in
traversing these distances.”’

GALILEO GALILEI (1638)

Uffizi Gallery. Florence

“Everything that has been said before and imagined by other people [about the
tides] is in my opinion completely invalid. But among the great men who have
philosophised about this marvellous effect of nature the one who surprised me the
most is Kepler. More than other people he was a person of independent genius,

i sharp, and had in his hands the motion of the earth. He later pricked up his ears
5 and became interested in the action of the moon on the water, and in other occult
phenomena, and similar childishness.””

GALILEO GALILEI (1632)

“It is a most beautiful and delightful sight to behold [with the new telescope] the
body of the Moon . . . the Moon certainly does not possess a smooth and polished
surface, but one rough and uneven . . . full of vast protuberances, deep chasms
and sinuosities . . . stars in myriads, which have never been seen before and
which surpass the old, previously known, stars in number more than ten times. |
have discovered four planets, neither known nor observed by any one of the
astronomers before my time . . . got rid of disputes about the Galaxy or Milky
Way, and made its nature clear to the very senses, not to say to the
understanding . . . the galaxy is nothing else than a mass of luminous stars
planted together in clusters . . . the number of small ones is quite beyond
determination—the stars which have been called by every one of the astronomers
up to this day nebulous are groups of small stars set thick together in a wonderful
way.

GALILEO GALILEl IN S/DEREUS NUNCIUS (1610)

““So the principles which are set forth in this treatise will, when taken up by
thoughtful minds, lead to many another more remarkable result; and it is to be
believed that it will be so on account of the nobility of the subject, which is
superior to any other in nature.”’

GALILEO GALILEI (1638)
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) Figure 1.12.

84 min. Test particles A and B move up and down a hole bored through
the Earth, idealized as of uniform density. At radius 7, a parti-
cle feels Newtonian acceleration

| a1
arz " 2 di,, 2
_ G (mass inside radius r)
J T e r?
_ G \f4n 3
- = rg_ci Tpconvr
= —o?.

Consequently, each particle oscillates in simple harmonic mo-
tion with precisely the same angular frequency as a satellite,
grazing the model Earth, traverses its circular orbit:

wem ) = 2 penr)
47 G
% eons(567%) = =2 peony(8/0m?).

Comparing this actual motion with the equation of geodesic deviation (1.13) for
slowly moving particles in a nearly inertial frame, we can read off some of the
curvature components for the interior of this model Earth.

Rfam R‘foa@ Rz 100
R0 RY0 Rigjo||= (4mp/3))10 1 0 (1.16)
Rz RYgz Rz 0 0 1

This example illustrates how the curvature of spacetime is connected to the distribu-
tion of matter. '

Let a gravitational wave from a supernova pass through the Earth. Idealize the
Earth’s matter as so nearly incompressible that its density remains practically un-
changed. The wave is characterized by ripples in the curvature of spacetime, propa-
gating with the speed of light. The ripples will show up in the components R,
of the Riemann tensor, and in the relative acceleration of our two test particles.
The left side of equation (1.16) will ripple; but the right side will not. Equation
(1.16) will break down. No longer will the Riemann curvature be generated directly
and solely by the Earth’s matter.

Nevertheless, Einstein tells us, a part of equation (1.16) is undisturbed by the

The Riemann tensor inside
the Earth

Effect of gravitational wave
on Riemann tensor
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waves: its trace

Roo = R0 + Ry + Ripzo = dmp. (1.17)

Even in the vacuum outside the Earth this is valid; there both sides vanish {cf. (1.14)].
More generally, a certain piece of the Riemann tensor, called the Einstein tensor

Einstein tensor introduced and denoted Einstein or G, is always generated directly by the local distribution

of matter. Einstein is the geometric object that generalizes Ry;, the lefthand side

-

Box 1.10 ISAAC NEWTON
Woolsthorpe, Lincolnshire, England, December 25, 1642—
Kensington, London, March 20, 1726

““The description of right lines and circles, upon which geometry
is founded, belongs to mechanics. Geometry does not teach
us to draw these lines, but requires them to be drawn.””

[FROM P. 1 OF NEWTON'S PREFACE TO
THE FIRST (1687) EDITION OF THE PRINCIPIA]

“Absolute space, in its own nature,

without relation to anything external, remains
always similar and immovable

“Absolute, true, and mathematical time,

of itself, and from its own nature, flows
equably without relation to anything external.”’

[FROM THE SCHOLIUM IN THE PRINCIPIA]

““I have not been able to discover the cause of those properties of gravity from
phenomena, and | frame no hypotheses,; for whatever is not reduced from the
phenomena is to be called an hypothesis; and hypotheses . . . have no place in
experimental philosophy. . . . And to us it is enough that gravity does really exist,
and act according to the laws which we have explained, and abundantly serves to
account for all the motions of the celestial bodies, and of our sea.””

[FROM THE GENERAL SCHOLIUM ADDED AT THE END OF THE THIRD BOOK OF THE PRINCIPIA IN
THE SECOND EDITION OF 1713; ESPECIALLY FAMOUS FOR THE PHRASE OFTEN QUOTED FROM
NEWTON’'S ORIGINAL LATIN, "HYPOTHESES NON FINGO.""]

“And the same year [1665 or 1666] | began to think of gravity extending to the
orb of the Moon, and having found out. . . . All this was in the two plague years
of 1665 and 1666, for in those days | was in the prime of my age for invention,

and minded Mathematicks and Philosophy more than at any time since.”’

[FROM MEMORANDUM IN NEWTON'S HANDWRITING ABOUT HIS DISCOVERIES ON FLUXIONS, THE
BINOMIAL THEOREM, OPTICS, DYNAMICS, AND GRAVITY, BELIEVED TO HAVE BEEN WRITTEN
ABOUT 1714, AND FOUND BY ADAMS ABOUT 1887 IN THE "PORTSMOUTH COLLECTION’" OF
NEWTON PAPERS]
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of equation (1.17). Like Ry, Einstein is a sort of average of Riemann over all

directions. Generating Einstein and generalizing the righthand side of (1.16) is a

geometric object called the stress-energy tensor of the matier. It is denoted T. No  Stress-energy tensor
coordinates are need to define Einstein, and none to define T; like the Riemann [ntroduced

tensor, Riemann, and the metric tensor, g, they exist in the complete absence of

coordinates. Moreover, in nature they are always equal, aside from a factor of 8x:

Einstein = G = 8« T. (1.18)

“For hypotheses ought . . . to explain the properties of things and not attempt to
predetermine them except in so far as they can be an aid to experiments.”’

[FROM LETTER OF NEWTON TO I. M. PARDIES, 1672, AS QUOTED IN THE CAJOR! NOTES AT THE
END OF NEWTON (1687), P. 673]

“That one body may act upon another at a distance through a vacuum, without
the mediation of any thing else, by and through which their action and force may
be conveyed from one to another, is to me so great an absurdity, that | believe no
man, who has in philosophical matters a competent faculty of thinking, can ever
fall into it.”"

[PASSAGE OFTEN QUOTED BY MICHAEL FARADAY FROM LETTERS OF NEWTON TO RICHARD

BENTLY, 1692-1693, AS QUOTED IN THE NOTES OF THE CAJOR! EDITION OF NEWTON (1687), P.
643]

“The attractions of gravity, magnetism, and electricity, reach to very sensible
distances, and so have been observed . . . and there may be others which reach
to so small distances as hitherto escape observation; . . . some force, which in
immediate contract is exceeding strong, at small distances performs the chemical
operations above-mentioned, and reaches not far from the particles with any
sensible effect.”’

[FROM QUERY 31 AT THE END OF NEWTON’S OPTICKS (1730)] ‘

“What is there in places almost empty of matter, and whence is it that the sun
and planets gravitate towards one another, without dense matter between them?
Whence is it that nature doth nothing in vain; and whence arises all that order and
beauty which we see in the world? To what end are comets, and whence is it that
planets move all one and the same way in orbs concentrick, while comets move all
manner of ways in orbs very excentrick; and what hinders the fixed stars from
falling upon one another?”’

[FROM QUERY 28]

““He is not eternity or infinity, but eternal and infinite; He is not duration or space,
but He endures and is present. He endures forever, and is everywhere present; and

by existing always and everywhere, He constitutes duration and space. . . . And
thus much concerning God; to discourse of whom from the appearances of things,
does certainly belong to natural philosophy.”’

[FROM THE GENERAL SCHOLIUM AT THE END OF THE PRINCIPIA (1687)]
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Einstein field equation: how This Einstein field equation, rewritten in terms of components in an arbitrary coordi-
matter generates curvature nate SyStCm reads
3

G

«

g = 87T, (1.19)

The Einstein field equation is elegant and rich. No equation of physics can be
written more simply. And none contains such a treasure of applications and conse-

quences.

N The field equation shows how the stress-energy of matter generates an average
Consequences of Einstein | ) . . / .
field equation curvature (Einstein = G) in its neighborhood. Simultaneously, the field equation

is a propagation equation for the remaining, anisotropic part of the curvature: it
governs the external spacetime curvature of a static source (Earth); it governs the
generation of gravitational waves (ripples in curvature of spacetime) by stress-energy
in motion; and it governs the propagation of those waves through the universe. The
field equation even contains within itself the equations of motion (“Force =

Box 1.11

ALBERT EINSTEIN
Ulm, Germany, /
March 14, 1879—/
Princeton, New Jersey,
April 18, 1955 /

i

Library of E. T. Hochschule, Zirich Academie des Sciences, Paris Archives of California Institute of Technology

k SEAL: Courtesy of the Lewis and Rosa Strauss Foundation and Princeton University Press
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mass X -acceleration”) for the matter whose stress-energy generates the curvature.

Those were some consequences of G = 87 T. Now for some applications.

The field equation governs the motion of the planets in the solar system; it governs
the deflection of light by the sun; it governs the collapse of a star to form a black
hole; it determines uniquely the external spacetime geometry of a black hole (“a
black hole has no hair”); it governs the evolution of spacetime singularities at the
end point of collapse; it governs the expansion and recontraction of the universe.
And more; much more.

In order to understand how the simple equation G = 8«7 can be so all powerful,
it is desirable to backtrack, and spend a few chapters rebuilding the entire picture
of spacetime, of its curvature, and of its laws, this time with greater care, detail,
and mathematics.

Thus ends this survey of the effect of geometry on matter, and the reaction of
matter back on geometry, rounding out the parable of the apple.

Applications of Einstein field
equation

“‘What really interests me is whether God had any choice in the creation of the
world”’

EINSTEIN TO AN ASSISTANT, AS QUOTED BY G. HOLTON (1971), P. 20

“But the years of anxious searching in the dark, with their intense longing, their
alternations of confidence and exhaustion, and the final emergence into the
light—only those who have experienced it can understand that’’

EINSTEIN, AS QUOTED BY M. KLEIN (1971), P. 1315

“’Of all the communities available to us there is not one | would want to devote
myself to, except for the society of the true searchers, which has very few living
members at any time. . .”’

EINSTEIN LETTER TO BORN, QUOTED BY BORN (1971), P. 82

“I am studying your great works and—when | get stuck anywhere—now have the
pleasure of seeing your friendly young face before me smiling and explaining””

EINSTEIN, LETTER OF MAY 2, 1920, AFTER MEETING NIELS BOHR

“As far as the laws of mathematics refer to reality, they are not certain; and as far
as they are certain, they do not refer to reality.”’

EINSTEIN (1921), P. 28

“The most incomprehensible thing about the world is that it is comprehensible.””
EINSTEIN, IN SCHILPP (1949), P. 112
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EXERCISES

Exercise 1.1. CURVATURE OF A CYLINDER

Show that the Gaussian curvature R of the surface of a cylinder is zero by showing that
geodesics on that surface (unroll!) suffer no geodesic deviation. Give an independent argu-
ment for the same conclusion by employing the formula R = 1/p,p,, where p, and p, are
the principal radii of curvature at the point in question with respect to the enveloping
Euclidean three-dimensional space.

Exercise 1.2. SPRING TIDE VS. NEAP TIDE

Evaluate (1) in conventional units and (2) in geometrized units the magnitude of the Newton-
ian tide-producing acceleration R™,,,(m,n = 1,2,3) generated at the Earth by (1) the
moon (Mg, = 7.35 X 102 g, r = 3.84 x 10'° cm) and (2) the sun (m,,,, = 1.989 x 103 g,
r = 1496 x 1013 cm). By what factor do you expect spring tides to exceed neap tides?

Exercise 1.3. KEPLER ENCAPSULATED

A small satellite has a circular frequency w(cm™?!) in an orbit of radius r about a central
object of mass m(cm). From the known value of w, show that it is possible to determine
neither r nor m individually, but only the effective “Kepler density” of the object as averaged
over a sphere of the same radius as the orbit. Give the formula for »? in terms of this Kepler
density.

It is a reminder of the continuity of history that Kepler and Galileo (Box 1.9) wrote back
and forth, and that the year that witnessed the death of Galileo saw the birth of Newton
(Box 1.10). After Newton the first dramatically new synthesis of the laws of gravitation came
from Einstein (Box 1.11).

And what the dead had no speech for, when living,

They can tell you, being dead; the communication
Of the dead is tongued with fire beyond

the language of the living.

T. S. ELIOT, in LITTLE GIDDING (1942)

| measured the skies

Now the shadows | measure
Skybound was the mind
Earthbound the body rests

JOHANNES KEPLER, d. November 15, 1630.
He wrote his epitaph in Latin;
it is transiated by Coleman (1967), p. 109.

Ubi materia, ibi geometria.
JOHANNES KEPLER




PART I I

PHYSICS IN FLAT
SPACETIME

Wherein the reader meets an old friend, Special Relativity,
outfitted in new, mod attire, and becomes more
intimately acquainted with her charms.




CHAPTER 2

FOUNDATIONS OF
SPECIAL RELATIVITY

In geometric and physical applications, it always turns out that a
quantity is characterized not only by its tensor order,
but also by symmetry.

HERMAN WEYL (1925)

Undoubtedly the most striking development of geometry during
the last 2,000 years is the continual expansion of the concept
“‘geometric object.”” This concept began by comprising only the
few curves and surfaces of Greek synthetic geometry; it was
stretched, during the Renaissance, to cover the whole domain of
those objects defined by analytic geometry; more recently, it has
been extended to cover the boundless universe treated by
point-set theory.

KARL MENGER, IN SCHILPP (1949), P. 466.

J

§2.1. OVERVIEW

Curvature in geometry manifests itself as gravitation. Gravitation works on the
separation of nearby particle world lines. In turn, particles and other sources of
mass-energy cause curvature in the geometry. How does one break into this closed
loop of the action of geometry on matter and the reaction of matter on geometry?
One can begin no better than by analyzing the motion of particles and the dynamics
of fields in a region of spacetime so limited that it can be regarded as flat. (See
“Test for Flatness,” Box 1.5).

Chapters 2-6 develop this flat-spacetime viewpoint (special relativity). The reader, Background assumed of
it is assumed, is already somewhat familiar with special relativity:* 4-vectors in reader
general; the energy-momentum 4-vector; elementary Lorentz transformations; the
Lorentz law for the force on a charged particle; at least one look at one equation

*For example, see Goldstein (1959), Leighton (1959), Jackson (1962), or, for the physical perspective
presented geometrically, Taylor and Wheeler (1966).




