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PREFACE 

The Men of the Great Assembly had three sayings: ''Be patient before reaching 
a decision; Enable many students to stand on their own; Make a fence around your 
teaching. '^ 

Ethics of the Fathers 1:1 

There are two aspects of cosmology today that make it more alluring than ever. 
First, there is an enormous amount of data. To give just one example of how rapidly 
our knowledge of the structure of the universe is advancing, consider galaxy surveys 
which map the sky. In 1985, the state-of-the-art survey was the one carried out by 
the Center for Astrophysics; it consisted of the positions of 1100 galaxies. Today, the 
Sloan Digital Sky Survey and the Two Degree Field between them have recorded 
the 3D positions of half a million galaxies. 

The other aspect of modern cosmology which distinguishes it from previous 
efforts to understand the universe is that we have developed a consistent theoret-
ical framework which agrees quantitatively with the data. These two features are 
the secret of the excitement in modern cosmology: we have a theory which makes 
predictions, and these predictions can be tested by observations. 

Understanding what the theory is and v/hat predictions it makes is not trivial. 
First, many of the predictions are statistical. We don't predict that there should be 
a hot spot in the cosmic microwave background (CMB) at RA — 15/i, dec= 27°. 
Rather, predictions are about the distribution and magnitude of hot and cold spots. 
Second, these predictions, and the theory on which they are based, involve lots of 
steps, many arguments drawn from a broad range of physics. For example, we 
will see that the distribution of hot and cold spots in the CMB depends on quan-
tum mechanics, general relativity, fluid dynamics, and the interaction of light with 
matter. So we will indeed follow the first dictum of the Men of the Great Assem-
bly and be patient before coming to judgment. Indeed, the fundamental measures 
of structure in the universe — the power spectra of matter and radiation — agree 
extraordinary well with the current cosmological theory, but we won't have the 
tools to understand this agreement completely until Chapters 7 and 8. Sober minds 
have always knows that it pays to be patient before pronouncing judgment on ideas 
as lofty as those necessary to understand our Universe. The modern twist on this 
"Be patient" theme is that we need to set up the framework (in this case Chapters 
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1-6) before we can appreciate the success of the current cosmological model. 
Pick a random page in the book, and you will see that I have tried very hard to 

fulfill the second part of the aphorism. The hand-waving and qualitative arguments 
that facilitate understanding are here, but the main purpose of the book is to give 
you the tools to get in the game, to do calculations yourself, and follow cosmological 
arguments from first principles. Once you have mastered these tools, you will be 
prepared for any changes in the basic theoretical model. For example, much of the 
book is predicated on the notion that inflation seeded the structure we see today. 
If this turns out to be incorrect, the tools developed to study perturbations in 
Chapters 4 and 5 and the observations and analysis techniques described in the 
last half of the book will still be very relevant. As a more exotic example: all of 
the book assumes that there are three spatial dimensions in the universe. This 
seems like a plausible assumption (to me), but many theoretical physicists are now 
exploring the possibility that extra dimensions may have played a role in the early 
universe. If extra dimensions do turn out to be important, perturbations still need 
to be evolved and measured on our 3D brane. The tools developed here will still be 
useful. 

The final part of the quote above is particularly relevant today since cosmology 
is such a broad subject. Many important papers, discoveries, and even subbranches 
of cosmology must be left ouside the fence. I think I have built the fence in a natural 
place. Enclosed within is the smooth expanding universe, with linear perturbations 
generated by inflation and then evolved with the Boltzmann-Einstein equations. 
The fence thus encloses not just the classical pillars of the Big Bang — the CMB, the 
expansion of the universe, and the production of the light elements — but also the 
modern pillars: the peaks and troughs in the CMB anisotropy spectrum; clustering 
of matter on large scales at just the right level; dark matter production and evolu-
tion; dark energy; inflation; the abundance of galaxy clusters; and velocity surveys. 
It also leaves room for important future developments such as weak lensing and 
polarization. 

Outside the fence are some topics that will stay there forever, such as the steady 
state universe and similar alternatives. Other topics — notably cosmic strings and 
other topological defects — have been relegated beyond the fence only recently. 
Indeed, given the exciting research still being carried out to understand the cosmo-
logical implication of defects, it was a difficult decision to omit them entirely. Still 
other topics are crucial to an understanding of the universe and are the subject of 
active research, but are either too difficult or too unsettled. The most important of 
these is the study of nonlinearities. It would have been impossible to do justice to 
the advances over the last decade made in the study of nonlinear evolution. How-
ever, the linear theory presented here is a necessary prerequisite to understanding 
the growth of nonlinearities and their observational implications. A hint of the way 
in which our understanding of linear perturbations informs the nonlinear discus-
sions is given in Section 9.5, where I discuss the attempts to predict the abundance 
of galaxy clusters (very nonlinear beasts) using linear theory. 

Who is this book for? Researchers in one branch of cosmology wishing to learn 
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about another should benefit. For example, inflation model builders who wish to 
understand the impact of their models on the CMB and large scale structure can 
learn the basics here. Experimentalists striving to understand the theoretical impli-
cations of their measurements can learn where those theory curves come from. Peo-
ple with no previous experience with statistics can use Chapter 11 to get up to 
date on the latest techniques. Even theorists who have heretofore worked only in 
one field, say large scale structure, can learn about new theoretical topics such as 
the CMB, weak lensing, and polarization. I have tried to emphasize the common 
origin of all these phenomena (small perturbations around a smooth background). 
More generally, researchers in other fields of physics who wish to understand the 
recent advances in cosmology can learn about them, and the physics on which they 
depend, here. 

My main goal though is that the book should be accessible to beginning graduate 
students in physics and astronomy and to advanced undergrads looking to get an 
early start in cosmology. The only math needed is ordinary calculus and differential 
equations. As mentioned above, quite a bit of physics impacts on cosmology; how-
ever, you needn't have taken classes in all these fields to learn cosmology. General 
relativity is an essential tool, so a course in GR would be helpful, but I have tried 
to introduce the features we will need when we need them. For example, while we 
won't derive the Einstein equations, we will use them, and using them is pretty easy 
as long as one is comfortable with indices. Similarly, although inflation in Chapter 6 
is based on field theory, you certainly do not need to have taken a course in field 
theory to understand the minimal amount needed for inflation. It can be easily 
understood if you understand the quantum mechanics of the harmonic oscillator. 

To make the book easy to use, I have included summaries at the ends of some 
of the chapters. The idea is that you may not be interested in how the Boltzmann 
equations are derived, but you still need to know what they are to obtain the main 
cosmology results in Chapters 7-10. In that case, you can skip the bulk of Chapter 4 
and simply skim the summary. 

Writing the book has been almost pure pleasure in no small part because it 
forced me to read carefully papers I had previously been only dimly aware of. Thus 
a big acknowledgment to the many people who have pushed cosmology into the 
2P^ century with all of their hard work. In the ''Suggested Reading'' sections at the 
end of each chapter, I have pointed to other books that should be useful, but also 
to the papers that influenced me most while working to understand the material 
in the chapter. These references, and others sprinkled throughout the text, are far 
from complete: they simply offer one entry into a vast literature which has grown 
dramatically in the last decade. 

Many thanks to people who looked over early versions of the book and provided 
helpful comments, especially Mauricio Calvao, Douglas Scott and Uros Seljak. Kev 
Abazajian, Jeremy Bernstein, Pawel Dyk, Marc Kamionkowski, Manoj Kapling-
hat, Eugene Lim, Zhaoming Ma, Angela Olinto, Eduardo Rozo, Ryan Scranton, 
Tristan Smith, and Iro Tasitsiomi also offered useful suggestions. Jeremy Berstein, 
Sanghamitra Deb, James Dimech, Jim Fry, Donghui Jeong, Bob Klauber, Chung-
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Pei Ma, Olga Mena, Aravind Natarajan, Mark Alan Peot, Eduardo Rozo, Suharyo 
Sumowidagdo, and Tong-Jie Zhang found mistakes in earlier printings and gra-
ciously let me know about them. Thanks also to Andy Albrecht who introduced me 
to Susan Rabiner, and to Susan who was very supportive throughout. Thanks to 
Nora Donaghy, Julio Esperas, Jeremy Hayhurst, and Lakshmi Sadasiv, my contacts 
at Academic Press. I was supported by a grant from Academic Press, by NASA 
Grant NAG5-10842, by the DOE, and by NSF Grant PHY-0079251. Finally, I am 
most grateful to Marcia, Matthew, liana, David, and Goby for their support and 
love. 
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THE STANDARD MODEL AND BEYOND 

Einstein's discovery of general relativity in the last century enabled us for the first 
time in history to come up with a compelling, testable theory of the universe. The 
realization that the universe is expanding and was once much hotter and denser 
allows us to modernize the deep age-old questions "Why are we here?" and "How did 
we get here?" The updated versions are now "How did the elements form?", "Why 
is the universe so smooth?", and "How did galaxies form from this smooth origin?" 
Remarkably, these questions and many like them have quantitative answers, answers 
that can be found only by combining our knowledge of fundamental physics with 
our understanding of the conditions in the early universe. Even more remarkable, 
these answers can be tested against astronomical observations. 

This chapter describes the idea of an expanding universe, without using the 
equations of general relativity. The success of the Big Bang rests on three observa-
tional pillars: the Hubble diagram exhibiting expansion; light element abundances 
which are in accord with Big Bang nucleosynthesis; and the blackbody radiation 
left over from the first few hundred thousand years, the cosmic microwave back-
ground. After introducing these pieces of evidence, I move beyond the Standard 
Model embodied by the three pillars. Developments in the last two decades of the 
20^^ century — both theoretical and observational — point to 

• the existence of dark matter and perhaps even dark energy 
• the need to understand the evolution of perturbations around the zero order, 

smooth universe 
• inflation, the generator of these perturbations 

The emergent picture of the early universe is summarized in the time line of Figure 
1.15. 

1.1 THE EXPANDING UNIVERSE 

We have good evidence that the universe is expanding. This means that early in 
its history the distance between us and distant galaxies was smaller than it is 



THE STANDARD MODEL AND BEYOND 

today. It is convenient to describe this effect by introducing the scale factor a, 
whose present value is set to one. At earlier times a was smaller than it is today. 
We can picture space as a grid as in Figure 1.1 which expands uniformly as time 
evolves. Points on the grid maintain their coordinates, so the comoving distance 
between two points — which just measures the difference between coordinates — 
remains constant. However, the physical distance is proportional to the scale factor, 
and the physical distance does evolve with time. 

(0,0) (1,0) 

n 
Comoving 
Distance 

= 1 

(0,0) (1,0) 
(0,0) (1,0) 

Comoving 
Distance 

= 1 

Physical 
Distance 
= a(t2) 

Physical 
Distance 
= a(t3) 
>a(t2) 

Time 
• > 

Figure 1.1. Expansion of the universe. The comoving distance between points on a hypothet-
ical grid remains constant as the universe expands. The physical distance is proportional to 
the comoving distance times the scale factor, so it gets larger as time evolves. 

In addition to the scale factor and its evolution, the smooth universe is char-
acterized by one other parameter, its geometry. There are three possibilities: flat, 
open, or closed universes. These different possibilities are best understood by con-
sidering two freely traveling particles which start their journeys moving parallel to 
each other. A flat universe is Euclidean: the particles remain parallel as long as 
they travel freely. General relativity connects geometry to energy. Accordingly, a 
flat universe is one in which the energy density is equal to a critical value, which we 
will soon see is approximately 10~^^ g cm""*̂ . If the density is higher than this value, 
then the universe is closed: gradually the initially parallel particles converge, just 
as all lines of constant longitude meet at the North and South Poles. The analogy 
of a closed universe to the surface of a sphere runs even deeper: both are said to 
have positive curvature, the former in three spatial dimensions and the latter in two. 
Finally, a low-density universe is open, so that the initially parallel paths diverge, 
as would two marbles rolling off a saddle. 

To understand the history of the universe, we must determine the evolution 
of the scale factor a with cosmic time t. Again, general relativity provides the 
connection between this evolution and the energy in the universe. Figure 1.2 shows 
how the scale factor increases as the universe ages. Note that the dependence of a 
on t varies as the universe evolves. At early times, a oct^^^ while at later times the 
dependence switches to a oc t'^^'^. How the scale factor varies with time is determined 
by the energy density in the universe. At early times, one form of energy, radiation. 
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dominates, while at later times, nonrelativistic matter accounts for most of the 
energy density. In fact, one way to explore the energy content of the universe is 
to measure changes in the scale factor. We will see that, partly as a result of such 
exploration, we now believe that, very recently, a has stopped growing as ^^/^, a 
signal that a new form of energy has come to dominate the cosmological landscape. 
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Figure 1.2. Evolution of the scale factor of the universe with cosmic time. When the universe 
was very young, radiation was the dominant component, and the scale factor increased as i^''^. 
At later times, when matter came to dominate, this dependence switched to i^^^. The right 
axis shows the corresponding temperature, today equal to 3K. 

To quantify the change in the scale factor and its relation to the energy, it is 
first useful to define the Hubble rate 

U{t) 
da/dt 

(1.1) 

which measures how rapidly the scale factor changes. For example, if the universe 
is flat and matter-dominated, so that a oc t^/^, then H = {2/3)t~^. Thus a powerful 
test of this cosmology is to measure separately the Hubble rate today, HQ^ and the 
age of the universe today. Here and throughout, subscript 0 denotes the value of 
a quantity today. In a flat, matter-dominated universe, the product Hoto should 
equal 2/3. 

More generally, the evolution of the scale factor is determined by the Friedmann 
equation 

H\t) = 
8TTG 

Pit) + 
Po 

a^t) 
(1.2) 

where p{t) is the energy density in the universe as a function of time with po the 
present value. The critical density 

Per = 
3Hl 
STTG 

(1.3) 

where G is Newton's constant. 



THE STANDARD MODEL AND BEYOND 

To use Einstein's equation, we must know how the energy density evolves with 
time. This turns out to be a compHcated question because p in Eq. (1.2) is the sum 
of several different components, each of which scale differently with time. Consider 
first nonrelativistic matter. The energy of one such particle is equal to its rest mass 
energy, which remains constant with time. The energy density of many of these is 
therefore equal to the rest mass energy times the number density. When the scale 
factor was smaller, the densities were necessarily larger. Since number density is 
inversely proportional to volume, it should be proportional to a~^. Therefore the 
energy density of matter scales as a~^. 

The photons which make up the cosmic microwave background (CMB) today 
have a well-measured temperature To = 2.725 ± 0.002/i: (Mather et aL, 1999). A 
photon with an energy A:eTo today has a wavelength hc/ksTo. Early on, when 
the scale factor was smaller than it is today, this wavelength would have been 
correspondingly smaller. Since the energy of a photon is inversely proportional to 
its wavelength, the photon energy would have been larger than today by a factor 
of 1/a. This argument appHed to the thermal bath of photons implies that the 
temperature of the plasma as a function of time is 

Tit) = To/a{t). (1.4) 

At early times, then, the temperature was higher than it is today, as indicated in 
Figure 1.2. The energy density of radiation, the product of number density times 
average energy per particle, therefore scales as a"'*. 

Evidence from distant supernovae (Chapter 2; Riess et a/., 1998; Perlmutter et 
aL, 1999) suggests that there may well be energy, dark energy, besides ordinary 
matter and radiation. One possibility is that this new form of energy remains con-
stant with time, i.e., acts as a cosmological constant, a possibility first introduced 
(and later abandoned) by Einstein. Cosmologists have explored other forms though, 
many of which behave very differently from the cosmological constant. We will see 
more of this in later chapters. 

Equation (1.2) allows for the possibility that the universe is not flat: if it were 
flat, the sum of all the energy densities today would equal the critical density, and 
the last term in Eq. (1.2) would vanish. If the universe is not flat, the curvature 
energy scales as 1/a^. In most of this book we will work within the context of 
a flat universe. In such a universe, the evolution of perturbations is much easier 
to calculate than in open or closed universes. Further, there are several persua-
sive arguments, both theoretical and more recently observational, which strongly 
support the flatness of the universe. More on this in Chapters 2 and 8. 

Figure 1.3 illustrates how the different terms in Eq. (1.2) vary with the scale 
factor. While today matter, and possibly a cosmological constant dominate the 
landscape, early on, because of the a~^ scaling, radiation was the dominant con-
stituent of the universe. 

Let's introduce some numbers. The expansion rate is a measure of how fast 
the universe is expanding, determined (Section 1.2) by measuring the velocities of 
distant galaxies and dividing by their distance from us. So the expansion is often 
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Figure 1.3. Energy density vs scale factor for different constituents of a flat universe. Shown 
are nonrelativistic matter, radiation, and a cosmological constant. All are in units of the critical 
density today. Even though matter and cosmological constant dominate today, at early times, 
the radiation density was largest. The epoch at which matter and radiation are equal is Oeq. 

written in units of velocity per distance. Present measures of the Hubble rate are 
parameterized by h defined via 

Ho = lOO/i km sec ^ Mpc - 1 

0.98 X 1010 years 
= 2.133 X lO-^-^h eY/h (1.5) 

where h has nothing to do with Planck's constant h. The astronomical length scale 
of a megaparsec (Mpc) is equal to 3.0856 x 10̂ "̂  cm. Current measurements set 
h = 0.72 ± 0.08 (Freedman et a/., 2001). 

The predicted age for a flat, matter-dominated universe, {2/3)HQ\ is then of 
order 8 to 10 Gyr. The current best estimate for the age of the universe is 12.6 Gyr, 
with a 95% confidence level lower hmit of 10.4 Gyr (Krauss and Chaboyer, 2001), 
so this test suggests that a flat, matter-dominated universe is barely viable. You 
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will show in Exercise 2 that the age of the universe with a cosmological constant 
is larger (for fixed h); in fact one of the original arguments in favor of this excess 
energy was to make the universe older. 

Newton's constant in Eq. (1.3) is equal to 6.67 x 10~^cm'^g~^sec~^. This, 
together with Eq. (1.5), enables us to get a numerical value for the critical density: 

1.88/i^ X 10-^^g cm (1.6) 

An important ramification of the higher densities in the past is that the rates 
for particles to interact with each other, which scale as the density, were also much 
higher early on. Figure 1.4 shows some important rates as a function of the scale 
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Figure 1.4. Rates as a function of the scale factor. When a given rate becomes smaller than 
the expansion rate H, that reaction falls out of equilibrium. Top scale gives {ks times) the 
temperature of the universe, an indication of the typical kinetic energy per particle. 

factor. For example, when the temperature of the universe was greater than several 
MeV/A:j5, the rate for electrons and neutrinos to scatter was larger than the expan-
sion rate. Thus, before the universe could double in size, a neutrino scattered many 
times oflF background electrons. All these scatterings brought the neutrinos into 
equihbrium with the rest of the cosmic plasma. This is but one example of a very 
general, profound fact: if a particle scatters with a rate greater than the expansion 
rate, that particle stays in equilibrium. Since rates were typically quite large, the 
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early universe was a relatively simple environment: not only was it very smooth, but 
many of its constituents were in equilibrium. Chapter 2 explores some manifesta-
tions of the equilibrium conditions, while Chapter 3 touches on several cases where 
equilibrium could not be maintained because the reaction rates dropped beneath 
the expansion rate. 

1.2 THE HUBBLE DIAGRAM 

If the universe is expanding as depicted in Figure 1.1, then galaxies should be 
moving away from each other. We should therefore see galaxies receding from us. 
Recall that the wavelength of light or sound emitted from a receding object is 
stretched out so that the observed wavelength is larger than the emitted one. It is 
convenient to define this stretching factor as the redshift z\ 

l + z = 
Ae 

(1.7) 

For low redshifts, the standard Doppler formula applies and z ĉ  ^. So a measure-
ment of the amount by which absorption and/or emission lines are redshifted is a 
direct measure of how fast the structures in which they reside are receding from us. 
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Figure 1.5. The original Hubble diagram (Hubble, 1929). Velocities of distant galaxies (units 
should be km sec~^) are plotted vs distance (units should be Mpc). Solid (dashed) line is the 
best fit to the filled (open) points which are corrected (uncorrected) for the sun's motion. 

Hubble (1929) first found that distant galaxies are in fact receding from us. 
He also noticed the trend that the velocity increases with distance. This is exactly 
what we expect in an expanding universe, for the physical distance between two 
galaxies is d = ax where x is the comoving distance. In the absence of any comoving 
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motion (i; = 0, no peculiar velocity) the relative velocity v = dis therefore equal to 
ax = Hd. Therefore, velocity should increase linearly with distance (at least at low 
redshift) with a slope given by H, the Hubble constant. Bubble's Hubble constant 
can be easily extracted from Figure 1.5. It is simply H = 1000/2 km sec""^ Mpc~^, 
almost a factor of 10 higher than current estimates. Also notice that Hubble's data 
went out to redshift z = 1000 km sec" V^ - 0.003. 

3x10^ h 

200 300 
Distance (Mpc) 

Figure 1.6. Hubble diagram from the Hubble Space Telescope Key Project (Freedman et ai, 
2001) using five different measures of distance. Bottom panel shows Ho vs distance with the 
horizontal line equal to the best fit value of 72 km sec~^ Mpc~^. 

The Hubble diagram is still the most direct evidence we have that the universe 
is expanding. Current incarnations use the same principle as the original: find the 
distance and the redshift of distant objects. Meatsuring redshifts is straightforward; 
the hard part is determining distances for objects of unknown intrinsic brightness. 
One of the most popular techniques is to try to find a standard candle, a class 
of objects which have the same intrinsic brightness. Any difference between the 
apparent brightness of two such objects then is a result of their different distances 



BIG BANG NUCLEOSYNTHESIS 

from us. This method is typically generalized to find a correlation between an 
observable and intrinsic brightness. For example, Cepheid variables are stars for 
which intrinsic brightness is tightly related to period. The Hubble Space Telescope 
measured the periods of thousands of Cepheid variables in galaxies as far away as 
20 Mpc. With distances to these galaxies fixed, five different distance measures were 
used to go much further, as far away as 400 Mpc. Figure 1.6 shows that all of these 
five indicators agree with one another and have converged on HQ = 72 km sec~^ 
Mpc~^ with 10% errors. 

As shown in Figure 1.6 the standard candle that can be seen at largest dis-
tances is a Type la supernova. Since they are so bright, supernovae can be used 
to extend the Hubble diagram out to very large redshifts (the current record is 
of order z '2:^ 1.7), a regime where the simple Doppler law ceases to work. Figure 
1.7 shows a recent Hubble diagram using very these very distant objects. In the 
next chapter, we will derive the correct expression for the distance (in this case 
the luminosity distance) as a function of redshift. For now, I simply point out that 
this expression depends on the energy content of the universe. The three curves 
in Figure 1.7 depict three different possibilities: flat matter dominated; open; and 
flat with a cosmological constant (A). The high-redshift data are now good enough 
to distinguish among these possibilities, strongly disfavoring the previously favored 
flat, matter-dominated universe. The current best fit is a universe with about 70% 
of the energy in the form of a cosmological constant, or some other form of dark 
energy. More on this in Chapter 2. 

1.3 BIG BANG NUCLEOSYNTHESIS 

When the universe was much hotter and denser, when the temperature of order an 
MeV/fcj3, there were no neutral atoms or even bound nuclei. The vast amounts of 
radiation in such a hot environment ensured that any atom or nucleus produced 
would be immediately destroyed by a high energy photon. As the universe cooled 
well below the binding energies of typical nuclei, light elements began to form. 
Knowing the conditions of the early universe and the relevant nuclear cross-sect ions, 
we can calculate the expected primordial abundances of all the elements (Chapter 
3). 

Figure 1.8 shows the predictions of Big Bang Nucleosynthesis (BBN) for the 
light element abundances^. The boxes and arrows in Figure 1.8 show the current 
estimates for the light element abundances. These are consistent with the predic-
tions, and this consistency test provides yet another ringing confirmation of the 
Big Bang. The measurements do even more though. The theoretical predictions, 
which we will explore in detail in Chapter 3, depend on the density of protons and 
neutrons at the time of nucleosynthesis. The combined proton plus neutron density 

^Recall nuclear notation: The 4 in ^He refers to the total number of nucleons (protons and 
neutrons). So "̂ He has two neutrons and two protons, while "̂ He has two protons and one neutron. 
See the box on page 63 for more details. 
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Figure 1.7. Hubble diagram from distant Type la supernovae. Top panel shows apparent mag-
nitude (an indicator of the distance) vs redshift. Lines show the predictions for different energy 
contents in the universe, with QM the ratio of energy density today in matter compared to the 
critical density and Q A the ratio of energy density in a cosmological constant to the critical 
density. Bottom panel plots the residuals, making it clear that the high-redshift supernovae 
favor a A-dominated universe over a matter-dominated one. 

is called the baryon density since both protons and neutrons have baryon number 
one and these are the only baryons around at the time. Thus, BBN gives us a way 
of measuring the baryon density in the universe. Since we know how those densities 
scale as the universe evolves (they fall as a~^), we can turn the measurements of 
light element abundances into measures of the baryon density today. 