Every physical quantity can
be described by a geometric
object

All laws of physics can be
expressed geometrically
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in one book that refers to the electromagnetic field tensor F,,; and the qualitative
features of spacetime diagrams, including such points as (1) future and past light
cones, (2) causal relationships (“past of,” “future of,” “neutral,” or “in a spacelike
relationship t0”), (3) Lorentz contraction, (4) time dilation, (5) absence of a universal
concept of simultaneity, and (6) the fact that the 7 and z axes in Box 2.4 are
orthogonal even though they do not look so. If the reader finds anything new in
these chapters, it will be: (i) a new viewpoint on special relativity, one emphasizing
coordinate-free concepts and notation that generalize readily to curved spacetime
(“geometric objects,” tensors viewed as machines—treated in Chapters 2-4); or (ii)
unfamiliar topics in special relativity, topics crucial to the later exposition of gravita-
tion theory (“stress-energy tensor and conservation laws,” Chapter 5; “accelerated
observers,” Chapter 6).

§2.2. GEOMETRIC OBJECTS

Everything that goes on in spacetime has its geometric description, and almost every
one of these descriptions lends itself to ready generalization from flat spacetime to
curved spacetime. The greatest of the differences between one geometric object and
another is its scope: the individual object (vector) for the momentum of a certain
particle at a certain phase in its history, as contrasted to the extended geometric
object that describes an electromagnetic field defined throughout space and time
(“antisymmetric second-rank tensor field” or, more briefly, “field of 2-forms”). The
idea that every physical quantity must be describable by a geometric object, and
that the laws of physics must all be expressible as geometric relationships between
these geometric objects, had its intellectual beginnings in the Erlanger program of
Felix Klein (1872), came closer to physics in Einstein’s “principle of general covari-
ance” and in the writings of Hermann Weyl (1925), seems to have first been formu-
lated clearly by Veblen and Whitehead (1932), and today pervades relativity theory,
both special and general.

A. Nijenhuis (1952) and S.-S. Chern (1960, 1966, 1971) have expounded the mathe-
matical theory of geometric objects. But to understand or do research in geometro-
dynamics, one need not master this elegant and beautiful subject. One need only
know that geometric objects in spacetime are entities that exist independently of
coordinate systems or reference frames. A point in spacetime (“event”) is a geometric
object. The arrow linking two neighboring events (“vector”) is a geometric object
in flat spacetime, and its generalization, the “tangent vector,” is a geometric object
even when spacetime is curved. The “metric” (machine for producing the squared
length of any vector; see Box 1.3) is a geometric object. No coordinates are needed
to define any of these concepts. .

The next few sections will introduce several geometric objects, and show the roles
they play as representatives of physical quantities in flat spacetime.
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P\ =0.7)
Two events , Parametrized
‘ line
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Vector v, Vector v,

conceived as conceived as

arrow 7% or B — &4 da?
(not valid in ) d\
curved space) (valid in curved space)

N

Figure 2.1.
From vector as connector of two points to vector as derivative
(“tangent vector”; a local rather than a bilocal concept).

AN

§2.3. VECTORS

Begin with the simplest idea of a vector (Figure 2.1B): an arrow extending from
one spacetime event & (“tail”) to another event 4 (“tip”). Write this vector as

V5 =B — & (or &B).

For many purposes (including later generalization to curved spacetime) other com-
pletely equivalent ways to think of this vector are more convenient. Represent the
arrow by the parametrized straight line #(A\) = & + M# — &), with A = 0 the tail
of the arrow, and A = 1 its tip. Form the derivative of this simple linear expression
for 2(A\):

@d/dN[Z + NB — D)) = B — & = P(1) — P0) = (tip) — (tail) = v .

This result allows one to replace the idea of a vector as a 2-point object (“bilocal”)
by the concept of a vector as a 1-point object (“tangent vector”; local):

V= (dP/dN), = - 2.1

Example: if P(7) is the straight world line of a free particle, parametrized by its
proper time, then the displacement that occurs in a proper time interval of one second
gives an arrow ¥ = (1) — #(0). This arrow is easily drawn on a spacetime diagram.
It accurately shows the 4-velocity of the particle. However, the derivative formula
@ = d¥/dr for computing the same displacement (1) is more suggestive of the
velocity concept and (2) lends itself to the case of accelerated motion. Thus, given
a world line 9(r) that is not straight, as in Figure 2.2, one must first form d%/dr,
and only thereafter draw the straight line #(0) + A(d9/dr), of the arrow u = d?/dr
. to display the 4-velocity u.

Ways of defining vector:

As arrow

As parametrized straight line

As derivative of point along
curve :




Components of a vector

Basis vectors
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Figure 2.2.

Same tangent vector derived from two very different curves. That parame-
trized straight line is also drawn which best fits the two curves at #,. The
tangent vector reaches from 0 to 1 on this straight line.

The reader may be unfamiliar with this viewpoint. More familiar may be the
components of the 4-velocity in a specific Lorentz reference frame:

—dr_ 1 wiodx Y 2.2)

dr V1—»2’ dr V1 -2’

u®

where
vi = dxi/dt = components of “ordinary velocity,”
= 7 + @V + O

Even the components (2.2) of 4-velocity may seem slightly unfamiliar if the reader
is accustomed to having the fourth component of a vector be multiplied by a factor
i = /—1. If so, he must adjust himself to new notation. (See “Farewell to ‘ict,”
Box 2.1.)

More fundamental than the components of a vector is the vector itself. It is a
geometric object with a meaning independent of all coordinates. Thus a particle
has a world line ?(7), and a 4-velocity 4 = d%/dr, that have nothing to do with
any coordinates. Coordinates enter the picture when analysis on a computer is
required (rejects vectors; accepts numbers). For this purpose one adopts a Lorentz
frame with orthonormal basis vectors (Figure 2.3) e,, e, €,, and e;. Relative to
the origin @ of this frame, the world line has a coordinate description

P(r) — O = xX%1)e, + x'(r)e; + x¥(1)e, + x3(r)e; = x¥(1)e,.
Expressed relative to the same Lorentz frame, the 4-{/elocity of the particle is

u = d?/dr = (dx*/dr)e, = u'e, + u'e, + u’e, + u’e,. (23)
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Box 2.1 FAREWELL TO “iet”

One sometime participant in special relativity will
have to be put to the sword: “x* = ict.” This
imaginary coordinate was invented to make the
geometry of spacetime look formally as little
different as possible from the geometry of Eu-
clidean space; to make a Lorentz transformation
look on paper like a rotation; and to spare one
the distinction that one otherwise is forced to make
between quantities with upper indices (such as the
components p* of the energy-momentum vector)
and quantities with lower indices (such as the
components p, of the energy-momentum 1-form).
However, it is no kindness to be spared this latter
distinction. Without it, one cannot know whether
a vector (§2.3) is meant or the very different geo-
metric object that is a 1-form (§2.5). Moreover,
there is a significant difference between an angle
on which everything depends periodically (a rota-
tion) and a parameter the increase of which gives
rise to ever-growing momentum differences (the
“velocity pargmeter” of a Lorentz transformation;
Box 2.4). If the imaginary time-coordinate hides
from view the character of the geometric object
being dealt with and the nature of the parameter
in a transformation, it also does something even
more serious: it hides the completely different
metric structure (§2.4) of + + + geometry and
— + + + geometry. In Euclidean geometry, when
the distance between two points is zero, the two

points must be the same point. In Lorentz-Min-
kowski geometry, when the interval between two
events is zero, one event may be on Earth and the
other on a supernova in the galaxy M31, but their
separation must be a null ray (piece of a light
cone). The backward-pointing light cone at a given
event contains all the events by which that event
can be influenced. The forward-pointing light cone
contains all events that it can influence. The multi-
tude of double light cones taking off from all the
events of spacetime forms an interlocking causal
structure. This structure makes the machinery of
the physical world function as it does (further
comments on this structure in Wheeler and Feyn-
man 1945 and 1949 and in Zeeman 1964). If in
a region where spacetime is flat, one can hide this
structure from view by writing
(d5)? = (Ax')? + (Ax?)? + (Ax%) + (Ax*P%,

with x* = ict, no one has discovered a way to
make an imaginary coordinate work in the general
curved spacetime manifold. If “x* = ict” cannot
be used there, it will not be used here. In this
chapter and hereafter, as throughout the literature
of general relativity, a real time coordinate is used,

x% =1t =ct,,, (superscript 0 rather than 4 to

avoid any possibility of confusion with the imagi- -

nary time coordinate).

J

The components w® of any other vector w in this frame are similarly defined as  Expansion of vector in terms
the coefficients in such an expansion,

j— a
w = we,.

of basis

2.4)

Notice: the subscript a on e, tells which vector, not which component!

§2.4. THE METRIC TENSOR

The metric tensor, one recalls from part IV of Box 1.3, is a machine for calculating
the squared length of a single vector, or the scalar product of two different vectors.




Metric defined as machine
for computing scalar
products of vectors
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world line

x73

Figure 2.3.

The 4-velocity of a particle in flat spacetime. The 4-velocity u is the unit vector
(arrow) tangent to the particle’s world line—one tangent vector for each event on
the world line. In a specific Lorentz coordinate system, there are basis vectors of
unit length, which point along the four coordinate axes: e,, @,,e,, €,. The 4-velocity,
like any vector, can be expressed as a sum of components along the basis vectors:

u = u'e, + ule, + u’e, + ude; = u'e,.

More precisely, the metric tensor g is a machine with two slots for inserting vectors

slot 1 slot 2

{ }
g( , )- (2.5)

Upon insertion, the machine spews out a real number:

g(u, v) = “scalar product of « and v,” also denoted u - v 2.6)
g(u, u) = “squared length of u,” also denoted w?.

Moreover, this number is independent of the order in which the vectors are inserted
(“symmetry of metric tensor”),

glu,v) = g(v, u); 2.7)
and it is linear in the vectors inserted
glau + bv,w) = g(w, au + bv) = ag(u, w) + bg(v, w). 2.8)

Because the metric “machine” is linear, one can calculate its output, for any input,




§2.5. DIFFERENTIAL FORMS 53

as follows, if one knows only what it does to the basis vectors e, of a Lorentz frame.
(1) Define the symbols (“metric coefficients”) 7,5 by

Nup =9g(€y, €3) = €,° eg. 2.9)

(2) Calculate their numerical values from the known squared length of the separation
vector § = Ax“e, between two events:

(ds)? = —(Ax°)? + (Ax1)? + (4x%)? + (Ax3)?
= g(4x“e,, AxPey) = Ax*AxPg(e,. ep)
= Ax*AxPy,,  for every choice of Ax*

0 0

= IInygll = in any Lorentz frame. (2.10)

-1 0
0 1 0
0010
0 0 01

(3) Calculate the scalar product of any two vectors & and v from

u-v =gu,v) = g(u‘e, viey) = uvhgle, e,);
u-v =uvhy,,, = —uv® + ulv' + uPo? + Uil (2.11)

That one can classify directions and vectors in spacetime into “fimelike” (negative
squared length), “spacelike” (positive squared length), and “null” or “lightlike” (zero
squared length) is made possible by the negative sign on the metric coefficient ng,.

Box 2.2 shows applications of the above ideas and notation to two elementary
problems in special relativity theory.

§2.5. DIFFERENTIAL FORMS

Vectors and the metric tensor are geometric objects that are already familiar from
Chapter 1 and from elementary courses in special relativity. Not so familiar, yet
equally important, is a third geometric object: the “differential form” or “I-form.”

Consider the 4-momentum p of a particle, an electron, for example. To spell out
one concept of momentum, start with the 4-velocity, u = d%/dr, of this electron
(“spacetime displacement per unit of proper time along a straightline approximation
of the world line™). This is a vector of unit length. Multiply by the mass m of the
particle to obtain the momentum vector

p = mu.

But physics gives also quite another idea of momentum. It associates a de Broglie
wave with each particle. Moreover, this wave has the most direct possible physical
significance. Diffract this wave from a crystal lattice. From the pattern of diffraction,
one can determine not merely the length of the de Broglie waves, but also the pattern
in space made by surfaces of equal, integral phase ¢ =7, ¢ =8, ¢ =9,.... This

Metric coefficients

Scalar products computed
from components of vectors

The 1-form illustrated by de
Broglie waves
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Box 2.2 WORKED EXERCISES USING THE METRIC

Exercise: Show that the squared length of a test particle’s 4-velocity u is —1.
Solution: In any Lorentz frame, using the components (2.2), one calculates as follows

u? = glu,u) = uubn,, = — (WO + WP + WP + @)

1 p2

=1ty ="t

Exercise: Show that the rest mass of a particle is related to its energy and momen-
tum by the famous equation

(mc2)? = E? — (pc)?
or, equivalently (geometrized units!),
m? = E? — p2,

First Solution: The 4-momentum is defined by p = mu, where u is the 4-velocity
and m is the rest mass. Consequently, its squared length is

p=miu?= —m?
m? m2y?
= —(mu®? + m2u? = — e t1 2
0 0
E? p?

Second Solution: In the frame of the observer, where E and p are measured, the
4-momentum splits into time and space parts as

P°=E, ple +ple,+ple;=p;
hence, its squared length is
p?= —E2+ p2
But in the particle’s rest frame, p splits as
p°=m, pl=p?=p3=0;

hence, its squared length is p? = —m?. But the squared length is a geometric object
defined independently of any coordinate system; so it must be the same by whatever
means one calculates it:

—p%=m?=E? — pZ
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—

o
ol 1
I Positive
v / sense
/ of o
Po

Figure 2.4.
The vector separation v = # — &, between two neighboring events
?, and ?; a 1-form o; and the piercing of @ by v to give the number

{0, v) = (number of surfaces pierced) = 4.4

(4.4 “bongs of bell”). When o is made of surfaces of constant phase,
¢ =17,6=18 ¢ = 19,... of the de Broglie wave for an electron,
then (o, v) is the phase difference between the events %, and #. Note
that o is not fully specified by its surfaces; an orientation is also
necessary. Which direction from surface to surface is “positive”; i.e.,
in which direction does ¢ increase?

pattern of surfaces, given a name “k,” provides the simplest illustration one can
easily find for a 1-form.

The pattern of surfaces in spacetime made by such a 1-form: what is it good for?
Take two nearby points in spacetime, ¢ and #,. Run an arrow v = ¢ — &, from
%, to #. It will pierce a certain number of the de Broglie wave’s surfaces of integral
phase, with a bong of an imaginary bell at each piercing. The number of surfaces
pierced (number of “bongs of bell”) is denoted

<k, vy;
1-form pierced vector that pierces
in this example it equals the phase difference between tail (?;) and tip (%) of v,
vy = 9(P) — $(Py).

See Figure 24.

Normally neither #, nor # will lie at a point of integral phase. Therefore one
can and will imagine, as uniformly interpolated between the surfaces of integral
phase, an infinitude of surfaces with all the intermediate phase values. With their
aid, the precise value of (k, v) = ¢(?) — ¢(?,) can be determined.

To make the mathematics simple, regard k not as the global pattern of de Broglie-
wave surfaces, but as a local pattern near a specific point in spacetime. Just as the
vector u = d?/dr represents the local behavior of a particle’s world line (linear
approximation to curved line in general), so the 1-form k represents the local form

Vector pierces 1-form

The 1-form viewed as family
of flat, equally spaced
surfaces




The 1-form viewed as linear
function of vectors

56 2. FOUNDATIONS OF SPECIAL RELATIVITY

surface “0”

k = d¢, with three extra
surfaces interleaved
to show its structure

more clearly

surface “—1”

Figure 2.5.