In particular, the measurement of primordial deuterium pins down the baryon 
density extremely accurately to only a few percent of the critical density. Ordi-
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Figure 1.8. Constraint on the baryon density from Big Bang Nucleosynthesis (Buries, Nollett, 
and Turner, 1999). Predictions are shown for four light elennents — ^He, deuterium, ^He, and 
lithium — spanning a range of 10 orders of magnitude. The solid vertical band is fixed by 
measurements of primordial deuterium. The boxes are the observations; there is only an upper 
limit on the primordial abundance of ^He. 

nary matter (baryons) contributes at most 5% of the critical density. Since the 
total matter density today is almost certainly larger than this — direct estimates 
give values of order 20-30% — nucleosynthesis provides a compelling argument for 
nonbaryonic dark matter. 

The deuterium measurements (Buries and Tytler, 1998) are the new develop-
ments in the field. These measurements are so exciting because they explore the 
deuterium abundance at redshifts of order 3-4, well before much processing could 
have altered the primordial abundances. Figure 1.9 shows one such detection. The 
basic idea is that light from distant QSOs is absorbed by intervening neutral hydro-
gen systems. The key absorption feature arises from transition from the (n = 1) 
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Figure 1.9. Spectrum from a distant QSO (Buries, Nollett, and Turner, 1999). Absorption of 
photons with rest wavelength 1216 A corresponding to the n = 1 to n = 2 state of hydrogen 
is redshifted up to 1216(1 + 3.572) A. Bottom panel provides details of the spectrum in this 
range, with the the presence of deuterium clearly evident. 

ground state of hydrogen to the first excited state (n = 2), requiring a photon with 
wavelength A = 1215.7 A. Since photons are absorbed when exciting hydrogen in 
this fashion, there is a trough in the spectrum at A = 1215.7 A, redshifted by a 
factor of 1 + 2. The corresponding line from deuterium should be (i) shifted over 
by 0.33 {1 + z) A(see Exercise 3) and (ii) much less damped since there is much less 
deuterium. Figure 1.9 shows just such a system; there are now half a dozen with 
detections precisely in the neighborhood shown in Figure 1.8. Note that the steep 
decHne in deuterium as a function of baryon density helps here: even relatively large 
errors in D measurements translate into small errors on the baryon density. 
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COSMIC MICROWAVE BACKGROUND SPECTRUM FROM C O B E 
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Figure 1.10. Intensity of cosmic microwave radiation as a function of wavenumber from Far 
InfraRed Absolute Spectrophotometer (FIRAS) (Mather et al., 1994), an instrument on the 
COBE satellite. Hidden in the theoretical blackbody curve are dozens of measured points, all 
of which have uncertainties smaller than the thickness of the curve! 

1.4 THE COSMIC MICROWAVE BACKGROUND 

The CMB offers us a look at the universe when it was only 300,000 years old. The 
photons in the cosmic microwave background last scattered off electrons at redshift 
1100; since then they have traveled freely through space. When we observe them 
today, they literally come from the earliest moments of time. They are therefore the 
most powerful probes of the early universe. We will spend an inordinate amount of 
time in this book working through the details of what happened before the epoch 
of last scattering and also developing the mathematics of the freestreaming process 
since then. A crucial fact about this history, though, is that the colHsions with 
electrons before last scattering ensured that the photons were in equilibrium. That 
is, they should have a blackbody spectrum. 

The specific intensity of a gas of photons with a blackbody spectrum is 

/ . 
47rfti/Vc^ 

exp {2nhu/kBT} - 1' 
(1.8) 

Figure 1.10 shows the remarkable agreement between this prediction (see Exercise 4) 
of Big Bang cosmology and the observations by the FIRAS instrument aboard the 
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COBE spacecraft. We have been told^ that detection of the 3K background by Pen-
zias and Wilson in the mid-1960s was sufficient evidence to decide the controversy in 
favor of the Big Bang over the Steady State universe. Penzias and Wilson, though, 
measured the radiation at just one wavelength. If even their one-wavelength result 
was enough to tip the scales, the current data depicted in Figure 1.10 should send 
skeptics from the pages of physics journals to the far reaches of radical Internet 
chat groups. 

The most important fact we learned from our first 25 years of surveying the 
CMB was that the early universe was very smooth. No anisotropics were detected 
in the CMB. This period, while undoubtedly frustrating for observers searching for 
anisotropics, solidified the view of a smooth Big Bang. We are now moving on. We 
have discovered anisotropics in the CMB, indicating that the early universe was 
not completely smooth. There were small perturbations in the cosmic plasma. To 
understand these, we must go beyond the Standard Model. 

1.5 BEYOND THE STANDARD MODEL 

While the three pillars put the Big Bang model on firm footing, other observa-
tions cry out for more details. I hinted above at one of these, the notion that there 
must be nonbaryonic matter in the universe. Dark matter is a familiar concept to 
astronomers; the first suggestion was put forth by Zwicky in 1933(!). Figure 1.11 
illustrates the way dark matter can be found in galaxies, with the use of rota-
tion curves probing the gravitational field. Indeed, a mismatch between the matter 
inferred from gravity and that we can see exists on almost all observable scales. 

Because of the limits inferred from Big Bang nucleosynthesis, the dark matter, 
or at lea^t an appreciable fraction of it, must be nonbaryonic. What is this new 
form of matter? And how did it form in the early universe? The most popular idea 
currently is that the dark matter consists of elementary particles produced in the 
earhest moments of the Big Bang. In Chapter 3, we will explore this possibility in 
detail, arguing that dark matter was likely produced when the temperature of the 
universe was of order hundreds of GeV/A:^. As we will see, the hypothesis that dark 
matter consists of fundamental relics from the early universe may soon be tested 
experimentally. 

The last decades of the 20^^ century saw a number of large surveys of galaxies 
designed to measure structure in the universe. These culminated in two large sur-
veys, the Sloan Digital Sky Survey and the Two Degree Field Galaxy (Figure 1.12) 
Redshift Survey, which between them will compile the redshifts of, and hence the 
distances to, a million galaxies. Galaxies in Figure 1.12 are clearly not distributed 
randomly: the universe has structure on large scales. To understand this structure, 
we must go beyond the Standard Model not only by including dark matter, but also 
by allowing for deviations from smoothness. We must develop the tools to study 

^For a fascinating first-hand account of the history of the discovery of the CMB, see Chapter 
1 of Partridge (1995). 
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Figure 1.11. (a) Image of spiral galaxy M33. The inner brightest region has a radius of several 
kpc. (b) Rotation curve for M33 (Corbelli and Salucci, 2000). Points with error bars come from 
the 21-cm line of neutral hydrogen. Solid line is a model fitt ing the data. Different contributions 
to the total rotation curve are: dark matter halo (dot-dashed line), stellar disk (short dashed 
line), and gas (long dashed line). At large radii, dark matter dominates. 

perturbations around the smooth background of the Standard Model. We will see in 
Chapters 4 and 5 that this is straightforward in theory, as long as the perturbations 
remain small. 

The best ways to learn about the evolution of structure and to compare theory 
with observations are to look at anisotropics in the CMB and at how matter is 
distributed on large scales. To compare theory with observations, we must at first 
try to avoid scales dominated by nonlinearities. As an extreme example, we can 
never hope to understand cosmology by carefully examining rock formations on 
Earth. The intermediate steps — collapse of matter into a galaxy; molecular cool-
ing; star formation; planetary formation; etc. — are much too complicated to allow 
comparison between linear theory and observations. While perturbations to the 
matter on small scales (less than about 10 Mpc) have grown nonhnear, large-scale 
perturbations are still small. So they have been processed much less than the corre-
sponding small-scale structure. Similarly, anisotropics in the CMB have remained 
small because the photons that make up the CMB do not clump. 

Identifying large-scale structure and the CMB as the two most promising areas of 
study solves just one issue. Another very important challenge is to understand how 
to characterize these distributions so that theory can be compared to experiment. It 
is one thing to look at a map and quite another to quantitative tests of cosmological 
models. To make such tests, it is often useful to take the Fourier transform of the 
distribution in question; as we will see, working in Fourier space makes it easier 
to separate large from small scales. The most important statistic in the ca^es of 
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Figure 1.12. Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF) 
(Colless et al, 2001). By the end of the survey, redshifts for 250,000 galaxies will have been 
obtained. As shown here, they probe structure in the universe out to 2 = 0.3, corresponding 
to distances up to 1000/i~^ Mpc away from us (we are located at the center). See color 
Plate 1.12. 

both the CMB and large-scale structure is the two-point function, called the power 
spectrum in Fourier space. If the mean density of the galaxies is n, then we can 
characterize the inhomogeneities with 5{x) = {n{x) — n)/n, or its Fourier transform 
S{k). The power spectrum P{k) is defined via 

{S{k)S{k')) = {27TfP{k)6^{k-k'). (1.9) 

Here the angular brackets denote an average over the whole distribution, and S^{) 
is the Dirac delta function which constrains k = k'. The details aside, Eq. (1.9) 
indicates that the power spectrum is the spread, or the variance, in the distribution. 
If there are lots of very under- and overdense regions, the power spectrum will be 
large, whereas it is small if the distribution is smooth. Figure 1.13 shows the power 
spectrum of the galaxy distribution. Since the power spectrum has dimensions of 
k~^ or (length)*^, Figure 1.13 shows the combination k^P{k)/2'iT'^, a dimensionless 
number which is a good indication of the dumpiness on scale k. 

The best measure of anisotropics in the CMB is also the two-point function 
of the temperature distribution. There is a subtle technical difference between the 
two power spectra which are used to measure the galaxy distribution and the CMB, 
though. The difference arises because the CMB temperature is a two-dimensional 
field, measured everywhere on the sky (i.e., with two angular coordinates). Instead 
of Fourier transforming the CMB temperature, then, one typically expands it in 
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Figure 1.13. The variance A^ = k^P{k)/27r'^ of the Fourier transform of the galaxy dis-
tribution as a function of scale. On large scales, the variance is smaller than unity, so the 
distribution is smooth. The solid line is the theoretical prediction from a model in which the 
universe contains dark matter, a cosmological constant, with perturbations generated by infla-
tion. The dashed line is a theory with only baryons and no dark matter. Data come from the 
PSCz survey (Saunders et ai, 2000) as analyzed by Hamilton and Tegmark (2001). 

spherical harmonics, a basis more appropriate for a 2D field on the surface of a 
sphere. Therefore the two-point function of the CMB is a function of multipole 
moment /, not wave number k. Figure 1.14 shows the measurements of dozens 
of groups since 1992, when COBE first discovered large-angle (low / in the plot) 
anisotropics. 

Figures 1.13 and 1.14 both have theoretical curves in them which appear to 
agree well with the data. The main goal of much of this book is to develop a first-
principles understanding of these theoretical predictions. Indeed, understanding 
the development of structure in the universe has become a major goal of most 
cosmologists today. Note that this second aspect of cosmology beyond the Standard 
Model reinforces the first: i.e., observations of structure in the universe lead to 
the conclusion that there must be dark matter. In particular, the dashed curve in 
Figure 1.13 is the prediction of a model with baryons only, with no dark matter. The 
inhomogeneities expected in this model (when normalized to the CMB observations) 
are far too small. In Chapter 7, we will come to understand the reason why a 
baryon-only universe would be so smooth. For now, though, the message is clear: 
Dark matter is needed not only to explain rotation curves ot galaxies but to explain 
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Figure 1.14. Anisotropies in the CMB predicted by the theory of inflation compared with 
observations, x-axis is multipole moment (e.g., / = 1 is the dipole, / = 2 the quadrupole) so 
that large angular scales correspond to low /; y-axis is the root mean square anisotropy (the 
square root of the two-point function) as a function of scale. The characteristic signature of 
inflation is the series of peaks and troughs, a signature which has been verified by experiment. 
See color Plate 1.14. 

structure in the universe at large! 
While trying to understand the evolution of structure in the universe, we will 

be forced to confront the question of what generated the initial conditions, the 
primordial perturbations that were the seeds for this structure. This will lead us 
to a third important aspect of cosmology beyond the Standard Model: the the-
ory of inflation. Chapter 6 introduces this fascinating proposal, that the universe 
expanded exponentially fast when it was but 10"^^ sec old. Until recently, there 
was little evidence for inflation. It survived as a viable theory mainly because of its 
aesthetic appeal. The discoveries of the past several years have changed this. They 
have by and large confirmed some of the basic predictions of inflation. Most notably, 
this theory makes concrete predictions for the initial conditions, predictions that 
have observable consequences today. For me, the most profound and exciting dis-
covery in cosmology has been the observation of anisotropies in the CMB, with a 
characteristic pattern predicted by inflation. 

The theory encompassing all these Beyond the Standard Model ingredients — 
dark matter plus evolution of structure plus inflation — is called Cold Dark Matter, 
or CDM. The "Cold" part of this moniker comes from requiring the dark matter 
particles to be able to clump efficiently in the early universe. If they are hot instead. 
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i.e., have large pressure, structure will not form at the appropriate levels. 

1.6 SUMMARY 

By way of summarizing the features of an expanding universe that I have outlined 
above and that we will explore in great detail in the coming chapters, let's construct 
a time line. We can characterize any epoch in the universe by the time since the 
Big Bang; by the value of the scale factor at that time; or by the temperature 
of the cosmic plasma. For example, today, a = 1; ^ ĉ  14 billion years; and T = 
2.725K= 2.35 x 10""^ eV/kB- Figure 1.15 shows a time line of the universe using 
both time and temperature as markers. The milestones indicated on the time line 
range from those about which we are quite certain (e.g., nucleosynthesis and the 
CMB) to those that are more speculative (e.g., dark matter production, inflation, 
and dark energy today). 

Inflation [Nucleosynthesis] Large 
Scale 
Structure 

-20 -flO 0 
Log(t/sec) 

/ 

Dark Matter 
Production 

Cosmic 
Microwave 

Background 

Figure 1.15. A history of the universe. Any epoch can be associated with either temperature 
(top scale) or time (bottom scale). 

The time line in Figure 1.15 shows the dominant component of the universe 
at various times. Early on, most of the energy in the universe was in the form of 
radiation. Eventually, since the energy of a relativistic particle falls as 1/a while 
that of nonrelativistic matter remains constant at m, matter overtook radiation. 
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At relatively recent times, the universe appears to have become dominated not by 
matter, but by some dark energy, whose density remains relatively constant with 
time. The evidence for this unexplained form of energy is new and certainly not 
conclusive, but it is very suggestive. 

The classical results in cosmology can be understood in the context of a smooth 
universe. Light elements formed when the universe was several minutes old, and 
the CMB decoupled from matter at a temperature of order fc^T ~ 1/4 eV. Heavy 
elementary particles may make up the dark matter in the universe; if they do, their 
abundance was fixed at very high temperatures of order /c^T ~ 100 GeV. 

We will be mostly interested in this book in the perturbations around the smooth 
universe. The early end of the time line allows for a brief period of inflation, during 
which primordial perturbations were produced. These small perturbations began to 
grow when the universe became dominated by matter. The dark matter grew more 
and more clumpy, simply because of the attractive nature of gravity. An overdensity 
of dark matter of 1 part in 1000 when the temperature was 1 eV grew to 1 part in 
100 by the time the temperature dropped to 0.1 eV. Eventually, at relatively recent 
times, perturbations in the matter ceased to be small; they became the nonlinear 
structure we see today. Anisotropics in the CMB today tell us what the universe 
looked like when it was several hundred thousand years old, so they are wonderful 
probes of the perturbations. 

Some of the elements in the time line in Figure 1.15 may well be incorrect. 
However, since most of these ideas are testable, the data which will be taken during 
the coming decade will tell us which parts of the time fine are correct and which 
need to be discarded. This in itself seems a suflacient reason to study the CMB and 
large-scale structure. 
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SUGGESTED READING 

There are many good textbooks covering the homogeneous Big Bang. I am most 
famihar with The Early Universe (Kolb and Turner), which has especially good 
discussions on nucleosynthesis and inflation. Peacock's Cosmological Physics is the 
most up-to-date and perhaps the broadest of the standard cosmology texts, with 
more of an emphasis on extragalactic astronomy than either The Early Universe or 
this book. A popular account which still captures the essentials of the homogeneous 
Big Bang (testifying to the success of the model: it hasn't changed that much in 25 
years) is The First Three Minutes (Weinberg). More recently, three books of note 
are: The Whole Shebang (Ferris), The Little Book of the Big Bang (Hogan), and A 
Short History of the Universe (Silk). 

A nice article summarizing the evidence for an expanding universe and some 
methods to quantify it is Freedman (1998). Two of the pioneers in the field of Big 
Bang nucleosynthesis, Schramm and Turner, wrote a very clear review article (1998) 
right before a tragic accident took the life of the first author. An excellent account 
of the evidence for dark matter in spiral galaxies is Vera Rubin's 1983 article in 
Scientific American. 

I have not attempted to record the history of the discovery of the Big Bang. 
Three books I am familiar with which treat this history in detail are Blind Watchers 
of the Sky (Kolb), 3K: The Cosmic Microwave Background (Partridge), and Three 
Degrees Above Zero: Bell Labs in the Information Age (Bernstein). An article which 
sheds fight on this history is Alpher and Herman (1988). 

EXERCISES 

Exercise 1. Suppose (incorrectly) that H scales as temperature squared all the 
way back until the time when the temperature of the universe was 10^^ GeV/ks (i.e., 
suppose the universe was radiation dominated all the way back to the Planck time). 
Also suppose that today the dark energy is in the form of a cosmological constant 
A, such that pA today is equal to O.Tpcr and PA remains constant throughout the 
history of the universe. What was pA/{3H'^/87rG) back then? 

Exercise 2. Assume the universe today is fiat with both matter and a cosmological 
constant, the latter with energy density which remains constant with time. Integrate 
Eq. (1.2) to find the present age of the universe. That is, rewrite Eq. (1.2) as 

-1/2 

dt = H,-'^ ^A + 
i-rtA (1.10) 

where QA is the ratio of energy density in the cosmological constant to the critical 
density. Integrate from a = 0 (when t = 0) until today at a = 1 to get the age of 
the universe today. In both cases below the integral can be done analytically. 
(a) First do the integral in the case when QA = 0-
(b) Now do the integral in the case when ft A = 0.7. For fixed HQ, which universe 
is older? 
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Exercise 3. Using the fact that the reduced mass of the electron-nucleus in the D 
atom is larger than in hydrogen, and the fact that the Lyman a {n = 1 —^ n = 2) 
transition in H has a wavelength 1215.67A, find the wavelength of the photon 
emitted in the corresponding transition in D. Astronomers often define 

v ^ c ^ (1.11) 
A 

to characterize the splitting of two nearby lines. What is v for the H-D pair? 

Exercise 4. Convert the specific intensity in Eq. (1.8) into an expression for what 
is plotted in Figure 1.10, the energy per square centimeter per steradian per second. 
Note that the x-axis is 1/A, the inverse wavelength of the photons. Show that the 
peak of a 2.73K blackbody spectrum does lie at 1/A = 5cm~^. 



THE SMOOTH, EXPANDING UNIVERSE 

Just as the early navigators of the great oceans required sophisticated tools to 
help them find their way, we will need modern technology to help us work through 
the ramifications of an expanding universe. In this chapter I introduce two of the 
necessary tools, general relativity and statistical mechanics. We will use them to 
derive some of the basic results laid down in Chapter 1: the expansion law of 
Eq. (1.2), the dependence of different components of energy density on the scale 
factor which governs expansion, the epoch of equality agq shown in Figure 1.3, and 
the luminosity distance needed to understand the implications of the supernovae 
diagram in Figure 1.7. Indeed, with general relativity and statistical mechanics, 
we can go a long way toward performing a cosmic inventory, identifying those 
components of the universe that dominate the energy budget at various epochs. 

ImpUcit in this discussion will be the notion that the universe is smooth (none 
of the densities vary in space) and in equilibrium (the consequences of which will 
be explored in Section 2.3). In succeeding chapters, we will see that the deviations 
from equilibrium and smoothness are the source of much of the richness in the 
universe. Nonetheless, if only in order to understand the framework in which these 
deviations occur, a basic knowledge of the "zero order" universe is a must for any 
cosmologist. 

In this chapter, I begin using units in which 

n = c=:kB = l- (2.1) 

Many papers employ these units, so it is important to get accustomed to them. 
Please work through Exercise 1 if you are uncomfortable with the idea of setting 
the speed of light to 1. 

2.1 GENERAL RELATIVITY 

Most of cosmology can be learned with only a passing knowledge of general relativ-
ity. One must be famihar with the concept of a metric, understand geodesies, and be 
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able to apply the Einstein equations to the Friedmann-Robertson-Walker (FRW) 
metric thereby relating the parameters in the metric to the density in the universe. 
Eq. (1.2) is the result of applying the Einstein equations to the zero order universe. 
We will derive it in this section. Chapters 4 and 5 apply them to the perturbed 
universe. With the experience we gain in this section, there will be nothing difficult 
about these subsequent chapters. The principles are identical; only the algebra will 
be a touch harder. 

2.1.1 The Metric 

Figure 1.1 from Chapter 1 highlights the fact that even if one knows the com-
ponents of a vector, say the difference between two grid points there, the physical 
distance associated with this vector requires additional information. In the case of a 
smooth expanding universe, the scale factor connects the coordinate distance with 
the physical distance. More generally, the metric turns coordinate distance into 
physical distance and so will be an essential tool in our quest to make quantitative 
predictions in an expanding universe. 

We are familiar with the metric for the Cartesian coordinate system which 
says that the square of the physical distance between two points separated by dx 
and dy in a 2D plane is (dx)'^ -\- (dy)'^. However, were we to use polar coordinates 
instead, the square of the physical distance would no longer be the sum of the 
square of the two coordinate differences. Rather, if the differences dr and dO are 
small, the square of the distance between two points is {dr)'^ + r'^{dO)'^ ^ [dr)^ + 
(dd)^. This distance is invariant: an observer using Cartesian coordinates to find 
it would get the same result as one using polar coordinates. Thus another way of 
stating what a metric does is this: it turns observer-dependent coordinates into 
invariants. Mathematically, in the 2D plane, the invariant distance squared dl'^ = 
X̂ z 7=1 2 9ijdx^dx^. The metric gij in this 2D example is a 2 x 2 symmetric matrix. 
In Cartesian coordinates the metric is diagonal with each element equal to 1. In 
polar coordinates (taking x^ = r and x'^ = 6) it is also diagonal with gu = 1, but 
p22 which multiplies {d9)'^ is equal to r^. 

There is yet another way of thinking about a metric, using pictures. When 
handed a vector, we immediately think of a line with an arrow attached, the length 
of the line corresponding to the length of the vector and the arrow to its direction. 
In fact, this notion is rooted too firmly in Euclidean space. In actuahty, the length 
of the vector depends on the metric. An intuitive way of understanding this is to 
consider the contour map in Figure 2.1. The number of lines crossed by a vector is 
a measure of the vertical distance traveled by a hiker. Vectors of the same apparent 
2D length — corresponding to identical coordinate distances — can correspond to 
significantly different physical distances. Mathematically the surface of the Earth 
can be parametrized by two coordinates, say 9 and (p. Then the metric is a very 
nontrivial function of 0 and (/) which accounts for all the elevation changes on the 
surface. 
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Figure 2.1. Contour map of a mountain. The closely spaced contours near the center corre-
spond to rapid elevation gain. The two thin lines correspond to hikes of significantly different 
difficulty even though they appear to be of the same length. Similarly, the true length of a 
vector requires knowledge of the metric. 

The great advantage of the metric is that it incorporates gravity. Instead of 
thinking of gravity as an external force and talking of particles moving in a gravita-
tional field, we can include gravity in the metric and talk of particles moving freely 
in a distorted or curved space-time, one in which the metric cannot be converted 
everywhere into EucHdean form. 