This is a dual-purpose figure. (a) It illustrates the de Broglie wave 1-form K at an event #; (family
of equally spaced, flat surfaces, or “hyperplanes” approximating the surfaces of constant phase). (b)
It illustrates the gradient d¢ of the function ¢ (concept defined in §2.6), which is the same oriented
family of flat surfaces

k = do.

At different events, kK = d¢ is different—different orientation of surfaces and different spacing. The
change in ¢ between the tail and tip of the very short vector v is equal to the number of surfaces of
d¢ pierced by v, (dé, v); it equals —0.5 in this figure.

of the de Broglie wave’s surfaces (linear approximation; surfaces flat and equally
spaced; see Figure 2.5). ‘

Regard the 1-form k as a machine into which vectors are inserted, and from which
numbers emerge. Insertion of v produces as output ¢k, v). Since the surfaces of
k are flat and equally spaced, the output is a linear function of the input:

¢k, au + bvy = a(k, uy + bk, V). (2.122)

This, in fact, is the mathematical definition of a 1-form: a I-form is a linear, real-
valued function of vectors; i.e., a linear machine that takes in a vector and puts out
a number. Given the machine Kk, it is straightforward to draw the corresponding
surfaces in spacetime. Pick a point &, at which the machine is to reside. The surface
of k that passes through %, contains points # for which (k, ? — %, = 0 (no bongs
of bell). The other surfaces contain points with ¢k, ? — P,y = =1, £2, =3,....
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Figure 2.6.
The addition of two 1-forms, @ and B, to produce the 1-form . Required is a pictorial construction
that starts from the surfaces of @ and B, e.g., (@, % — P> = --- —1,0,1,2,..., and constructs those

of ¢ = a + B. Such a construction, based on linearity (2.12b) of the addition process, is as follows.
(1) Pick several vectors u, v, . . . that lie parallel to the surfaces of 8 (no piercing!), but pierce precisely
3 surfaces of a; each of these must then pierce precisely 3 surfaces of o:

{(o,u) = (a +B,u) = {a,u) = 3.
(2) Pick several other vectors w, . . . that lie parallel to the surfaces of @ but pierce precisely 3 surfaces
of B; these will also pierce precisely 3 surfaces of o. (3) Construct that unique family of equally spaced

surfaces in which &, v, . . ., w, . . . all have their tails on one surface and their tips on the third succeeding
surface.

Sometimes 1-forms are denoted by boldface, sans-serif Latin letters with tildes
over them, e.g., k; but more often by boldface Greek letters, e.g., a, B, 0. The output
of a 1-form o, when a vector u is inserted, is called “the value of o on u” or “the
contraction of o with u.”
Also, 1-forms, like any other kind of function, can be added. The 1-form aa 4 bB  Addition of 1-forms
is that machine (family of surfaces) which puts out the following number when a
vector u is put in:

{aa + bB,u)y = ala,u) + b{B, u). (2.12b)

Figure 2.6 depicts this addition in terms of surfaces.

One can verify that the set of all 1-forms at a given event is a “vector space”
in the abstract, algebraic sense of the term.

Return to a particle and its de Broglie wave. Just as the arrow p = md?/dr
represents the best /inear approximation to the particle’s actual world line near %,
so the flat surfaces of the 1-form k provide the best linear approximation to the
curved surfaces of the particle’s de Broglie wave, and k itself is the linear function
that best approximates the de Broglie phase ¢ near %:

OP) = ¢(Pg) + <k, P — Py)

+ terms of higher order in (¥ — %) 2.13)
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corresponding to a given vector U is quite simple. (1) Orient the surfaces of ¥ orthogonal to the vector
U. (Why? Because any vector V that is perpendicular to U must pierce no surfaces of U
(0= U-V = (U, V) and must therefore lie in a surface of ¥.) (2) Space the surfaces of ¥ so that
the number of surfaces pierced by some arbitrary vector ¥ (e.g., ¥ = U) is equal to ¥ U.

Note that in the figure the surfaces of B are, indeed, orthogonal to B; those of € are, indeed, orthogonal
to C, etc. If they do not look so, that is because the reader is attributing Euclidean geometry, not Lorentz
geometry, to the spacetime diagram. He should recall, for example, that because C is a null vector, it
is orthogonal to itself (C+ € = 0), so it must itself lie in a surface of the 1-form €. Confused readers
may review spacetime diagrams in a more elementary text, e.g., Taylor and Wheeler (1966).

Actually, the de Broglie 1-form k and the momentum vector p contain precisely
the same information, both physically (via quantum theory) and mathematically.
To see their relationship. relabel the surfaces of k by # X phase, thereby obtaining
the “momentum 1-form” p. Pierce this 1-form with any vector v, and find the result
(exercise 2.1) that

P v ={(pv). 2.149)

In words: the projection of v on the 4-momentum vector p equals the number of
surfaces it pierces in the 4-momentum 1-form p. Examples: Vectors v lying in a
surface of p (no piercing) are perpendicular to p (no projection); p itself pierces
p? = —m? surfaces of p.

Corresponding to any vector p there exists a unique 1-form (linear function of
vectors) p defined by equation (2.14). And corresponding to any 1-form p, there
exists a unique vector p defined by its projections on all other vectors, by equation
(2.14). Figure 2.7 shows several vectors and their corresponding 1-forms.
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A single physical quantity can be described equally well by a vector p or by the
corresponding 1-form p. Sometimes the vector description is the simplest and most
natural; sometimes the 1-form description is nicer. Example: Consider a 1-form
representing the march of Lorentz coordinate time toward the future—surfaces
x®=...,7,8,9,.... The corresponding vector points toward the past [see Figure
2.7 or equation (2.14)]; its description of the forward march of time is not so nice!

One often omits the tilde from the 1-form p corresponding to a vector p, and
uses the same symbol p for both. Such practice is justified by the unique correspond-
ence (both mathematical and physical) between p and p.

Exercise 2.1. EXERCISE

Show that equation (2.14) is in accord with the quantum-mechanical properties of a de Broglie
wave,

Y = it = exp [i(k*x — wh)].

§2.6. GRADIENTS AND DIRECTIONAL DERIVATIVES

There is no simpler 1-form than the gradient, “df,” of a function f. Gradient a 1-form? Gradient of a function as a
How so? Hasn’t one always known the gradient as a vector? Yes, indeed, but only 1-form
because one was not familiar with the more appropriate 1-form concept. The more
familiar gradient is the vector corresponding, via equation (2.14), to the 1-form
gradient. The hyperplanes representing df at a point %, are just the level surfaces
of fitself, except for flattening and adjustment to equal spacing (Figure 2.5; identify
[ here with ¢ there). More precisely, they are the level surfaces of the linear function
that approximates f in an infinitesimal neighborhood of %,
Why the name “gradient”? Because df describes the first order changes in f in
the neighborhood of #,:

f(@) = f(Py) + (df,? — Py) + (nonlinear terms). (2.15)

[Compare the fundamental idea of “derivative” of something as “best linear ap-
proximation to that something at a point”—an idea that works even for functions
whose values and arguments are infinite dimensional vectors! See, e.g., Dieudonné
(1960).]

Take any vector v; construct the curve ?(A) defined by #(A) — #, = Av; and
differentiate the function f along this curve:

3,f = (d/dN)s = o IP(N)] = (df/dN),. (2.16a)

The “differential operator,”

av = (d/d}\)at)\ =0, along curve AA) — ;= Av> (216b)
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Directional derivative which does this differentiating, is called the “directional derivative operator along

operator defined the vector v.” The directional derivative 9,/ and the gradient df are intimately
related, as one sees by applying 8, to equation (2.15) and evaluating the result at
the point #:

d,f = (df,dP/d\y = (df, v). 2.17)

This result, expressed in words, is: df is a linear machine for computing the rate
of change of f along any desired vector v. Insert v into df; the output (“number
of surfaces pierced; number of bongs of bell”) is 3, f—which, for sufficiently small
v, is simply the difference in f between tip and tail of v.

§2.7. COORDINATE REPRESENTATION OF
GEOMETRIC OBJECTS
In flat spacetime, special attention focuses on Lorentz frames. The coordinates x%(P),
xY(P), x(P), x}(?) of a Lorentz frame are functions; so their gradients can be
Basis 1-forms calculated. Each of the resulting “basis 1-forms,”

w = dx®, (2.18)

has as its hyperplanes the coordinate surfaces x* = const; see Figure 2.8. Conse-
quently the basis vector e, pierces precisely one surface of the basis 1-form w*,

Positive
sense

}
|
|

w?

Positive

//
senit;/
—_——— =

Positive
4 sense

rH-

Figure 2.8.

The basis vectors and 1-forms of a particular Lorentz
coordinate frame. The basis 1-forms are so laid

out that
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while the other three basis vectors lie parallel to the surfaces of w* and thus pierce

none:
(w*, eg) = §%. (2.19)

(One says that the set of basis I-forms {w*} and the set of basis vectors {e,} are
the “duals” of each other if they have this property.)
Just as arbitrary vectors can be expanded in terms of the basis e,, v = v®e,, so

arbitrary 1-forms can be expanded in terms of w?#: Expansion of 1-form in terms
of basis

o = oywh. (2.20)

The expansion coefficients o, are called “the components of o on the basis w?.”
These definitions produce an elegant computational formalism, thus: Calculate Calculation and manipulation
how many surfaces of o are pierced by the basis vector e,; equations (2.19) and of vector and 1-form

(2.20) give the answer: components
<0’ ea> = <0ﬁwﬁ’ ea> = 0/3<wB’ ea> = U,B(SBa;

1e.,

(0,e,) =0, (221a)
Similarly, calculate {(w?, v) for any vector v = eﬂvﬁ; the result is

(w*, vy = v (2.21b)
Multiply equation (2.21a) by v® and sum, or multiply (2.21b) by ¢, and sum; the
result in either case is

(o, V) = o,0% (2.22)
This provides a way, using components, to calculate the coordinate-independent
value of (o, v).

Each Lorentz frame gives a coordinate-dependent representation of any geometric
object or relation: v is represented by its components v*; o, by its components o,,;
a point #, by its coordinates x*; the relation (o, v) = 17.3 by o,0* = 17.3.

To find the coordinate representation of the directional derivative operator d,,
rewrite equation (2.16b) using elementary calculus

= (&), = (%) ()
Y d\ Py dX\ at ?,along ¥(N) ~ 9, = Av ox*/’
v%; see equation (2.3)
the result is
d, = v*0/0x%. (2.23) Directional derivative in terms

of coordinates
In particular, the directional derivative along a basis vector e, (components
[e.)? = (wh. e,y = 8%, is
0y =0, = 0/0x". (2.24)

@

This should also be obvious from Figure 2.8.
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The components of the gradient 1-form df, which are denoted f,
df = f ,w*, (2.25a)
are calculated easily using the above formulas:

[« = {df, e,) [standard way to calculate components; equation (2.21a)]
=0,/ [by relation (2.17) between directional derivative and gradient]
= 0f/0x* [by equation (2.24)].

Thus, in agreement with the elementary calculus idea of gradient, the components
of df are just the partial derivatives along the coordinate axes:

fo=20f/0x%  lLe, df = (3f/0x?) dx®. (2.25b)

(Recall: w* = dx*.) The formula df = (3f/0x“) dx* suggests, correctly, that df is
a rigorous version of the “differential” of elementary calculus; see Box 2.3.

Other important coordinate representations for geometric relations are explored
in the following exercises.

EXERCISES

Derive the following computationally useful formulas:

Exercise 2.2, LOWERING INDEX TO GET THE 1-FORM
CORRESPONDING TO A VECTOR

The components u, of the 1-form & that corresponds to a vector # can be obtained by
“lowering an index” with the metric coefficients 7,4:

U, = MaauP; e, Uy = —u®, u, = uk. (2.26a)
Exercise 2.3. RAISING INDEX TO RECOVER THE VECTOR
One can return to the components of # by raising indices,

u* = n*Fug; (2.26b)

the matrix Ily*#Il is defined as the inverse of lly,,ll, and happens to equal liy,ll:

7B, =08%;  1*F =, for all o, B. (2.27)
Exercise 2.4. VARIED ROUTES TO THE SCALAR PRODUCT
The scalar product of # with v can be calculated in any of the following ways:

u-v =g, v) = uvhy, = uv, = um*t. (2.28)
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4 )

Box 2.3 DIFFERENTIALS

The “exterior derivative” or “gradient” df of a placement vector v pierce df to give the number
function f is a more rigorous version of the ele- {df, v) = 9, f. That number is the change of fin
mentary concept of “differential.” going from the tail of v to its tip. Thus df, before

In elementary textbooks, one is presented with it has been pierced to give a number, represents
the differential df as representing “an infinitesimal the change of f in an unspecified direction. The
change in the function f(#)” associated with some ~act of piercing df with v is the act of making
infinitesimal displacement of the point #; but one explicit the direction in which the change is to be
will recall that the displacement of ¢ is left arbi- measured. The only failing of the textbook presen-
trary, albeit infinitesimal. Thus df represents a tation, then, was its suggestion that df was a scalar
change in f in some unspecified direction. or a number; the explicit recognition of the need

But this is precisely what the exterior derivative for specifying a direction v to reduce df to a num-
df represents. Choose a particular, infinitesimally ber (df, v) shows that in fact df is a 1-form, the
long displacement v of the point #. Let the dis- gradient of f.

\_ Y,

§2.8. THE CENTRIFUGE AND THE PHOTON

Vectors, metric, 1-forms, functions, gradients, directional derivatives: all these geo-
metric objects and more are used in flat spacetime to represent physical quantities;
and all the laws of physics must be expressible in terms of such geometric objects.
As an example, consider a high-precision redshift experiment that uses the Moss-  Geometric objects in action:
bauer effect (Figure 2.9). The emitter and the absorber of photons are attached to g’;‘:)’::)‘?}'e of centrifuge and

Absorber at
time of emission

Emitter at time
of emission

Absorber at time

of absorption Figure 2.9.

The centrifuge and the photon.

the rim of a centrifuge at points separated by an angle «, as measured in the inertial
laboratory. The emitter and absorber are at radius r as measured in the laboratory,
and the centrifuge rotates with angular velocity w. PRoBLEM: What is the redshift

measured,
z= (}\absorbed - Aemitted)/ Aemitted’

in terms of w, r, and a?
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SOLUTION: Let u, be the 4-velocity of the emitter at the event of emission of a
given photon; let u, be the 4-velocity of the absorber at the event of absorption;
and let p be the 4-momentum of the photon. All three quantities are vectors defined
without reference to coordinates. Equally coordinate-free are the photon energies
E, and E, measured by emitter and absorber. No coordinates are needed to describe
the fact that a specific emitter emitting a specific photon attributes to it the energy
E,; and no coordinates are required in the geometric formula

E,=—p-u, (2.29)

for E,. [That this formula works can be readily verified by recalling that, in the
emitter’s frame, #,° = 1 and u,/ = 0; so

Ee = _—pauea = —Po= +]70
in accordance with the identification “(time component of 4-momentum) = (en-
ergy.”’] Analogous to equation (2.29) is the purely geometric formula

E, =—-p-u,

a

for the absorbed energy.
The ratio of absorbed wavelength to emitted wavelength is the inverse of the
energy ratio (since £ = hv = hc/A):
Y L _ Py,
E, —p-u,

e

This ratio is most readily calculated in the inertial laboratory frame

Ao _ 20— piul _pu = pm, 230

50, 0 g 3T p0,, 0 . )
}\e puy — pu, pu, —pru,

(Here and throughout we use boldface Latin letters for three-dimensional vectors
in a given Lorentz frame; and we use the usual notation and formalism of three-
dimensional, Euclidean vector analysis to manipulate them.) Because the magnitude
of the ordinary velocity of the rim of the centrifuge, v = wr, is unchanging in time,
u,® and u,° are equal, and the magnitudes—but not the directions—of u, and u,
are equal:

ul =u’ =1 - v V2 |u,| = u,] = v/(1 — v?)V2,

From the geometry of Figure 2.9, one sees that u, makes the same angle with p
as does u,. Consequently, p-u, =p-u,, and A, 1 cq/Memittea = |- There is no
redshift!

Notice that this solution made no reference whatsoever to Lorentz transforma-
tions—they have not even been discussed yet in this book! The power of the geomet-
ric, coordinate-free viewpoint is evident!




§2.8. CENTRIFUGE AND THE PHOTON

One must have a variety of coordinate-free contacts between theory and experiment in order
to use the geometric viewpoint. One such contact is the equation £ = —p - u for the energy
of a photon with 4-momentum p, as measured by an observer with 4-velocity u. Verify the
following other points of contact.

Exercise 2.5. ENERGY AND VELOCITY FROM 4-MOMENTUM

A particle of rest mass m and 4-momentum p is examined by an observer with 4-velocity
u. Show that just as (a) the energy he measures is

E= —p-u 231)
so (b) the rest mass he attributes to the particle is

m?2 = —p?2; (2.32)
(c) the momentum he measures has magnitude

Pl =[(p-uw?+ (p-pI% (2.33)

(d) the ordinary velocity v he measures has magnitude

Iy = %, (2.34)

where |p| and E are as given above; and (e) the 4-vector v, whose components in the
observer’s Lorentz frame are

v9 =0, v = (dx?/dl) g particte = Ordinary velocity,
is given by
. EAVALLY (235)
—p-u

Exercise 2.6. TEMPERATURE GRADIENT

To each event 2 inside the sun one attributes a temperature 7(2), the temperature measured
by a thermometer at rest in the hot gas there. Then 7(2) is a function; no coordinates are
required for its definition and discussion. A cosmic ray from outer space flies through the
sun with 4-velocity u. Show that, as measured by the cosmic ray’s clock, the time derivative
of temperature in its vicinity is

dT/dr = 8,T = {dT, u). (2.36)
In a local Lorentz frame inside the sun, this equation can be written

dr _ . oT 1 ar vi_ 3T

dr 0x“ V1 -2 ot V1 —v2 oxi

Why is this result reasonable?

(2.37)

EXERCISES
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§2.9. LORENTZ TRANSFORMATIONS

To simplify computations, one often works with the components of vectors and
1-forms, rather than with coordinate-free language. Such component manipulations
sometimes involve transformations from one Lorentz frame to another. The reader
is already familiar with such Lorentz transformations; but the short review in Box
2.4 will refresh his memory and acquaint him with the notation used in this book.

The key entities in the Lorentz transformation are the matrices 1A% g1l and 1A%, II;
the first transforms coordinates from an unprimed frame to a primed frame, while
the second goes from primed to unprimed

x¥ = A gxB,  xP = AP x¥. (2.38)

A}

Since they go in opposite directions, each of the two matrices must be the inverse
of the other:

AV A, = 8% AP AT, = 6P, (2.39)

From the coordinate-independent nature of 4-velocity, u = (dx*/dr)e,, one readily
derives the expressions

e, = eBABa,, e; = ea,A“"B (2.40)

24

for the basis vectors of one frame in terms of those of the other; and from other
geometric equations, such as

v =e*=evf,
(0, vy = 0,0% = 00",

o =o,w* =ogwh,

one derives transformation laws

w? = A @b, wh = A 2.41)
v = AY ok, vB = AP %, (2.42)
o, =05k, 0g = Oy A% . (243)

One need never memorize the index positions in these transformation laws. One
need only line the indices up so that (1) free indices on each side of the equation
are in the same position; and (2) summed indices appear once up and once
down. Then all will be correct! (Note: the indices on A always run “northwest to
southeast.”)
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Box 2.4 LORENTZ TRANSFORMATIONS

Rotation of Frame of Reference by Angle 0 in x-y Plane

=) cosf = 1

Slope s = tan §; sinf = mmi ‘(1 t 52)i/2

t
xcosf + ysind
—xsinfd + ycosf

cos — ysiné
sinf + ycos@

N (=] =

N X o~
Il

wp S| X~

I

N

All signs follow from sign of this term. Positive by inspection of point #.

Combination of Two Such Rotations

_ S5t

= 0= 0
1 — 55, or b1+ 6,

Boost of Frame of Reference by Velocity Parameter a in z-t Plane

18 . 1 PN TIE L

cosha =

Velocity 8 = tanha;  sinha =

tan 6 = velocity 8

= tanh a
t T=tcosha — zsinha
x X=x
y=y y=y
z=TFsinha + Zcosha Z= —tsinha + zcosha
r.
All signs follow from sign of this term. Positive because object at rest at z = 0
in rocket frame moves in direction of increasing z in lab frame.
Matrix notation: x* = A%x’,  x’ = A" x*
cosha 0 O sinha cosha 0 0 —sinha
0 1 0 O - 1 0 0
bl = v =
st =1l 0 o 1 o |14l 0 o0 1 0
sinha 0 0 cosha —sinha 0 O cosh «

_/




Box 2.4 (continued)

Energy-momentum 4-vector Charge density-current 4-vector

E = Ecosh a + p?sinh a p=pcosha + j7sinhe
P =p F=7
pt=p’ B 7 J”
p? = Esinha + p? cosha j? = psinha + j% cosh a

Aberration, incoming photon:

— (1 — Bd)YV2sin§ -7 (1 —B»)Y2sing
Py _

sinf = = - sinf = —~%

E I — Bcosd E 1 + Bcosé
cos = £~ — COS&_B_ cosf = 2~ _ cosf + B

E 1 — Bcosd E 1 + Bcosé

tan (6/2) = e* tan (8/2) tan (8/2) = e * tan (/2)
Combination of Two Boosts in Same Direction
B+ 8
B = -l':_—ﬁ‘l?;; or a = a; + a,.

General Combinations of Boosts and Rotations
Spinor formalism of Chapter 41

Poincaré Transformation
xt = A* x¥ + at.
Condition on the Lorentz part of this transformation:

ds’? =y dx¥ dxF = ds? = n,, A A g dx® dxF

or A™yA = n (matrix equation, with 7 indicating “transposed,” or rows and columns
interchanged).

Effect of transformation on other quantities:

ut = A u® (4-velocity) Uy = uuA“a,;

pr = A, p¥ (4-momentum) p = p,A*
Frr = Ak A g FF (electromagnetic field) Fop =F, A” A”B,;
e, =e, N, (basis vectors);
w = A w* (basis 1-forms);

u=eyu’ =eu*=u (the 4-velocity vector).

~ ~
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Exercise 2.7. BOOST IN AN ARBITRARY DIRECTION
An especially useful Lorentz transformation has the matrix components

1

AOI = = ———,
TR
A = Ay = — Byn,
ATy = AF = (y — Dnink 4 &k, (2.44)

A¥, = (same as A, but with g replaced by —p),

where 8, nl, n%, and n® are parameters, and n? = (n*)? + (n?)? 4+ (n%)? = 1. Show (a) that
this does satisfy the condition ATnA = 7 required of a Lorentz transformation (seec Box 2.4);
(b) that the primed frame moves with ordinary velocity 8n as seen in the unprimed frame;
(c) that the unprimed frame moves with ordinary velocity — Bn (i.e.,v' = —Bn',v¥ = — Br?,
v¥ = —Bn?) as seen in the primed frame; and (d) that for motion in the z direction, the
transformation matrices reduce to the familiar form

, y 00 —By y 0 0 By
. 0 10 0 0 1t 0 0

A= o o1 ol MMu=lg o 1 o (2.45)
-8y 0 0 v By 0 0 «v

EXERCISE

§2.10. COLLISIONS

Whatever the physical entity, whether it is an individual mass in motion, or a torrent
of fluid, or a field of force, or the geometry of space itself, it is described in classical
general relativity as a geometric object of its own characteristic kind. Each such object
is built directly or by abstraction from identifiable points, and needs no coordinates
for its representation. It has been seen how this coordinate-free description translates
into, and how it can be translated out of, the language of coordinates and compo-
nents, and how components in a local Lorentz frame transform under a Lorentz
transformation. Turn now to two elementary applications of this mathematical
machinery to a mass in motion. One has to do with short-range forces (collisions,
this section); the other, with the long-range electromagnetic force (Lorentz force law,
next chapter).

In a collision, all the change in momentum is concentrated in a time that is short
compared to the time of observation. Moreover, the target is typically so small, and
quantum mechanics so dominating, that a probabilistic description is the right one.
A quantity

_ (4o
do = ( ° )a e (2.46)

gives the cross section (cm?) for scattering into the element of solid angle df2 at
the deflection angle 8; a more complicated expression gives the probability that the

Scattering of particles




Conservation of
energy-momentum in a
collision
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original particle will enter the aperture df2 at a given polar angle § and azimuth
¢ and with energy E to E + dE, while simultaneously products of reaction also
emerge into specified energy intervals and into specified angular apertures. It would
be out of place here to enter into the calculation of such cross sections, though it
is a fascinating branch of atomic physics. It is enough to note that the cross section
is an area oriented perpendicular to the line of travel of the incident particle.
Therefore it is unaffected by any boost of the observer in that direction, provided
of course that energies and angles of emergence of the particles are transformed
in accordance with the magnitude of that boost (“same events seen in an altered
reference system”).

Over‘and above any such detailed account of the encounter as follows from the
local dynamic analysis, there stands the law of conservation of energy-momentum:

z P;= 2 Px .

original final
particles, J particles, K

(2.47)

Out of this relation, one wins without further analysis such simple results as the
following. (1) A photon traveling as a plane wave through empty space cannot split
(not true for a focused photon!). (2) When a high-energy electron strikes an electron
at rest in an elastic encounter, and the two happen to come off sharing the energy
equally, then the angle between their directions of travel is less than the Newtonian
value of 90°, and the deficit gives a simple measure of the energy of the primary.
(3) When an electron makes a head-on elastic encounter with a proton, the formula
for the fraction of kinetic energy transferred has three rather different limiting forms,
according to whether the energy of the electron is nonrelativistic, relativistic, or
extreme-relativistic. (4) The threshold for the production of an (e*, ¢”) pair by a
photon in the field of force of a massive nucleus is 2m,. (5) The threshold for the
production of an (e*, ¢7) pair by a photon in an encounter with an electron at rest
is 4m, (or 4m, — € when account is taken of the binding of the e*e"e™ system in
a very light “molecule”). All these results (topics for independent projects!) and more
can be read out of the law of conservation of energy-momentum. For more on this
topic, see Blaton (1950), Hagedomn (1964), and Chapter 4 and the last part of Chapter
5 of Sard (1970).




CHAPTER 3

THE ELECTROMAGNETIC

FIELD

\ The rotating armatures of every generator and every motor in this
age of electricity are steadily proclaiming the truth of the
relativity theory to all who have ears to hear.

LEIGH PAGE (1941)

§3.1. THE LORENTZ FORCE AND
THE ELECTROMAGNETIC FIELD TENSOR

At the opposite extreme from an impulsive change of momentum in a collision (the
last topic of Chapter 2) is the gradual change in the momentum of a charged particle
under the action of electric and magnetic forces (the topic treated here).

Let electric and magnetic fields act on a system of charged particles. The accelera-
tions of the particles reveal the electric and magnetic field strengths. In other words,
the Lorentz force law, plus measurements on the components of acceleration of test
particles, can be viewed as defining the components of the electric and magnetic
fields. Once the field components are known from the accelerations of a few test
particles, they can be used to predict the accelerations of other test particles (Box
3.1). Thus the Lorentz force law does double service (1) as definer of fields and (2)
as predicter of motions.

Here and elsewhere in science, as stressed not least by Henri Poincaré, that view

is out of date which used to say, “Define your terms before you proceed.” All the laws .

and theories of physics, including the Loreniz force law, have this deep and subtle
character, that they both define the concepts they use (here B and E) and make
statements about these concepts. Contrariwise, the absence of some body of theory,
law, and principle deprives one of the means properly to define or even to use concepts.
Any forward step in human knowledge is truly creative in this sense: that theory,
concept, law, and method of measurement—forever inseparable—are born into the
world in union.

Lorentz force as definer of
fields and predicter of
motions




72 3. THE ELECTROMAGNETIC FIELD

ﬂ
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Box 3.1
PREDICTER OF MOTIONS

How one goes about determining the components
of the field from measurements of accelerations is
not different in principle for electromagnetism and
for gravitation. Compare the equations in the two
cases:

24
gdiz = f—F"‘ﬁ.u/8 in a Lorentz frame, (1)
T m
and
D= .
= — R%4,suP&Yu? in any coordinate system.
x

)

To make explicit the simpler procedure for elec-
tromagnetism will indicate in broad outline how
one similarly determines all the components of
R4, for gravity. Begin by asking how many test
particles one needs to determine the three compo-
nents of B and the three components of E in the
neighborhood under study. For one particle, three
components of acceleration are measurable; for a
second particle, three more. Enough? No! The
information from the one duplicates in part the
information from the other. The proof? Whatever
the state of motion of the first test particle, pick
one’s Lorentz frame to be moving the same way.
Having zero velocity in this frame, the particle has
a zero response to any magnetic field. The electric
field alone acts on the particle. The three compo-
nents of its acceleration give directly the three
components E,, E,, E, of the electric field. The
second test particle cannot be at rest if it is to do
more than duplicate the information provided by
the first test particle. Orient the x-axis of the frame

~ equation for the F,p

LORENTZ FORCE LAW AS BOTH DEFINER OF FIELDS AND

of reference parallel to the direction of motion of
this second particle, which will then respond to
and measure the components B, and B, of the
magnetic field. Not so B! The acceleration in the
x-direction merely remeasures the already once
measured E,. To evaluate B,, a third test particle
is required, but it then gives duplicate information
about the other field components. The alternative?
Use all N particles simultaneously and on the same
democratic footing, both in the evaluation of the
six F,, and in the testing of the Lorentz force, by
applying the method of least squares. Thus, write
the discrepancy between predicted and observed
acceleration of the Kth particle in the form

s K _ € BK _ §q K
" — - Fapt = da X

€)
Take the squared magnitude of this discrepancy
and sum over all the particles

S = 2 n*Pda ka5 4
%

In this expression, everything is regarded as known
except the six F,z. Minimize with respect to these
six unknowns. In this way, arrive at six equations
for the components of B and E. These equations
once solved, one goes back to (3) to test the Lor-
entz force law. .

The 6 X 6 determinant of the coefficients in the
automatically vanishes when
there are only two test particles. The same line of
reasoning permits one to determine the minimum
number of test particles required to determine all
the components of the Riemann curvature tensor.