In four space-time dimensions the invariant includes time intervals as well, so 

ds' ~ Z ^ g^ydx^dx^ (2.2) 

fJ,M = 0 

where the indices fi and v range from 0 to 3 (see the box on page 27), with the first 
one reserved for the time-like coordinate {dx^ = dt) and the last three for spatial 
coordinates. Here I have expHcitly written down the summation sign, but from now 
on we will use the convention that repeated indices are summed over. The metric 
Qij^y is necessarily symmetric, so in principle has four diagonal and six off-diagonal 
components. It provides the connection between values of the coordinates and the 
more physical measure of the interval ds^ (sometimes called proper time). Special 
relativity is described by Minkowski space-time with the metric: g^jy — r]^y, with 
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V^^u 

/ - I 0 0 0 \ 
0 1 0 0 
0 0 1 0 

V 0 0 0 l / 

(2.3) 

What is the metric which describes the expanding universe? Let us return to the 
grid depicted in Figure 1.1. We said earher that two grid points move away from 
each other, so that the distance between the two points is always proportional to the 
scale factor. If the comoving distance today is xo, the physical distance between the 
two points at some earlier time t was a{t)xo. At least in a flat (as opposed to open 
or closed) universe, the metric then is almost identical to the Minkowski metric, 
except that distance must be multiplied by the scale factor. This suggests that the 
metric in an expanding, flat universe is 

9^iu ^ 

-1 
0 
0 
0 

0 
a2(0 

0 
0 

0 
0 

a^{t) 
0 

0 
0 
0 

aH 

(2.4) 

This is called the Friedmann-Robertson-Walker (FRW) metric. 
As noted in Eq. (1.2), which we will shortly derive, the evolution of the scale 

factor depends on the density in the universe. When perturbations are introduced, 
the metric will become more comphcated, and the perturbed part of the metric will 
be determined by the inhomogeneities in the matter and radiation. 
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Indices 
In three dimensions, a vector A has three components, which we refer 

to as A \ superscript i taking the values 1,2, or 3. The dot product of two 
vectors is then 

3 

A'B = Y,^'B' = A'B' (2.5) 

where I have introduced the Einstein summation convention of not expUcitly 
writing the ^ sign when an index (in this case i) appears twice. Similarly, 
matrices can be written in component notation. For example, the product of 
two matrices M and N is 

(MN),^. = MikNkj (2.6) 

again with implicit summation over k. 
In relativity, two generalizations must be made. First, in relativity a 

vector has a fourth component, the time component. Since the spatial indices 
run from 1 to 3, it is conventional to use 0 for the time component. Greek letters 
are used to represent all four components, so A^ = {A^, A^). The second, more 
subtle, feature of relativity is the distinction between upper and lower indices, 
the former associated with vectors and the latter with 1-forms. One goes back 
and forth with the metric tensor, so 

Af.=g^,A'' ; A'^ = g^-'A,. (2.7) 

A vector and a 1-form can be contracted to produce an invariant, a scalar. For 
example, the statement that the four-momentum squared of a massless particle 
must vanish is 

P2 = p^p^ = g^.P^P'' = 0. (2.8) 

This contraction is the equivalent of counting the contours crossed by a vector, 
as depicted in Figure 2.1. 

Just as the metric can turn an upper index on a vector into a lower 
index, the metric can be used to raise and lower indices on tensors with an 
arbitrary number of indices. For example, raising the indices on the metric 
tensor itself leads to 

9"" = 9'"'f^9cs. (2.9) 

If the index a = i/, then the first term on the right is equal to the term on the 
left, so if the combination of the last two terms on the right force a to be equal 
to z/, then the equation is satisfied. Therefore, 

g ' V ? = *"«, (2.10) 

where 6^ ct is the Kronecker delta equal to zero unless zy = a in which case it is 
1. 
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2.1.2 The Geodesic Equation 

In Minkowski space, particles travel in straight lines unless they are acted on by a 
force. Not surprisingly, the paths of particles in more general space-times are more 
complicated. The notion of a straight line gets generalized to a geodesic, the path 
followed by a particle in the absence of any forces. To express this in equations, 
we must generalize Newton's law with no forces. cP-x/dt^ — 0, to the expanding 
universe. 

The machinery necessary to generalize d^x/dt^ = 0 is perhaps best introduced 
by starting with a simple example: particle motion in a Euclidean 2D plane. In that 
case, the equations of motion in Cartesian coordinates x^ = {^iV) are 

cPx^ 
dt^ 

0. (2.11) 

However, if ŵe use polar coordinates x/^ = (r, 9) instead, the equations for a free 
particle look significantly different. The fundamental difference between the two 
coordinate systems is that the basis vectors for polar coordinates r, 6 vary in the 
plane. Therefore, d'^x'/dt^ = 0 does not imply that each coordinate r and 9 satisfies 
d^x"/dt^ = 0. 

To determine the equation satisfied by the polar coordinates, we can start from 
the Cartesian equation and then transform. In particular, 

dx' _ dx' dx^ 

~dt ~ 'dx^ir 
(2.12) 

dx^/dx'^ is called the transformation matrix going horn one basis to another. In the 
case of Cartesian to polar coordinates in 2D, x^ = x'^ cosx'^ and x^ = x'^ sinx'^, 
so the transformation matrix is 

dx' ^/2 -x'^ sinx'^ 
/I /I 

x^ cosx^ 
(2.13) 

Therefore, the geodesic equation becomes 

d_ 
di 

dx' 

dt 
d_ 
Jt 

dx' dx'J 
'dx^~dr 

= 0. (2.14) 

The derivative with respect to time acts on both terms inside the brackets. If the 
transformation from the Cartesian basis to the new basis was linear, then the deriva-
tive acting on the transformation matrix would vanish, and the geodesic equation in 
the new basis would still be d^x'^ jdt^ = 0. In the case of polar coordinates, though, 
the transformation is not linear, and we need the fact that 

d 
Jt 

dx' 0 
dx^ 

dx' 
~dt 
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6)2,1 dx'^ 

dx'Wx'^ dt 
(2.15) 

where the first equaUty holds since derivatives commute and the second comes from 
inserting dx^/dt from Eq. (2.12), changing dummy indices from j —^ k. The geodesic 
equation in the new coordinates therefore becomes 

d_ 

di 
dx' dx'J 

dx^J dt 

dx^fx^ 
d^~dr^ + 

dh dx'^ dx'^ 

dx'Wx'^ dt dt 
0. (2.16) 

To get this in a more recognizable form, note tha t the term multiplying the second 
time derivative is the transformation matrix. If we multiply the equation by the 
inverse of this transformation matrix, then the second time derivative will s tand 
alone, leaving 

df^ 
H-

r dx ^ - 1 d^2 

dx'Wx rk 

dx'^ dx'J 

~dr~dt 
= 0. (2.17) 

You can check tha t this rather cumbersome expression does indeed give the correct 
equations of motion in polar coordinates. More importantly, by keeping things 
general, we have derived the geodesic equation in a non-Cartesian basis. 

It is convenient to define the Christoffel symbol, T^jk, to be the coefficient of 
the {dx/^/dt){dx'-^/dt) term in Eq. (2.17). Note tha t by definition it is symmetric 
in its lower indices j and /c. In a Cartesian coordinate system, the Christoffel sym-
bol vanishes and the geodesic equation is simply d^x^/dt'^=0. But in general, the 
Christoffel symbol does not vanish; its presence describes geodesies in nontrivial 
coordinate systems. The reason why this generalized geodesic equation is so power-
ful is tha t in a nontrivial space-time such as the expanding universe it is not possible 
to find a fixed Cartesian coordinate system, so we need to know how particles travel 
in the more general case. 

There are two small changes we need to make when importing the geodesic 
equation (2.17) into relativity. The first is trivial: allow the indices to range from 
0 to 3 to include t ime and the three spatial dimensions. The second is also not 
surprising: since t ime is now one of our coordinates, it will not do to use it as 
the evolution parameter. Instead introduce a parameter A which monotonically 
increases along the particle's path as in Figure 2.2. The geodesic equation then 

x'*(X,) 

xKX.) 
> 

Figure 2.2. A particle's path is parametrized by A, which monotonically increases from its 
initial value Â  to its final value A/. 



30 THE SMOOTH, EXPANDING UNIVERSE 

becomes 

We derived this equation transforming from a Cartesian basis, so that the Christoffel 
symbol is given by the term in square brackets in Eq. (2.17). It is ahuost always 
more convenient, however, to obtain the Christoffel symbol from the metric directly. 
A convenient formula expressing this dependence is 

^^iiy 

r%. = Y dg^iy , dgr3^ dgaf: 

+ dx^ a r " dx"" 
(2.19) 

Note that the raised indices on g^^ are important: g^^ is the inverse oi g^y (see the 
box on page 27). So g^''^ in the flat, FRW metric is identical to g^y except that its 
spatial elements are l/o?' instead of o?. 

Using the general expression in Eq. (2.19) and the FRW metric in Eq. (2.4), we 
can derive the Christoffel symbol in an expanding, homogeneous universe. First we 
compute the components with upper index equal to zero, T^ad- Since the metric is 
diagonal, the factor of g^^ vanishes unless z/ == 0 in which case it is —1. Therefore, 

J- a/3 — 
- 1 S ^ Q O 9^/30 dga(3 

dx^ dx^ dx^ J 
(2.20) 

The first two terms here reduce to derivatives of ^oo- Since the FRW metric has 
constant poo, these terms vanish, and we are left with 

r . , - - ^ ^ . (2.21) 

The derivative is nonzero only if a and (3 are spatial indices, which will be identified 
with Roman letters i, j running from 1 to 3. Since x^ = t, we have 

r%o = 0 

T^ij = Sijda (2.22) 

where overdots indicate derivatives with respect to time.^ It is a straightforward, 
but useful, exercise to show that T^ap is nonzero only when one of its lower indices 
is zero and one is spatial, so that 

Voj = T'jo = 6ij- (2.23) 
a 

with all other T\i3 zero. 

^I will use this convention until Chapter 4. After that, overdots will denote derivatives with 
respect to conformal time. 
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This has been a long, rather formal subsection, opening with the generalization 
of the geodesic equation to curved space-time and then proceeding with a calcu-
lation of the Christoffel symbol in the expanding universe described by the FRW 
metric. Before completing our main task and using the Einstein equations to derive 
Eq. (1.2), let's take a break and apply the geodesic equation to a single particle. In 
particular let's see how a particle's energy changes as the universe expands. We'll 
do the calculation here for a massless particle; an almost identical problem for a 
massive particle is relegated to Exercise 4. 

Start with the four-dimensional energy-momentum vector P^ — [E,P), whose 
time component is the energy. We use this four-vector to define the parameter A in 
Eq. (2.18): 

P- = ^ . (2.24) 

This is an implicit definition of A. Fortunately, one never needs to find A explicitly, 
for it can be directly eliminated by noting that 

d_ _ dx^ d 
lX~ ~dX dx^ 

= E^. (2.25) 
dt 

The zeroth component of the geodesic equation (2.18) then becomes 

~dt 

where the equality holds since only the spatial components of T^a(3 are nonzero. 
Inserting these components leads to a right-hand side equal to —SijaaP^PK A 
massless particle has energy-momentum^ vector (£ , P) with zero magnitude: 

E ^ = -T\jP'P' (2.26) 

g^^P^P- = -E^ + S.ja^P'P' = 0 (2.27) 

which enables us to write the right hand side of Eq. (2.26) as —{d/a)E'^. Therefore, 
the geodesic equation yields 

^ + -E = 0, (2.28) 
at a 

the solution to which is 
Eoc-. (2.29) 

a 
This confirms our hand-waving argument in Chapter 1 that the energy of a massless 
particle should decrease as the universe expands since it is inversely proportional 
to its wavelength, which is being stretched along with the expansion. In Chapter 4 
we will rederive this result in yet another way using the Boltzmann equation. 