J
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The Lorentz force law, written in familiar three-dimensional notation, with
E = electric field, B = magnetic field, v = ordinary velocity of particle, p =
momentum of particle, e = charge of particle, reads

(dp/dt) = e(E + v x B). 3.1)

Useful though this version of the equation may be, it is far from the geometric spirit
of Einstein. A fully geometric equation will involve the test particle’s energy-mo-
mentum 4-vector, p, not just the spatial part p as measured in a specific Lorentz
frame; and it will ask for the rate of change of momentum not as measured by
a specific Lorentz observer (d/dt), but as measured by the only clock present a priori
in the problem: the test particle’s own clock (d/dr). Thus, the lefthand side of a
fully geometric equation will read

dp/dr = .

The righthand side, the Lorentz 4-force, must also be a frame-independent object.
It will be linear in the particle’s 4-velocity u, since the frame-dependent expression

dp 1 dp

e
dr \/l—v2 dr V1 — v

is linear in the components of u. Consequently, there must be a linear machine
named Faraday, or F, or “electromagnetic field tensor,” with a slot into which one
inserts the 4-velocity of a test particle. The output of this machine, multiplied by
the particle’s charge, must be the electromagnetic 4-force that it feels:

(E+vxB) =ce(uE+uxB) (32a)

dp/dr = eF(u). (3.3)

By comparing this geometric equation with the original Lorentz force law (equa-
tion 3.2a), and with the companion energy-change law

dp?® 1 dE 1
d = eE-v=¢E-u,

dfr:\/l—vzz V1 — 2

one can read off the components of F in a specific Lorentz frame. The components
of dp/dr are dp®/dr, and the components of eF(u) can be written (definition of F%4!)
eF*,uf. Consequently

(3.2b)

dp*/dr = eF“BuB (3.4)

must reduce to equations (3.2a,b). Indeed it does if one makes the identification

B=0 B=1 p=2 B=3
a=0 |0 E, E, E,
=1 ||E 0 B -B
WEmgl = 5 |l B, 0 B
&= v T z (3.5)
a=23 Ez By —Bz 0

The three-dimensional version
of the Lorentz force law

Electromagnetic field tensor
defined

Geometrical version of
Lorentz force law

Components of
electromagnetic field tensor
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More often seen in the literature are the “covariant components,” obtained by
lowering an index with the metric components:

Faﬁ = nayFyﬁ; (36)
ap! = 1 E, 0 B —B

E -B, 0 B, 37

E, B, -B, 0

, This matrix equation demonstrates the unity of the electric and magnetic fields.
Neither one by itself, E or B, is a frame-independent, geometric entity. But merged
together into a single entity, F = Faraday, they acquire a meaning and significance
that transcends coordinates and reference frames.

EXERCISE

Exercise 3.1.
Derive equations (3.5) and (3.7) for the components of Faraday by comparing (3.4) with
(3.2a,b), and by using definition (3.6).

Examples of tensors

§3.2. TENSORS IN ALL GENERALITY

A digression is in order. Now on the scene are several different tensors: the metric
tensor g (§2.4), the Riemann curvature tensor Riemann (§1.6), the electromagnetic
field tensor Faraday (§3.1). Each has been defined as a linear machine with input
slots for vectors, and with an output that is either a real number, e.g., g(u, v), or
a vector, e.g., Riemann (u, v, w) and Faraday (u).

Should one make a distinction between tensors whose outputs are scalars, and
tensors whose outputs are vectors? No! A tensor whose output is a vector can be
reinterpreted trivially as one whose output is a scalar. Take, for example, Fara-
day = F. Add a new slot for the insertion of an arbitrary 1-form o, and gears and
wheels that guarantee the output

Flo,u) = {o,F(u)) = real number. (3.8)

Then permit the user to choose whether he inserts only a vector, and gets out the
vector F(...,u) = F(u), or whether he inserts a form and a vector, and gets out
the number F(o, u). The same machine will do both jobs. Moreover, in terms of
components in a given Lorentz frame, both jobs are achieved very simply:

F(...,u) is a vector with components F“Buﬁ;

F(0, u) is the number (o, F(...,u)) = o, F*;uP. (3.9)
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By analogy, one defines the most general tensor H and its rank (*) as follows:

H is a linear machine with » input slots for n 1-forms, and m input slots for m vectors;
given the requested input, it puts out a real number denoted

Ho,A....B.uv,... W) (3.10)

n l-forms m vectors

For most tensors the output changes when two input vectors are interchanged,

Riemann(o,u, v, w) # Riemann(o,v,u, w), 3.11)

or when two input 1-forms are interchanged.

Choose a specific tensor' S, of rank (3) for explicitness. Into the slots of S, insert
the basis vectors and 1-forms of a specific Lorentz coordinate frame. The output
is a “component of § in that frame™:

S, = S(w*, wh, e,). (3.12)

This defines components. Knowing the components in a specific frame, one can easily
calculate the output produced from any input forms and vectors:

S(o, p,v) = S(o,we, pﬂwﬁ, v'e,) = 0,0,0YS(w?, wh, e,) (3.13)

= SQBYOQPBUY.

And knowing the components of § in one Lorentz frame (unprimed), plus the
Lorentz transformation matrices 1A% Il and 1A, !l which link that frame with
another (primed), one can calculate the components in the new (primed) frame. As
shown in exercise 3.2, one need only apply a matrix to each index of §, lining up
the matrix indices in the logical manner

SHYy = SeB AW AV Ay (3.14)

A slight change of the internal gears and wheels inside the tensor enables one
of its 1-form slots to accept a vector. All that is necessary is a mechanism to convert
an input vector n into its corresponding 1-form 7 and then to put that 1-form into
the old machinery. Thus, denoting the modified tensor by the same symbol § as
was used for the original tensor, one demands

S(o,n,v) = S(o,n,v); (3.15)

or, in component notation

Seg 0,nfvY = S 6,np0Y. (3.15)

This is achieved if one raises and lowers the indices of § using the components of
the metric:
Sk, = nhfSag,.

825, = 1,5, (3.16)

(See exercise 3.3 below.) By using the same symbol § for the original tensor and

Definition of tensor as linear
machine that converts
vectors and 1-forms into
numbers

Components of a tensor

Tensor’s machine action
expressed in terms of
components

Lorentz transformation of
components

Modifying a tensor to accept
either a vector or a 1-form
into each slot

Raising and lowering indices
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the modified tensor, one allows each slot to accept either a 1-form or a vector, so
one loses sight of whether S is a (3) tensor, or a (}) tensor, or a (3) tensor, or a (%)
tensor; one only distinguishes its total rank, 3. Terminology: an “upstairs index” is
called “contravariant”; a “downstairs” index is called “covariant.” Thus in S%sys
“a” is a contravariant index, while “f” and “y” are covariant indices.

Because tensors are nothing but functions, they can be added (if they have the
same rank!) and multiplied by numbers in the usual way: the output of the rank-3
tensor a$ + bQ@, when vectors u, v, w are put in, is

(aS + bQ)u,v,w) =aS(u,v,w) + bQ(u, v, w). 3.17)

Several other important operations on tensors are explored in the following exercises.
They and the results of the exercises will be used freely in the material that follows,

EXERCISES

Exercise 3.2. TRANSFORMATION LAW FOR COMPONENTS OF A TENSOR

From the transformation laws for components of vectors and 1-forms, derive the transforma-
tion law (3.14).

Exercise 3.3. RAISING AND LOWERING INDICES

Derive equations (3.16) from equation (3.15") plus the law n, = naﬁnﬂ for getting the
components of the 1-form 7 from the components of its corresponding vector n.

Exercise 3.4. TENSOR PRODUCT

Given any two vectors & and v, one defines the second-rank tensor 4 ® v (“tensor product
of u with v”) to be a machine, with two input slots, whose output is the number

(u Q@ v)(o,A) = (o, u)A,v) (3.18)

when 1-forms o and A are inserted. Show that the components of T = u ® v are the products
of the components of w and v:

T = uwf,  TFE=uub, T, =u,,. (3.19)
Extend the definition to several vectors and forms,
WO v®BOwWYT,An )= (0,udA v)(B n{{, w), (3.20)
and show that the product rule for components still holds: -

S =u®v® B ® w has components 391
S = ukyr Bawt. 3:21)

Exercise 3.5. BASIS TENSORS

Show that a tensor M with components M*?_? in a given Lorentz frame can be reconstructed
from its components and from the basis 1-forms and vectors of that frame as follows:

M=MFle e, dw X e,

(322)

(For a special case of this, see Box 3.2.)
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Box 3.2 THE METRIC IN DIFFERENT LANGUAGES

A. Geometric Language

g is a linear, symmetric machine with two slots for insertion of vectors. When vectors
u and v are inserted, the output of g is their scalar product:

gluv)=u-v.

B. Component Language

n,, are the metric components. They are used to calculate the scalar product of two
vectors from components in a specific Lorentz frame:

u-v =, uv.
C. Coordinate-Based Geometric Language

The metric g can be written, in terms of basis 1-forms of a specific Lorentz frame,

as
g = n,w" S w =1, dx* ® dx’

[see equations (2.18) and (3.22)].

D. Connection to the Elementary Concept of Line Element

Box 2.3 demonstrated the correspondence between the gradient df of a function,
and the elementary concept df of a differential change of f in some unspecified
direction. There is a similar correspondence between the metric, written as 1, dx*
® dx’, and the elementary concept of “line element,” written as ds* = n,,, dx" dx”.
This elementary line element, as expounded in many special relativity texts, repre-
sents the squared length of the displacement “dx*” in an unspecified direction. The
metricn,, dx* ® dx” does the same. Pick a specific infinitesimal displacement vector
£, and insert it into the slots of n,, dx* ® dx”. The output will be £* = n,,§“¢",
the squared length of the displacement. Before £ is inserted, 7, dx* ® dx” has the
potential to tell the squared length of any vector; the insertion of § converts potenti-
ality into actuality: the numerical value of 2.

Because the metricn,, dx* ® dx” and the line element ds® =, dx* dx” perform
this same function of representing the squared length of an unspecified infinitesimal
displacement, there is no conceptual distinction between them. One sometimes uses
the symbols ds? to denote the metric; one sometimes gets pressed and writes it as
ds? = 1, dx* dx*, omitting the “®”; and one sometimes even gets so pressed as
to use nonbold characters, so that no notational distinction remains at all between
metric and elementary line element:

g = ds? = ds? = n,, dx* dx?’.
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Exercise 3.6. Faraday MACHINERY AT WORK

An observer with 4-velocity & picks out three directions in spacetime that are orthogonal
and purely spatial (no time part) as seen in his frame. Let 4, @, €3 be unit vectors in those
directions and let them be oriented in a righthanded way (e; - e; X e; = +1 in three-di-
mensional language). Why do the following relations hold?

e;ru =0, e;-e; = O
What vectors are to be inserted in the two slots of the electromagnetic field tensor Faraday
if one wants to get out the electric field along e; as measured by this observer? What vectors

must be inserted to get the magnetic field he measures along e;?

The power of the geometric
view of physics

Example of electromagnetism

Transformation law for
electric and magnetic fields

§3.3. THREE-PLUS-ONE VIEW VERSUS GEOMETRIC VIEW

Great computational and conceptual power resides in Einstein’s geometric view of
physics. Ideas that seem complex when viewed in the everyday “space-plus-time”
or “3 + 1” manner become elegant and simple when viewed as relations between
geometric objects in four-dimensional spacetime. Derivations that are difficult in
3 + 1 language simplify in geometric language.

The electromagnetic field is a good example. In geometric language, it is described
by a second-rank, antisymmetric tensor (“2-form”) F, which requires no coordinates
for its definition. This tensor produces a 4-force on any charged particle given by

dp/dr = eF(u).

It is all so simple!

By contrast, consider the “3 + 17 viewpoint. In a given Lorentz frame, there is
an electric field E and a magnetic field B. They push on a particle in accordance
with

dp/dt = e(E + v x B).

But the values of p, E, v, and B all change when one passes from the given Lorentz
frame to a new one. For example, the electric and magnetic fields viewed from a
rocket ship (“barred” frame) are related to those viewed in the laboratory (“un-
barred” frame) by

_ - 1
E =E, E = ﬁ(EJ_ + B X B)),

1 (3.23)
B, = B, B =————=(B, -BXE).

N

(Here “II” means component along direction of rocket’s motion; “_L” means perpen-
dicular component; and B/ = dx/  ,./dt is the rocket’s ordinary velocity.) The
analogous transformation laws for the particle’s momentum p and ordinary velocity




i

b

§3.4. MAXWELL'S EQUATIONS 79

v, and for the coordinate time ¢, all conspire—as if by magic, it seems, from the
3 + 1 viewpoint—to maintain the validity of the Lorentz force law in all frames.

Not only is the geometric view far simpler than the 3 + 1 view, it can even derive
the 3 + 1 equations with greater ease than can the 3 4 1 view itself. Consider, for
example, the transformation law (3.23) for the electric and magnetic fields. The
geometric view derives it as follows: (1) Orient the axes of the two frames so their
relative motion is in the z-direction. (2) Perform a simple Lorentz transformation
(equation 2.45) on the components of the electromagnetic field tensor:

E, = E, = Fz5 = A3A%5F,5 = ¥*Fy + B**Fo
=1 =-BWFy=Fy=E, = E,,
Ex = Fiﬁ = AaTA'B(—)Fa'B = YFlO + B'YF13 = 'Y(E;,; - BBy)7

(3.24)

etc.

By contrast, the 3 + 1 view shows much more work. A standard approach is based
on the Lorentz force law and energy-change law (3.2a,b), written in the slightly
modified form

dx _dr  _dx S dy = dZ)

Rl — ~ +B,—~—B,—), 325

" e(E,, d7+0d7'+ fdr Vdr (3-25)
... (three additional equations).. ..

It proceeds as follows (details omitted because of their great length!):

(1) Substitute for the d2x/dr?, etc., the expression for these quantities in terms
of the d2x/dr?, . .. (Lorentz transformation).

(2) Substitute for the d2x/dr?, ... the expression for these accelerations in terms
of the laboratory E and B (Lorentz force law).

(3) In these expressions, wherever the components dx/dr of the 4-velocity in the
laboratory frame appear, substitute expressions in terms of the 4-velocities
in the rocket frame (inverse Lorentz transformation).

(4) In (3.25) as thus transformed, demand equality of left and right sides for all
values of the dx/dr, etc. (validity for all test particles).

(5) In this way arrive at the expressions (3.23) for the E and B in terms of the
E and B.

The contrast in difficulty is obvious!

§3.4. MAXWELL'S EQUATIONS

Turn now from the action of the field on a charge, and ask about the action of a
charge on the field, or, more generally, ask about the dynamics of the electromagnetic
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Magnetodynamics derived
from magnetostatics

Magnetodynamics and
magnetostatics unified in one
geometric law
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field, charge or no charge. Begin with the simplest of Maxwell’s equations in a specific
Lorentz frame, the one that says there are no free magnetic poles:

3B, 0B, 0B
V-B=divB="2, v % 326
VEEL TS T (326)

This statement has to be true in all Lorentz frames. It is therefore true in the rocket
frame:
N 0B, 9B, 0B
~+ 2+ —==0. (3.27)
0x ay 0z

For an infinitesimal Lorentz transformation in the x-direction (nonrelativistic ve-
locity B), one has (see Box 2.4 and equations 3.23)

B,=B, B,=B,+pE,. B =B, —pE, (3.28)
8 2 : 5 2 3

_ 9,0 2 _20o 3_3 3.29

x-uxtPw HTy woe (329

Substitute into the condition of zero divergence in the rocket frame. Recover the
original condition of zero divergence in the laboratory frame, plus the following
additional information (requirement for the vanishing of the coefficient of the
arbitrary small velocity B8):

oF
°B + ok, _ %k, =0. (3.30)
ot dy oz

Had the velocity of transformation been directed in the y- or z-directions, a similar
equation would have been obtained for 0B,/0t or 9B,/0t. In the language of three-
dimensional vectors, these three equations reduce to the one equation

oB oB

7+VXEEW+cur1E:O. 331
How beautiful that (1) the principle of covariance (laws of physics are the same
in every Lorentz reference system, which is equivalent to the geometric view of
physics) plus (2) the principle that magnetic tubes of force never end, gives
(3) Maxwell’s dynamic law for the time-rate of change of the magnetic field!
This suggests that the magnetostatic law V - B = 0 and the magnetodynamic law
oB/ot + V X E = 0 must be wrapped up together in a single frame-independent,
geometric law. In terms of components of the field tensor F, that geometric law

must read
Fopy + Faya+ Frap =0, (3.32)

since this reduces to V + B = 0 when one takesa = 1, 8 = 2, v = 3; and it reduces
to 0B/ot + V X E = 0 when one sets any index, e.g., a, equal to zero (see exercise
3.7 below). In frame-independent geometric language, this law is written (see §3.5,
exercise 3.14, and Chapter 4 for notation)
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dF = 0, or, equivalently, ¥ - *F = 0; (3.33)

and it says, “Take the electromagnetic 2-form F (a geometric object defined even
in absence of coordinates); from it construct a new geometric object dF (called the
“exterior derivative of F”); dF must vanish. The details of this coordinate-free
process will be spelled out in exercise 3.15 and in §4.5 (track 2).

Two of Maxwell’s equations remain: the electrostatic equation

V- E = 4mp, (3.34)

and the electrodynamic equation

0E/0t — V X B = —4ul. (3.35)
They, like the magnetostatic and magnetodynamic equations, are actually two Electrodynamics and

different parts of a single geometric law. Written in terms of field components, that e'eCtroft_atilcs unified in one
geometric law
law says
Fab ;= 4nJe, (3.36)

where the components of the “4-current” J are

J® = p = charge density, 337)
(J1,J2,J3) = components of current density. -
Written in coordinate-free, geometric language, this electrodynamic law says
d*F = 47 *J or, equivalently, V - F = 47J. (3.38)

(For full discussion, see exercise 3.15 and §4.5, which is on Track 2.)

Exercise 3.7. MAXWELL'S EQUATIONS EXERCISE
Show, by explicit examination of components, that the geometric laws

Fapy + Foya + Frap =0, F* g = dnJo,

o

do reduce to Maxwell’s equations (3.26), (3.31), (3.34), (3.35), as claimed above.

§3.5 WORKING WITH TENSORS

Another mathematical digression is needed. Given an arbitrary tensor field, S, of
arbitrary rank (choose rank = 3 for concreteness), one can construct new tensor Ways to produce new tensors
fields by a variety of operations. from old:
One operation is the gradient V. (The symbol d is reserved for gradients of scalars, ~Gradient
in which case V= df, and for “exterior derivatives of differential forms;” a Track-2
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concept, on which see §4.5.) Like §, VS is a machine. It has four slots, whereas
$ has three. It describes how S changes from point to point. Specifically, if one
desires to know how the number S(u, v, w) for fixed u, v, w changes under a
displacement §, one inserts u, v, w, § into the four slots of VS:

VS(u,v,w,§) =0,S(u,v,w) with u, v, w fixed
~ + [value of S(u, v, w) at tip of §] (3.39)
— [value of S(u, v, w) at tail of §].

In component notation in a Lorentz frame, this says

2
VS, v, w, &) = 0,(S,5,u%0wY) = (—gj—;ﬁ—y és) u*vfw¥

= Sapy, st VIWYE.

Thus, the Lorentz-frame components of VS are nothing but the partial derivatives
of the components of S. Notice that the gradient raises the rank of a tensor by 1
(from 3 to 4 for S).

Contraction is another process that produces a new tensor from an old one. It
seals off (“contracts”) two of the old tensor’s slots, thereby reducing the rank by
two. Specifically, if R is a fourth-rank tensor and M is obtained by contracting the
first and third slots of R, then the output of M is given by (definition!)

3
M(u,v) = > R(e, u,w*,v). (3.40)

a=0

Here e, and w* are the basis vectors and 1-forms of a specific but arbitrary Lorentz
coordinate frame. It makes no difference which frame is chosen; the resuit will always
be the same (exercise 3.8 below). In terms of components in any Lorentz frame,
equation (3.40) says (exercise 3.8)

M(u,v) = M, u*v’ = R, * u*v’,

so that
M,, = R, (3.41)
Thus, in terms of components, contraction amounts to putting one index up and
the other down, and then summing on them.
Divergence is a third process for creating new tensors from old. It is accomplished
by taking the gradient, then contracting the gradient’s slot with one of the original
slots:

(divergence of 8 on first slot) =V - § is a machine such that

V-S(u,v)=VS(wu,v,e) = S%, ufv’; (3.42)

i.e. V-8 has components S%, ,.
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Transpose is a fourth, rather trivial process for creating new tensors. It merely
interchanges two slots:

N obtained by transposing second and third slots of § =
Nu,v,w) = S(u,w, v). (3.43)
Symmetrization and antisymmetrization are fifth and sixth processes for producing

new tensors from old. A tensor is completely symmetric if its output is unaffected
by an interchange of two input vectors or 1-forms:

Su,v,w)=S(v,u,w)=Sv,wu)=---. (3.44a)
It is completely antisymmetric if it reverses sign on each interchange of input
S(u,v,w)= —-Sv,u,w)= +S(v,w,u)=.--. (3.44b)

Any tensor can be symmetrized or antisymmetrized by constructing an appropriate
linear combination of it and its transposes; see exercise 3.12.

Wedge product is a seventh process for producing new tensors from old. It is merely
an antisymmetrized tensor product: given two vectors & and v, their wedge product,
the “bivector” u A v, is defined by

uNv=uQ® v —vQQu, (3.45a)
similarly, the “2-form” a A B constructed from two 1-forms is

aANB=a®p—-8R®a. (3.45b)
From three vectors u, v, w one constructs the “trivector”

uNvAw=UAVVAWwW=uAN(vAw)
=u ® v ® w + terms that guarantee complete antisymmetry
—uQvoAw+vOAIwRu+wRuv (3.45¢)
—vOUOW - uQwWwRVv-—w®vQu.

From 1-forms a, B8, y one similarly constructs the “3-forms” a A B8 A y. The wedge
product gives a simple way to test for coplanarity (linear dependence) of vectors:
if # and v are collinear, so 4 = av, then

uNv=avAv=0 (by antisymmetry of “A”).
If w is coplanar with u and v so w = au + bv (“collapsed box™), then
wAuAv=au ANuANANv+bvrAuAv=0

The symbol “A” is called a “hat” or “wedge” or “exterior product sign.” Its proper-
ties are investigated in Chapter 4.

Taking the dual is an eighth process for constructing new tensors. It plays a
fundamental role in Track 2 of this book, but since it is not needed for Track 1,
its definition and properties are treated only in the exercises (3.14 and 3.15).

Transpose

Symmetrization and
antisymmetrization

Wedge product

Bivector

2-form

Trivector

Dual
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Because the frame-independent geometric notation is somewhat ambiguous (which
slots are being contracted? on which slot is the divergence taken? which slots are
being transposed?), one often uses component notation to express coordinate-inde-
pendent, geometric relations between geometric objects. For example,

oy = S%v.a

means “J is a tensor obtained by taking the divergence on the first slot of the tensor
S”. Also,

vy = (FqupV),Y = (P;LVF#V),[}T’BY

means “v is a vector obtained by (1) constructing the tensor product F ® F of F
with itself, (2) contracting F ® F on its first and third slots, and also on its second
and fourth, (3) taking the gradient of the resultant scalar function, (4) converting
that gradient, which is a 1-form, into the corresponding vector.”

“Index gymnastics,” the technique of extracting the content from geometric
equations by working in component notation and rearranging indices as required,
must be mastered if one wishes to do difficult calculations in relativity, special or
general. Box 3.3 expounds some of the short cuts in index gymnastics, and exercises
3.8-3.18 offer practice.

EXERCISES

Exercise 3.8. CONTRACTION IS FRAME-INDEPENDENT

Show that contraction, as defined in equation (3.40), does not depend on which Lorentz
frame e, and w* are taken from. Also show that equation (3.40) implies

M(u,v) = R, > u"v’.

Exercise 3.9. DIFFERENTIATION
(a) Justify the formula

d(u,v)/dr = (du,/dr)v” + u,(dv’/dr).

by considering the special case p = 0, » = 1.
(b) Explain why

(T*Fop) , = T 05 + TFug,,,

Exercise 3.10. MORE DIFFERENTIATION
(a) Justify the formula,

d(utu,)/dr = 2u (du*/dr),

by writing out the summation w*u, =1,,u*u" explicitly.
(b) Let 8 indicate a variation or small change, and justify the formula

8(Fyp FoF) = 2F,p8F k.

(c) Compute (F,z[F) =2
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Box 3.3 TECHNIQUES OF INDEX GYMNASTICS
Equation Name and Discussion
Sy = S(w*, e, e,) Computing components.
Sk, = S(w*, wh, e,) Computing other components.
S = 5%.e,® wf ® w¥ Reconstructing the rank-(}) version of S.
S=15%e,Qe;®e, Reconstructing the rank-(3) version of S. [Recall: one does
not usually distinguish between the various versions; see equa-
tion (3.15) and associated discussion.] !
Seb = yhrse, . Raising an index.
Sy = 1,55, Lowering an index.
M, =5, Contraction of § to form a new tensor M.
Tﬂﬁw = S“BﬂMy Tensor product of § with M to form a new tensor T.

A2 = 4%4, Squared length of vector A produced by forming tensor product
A ® A and then contracting, which is the same as forming the
corresponding 1-form A and then piercing: A% = (A, A) = 4°4,,.

N Bnﬁv =48, The matrix formed from the metric’s “covariant components,”
fnell, is the inverse of that formed from its “contravariant
components,” [ln*All. Equivalently, raising one index of the
metric 7,5 produces the Kronecker delta.

S$%y = N o Gradient of N to form a new tensor S.
Ry = Ny , Divergence of N to form a new tensor R.
Neg o = (g, N, = ng N Taking gradients and raising or lowering indices are operations
that commute.
Neg¥ = N Y Contravariant index on a gradient is obtained by raising covari-
ant index.
(R,Mp) , = R, My + R, M, , Gradient of a tensor product; says V(R ® M) =
’ ’ ’ Transpose (VR @ M) + R ® VM.

Gop = Frap = 3(Fop — Fpa) Antisymmetrizing a tensor F to produce a new tensor G.

Hyp = Fopy =§(Fop + Fgo) Symmetrizing a tensor F to produce a new tensor H.

*apy = S unpy Forming the rank-3 tensor that is dual to a vector (exercise
3.14).

*Fog = 3%, For_ming the‘antisymmetric rank-2 tensor that is dual to a given
antisymmetric rank-2 tensor (exercise 3.14).

*B, = {BM7e, ., Forming the 1-form that is dual to an antisymmetric rank-3
tensor (exercise 3.14).
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Exercise 3.11. SYMMETRIES

Let 4,, be an antisymmetric tensor so that 4,, = —~A4,,; and let S** be a symmetric tensor
so that §# = S"~,

(a) Justify the equations 4,,8* = 0 in two ways: first, by writing out the sum explicitly
(all sixteen terms) and showing how the terms in the sum cancel in pairs; second, by giving
an argument to justify each equals sign in the following string:

A, SW = —A4, 8" = —A4, 8" = —A4,5F =—-4,5"=0.
(b) Establish the following two identities for any arbitrary tensor V,:

VR4, = 2 (VR — VA, VRS, =L (R VS,

Exercise 3.12. SYMMETRIZATION AND ANTISYMMETRIZATION

To “symmetrize” a tensor, one averages it with all of its transposes. The components of the
new, symmetrized tensor are distinguished by round brackets:

1
V(/w) = 5 (V;w + Vyu)!
. (3.46)
VE/-LV)\) Ey(V‘”)\ + Vv)\p, + V)\pw + va,)\ + V,u)\v + V)\Ilﬂ)'
One “antisymmetrizes” a tensor (square brackets) similarly:
1 .
V[p.u] = 7 (Vuv - I/V,u,)’
(3.47)

_ 1
V[;w)\] zﬁ(V,u.u)\ + Vy)\u + V)\uu - Vvu)\ - Vu)\v - V)\y#)'

(a) Show that such symmetrized and antisymmetrized tensors are, indeed, symmetric and
antisymmetric under interchange of the vectors inserted into their slots:
V(aﬂy)uavﬁwy = + V;aﬁy)vauﬁwy = ...,
V[a,B\/]uavB"vy == V[aBY]UaquY =

(b) Show that a second-rank tensor can be reconstructed from its symmetric and antisym-
metric parts,

Ve = Voun + Viwns (3.48)

uwy

>

but that a third-rank tensor cannot; ¥4, and Vs, contain together “less information’

than V,,,. “Young diagrams” (see, e.g., Messiah [1961], appendix D) describe other symme-

tries, more subtle than these two, which contain the missing information.
(c) Show that the electromagnetic field tensor satisfies
EaB) =0, Fa,@ = Fiaﬁ]' (3.492)
(d) Show that Maxwell’s “magnetic” equations
Fapy + Fpya + Fyap =0

can be rewritten in the form

Fapy = 0. (3.49b)
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Exercise 3.13. LEVI-CIVITA TENSOR
The “Levi-Civita tensor” £ in spacetime is a fourth-rank, completely antisymmetric tensor:

£(n, u, v, w) changes sign when any two of the
. (3.50a)
vectors are interchanged.

Choose an arbitrary but specific Lorentz frame, with e, pointing toward the future and with
e,, e,, e, a righthanded set of spatial basis vectors. The covariant components of ¢ in this
frame are

£o123 = £(8y, €1, 8,5, €) = +1. (3.50b)

[Note: In an n-dimensional space, ¢ is the analogous completely antisymmetric rank-»n tensor.
Its components are

f12.m = 8(81, ey ..., en) =+ 1, (350C)

when computed on a “positively oriented,” orthonormal basis ey, ..., e,.]

(a) Use the antisymmetry to show that

e,pvs = 0 unless a, B, v, 8 are all different, (3.50d)
_{+1 for even permutations of 0, 1, 2, 3, and
Eromimams = {—1 for odd permutations. (3.50e)
(b) Show that
ETOTITITS = g (3.501)

(c) By means of a Lorentz transformation show that e*#7% and €537 have these same values
in any other Lorentz frame with e pointing toward the future and with ej, e; e3 a

righthanded set. Hint: show that
eWBYIAD AT A2 A3 = —det|A¥,|; (3.50g)

from A™gA = 7, show that det\Al_‘Vl = =1, and verify that the determinant is 41 for trans-
formations between frames with e, and e future-pointing, and with e,, e,, e; and ey, ez,
e; righthanded.

(d) What are the components of £ in a Lorentz frame with past-pointing e3? with
lefthanded ey, e5, e5?