^Note that P measures motion on the comoving (nonexpanding) grid. The physical momentum 
which measures changes in physical distance is related to P by a factor of a. Hence the factor of 
a2 in Eq. (2.27). 
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2.1.3 Einstein Equations 

If you did a word search on the previous two subsections, you might be surprised to 
discover that the words "general relativity" never appeared. The concept of a metric 
and the realization that nontrivial metrics affect geodesies both exist completely 
independently of general relativity. The part of general relativity that is hidden 
above is that gravitation can be described by a metric, in our case by Eq. (2.4). 
There is a second aspect of general relativity, though: one which relates the metric 
to the matter and energy in the universe. This second part is contained in the 
Einstein equations, which relate the components of the Einstein tensor describing 
the geometry to the energy-momentum tensor describing the energy: 

Gf_iy = R^y - -g^iy^ = SnGT^iy. (2.30) 

Here Ĉ ^̂  is the Einstein tensor; i?̂ ^̂  is the Ricci tensor, which depends on the 
metric and its derivatives; 7Z, the Ricci scalar, is the contraction of the Ricci tensor 
{7Z = g^^R^ii,)\ G is Newton's constant; and T^^, is the energy-momentum tensor. 
We will spend some time on the energy-momentum tensor in Section 2.3. For now, 
all we need to know is that it's a symmetric tensor describing the constituents of 
the universe. The left-hand side of Eq. (2.30) is a function of the metric, the right 
a function of the energy: the Einstein equations relate the two. 

The Ricci tensor is most conveniently expressed in terms of the Christoffel sym-
bol, 

^fxv ^^ -I- fjv^a ~ -L iiOLM I -I- /3a-l- ^v ~ ^ (iv^ ixd- (z.oij 

Here commas denote derivatives with respect to x. So, for example, F^ î̂ ^a ^ 
dV^ 1^1,1dx^. Although this expression looks formidable, we have already done the 
hard work by computing the Christoffel symbol in an FRW universe. It turns out 
that there are only two sets of nonvanishing components of the Ricci tensor: one 
with fi = u = 0 and the other with /d = v = i. 

Consider 
RQO = F"oO,Q — F^Oa.O + F'^/^aF 00 — F*^/3oF Oa- (2.32) 

Recall that the Christoffel symbol vanishes if its two lower indices are zero, so the 
first and third terms on the right vanish. Similarly, the indices a and (3 in the second 
and fourth terms must be spatial. We are left with 

•Roo = —F̂ oi.o — F ĵoF-̂ oi- (2.33) 

Using Eq. (2.23) leads directly to 

o (a\ I a 

°̂° = -̂ "â  U r U' ^'^^'^ 

- 3 - 3 ( « 
a 

2 
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- - 3 - . (2.34) 
a 

The factors of 3 on the second hne arise since da means sum over all three spatial 
indices, counting one for each. I will leave the space-space component as an exercise; 
it is 

R^j = 6^j [2a^ + aa] . (2.35) 

The next ingredient in the Einstein equations is the Ricci scalar, which we can 
now compute since 

7^ = g^'^R^u 

-Roo + ^Rn- (2.36) 

Again the sum over i leads to a factor of 3, so 

, 2' 
7^ -6 

a \a/ 
(2.37) 

To understand the evolution of the scale factor in a homogeneous universe, we 
need consider only the time-time component of the Einstein equations: 

i^oo-^^oo7^ = 87^GToo. (2.38) 

The terms on the left sum to 3d^/a^, and the time-time component of the energy-
momentum tensor is simply the energy density p. So we finally have 

= ^-P' (2-39) 

To get this into the form of Eq. (1.2), recall that the left-hand side here is the square 
of the Hubble rate and that the critical density was defined as pcr = SHQ/STTG. SO, 

dividing both sides by HQ leads to 

Here the energy density p counts the energy density from all species: matter, radia-
tion, and the dark energy. In our derivation, we have assumed the universe is flat, so 
Eq. (2.40) does not contain a term corresponding to the curvature of the universe. 
I leave it as an exercise to derive the Einstein equation in an open universe. 

2.2 DISTANCES 

We can anticipate that measuring distance in an expanding universe will be a tricky 
business. Referring back to the expanding grid of Figure 1.1, we immediately see 
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two possible ways to measure distance, the comoving distance which remains fixed 
as the universe expands or the physical distance which grows simply because of 
the expansion. Frequently, neither of these two measures accurately describes the 
process of interest. For example light leaving a distant QSO at redshift 3 starts its 
journey towards us when the scale factor was only a quarter of its present value 
and ends it today when the universe has expanded by a factor of 4. Which distance 
do we use in that case to relate, say, the luminosity of the QSO to the flux we see? 

The fundamental distance measure, from which all others may be calculated, is 
the distance on the comoving grid. If the universe is flat, as we will assume through 
most of this book, then computing distances on the comoving grid is easy: the 
distance between two points xi and X2 is equal to [{xi — X2)'^ + {yi — 2/2)̂  4- (2:1 — 

One very important comoving distance is the distance light could have traveled 
(in the absence of interactions) since ^ = 0. In a time dt, light travels a comoving 
distance dx = dt/a (recall that we are setting c = 1), so the total comoving distance 
light could have traveled is 

r' dt' 
Jo Clin' 

(2.41) 

The reason this distance is so important is that no information could have prop-
agated further (again on the comoving grid) than rj since the beginning of time. 
Therefore, regions separated by distance greater than 77 are not causally connected. 
If they appear similar, we should be suspicious! We can think of rj then as the 
comoving horizon. We can also think of 77, which is monotonically increasing, as a 
time variable and call it the conformal time. Just like the time t, the temperature 
T, the redshift z, and the scale factor a, 77 can be used to discuss the evolution 
of the universe. In fact, for most purposes rj is the most convenient time variable, 
so when we begin to study the evolution of perturbations, we will use it instead 
of ^ In some simple cases, rj can be expressed analytically in terms of a (Exer-
cise 11). For example, in a matter-dominated universe, rj oc a^/^, while 77 (x a in a 
radiation-dominated universe. 

Another important comoving distance is that between a distant emitter and us. 
In that case, the comoving distance out to an object at scale factor a (or redshift 
z = 1 / a - 1 ) is 

Here I have changed the integration over t' to one over a\ which brings in the 
additional factor of da/dt — aH in the denominator. Typically we can see objects 
out to 2 < 6; at these late times radiation can be ignored (recall Figure 1.3). If the 
universe is purely matter dominated at such times, then H oc a~"̂ /̂  and we can do 
the integral in Eq. (2.42) analytically. 

^ 0 
l - a i / 2 
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2 

Ho VTT^ 
(2.43) 

This comoving distance goes as Z/HQ for small z (verifying our hand-waving dis-
cussion of the small-z Hubble diagram in Section 1.2) and then asymptotes to 2/Ho 
as z gets very large. 

A classic way to determine distances in astronomy is to measure the angle 
6 subtended by an object of known physical size /. The distance to that object 
(assuming the angle subtended is small) is then 

dA = ^ . (2.44) 

The subscript A here denotes angular diameter distance. To compute the angular 
diameter distance in an expanding universe, we first note that the comoving size of 
the object is I/a. The comoving distance out to the object is given by Eq. (2.42), 
so the angle subtended is ^ = (//a)/x(«). Comparing with Eq. (2.44), we see that 
the angular diameter distance is 

^ ' ' = « ^ = l f 7 - (2.45) 

Note that the angular diameter distance is equal to the comoving distance at low 
redshift, but actually decreases at very large redshift. At least in a flat universe, 
objects at large redshift appear larger than they would at intermediate redshift! 
The superscript here is a warning that this result holds only in a flat universe. 
In an open or closed universe, the curvature density is defined as f̂^ = 1 — f̂ o 
where HQ is the ratio of total to critical density today, including contributions from 
matter, radiation, and any other form of energy such as a cosmological constant. If 
the curvature is nonzero, the angular diameter distance generalizes to 

d = ^ / si^^ [V^HQX] ^k>0 . . 

Note that both of these expressions reduce to the flat case in the limit that the 
curvature density ftk goes to zero. Figure 2.3 shows the angular diameter distance 
in a flat universe, both with and without a cosmological constant. 

Another way of inferring distances in astronomy is to measure the flux from 
an object of known luminosity. Recall that (forgetting about expansion for the 
moment) the observed flux F a distance d from a source of known luminosity L is 

since the total luminosity through a spherical shell with area And^ is constant. How 
does this result generalize to an expanding universe? Again it is simplest to work 
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Figure 2.3. Three distance measures in a flat expanding universe. From top to bottom, the 
luminosity distance, the comoving distance, and the angular diameter distance. The pair of 
lines in each case is for a flat universe with matter only (light curves) and 70% cosmological 
constant A (heavy curves). In a A-dominated universe, distances out to fixed redshift are larger 
than in a matter-dominated universe. 

on the comoving grid, this time with the source centered at the origin. The flux we 
observe is 

^ = r ^ (2.48) 

where L{x) is the luminosity through a (comoving) spherical shell with radius 
x(a). To further simpHfy, let's assume that the photons are all emitted with the 
same energy. Then L{x) is this energy multiplied by the number of photons passing 
through a (comoving) spherical shell per unit time. In a fixed time interval, photons 
travel farther on the comoving grid at early times than at late times since the 
associated physical distance at early times is smaller. Therefore, the number of 
photons crossing a shell in the fixed time interval will be smaller today than at 
emission, smaller by a factor of a. Similarly, the energy of the photons will be 
smaller today than at emission, because of expansion. Therefore, the energy per 
unit time passing through a comoving shell a distance x(«) (i-^., our distance) from 
the source will be a factor of a^ smaller than the luminosity at the source. The flux 
we observe therefore will be 

^ = r ^ (2.49) 

where L is the luminosity at the source. We can keep*̂  Eq. (2.47) in an expanding 
universe as long as we define the luminosity distance 

a 
(2.50) 

^Actually there is one more difference that needs to be accounted for: the observed luminosity 
is related to the emitted luminosity at a different wavelength. Here we have assumed a detector 
which counts all the photons. 
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The luminosity distance is shown in Figure 2.3. 
All three distances are larger in a universe with a cosmological constant than in 

one without. This follows from the fact that the energy density, and therefore the 
expansion rate, is smaller in a A-dominated universe. The universe was therefore 
expanding more slowly early on, and light had more time to travel from distant 
objects to us. These distant objects will therefore appear fainter to us than if the 
universe was dominated by matter only. 

2.3 EVOLUTION OF ENERGY 

Let us return to the energy-momentum tensor on the right-hand side of the Einstein 
equations. We will eventually include perturbations to T^j^, but in the spirit of this 
chapter, first consider the case of a perfect isotropic fluid. Then, 

0 0 0 vJ 

where V is the pressure of the fluid. 
How do the components of the energy-momentum tensor evolve with time? 

Consider first the case where there is no gravity and velocities are negligible. The 
pressure and energy density in that case evolve according to the continuity equation, 
dp/dt = 0, and the Euler equation, dV/dx^ — 0. This can be promoted to a 4 
component conservation equation for the energy-momentum tensor: dT^y/dx^ — 0. 
In an expanding universe, however, the conservation criterion must be modified. 
Instead, conservation implies the vanishing of the covariant derivative: 

dx^" 
^^- ;M - -^ZiT + ^^a,T% - r%^T^a . (2.52) 

The vanishing of T^iy-^ is four separate equations; let's consider the u = 0 
component. This is 

- ~ + T\^T% - r^^T^c, = 0 (2.53) 

Since we are assuming isotropy, T^o vanishes, so the dummy indices /i in the first 
term and a in the second must be equal to zero: 

-dp 

at 
T%^p - r^oM^^a = 0. (2.54) 

From Eq. (2.23), F^o/:, vanishes unless Q,/i are spatial indices equal to each other, 
in which case it is d/a. So, the conservation law in an expanding universe reads 

^ + - [3p + 3 P ] = 0 . (2.55) 
ot a 

Rearranging terms, we have 
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a-^^ = -3>. (2.56) 
at a 

The conservation law can be applied immediately to glean information about 
the scaling of both matter and radiation with the expansion. Matter has effectively 
zero pressure, so 

% ^ = 0 (2.57) 

implying that the energy density of matter pm oc a~^. We anticipated this result in 
Chapter 1 based on the simple notion that the mass remains constant, while the 
number density scales as the inverse volume. The application to radiation also offers 
no surprises. Radiation has V = p/3 (Exercise 14), so working from Eq. (2.55), 

dpr a _ - 4 ^ [Prtt̂ ^ 
-h -4 /9 r = a 

dt a dt 

= 0. (2.58) 

Therefore, the energy density of radiation pr oc a"" ,̂ accounting for the decrease in 
energy per particle as the universe expands. 

Through most of the early universe, reactions proceeded rapidly enough to keep 
particles in equilibrium, different species sharing a common temperature. We will 
often want to express the energy density and pressure in terms of this temperature. 
For this reason, and many others which will emerge over the next few chapters, 
it is convenient to introduce the occupation number, or distribution function^ of a 
species. This counts the number of particles in a given region in phase space around 
position X and momentum p^ The energy of a species is then obtained by summing 
the energy over all of phase space elements: ^ f{x,p)E{p) with E{p) = \fp^ 4- m^. 
How many phase space elements are there in a region of "volume" d^xd^p? By 
Heisenberg's principle, no particle can be localized into a region of phase space 
smaller than {27rh)^, so this is the size of a fundamental element. Therefore, the 
number of phase space elements in d^xd^p is d^xd^p/{27rh)^ (see Figure 2.4), and 
the energy density is 

Pi = gi I-0^ Mx,p)Eip) (2.59) 

where i labels different species, gi is the degeneracy of the species (e.g., equal to 2 
for the photon for its spin states), and I have gone back to h = 1. In equilibrium 
at temperature T, bosons such as photons have Bose-Einstein distributions, 

and fermions such as electrons have Fermi-Dirac distributions. 

"̂ By p here I mean not the comoving momentum defined in Eq. (2.24), but rather the proper 
momentum which decreases with the expansion. See Exercise 15 for a discussion. 
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Figure 2.4. Phase space of position and momentum in one dimension. Volume of each cell 
is 27r^, the smallest region into which a particle can be confined because of Heisenberg's 
principle. Shaded region has infinitesmal volume dxd'p. This covers nine cells. To count the 
appropriate number of cells, therefore, the phase space integral must be J dxdp/{27rh). 

/ F D = e(£^-M)/T _̂ 1 ' 
(2.61) 

with fi the chemical potential. It should be noted that these distributions do not 
depend on position x or on the direction of the momentum p, simply on the mag-
nitude p. This is a feature of the zero-order, smooth universe. When we come to 
consider inhomogenities and anisotropics, we will see that the distribution functions 
have small perturbations around these zero order values, and the perturbations do 
depend on position and on the direction of propagation. 

The pressure can be similarly expressed as an integral over the distribution 
function, 

v. = ,.j (27r)3 / i ( ^ , p ) 3£(p)-
(2.62) 

For almost all particles at almost all times in the universe, the chemical poten-
tial is much smaller than the temperature. To a good approximation, then, the 
distribution function depends only on E/T and the pressure satisfies (Exercise 14) 

dT 
r. (2.63) 

This relation can be used to show that the entropy density in the universe scales 
as o"''. To see this, let's rewrite Eq. (2.56) as 
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The derivative of the pressure with respect to time can be written as 
(dT/dt){dV/dT) so 

"" dt dt T '"^ dt 
[p + P)a^ 

T 

0. (2.65) 

So the entropy density^ 

s ^ ^ (2.66) 

scales as a"^. Although we have framed the argument in terms of a single species, 
this scaling holds for the total entropy including all species in equilibrium. In fact, 
even if two species have different temperatures, the sum of their entropy densities 
still scales as a'^. We will make use of this fact shortly when computing the relative 
temperatures of neutrinos and photons in the universe. 

2.4 COSMIC INVENTORY 

Armed with an expression for the energy density of a given species (Eq. (2.59)), and 
a knowledge of how it evolves in time (Eq. (2.56)), we can now tackle quantitatively 
the question of how much energy is contributed by the different components of the 
universe. 

2.4.1 Photons 

The temperature of the CMB photons has been measured extraordinarily precisely 
by the FIRAS instrument aboard the COBE satelhte, T = 2.725 ±0.002K (Mather 
et a/., 1999). The energy density associated with this radiation is 

d^p 1 
P7 ~ " ' /(^ST^"^ <^"> 

The factor of 2 in front of Eq. (2.67) accounts for the two spin states of the photon. 
The energy of a given state is simply equal to p since the photon is massless. The 
chemical potential is zero; we expect this theoretically because early in the universe, 
photon number is not conserved (e.g., electrons and positrons can annihilate to 
produce photons). We also know it observationally because the spectrum of the 
CMB has been measured so accurately. The limits on a chemical potential are 
/i /T < 9 X 10~^ (Fixsen et al.^ 1996), so jd can be safely ignored. Since there is 

^Technically, there is another term in the entropy density—proportional to the chemical 
potential—but, as mentioned above, this term is usually irrelevant in cosmology. Even with 
nonzero chemical potential, though, the entropy density scales as a~'^. 
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no angular dependence in the integrand of Eq. (2.67), the angular integral yields 
a factor of 47r and we are left with a one-dimensional integral. Define a dummy 
variable x ~ p/T; then 

STTT' [^ dx x' 

(27r)-̂  Jo e^ - 1 
The integral can be expressed in terms of the Riemann C function; it is 6C(4) = 
7T^/15, SO 

Py = ^T\ (2.69) 
15 

Since we derived (Eq. (2.58)) that the energy density of radiation scales as a~^, the 
temperature of the CAIB must scale as a~^. 

It will be useful to have all energy densities in the same units. The simplest way 
to do this is to divide all energy densities by the critical density today.^ Thus, 

p^ 7r2 /2.725K\'^ 1 7r2 / 2 . 7 2 5 K y 1 

15 V a y 8.098 X 10-ii/i2eV^ Per 

2.47 X 10 

where to get the last line, it is useful to remember the conversion between kelvin and 
eV: 11605 K = 1 eV. To reiterate an important point, the photon energy density 
in Eq. (2.70) depends on time via the scale factor, but has no spatial dependence. 
This is because we have used the zero-order distribution function, the Bose-Einstein 
function, for the photons. In fact there are small perturbations around this zero-
order distribution function. These do have a spatial dependence and correspond to 
the anisotropics in the CMB. 

2.4.2 Baryons 

Unlike the CMB, baryons^ cannot be simply described as a gas with a tempera-
ture and zero chemical potential. Therefore, the baryon density must be measured 
directly, not via a temperature. There are now four established ways of measuring 
the baryon density, and these all seem to agree reasonably well (Fukugita, Hogan, 
and Peebles 1998). These are all measurements at different redshifts, and we know 
that the density scales as a~^, so to facilitate comparison, one defines Vth via 

^ = ^i,a-\ (2.71) 
Per 

That is, fib is the ratio of the baryon density to the critical density today. 

^The critical density — just like the Hubble rate which defines it — changes with time. However, 
it is common to define pcr to be a constant, the critical density today, and I will follow this 
convention. 

^I refer to all the nuclei and electrons in the universe as baryons. This is technically incorrect 
(electrons are leptons), but nuclei are so much more massive than electrons that virtually all the 
mass 25 in the baryons. 
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The simplest way is to observe the baryons today in galaxies. The greatest 
contribution to the density, though, comes not from stars in galaxies, but rather 
from gas in groups of galaxies. In these groups, Qb is about 0.02. The second way to 
count baryons is by looking at the spectra of distant quasars. The amount of light 
absorbed from these beacons is a measure of the intervening hydrogen, and hence 
the baryon density. These estimates (Ranch et aL, 1997) suggest flbh^-^ ~ 0.02 with 
a fairly large uncertainty. A third method is to infer the baryon density by careful 
scrutiny of the anisotropics in the universe. As we will see in Chapter 8, these 
depend on the baryon density. Preliminary results (Pryke et a/., 2001; Netterfield 
et aL, 2001) give n^/i^ = 0.024^°;^^^ from the CMB. Finally, we will see in Chapter 
3 that the light element abundances are sensitive to the baryon density, and that 
estimates of these abundances pin down Q^h^ = 0.0205 ± 0.0018. 

Remarkably, then, these estimates of the baryon density with very different 
techniques all agree.^ They all place the baryon density at roughly 2-5% of the 
critical density. The total matter density in the universe is higher than this, so 
there must be matter in the universe that is nonbaryonic. 

2.4.3 Matter 

All of the methods of measuring the baryon density mentioned above involve the 
interaction of matter and radiation. For example, simply counting stars works at 
some level because we roughly know how much mass is required to output the light 
from a typical star. There are, however, methods of measuring the maiss of matter 
that do not rely on the way light and matter interact. These classically have involved 
measuring the gravitational field in a given system, thereby inferring information 
about the mass responsible for that field. Figure 2.5 shows the inferred mass-to-
light ratios of many systems, ranging from galaxies to superclusters. Historically 
this ratio was measured on small scales first, suggesting that the density in the 
universe was far less than critical. As more large-scale data were obtained, the 
steady increase in the mass/light ratio led some cosmologists to speculate that 
eventually we would find that the density was critical. Bahcall and collaborators 
(Bahcall, Lubin, and Dorman 1995; Bahcall et a/., 2000), however, have argued that 
mass-to-light ratios do not increase past R ~ IMpc; a leveling off" occurs consistent 
with a matter density Qrn — 0.3, where ftm is the ratio of the total matter density 
today to the critical density and 

Pm = ^mPcra-\ (2.72) 

Recently a number of other techniques for inferring the matter density have 
emerged. We will see in Chapter 7 that the distribution of galaxies in the universe, 
in particular the power spectrum of this distribution, is very sensitive to flmh; 

^Whether or not agreement holds is subject to debate. There have been claims (e.g., Persic and 
Salucci, 1992) that there is a missing baryon problem because the present-day abundance appears 
to be lower than that inferred from the light element abundances. 
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Figure 2.5. Mass vs. light ratio as a function of scale (Bahcall ei ai, 2000). On the largest 
scales, the ratio flattens so that Qm — 0.3. 

virtually all galaxy surveys^ have inferred Q^rnh — 0.2. Another cosmological probe 

^To mention three examples, the Automated Plate Measuring (APM) Survey, to be discussed 
further in Chapter 9, has been analyzed by Efstathiou and Moody (2001); the Two Degree Field 
(2DF) by Percival et ai (2001), and early data from the Sloan Digital Sky Survey by Dodelson et 
ai (2001). These groups found Qmh = 0 .14;^QO9, 0.20 ± 0.03, and O.UtoH, respectively. 
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we will encounter in Chapter 9 is the cosmic velocity field (Strauss and Wilhck, 
1995) and its relation to the observed galaxy distribution. These are related by the 
continuity equation, a relation sensitive to Qrn- Again most of the measurements 
are clustered around ftrn — 0.3. 

Another way of measuring the total mass density is to pick out observations 
sensitive to fi^/fi^ and use the apparent value of Q^ to infer the matter density. For 
example, most of the baryonic mass in a galaxy cluster is in the form of hot gas. The 
ratio of the mass of gas in clusters of galaxies to the total mass can be measured 
either by looking for X-ray emission (White et ai, 1993) or by looking at the 
electron-heated CMB in the direction of the cluster (Grego et al, 2001). If this ratio 
is characteristic of the universe as a whole — and it probably is, because clusters 
are so large — then the cosmic baryon to matter ratio is around 20%. Since baryons 
make up only about 5% of the critical density, the total matter density is inferred 
to be about 0.25. Another way of inferring the baryon/matter ratio is by looking 
for features in the power spectrum of galaxies; if the baryon fraction is truly of 
order 20%, then there will be wiggles in the spectrum (again Chapter 7). There are 
tentative hints of these wiggles in the early data from the Two Degree Field (2DF) 
survey (Percival et a/., 2001). These pin down Q.h/^m = 0.15 ± 0.07, consistent 
with the cluster observations. Finally, the anisotropics in the CMB (Chapter 8) 
are sensitive to the matter density f̂ n̂̂ -̂ Recent determinations indicate fi^/i"^ — 
0.16±0.04 (Pryke et a/., 2001; Netterfield et a/., 2001). Given the fact that current 
best estimates of the Hubble constant give h — 0.72, the CMB observations also 
are consistent with a matter density equal to 30% of the critical density. 

We therefore have an enormous amount of evidence telling us that the baryon 
density is of order 5% the critical density, while the total matter density is some 
five times larger. Most of the matter in the universe must not be baryons. It must 
be some new form of matter: dark matter. 

2.4.4 Neutrinos 

The next component we need consider is the neutrino. Unlike photons and baryons, 
cosmic neutrinos have not been observed, so arguments about their contribution to 
the energy density are necessarily theoretical. However, these theoretical arguments 
are quite strong, based on very well-understood physics. 