(e) From the Levi-Civita tensor, one can construct several “permutation tensors.” In index
notation:

SQBYﬂy)\ = _Eaﬂypsﬂy)\p; (350h)

6f,, = % 3R p = — %eaﬁ)\peﬂﬂxp; (3.501)
601 — 1 8&/? - 1 (Socﬁ)\ _ 1 aBAp, 1

L=3%"w =g w8 = T e E T e (3-507)

Show that:

+1 if afy is an even permutation of pwrA,
8*BY » = {—1if aBy is an odd permutation of prA, (3.50k)
0 otherwise;
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8B, = b%,58, — 5e,58

+1 if af is an even permutation of o,
—1if af is an odd permutation of v, (3.501)
0 otherwise;

sa _[-f—lifa:‘u,

#~ | 0 otherwise. (3.50m)

Exercise 3.14. DUALS

From any vector J, any second-rank antisymmetric tensor F (Fus = H,p); and any third-rank
antisymmetric tensor B(B,z, = B,g,), one can construct new tensors defined by

1

*
J, =
2

gy = Jhe

Fuve *B, = A B, (351

* j—
sz,B - wrafl? a 3'

nafBy>

One calls *J the “dual” of J, *F the dual of F, and *B the dual of B. [A previous and

entirely distinct use of the word “dual” (§2.7) called a set of basis one-forms {w?®} dual

to a ser of basis vectors {e,} if (w®, ey) = &%, Fortunately there are no grounds for

confusion between the two types of duality. One relates sets of vectors to sets of 1-forms.

The other relates antisymmetric tensors of rank p to antisymmetric tensors of rank 4 — p.]
(a) Show that

g = **F - _F g B (3.52)

so (aside from sign) one can recover any completely antisymmetric tensor H from its dual
*H by taking the dual once again, **H. This shows that # and *M contain precisely the
same information.

(b) Make explicit this fact of same-information-content by writing out the components
*A%FY in terms of A%, also *F*# in terms of F*#, also *B< in terms of B28Y,

Exercise 3.15. GEOMETRIC VERSIONS OF MAXWELL EQUATIONS
Show that, if F is the electromagnetic field tensor, then ¥V« *F = 0 is a geometric frame-in-
dependent version of the Maxwell equations

Fapy + Fpya + Frap =0

Similarly show that ¥ - F = 4=J (divergence on second slot of F) is a geometric version
of F""B’B = 4aJj*.

Exercise 3.16. CHARGE CONSERVATION
From Maxwell’s equations F*# ; = 47J¢, derive the “equation of charge conservation”

Je . = 0. (3.53)

Show that this equation does, indeed, correspond to conservation of charge. It will be studied
further in Chapter 5.

Exercise 3.17. VECTOR POTENTIAL

The vector potential A of electromagnetic theory generates the electromagnetic field tensor
via the geometric equation

F = —(antisymmetric part of V.A), (3.54)

Le.,
F,=4,,—-4,, (3.54)
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(a) Show that the electric and magnetic fields in a specific Lorentz frame are given by
B=V xA, E= —04/0t— VA4° (3.55)
(b) Show that F will satisfy Maxwell’s equations if and only if A satisfies
ABk = AR 0= —dg]e, (3.56)
(c) Show that “gauge transformations”
Aygw = Ay p + do, ¢ = arbitrary function, . (3.57)

leave F unaffected.
(d) Show that one can adjust the gauge so that

vV-A=0 (“Lorentz gauge”), (3.58a)
OA = —4nd. (3.58b)

Here O is the wave operator (“d’Alembertian”):
UA = 4%+ e, (3.59)

. Exercise 3.18. DIVERGENCE OF ELECTROMAGNETIC
STRESS-ENERGY TENSOR

From an electromagnetic field tensor F, one constructs a second-rank, symmetric tensor T
(stress-energy tensor,” to be studied in Chapter 5) as follows:

1 1
wy — wo PV L uv a8 K
T i (F F, 7" F i F ) (3.60)
| As an exercise in index gymnastics:
(a) Show that V¥ - T has components
1 1
wr = | Fra F Fuefpy —— — F ok "‘ﬁ]. 361
™, 477[F ot ar =3 Fap™F 3.61)
(b) Manipulate this expression into the form
v 1 ay 1 @, .
Ty, = Z;[—F""‘F = 5F ﬁ(FaB’M + Fup + FB‘M)], (3.62)

wote that the first term of (3.62) arises directly from the second term of (3.61).
(¢) Use Maxwell’s equations to conclude that

Tw , = —Fuaj, (3.63)




CHAPTER 4

ELECTROMAGNETISM AND
DIFFERENTIAL FORMS

\_

The ether trembled at his agitations
In @ manner so familiar that | only need to say,
In accordance with Clerk Maxwell’s six equations
It tickled peoples’ optics far away.

You can feel the way it’s done,
You may trace them as they run
dy by dy less dB by dz is equal KdX/dt . . .

While the curl of (X, Y, Z) is the
minus d/dt of the vector (a, b, ¢).

From The Revolution of the Corpuscle,
written by A. A. Robb

(to the tune of The Interfering Parrott)
for a dinner of the research students
of the Cavendish Laboratory

in the days of the old mathematics.

( )

This chapter is all Track 2. It is
needed as preparation for
§§14.5 and 14.6 (computation
of curvature using differential
forms) and for Chapter 15
(Bianchi identities and
boundary of a boundary), but is
not needed for the rest of the
book.

_ Y,

§4.1. EXTERIOR CALCULUS

99 <<

Stacks of surfaces, individually or intersecting to make “honeycombs,” “egg crates,”
and other such structures (“differential forms”), give unique insight into the geometry
of electromagnetism and gravitation. However, such insight comes at some cost in
time. Therefore, most readers should skip this chapter and later material that depends
on it during a first reading of this book.

Analytically speaking, differential forms are completely antisymmetric tensors;
pictorially speaking, they are intersecting stacks of surfaces. The mathematical
formalism for manipulating differential forms with ease, called “exterior calculus,”
is summarized concisely in Box 4.1; its basic features are illustrated in the rest of
this chapter by rewriting electromagnetic theory in its language. An effective way
to tackle this chapter might be to (1) scan Box 4.1 to get the flavor of the formalism;
(2) read the rest of the chapter in detail; (3) restudy Box 4.1 carefully; (4) get practice
in manipulating the formalism by working the exercises.*

(continued on page 99)

*Exterior calculus is treated in greater detail than here by: E. Cartan (1945); de Rham (1955);
Nickerson, Spencer, and Steenrod (1959); Hauser (1970); Israel (1970); especially Flanders (1963,
relatively easy, with many applications); Spivak (1965, sophomore or junior level, but fully in tune with
modern matheématics); H. Cartan (1970); and Choquet-Bruhat (1968a).
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‘a leading application (at right of page). This formalism is applicable not only to
' spacetime, but also to more general geometrical systems (see heading of each section).

— _/

Box 4.1 DIFFERENTIAL FORMS AND
EXTERIOR CALCULUS IN BRIEF

The fundamental definitions and formulas of exterior calculus are summarized here
for ready reference. Each item consists of a general statement (at left of page) plus

No attempt is made here to demonstrate the internal consistency of the formalism,
nor to derive it from any set of definitions and axioms. For a systematic treatment
that does so, see, e.g., Spivak (1965), or Misner and Wheeler (1957).

A. Algebra | (applicable to any vector space)

1. Basis 1-forms.
a. Coordinate basis w’ = dx’
(j tells which 1-form, not which component).
b. General basis w’ = Li,, dx*".

An application
Simple basis 1-forms for analyzing Schwarzschild ge-
ometry around static spherically symmetric center of
attraction:

W’ = (1 = 2m/r)V2 di;

w! = (1 —2m/ry"V2dr;

w? =rdf;

w3 = rsin 0 do.

2. General p-form (or p-vector) is a completely anti-
symmetric tensor of rank (J) [or (§)]. It can be
expanded in terms of wedge products (see §3.5 and
exercise 4.12):

1 hA i
a=—a;, ;W ANwz2N - N whr

WA WA - A Wi,

= Q4|
(Note: Vertical bars around the indices mean sum-
mation extends only over iy < i, < --- <)

Two applications
Energy-momentum 1-form is of type a = a,w' or

p=—-Ed+p.dx+p,dy+p,d:.

Faraday is a 2-form of type B = B, w* A\ w’ or in
flat spacetime

F=—-EdiNdx - E,dtN\Ndy— E,di N\ d:
+ B,dy N\ dz + B,dz \ dx + B,dx N\ dy

e o AR N MR -

——-
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~ ™

Box 4.1 (continued)

3. Wedge product.
All familiar rules of addition and multiplication
hold, such as

(aa + bB) Ny =aa Ny +bB Ny,
@ANBANy=aNBANy)y=aANB Ay,

except for a modified commutation law between
a p-form a and a g-form B:

gAp= 1A
Applications to 1-forms a, B:

aANB=—-—BAa, aNa=0;
a A B = (qw) A (Bw*) = og;fw N Wk

1 .
= 5(ajﬁk — Bjagw’ A wk.
4. Contraction of p-form on p-vector.
(a,A)

= a|il...ip|A|jlmjp‘<wh A - A wip,eh A .- A e],p}

= 8;'.11_':]?:1 (see exercises 3.13 and 4.12)]

— . i1..dp
- a|n...zp1A .

Four applications

a. Contraction of a particle’s energy-momentum 1-form
p = pw* with 4-velocity u = u“e, of observer (a
1-vector):

—{p,uy = —p,u® = energy of particle.

b. Contraction of Faraday 2-form F with bivector
87 N AP [where 89 = (dP/dA)AN; and 4P =
(d?/dA,) AN, are two infinitesimal vectors in a 2-sur-
face P(A,, A,), and the bivector represents the surface
element they span] is the magnetic flux & = (F, 6%
A APy through that surface element.

c. More generally, a p-dimensional parallelepiped with
vectors a,, a,, . . ., a, for legs has an oriented volume
described by the “simple” p-vectora; N a, \ --- a,
(oriented because interchange of two legs changes its
sign). An egg-crate type of structure with walls made
from the hyperplanes of p different 1-forms al,—)
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0?,...,0" is described by the “simple” p-form o'
A 62 A ... A o?. The number of cells of o' A
o2 A --- A o? sliced through by the infinitesimal
p-volume a; A a, A --- A a,is

(' NO* AN - No?,a  Na, A\ --- N\ ap).

d. The Jacobian determinant of a set of p functions
fE(xY, ..., x™) with respect to p of their arguments
is

<df1/\df2/\ A dp, gf’l NP A A 8?/’)

ox? OxP
of*
( axi )
5. Simple forms.

!: LS. f?)
Ta(xl x2, ..., xP)
a. A simple p-form is one that can be written as

a wedge product of p 1-forms:

g’:a/\ﬂ/\---/\)’.

= det

p factors

b. A simple p-form a A B A --- Ay is repre-
sented by the intersecting families of surfaces
ofa, B, ...,y (egg-crate structure) plus a sense
of circulation (orientation).

Applications:

a. In four dimensions (e.g., spacetime) all O-forms, 1-
forms, 3-forms, and 4-forms are simple. A 2-form F
is generally a sum of two simple forms, e.g., F =
—edt A\ dx + hdy A dz; it is simple if and only if
FAF=0.

b. A set of 1-forms a, B,...,y is linearly dependent
(one a linear combination of the others) if and
only if

a ANBAN---ANy=0 (egg crate collapsed).
B. Exterior Derivative (applicable to any “‘differentiable manifold,”’
with or without metric)

1. d produces a (p + 1)-form do from a p-form o.
2. Effect of d is defined by induction using the

\— _/
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Box 4.1 (continued)

(Chapter 2) definition of df, and f a function (0-
form), plus

da A B)=da A B+ (—1)a A dB,

d? =dd = 0.

Two applications
da A dB) = da A dB.
For the p-form @, with
@ =y i dx A - A dxi,

one has (alternative and equivalent definition of dg)

dp =dp;, ;N dx* A ... A dxi.

C. Integration (applicable to any ‘‘differentiable manifold,”’ with or
without metric)

1. Pictorial interpretation.
Text and pictures of Chapter 4 interpret fa (inte-
gral of specified 1-form a along specified curve
from specified starting point to specified end point)
as “number of a-surfaces pierced on that route”;
similarly, they interpret {¢ (integral of specified
2-form @ over specified bit of surface on which
there is an assigned sense of circulation or “orien-
tation”) as “number of cells of the honeycomb-like
structure ¢ cut through by that surface”; similarly
for the egg-crate-like structures that represent 3-
forms; etc.

2. Computational rules for integration.
To evaluate fa, the integral of a p-form

a= ali1...i,,|(xl, oo XM dxit A A dixie,

over a p-dimensional surface, proceed in two steps.
a. Substitute a parameterization of the surface,

x*AL, ..., AP)
into a, and collect terms in the form

a =aM)d\I A --- A dN?

(this is a viewed as a p-form in the p-dimen-
sional surface);

— _/
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b. Integrate
[a = [aniyanran:.. . dxe
using elementary definition of integration.

Example: See equations (4.12) to (4.14).
3. The differential geometry of integration.

Calculate fa for a p-form a as follows.

a. Choose the p-dimensional surface S over which
to integrate.

b. Represent S by a parametrization giving the
generic point of the surface as a function of the
parameters, P(AL, A2 ... AP). This fixes the ori-
entation. The same function with Al & A2,
P(AZ, AL, ..., AP), describes a different (i.e., op-
positely oriented) surface, —S.

¢. The infinitesimal parallelepiped

29 1) (ﬂ 2) (ﬁ p)
(axl‘”‘ AMEz A A oo A (S5

is tangent to the surface. The number of cells
of a it slices is

97 _a_éf_ 1 P
@A AZE) e

This number changes sign if two of the vectors
09/0\* are interchanged, as for an oppositely
oriented surface.

d. The above provides an interpretation motivat-
ing the definition

Jas[l [ (aGenger 1)

dNY AR .. dAP.

This definition is identified with the computa-

tional rule of the preceding section (C2) in

exercise 4.9,
An application
Integrate a gradient df along a curve, #(A) from #(0)
to 2(1):

1 1
[dr= fo (df, dP/d\ dN = f (df/dN) dX

= f12)] = f12O)]

e. Three different uses for symbol “d” First, light-
face d in explicit derivative expressions such as
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a )

Box 4.1 (continued)

d/da, or df/da, or d? /da; neither numerator nor
denominator alone has any meaning, but only
the full string of symbols. Second, lightface d
inside an integral sign; e.g., (fda. This is an
instruction to perform integration, and has no
meaning whatsoever without an integral sign;
“f...d... lives as an indivisible unit. Third,
sans-serif d; e.g., d alone, or df, or da. This is
an exterior derivative, which converts a p-form
into a (p + 1)-form. Sometimes lightface d is
used for the same purpose. Hence, d alone, or
df, or dx, is always an exterior derivative unless
coupled to an § sign (second use), or coupled
to a / sign ( first use).
4. The generalized Stokes theorem (see Box 4.6).

a. Let 27 be the closed p-dimensional boundary
of a (p + 1)-dimensional surface 7. Let o be
a p-form defined throughout 7.

Then
fdo:f o

¥ Eid

[integral of p-form o over boundary 8% equals
| integral of (p + 1)-form do over interior 7).
‘ b. For the sign to come out right, orientations of
¥ and 07 must agree in this sense: choose
coordinates y°, y1,...,y? on a portion of ¥,
with y° specialized so y* <0 in ¥, and y* =0
at the boundary 09"; then the orientation

;‘ NN
oy® oyt oyP

for V' demands the orientation

9P A AP
oyt ayP

for 0.
; c. Note: For a nonorientable surface, such as a
q Mobius strip, where a consistent and continuous

E choice of orientation is impossible, more intri-

. cate mathematics is required to give a definition

. of “@” for which the Stokes theorem holds.

‘. Applications: Includes as special cases all integral theo-

rems for surfaces of arbitrary dimension in spaces of
arbitrary dimension, with or without metric, generaliz-
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x

ing all versions of theorems of Stokes and Gauss. Exam-

ples:

a. ¥V a curve, 07 its endpoints, 0 = f a 0-form (func-
tion):

[ ar=[ @rayan=[ 7= - o)
¥ 0 av

b. ¥ a 2-surface in 3-space, 07" its closed-curve bound-
ary, v a l-form; translated into Euclidean vector
notation, the two integrals are

Ivdv:j;f(va)'dS;f v:fwv-dl.

oY

c. Other applications in §§5.8, 20.2, 20.3, 20.5, and
exercises 4.10, 4.11, 5.2, and below.

1. Norm of a p-form.
2 — 1.4
Nall* =a;, ;. @t

Two applications: Norm of a 1-form equals its squared
length, llall? = a - a. Norm of electromagnetic 2-form
or Faraday: \IF||? = B2 — EZ2,
2. Dual of a p-form.
a. In an n-dimensional space, the dual of a p-form
a is the (n — p)-form *a, with components

. — liteip]
( ‘X)kl...k,,,,, =« Citeipkyokn_p*

b. Properties of duals:

**a = (—1)?"la in spacetime;
a A *a = llall?¢ in general.

¢. Note: the definition of £ (exercise 3.13) entails
choosing an orientation of the space, i.e., decid-
ing which orthonormal bases (1) are “right-
handed” and thus (2) have (e, ..., e,) = +1.
Applications

a. For f a O-form, *f= fe, and ffd(volume) = {*/.

b. Dual of charge-current 1-form J is charge-current

3-form *J. The total charge Q in a 3-dimensional
hypersurface region 8§ is

o) = [ *J.

P

_J
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Box 4.1 (continued)

Conservation of charge is stated locally by d*J = 0.
Stokes’ Theorem goes from this differential conserva-
tion law to the integral conservation law,

O:fd*J:f *J.
.

oV

This law is of most interest when 39" = 8, — 8, con-
sists of the future S, and past S; boundaries of a
spacetime region, in which case it states Q(S,) =
Q(S,); see exercise 5.2.

¢. Dual of electromagnetic field tensor F = Faraday is
*F = Maxwell. From the d*F = 4«7 *J Maxwell

equation, find 47Q =4duf *J = [ d*F = [,5 *F.

3. Simple forms revisited.
a. The dual of a simple form is simple.
b. Egg crate of *o is perpendicular to egg crate
ofo=a AN B A ... A yin this sense:
(1) pick any vector V lying in intersection of
surfaces of o

(a,Vy =(B, V)= --- =(u, V) =0)

(2) pick any vector W lying in intersection of
surfaces of *o;
(3) then V and W are necessarily perpendicu-
lar: V- W = 0.
Example: o = 3 dt is a simple 1-form in spacetime.
a. *o = —3dx A dy A\ dz is a simple 3-form.
b. General vector in surfaces of o is

V="V'e, + Ve, + V7e,.

¢. General vector in intersection of surfaces of *o is

w = We,.

d. W'V:O.
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The electromagnetic field tensor, Faraday = F, is an antisymmetric second-rank
tensor (i.e., 2-form). Instead of expanding it in terms of the tensor products of basis
1-forms,

F = F,, dx* ® dx*,

the exterior calculus prefers to expand in terms of antisymmetrized tensor products
(“exterior products,” exercise 4.1):

1

F = Fypdx® A dxP, @.1)
dx® A dxP =dx* ® dxf — dx’ & dx*. 4.2)

Any 2-form (antisymmetric, second-rank tensor) can be so expanded. The symbol
“A” is variously called a “wedge,” a “hat,” or an “exterior product sign”; and
dx® A dxP are the “basis 2-forms” of a given Lorentz frame (see §3.5, exercise 3.12,
and Box 4.1).
There is no simpler way to illustrate this 2-form representation of the electromag-
netic field than to consider a magnetic field in the x-direction:
Fyz = _Fzy = Bz"

F=B_dy A d:.

4.3)

The 1-form dy = grad y is the set of surfaces (actually hypersurfaces) y = 18 (all
t,x,2),y = 19 (allt, x, z), y = 20 (all ¢, x, z), etc.; and surfaces uniformly interpolated
between them. Similarly for the 1-form dz. The intersection between these two sets
of surfaces produces a honeycomb-like structure. That structure becomes a *“2-form”
when it is supplemented by instructions (see arrows in Figure 4.1) that give a “sense
of circulation” to each tube of the honeycomb (order of factors in the “wedge
product” of equation 42; dy A dz = —dz A dy). The 2-form F in the example
differs from this “basis 2-form” dy A dz only in this respect, that where dy A dz
had one tube, the field 2-form has B, tubes.

When one considers a tubular structure that twists and turns on its way through
spacetime, one must have more components to describe it. The 2-form for the general
electromagnetic field can be written as

F=E,dxANdt+ E,dy Ndt+ E,dz \ dt + B, dy \ d:
+ B,dz A\ dx + B, dx A\ dy 4.4)

(6 components, 6 basis 2-forms).

A 1-form is a machine to produce a number out of a vector (bongs of a bell as
the vector pierces successive surfaces). A 2-form is a machine to produce a number
out of an oriented surface (surface with a sense of circulation indicated on it: Figure
4.1, lower right). The meaning is as clear here as it is in elementary magnetism:

Electromagnetic 2-form
expressed in terms of exterior
products

A 2-form as a honeycomb of
tubes with a sense of
circulation

A 2-form as a machine to
produce a number out of an
oriented surface
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W Sapowvatove-obill

X dy N\ dz x B.dy Ndz

Construction of the 2-form for the electromagnetic field F = B, dy A dz out of the 1-forms dy and
dz by “wedge multiplication” (formation of honeycomb-like structure with sense of circulation indicated

i by arrows). A 2-form is a “machine to construct a number out of an oriented surface” (illustrated by
! sample surface enclosed by arrows at lower right; number of tubes intersected by this surface is

j
E Figure 4.1.
?
|

F = 18;

Ky (this surface)

Faraday’s concept of “magnetic flux™). This idea of 2-form machinery can be connected to the “tensor-
as-machine” idea of Chapter 3 as follows. The shape of the oriented surface over which one integrates
F does not matter, for small surfaces. All that affects fF is the area of the surface, and its orientation.
Choose two vectors, & and v, that lie in the surface. They form two legs of a parallelogram, whose
orientation (¥ followed by v) and area are embodied in the exterior product 4 A v. Adjust the lengths
of u and v so their parallelogram, # A v, has the same area as the surface of integration. Then

F=f F = F(u,v).

surface uAlv
(Al A TA N A

machinery ideal l machinery idea
of this chapter. of Chapter 3

Exercise: derive this result, for an infinitesimal surface 4 A v and for general F, using the formalism
of Box 4.1.
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the number of Faraday tubes cut by that surface. The electromagnetic 2-form F
or Faraday described by such a “tubular structure” (suitably abstracted; Box 4.2)
has a reality and a location in space that is independent of all coordinate systems
and all artificial distinctions between “electric” and “magnetic” fields. Moreover,
those tubes provide the most direct geometric representation that anyone has ever
been able to give for the machinery by which the electromagnetic field acts on a
charged particle. Take a particle of charge e and 4-velocity

dx®
e

u= }
dr ¢

4.5)
Let this particle go through a region where the electromagnetic field is described
by the 2-form

F=B,dyN\d: (4.6)

of Figure 4.1. Then the force exerted on the particle (regarded as a 1-form) is the
contraction of this 2-form with the 4-velocity (and the charge);

p = dp/dr = eF(u) = e&(F, u), %)

as one sees by direct evaluation, letting the two factors in the 2-form act in turn
on the tangent vector u:
p =eB (dy N\ dz,u)
= eB,{dw{dz,uy — dz{dy, u)}
= eB {dy(dz, u’e,) — dz{dy,u'e,)}
or

P dx* = eBu?dy — eBu? dz. 4.8)

Comparing coefficients of the separate basis 1-forms on the two sides of this equa-
tion, one sees reproduced all the detail of the Lorentz force exerted by the magnetic
field B,:

_ dap, _ dz
Py dr eB, dr’
dp dy
=-—-f£ = —eB,— .
po=22= e8> 49)

By simple extension of this line of reasoning to the general electromagnetic field,
one concludes that the time-rate of change of momentum (1-form) is equal to the charge
multiplied by the contraction of the Faraday with the 4-velocity. Figure 4.2 illustrates
pictorially how the 2-form, F, serves as a machine to produce the 1-form, p, out
of the tangent vector, eu.

(continued on page 105)

Lorentz force as contraction
of electromagnetic 2-form
with particle’'s 4-velocity
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Box 4.2 ABSTRACTING A 2-FORM FROM THE CONCEPT OF "HONEYCOMB-

LIKE STRUCTURE,” IN 3-SPACE AND IN SPACETIME

Open up a cardboard carton containing a dozen
bottles, and observe the honeycomb structure of
intersecting north-south and east-west cardboard
separators between the bottles. That honeycomb
structure of “tubes” (“channels for bottles”) is a
fairly apt illustration of a 2-form in the context
of everyday 3-space. It yields a number (number
of tubes cut) for each choice of smooth element
of 2-surface slicing through the three-dimensional
structure. However, the intersecting cardboard
separators are rather too specific. All that a true
2-form can ever give is the number of tubes sliced
through, not the “shape” of the tubes. Slew the
carton around on the floor by 45°. Then half the
separators run NW-SE and the other half run
NE-SW, but through a given bit of 2-surface fixed
in 3-space the count of tubes is unchanged. There-
fore, one should be careful to make the concept
of tubes in the mind’s eye abstract enough that
one envisages direction of tubes (vertical in the
example) and density of tubes, but not any specific
location or orientation for the tube walls. Thus all
the following representations give one and the
same 2-form, o:

o = Bdx A dy;
o = B2 dx) A (% dy)

(NS cardboards spaced twice as close as before;
EW cardboards spaced twice as wide as before);

o =Bd(x\;2_y)/\ d(x\-;iy)

(cardboards rotated through 45°);

adx + Bdy vydx + 6dy

@ — B2 " (@b — pr)i?

(both orientation and spacing of “cardboards
changing from point to point, with all four

o =8B

23

functions, «, B, v, and 8, depending on
position).

What has physical reality, and constitutes the real
geometric object, is not any one of the 1-forms just
encountered individually, but only the 2-form o
itself. This circumstance helps to explain why in
the physical literature one sometimes refers to
“tubes of force” and sometimes to “lines of force.”
The two terms for the same structure have this in
common, that each yields a number when sliced
by a bit of surface. The line-of-force picture has
the advantage of not imposing on the mind any
specific structure of “sheets of cardboard”; that is,
any specific decomposition of the 2-form into the
product of 1-forms. However, that very feature is
also a disadvantage, for in a calculation one often
finds it useful to have a well-defined representa-
tion of the 2-form as the wedge product of 1-forms.
Moreover, the tube picture, abstract though it
must be if it is to be truthful, also has this advan-
tage, that the orientation of the elementary tubes
(sense of circulation as indicated by arrows in
Figures 4.1 and 4.5, for example) lends itself to
ready visualization. Let the “walls” of the tubes
therefore remain in all pictures drawn in this book
as a reminder that 2-forms can be built out of
1-forms; but let it be understood here and here-
after how manyfold are the options for the indi-
vidual 1-forms!

Turn now from three dimensions to four, and
find that the concept of “honeycomb-like struc-
ture” must be made still more abstract. In three
dimensions the arbitrariness of the decomposition
of the 2-form into 1-forms showed in the slant and
packing of the “cardboards,” but had no effect on
the verticality of the “channels for the bottles”
(“direction of Faraday lines of force or tubes of
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force™); not so in four dimensions, or at least not
in the generic case in four dimensions.

In special cases, the story is almost as simple
in four dimensions as in three. An example of a
special case is once again the 2-form o = Bdx
A dy, with all the options for decomposition into
I-forms that have already been mentioned, but
with every option giving the same “direction” for
the tubes. If the word “direction” now rises in
status from “tube walls unpierced by motion in
the direction of increasing z” to “tube walls un-
pierced either by motion in the direction of in-
creasing z, or by motion in the direction of in-
creasing 7, or by any linear combination of such
motions,” that is a natural enough consequence of
adding the new dimension. Moreover, the same
simplicity prevails for an electromagnetic plane
wave. For example, let the wave be advancing in
the z-direction, and let the electric polarization
point in the x-direction; then for a monochromatic
wave, one has

E,=B,=E;cos0(z — 1) = —Fy; = Fyy,

and all components distinct from these equal zero.
Faraday is

F=F,dt \Ndx + F, dz N\ dx
= E,cosw(z — t)d(z — 1) \ dx,

which is again representable as a single wedge
product of two 1-forms.

Not so in general! The general 2-form in four
dimensions consists of six distinct wedge products,

F=F, diANdx+ Fpdt Ady+ -
+ Iysdy A dz.

It is too much to hope that this expression will
reduce in the generic case to a single wedge prod-
uct of two 1-forms (“simple” 2-form). It is not even

true that it will. It is only remarkable that it can
be reduced from six exterior products to two (de-
tails in exercise 4.1); thus,

F=mN§F +nm N §.

Each product m* A &' individually can be visual-
ized as a honeycomb-like structure like those de-
picted in Figures 4.1, 4.2, 44, and 4.5. Each such
structure individually can be pictured as built out
of intersecting sheets (1-forms), but with such de-
tails as the tilt and packing of these 1-forms ab-
stracted away. Each such structure individually
gives a number when sliced by an element of
surface. What counts for the 2-form F, however,
is neither the number of tubes of m! A §! cut by
the surface, nor the number of tubes of 72 A &2
cut by the surface, but only the sum of the two.
This sum is what is referred to in the text as the
“number of tubes of F” cut by the surface. The
contribution of either wedge product individually
is not well-defined, for a simple reason: the de-
composition of a six-wedge-product object into
two wedge products, miraculous though it seems,
is actually far from unique (details in exercise 4.2).
In keeping with the need to have two products
of 1-forms to represent the general 2-form note
that the vanishing of dF (“no magnetic charges”)
does not automatically imply that d(n* A §1) or
d(n* N\ §?) separately vanish. Note also that any
spacelike slice through the general 2-form F (re-
duction from four dimensions to three) can always
be represented in terms of a honeycomb-like
structure (“simple” 2-form in three dimensions;
Faraday’s picture of magnetic tubes of force).
Despite the abstraction that has gone on in see-
ing in all generality what a 2-form is, there is no
bar to continuing to use the term “honeycomb-like
structure” in a broadened sense to describe this
object; and that is the practice here and hereafter.

J

—
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Figure 4.2.

The Faraday or 2-form F of the electromagnetic field is a machine to produce a 1-form (the time-rate
of change of momentum p of a charged particle) out of a tangent vector (product of charge e of the
particle and its 4-velocity «). In spacetime the general 2-form is the “superposition” (see Box 4.2) of
two structures like that illustrated at the top of this diagram, the tubes of the first being tilted and packed
as indicated, the tubes of the second being tilted in another direction and having a different pack-
ing density.
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§4.3. FORMS ILLUMINATE ELE