A basic understanding of the interaction rates of neutrinos enables us to argue 
that neutrinos were once kept in equilibrium with the rest of the cosmic plasma. 
Since they are fermions, their distribution was Fermi-Dirac with zero chemical 
potential. At late times, they lost contact with the plasma because their interac-
tions are weak. Nonetheless, their distribution remained Fermi-Dirac, with their 
temperature simply falling as a~^. The main task therefore is to relate the neu-
trino temperature to the photon temperature today. The tricky part of this is the 
annihilation of electrons and positrons when the cosmic temperature was of order 
the electron mass. Neutrinos lost contact with the cosmic plasma slightly before 
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this annihilation, so they did not inherit any of the associated energy. The photons, 
which did, are therefore hotter than the neutrinos. 

We can account for the annhilation of electrons and positrons by using the fact 
that the total entropy density s (Eq. (2.66)) scales as a~^. Massless bosons con-
tribute 27r^T"^/45 to the entropy density for each spin state, while massless fermions 
contribute 7/8 this, and massive particles contribute neghgibly (Exercise 17). Before 
annihilation, the fermions are electrons (2 spin states), positrons (2), neutrinos (3 
generations and one spin state) and anti-neutrinos (3). The bosons are photons (2 
spin states). So at ai before annihilation, 

s(ai) = ^ T f [2 + (7/8)(2 + 2 + 3 + 3)] 
45 

= l ^ T f (2.73) 

where Ti is the common temperature at ai . After annihilation, the electrons and 
positrons have gone away and the photon and neutrino temperatures are no longer 
identical: we must distinguish between them. Therefore, the entropy density is 

(2.74) 5(02) = 
27r2 

45 
t 7 

2T^ + - 6 T 3 

Equating s ( a i ) a j with 5(02)0! leads to 

y ( a i T i ) = 4 
\3 21' 

) +¥ {T. 22) . (2.75) 

But the neutrino temperature scales throughout as a ~ \ so aiTi = a2Ty{a2). There-
fore, the ratio of the two temperatures is 

T. / 4 ^ ' / ' 
T^ V l l 

(2.76) 

We can now evaluate the energy density of neutrinos in the universe. Let's sum 
up what we know about the cosmic abundance of neutrinos 

• One spin degree of freedom for neutrinos 
• Neutrino has antiparticle 
• Three generations of neutrinos 
• Neutrinos are fermions —> Fermi-Dirac distribution function 
• Neutrino temperature is lower by a factor of (4/11)^^^ since photons are heated 

by e'^e~ annihilation 

The first three items on the list then imply that the degeneracy factor of neu-
trinos is equal to six. The fourth means we need to change the denominator in the 
integrand in Eq. (2.67) to e^^^ -\-\. The Fermi-Dirac integral is then smaller by a 
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factor of 7/8. Finally, since the energy density of a massless particle scales as T^, 
the last item implies that the neutrino energy density is smaller than the photon 
density by (4/11)^/^. Putting all these factors together leads to 

7 / 4 \ ' / ' 
P. = 3 - i^-j p,. (2.77) 

Equivalently, if there were three species of massless neutrinos today, then their 
contribution to the energy density would be 

1.68 X 10-^ 

Per 
I - u2 m^ = 0. (2.78) 
I today fl 

In reality, all the neutrinos do not appear to be massless. Observations of neu-
trinos from both the sun (Bahcall, 1989) and from our atmosphere (Fukuda et aL, 
1998) strongly suggest that neutrinos of different flavors (generations) oscillate into 
each other. This can happen only if the neutrinos have mass. The atmospheric neu-
trino observations in particular imply that at least one neutrino has a mass larger 
than 0.05 eV.^° The energy density of a massive neutrino is 

At high temperatures, this reduces to Eq. (2.77) (without the 3), so when consider-
ing neutrinos in the early universe, it is often sufficient to use Eq. (2.77). Indeed, we 
will do this shortly when we come to esimtate the epoch at which the energy density 
of matter equals that of radiation. At late times, the massive neutrino energy den-
sity is rajyTij,, with the neutrino number density equal to 3n^ / l l (Exercise 18). As 
can be seen from Figure 2.6, the transition takes place when Ty ^^ rui,. Therefore, 

rn 

Those who trafficked in both astrophysics and particle physics (Gerstein and 
Zel'dovich, 1966; Marx and Szalay, 1972; Cowsik and McClelland, 1972) early on 
noted that the simple observation that the total density was not much greater than 
the critical density leads to constraints on neutrino mass, constraints much more 
stringent than those obtainable at accelerators. When the need for nonbaryonic 
dark matter first became evident, a number of cosmologists (e.g., Gunn et al.^ 1978) 
proposed neutrinos as the natural candidate. Subsequent studies (Bond, Efstathiou, 
and Silk, 1980; White, Frenk, and Davis 1983) of the structure of the universe with 
neutrinos as the dominant dark matter component looked significantly different 
from the actual universe. Nonetheless, the possibility that neutrinos might make 
up di fraction of the total density reemerged in the 1990s. We can then hope to detect 
a trace amount — corresponding to masses smaller than an eV — by observing its 
effect on large-scale structure. 

^^ The oscillation experiments are sensitive to mass differences, 1712—mf, so the actual constraint 
is that the mass squared difference is of order 10"*^. This could also be accomodated with two 
nearly degenerate masses with a small splitting. 
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Figure 2.6. Energy density of one generation of massive neutrinos as compared with the 
density in the CMB. At high temperatures, the ratio is a fixed constant; at low temperatures, 
the neutrino behaves like nonrelativistic matter (scaling as a~^) and so begins to dominate 
over the photon density (which scales as a"'*). 

2.4.5 Dark Energy 

There are two sets of evidence pointing toward the existence of something else, 
something beyond the radiation and matter itemized above. The first comes from a 
simple budgetary shortfall. The total energy density of the universe is very close to 
critical. We expect this theoretically (Chapter 6) and we observe it in the anisotropy 
pattern of the CMB (Chapter 8). Yet, the total matter density inferred from obser-
vations is only a third critical. The remaining two-thirds of the density in the 
universe must be in some smooth, unclustered form, dubbed^^darA; energy. The 
second set of evidence is more direct. Given the energy composition of the universe, 
one can compute a theoretical distance vs redshift diagram. This relation can then 
be tested observationally. 

In 1998, two groups (Riess et aL, 1998, Perlmutter et a/., 1999) observing super-
novae reported direct evidence for dark energy. The evidence is based on the differ-
ence between the luminosity distance in a universe dominated by dark matter and 
one dominated by dark energy. As Figure 2.3 indicates, the luminosity distance is 
larger for objects at high redshifts in a dark-energy-dominated universe. Therefore, 
objects of fixed intrinsic brightness will appear fainter if the universe is composed 
of dark energy. 

^̂  After the discovery, quite a bit of attention was focused on choosing an appropriate name. 
Cosmological constant, everyone's initial moniker, is too restrictive in that the energy density 
is constant at all times, and we do not yet know that this is true of the dark energy. Variable 
cosmological constant fixes that problems but introduces an inherent contradiction ("variable" and 
"constant"?). Variable Lambda using the Greek letter reserved for the cosmological constant is 
too obscure. Quintessence is a good choice: it expresses the fact that, after cosmological photons, 
baryons, neutrinos, and dark matter, there is a fifth essence in the universe. It seems to me that 
dark energy has become a bit more popular, with quintessence referring to the subset of models 
in which the energy density can be associated with a time-dependent scalar field. 
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More concretely, the luminosity distance of Eq. (2.50) can be used to find the 
apparent magnitude m of a, source with absolute magnitude M. Magnitudes are 
related to fluxes via rn = —(5/2) log(F)+ constant. Since the flux scales as d1 , 
the apparent magnitude m = M + 5\og{di)-\- constant. The convention is that 

m - A / = 5log — ^ ]+K (2.81) 
VlOpcy 

where A' is a correction for the shifting of the spectrum into or out of the wavelength 
range measured due to expansion. 

The two groups measured the apparent magnitudes of dozens of Type la super-
novae, which are known to be standard candles, i.e., they have nearly identical 
absolute magnitudes. Although they were able to place tight constraints on dark 
energy using the many supernovae that they detected, we can get a feel for the 
measurement by simply considering two of these. Consider then Supernova 1997ap, 
found at redshift z = 0.83 with apparent magnitude m — 24.32, and Supernova 
1992P, found at low redshift z — 0.026 with apparent magnitude m = 16.08. Since 
the absolute magnitudes of these are the same, the difference in apparent magni-
tudes is due solely to the difference in luminosity distance: 

24.32 - 16.08 = 51og(dL(2 - 0.83)) - 5log (diiz = 0.026)). (2.82) 

The nearby luminosity distance is independent of cosmology, simply equal to 
z/Ho = 0.026/ifo- Therefore, the only unknown remaining in Eq. (2.82) is fixed by 
the observations to be 

HodL{z = 0.83) = 1.16. (2.83) 

In a flat, matter-dominated universe {ft-rn == 1), the luminosity distance out to 
z = 0.83 is equal to 0.95HQ^ , whereas a universe with Qrn — 0-3 and a cosmological 
constant QA = 0.7 has a luminosity distance of 1.23/f(^^ The apparent magnitude of 
this single distant supernova then suggests that dark energy pervades the universe. 

Of course, the discussion of the previous paragraph does not account for uncer-
tainties (typical uncertainties in the magnitudes are of order 0.2), nor does it do 
a careful fit to all known supernovae, allow for extinction by dust, or allow for 
the variation of the absolute magnitude correlated with the duration. The super-
nova groups did all of those things, and emerged with the constraints shown in 
Figure 2.7. The two free cosmological parameters are the matter density fi^n and 
a cosmological constant Q.\, something we now recognize as one possible form of 
dark energy, one in which the energy density is constant. Note that the "theorists' 
dream" universe — flat and matter-dominated [Q^rn — 1)—is excluded with high 
confidence. Indeed, even a pure open universe with Vtrn = 0.3, QA == 0 is strongly 
disfavored by the supernova data. 

While highly popular. Figure 2.7 suffers from two drawbacks. It allows for too 
much freedom in one sector and too little in another. Most of the region in the figure 
is taken up by a universe with both dark energy and nonzero curvature (not flat). 
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Figure 2.7. Constraints from Type la supernovae on the parameters (QTUMA) (Perlmutter 
et al, 1999). Flat, matter-dominated universe, the dot with Qm = l,r^A = 0, is ruled out 
with high confidence. The line extending from upper left to lower right corresponds to a flat 
universe. 

Although one or the other of these has been argued for, seldom have cosmologists 
suggested that the universe contains both. Thus, except for the "flat" hue and the 
QA =0 hne, most of the region in Figure 2.7 is, at least aestheticahy, unappeahng: 
the figure allows for too much freedom. On the other hand, the only form of dark 
energy budgeted for is the cosmological constant. To open up other possibilities. 
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Figure 2.8. Constraints in a flat universe from Type la supernovae on the matter density {Qm) 
and equation of state of the dark energy {w) (Perlmutter et al, 1999). Cosmological constant 
corresponds to it; = — 1 , matter to it; = 0. 

consider Eq. (2.55) as applied to the cosmological constant. The only way for this 
equation to be satisfied with constant energy density is if the pressure is equal 
to —p. One might imagine energy with a slightly different pressure and therefore 
energy evolution. Define 

w = - . (2.84) 
P 

A cosmological constant corresponds to w = —\, matter to w = 0, and radiation 
to It; = 1/3. With this new freedom, let's see what the supernova data imply for 
the equation of state of the dark energy if we fix the universe to be flat. Figure 2.8 
shows that values of it; greater than ~ —0.5 are disfavored; a cosmological constant is 
consistent with the data, but it is by no means the only possibihty. Equation (2.55) 
can be integrated to find the evolution of the dark energy. 

\ . r da' 
Pde oc exp S - 3 / —r [1 + ^(« ) (2.85) 

Note that — if w is constant — this expression agrees with our knowledge of the 
cases explicated above w = 1/3,0, —1. 

2.4.6 Epoch of Matter-Radiation Equality 

The epoch at which the energy density in matter equals that in radiation is called 
matter-radiation equality. It hais a special significance for the generation of large-
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scale structure and for the development of CMB anisotropics, because perturbations 
grow at different rates in the two different eras. It is therefore a useful exercise to 
calculate the epoch of matter-radiation equality. To do this, we need to compute 
the energy density of both matter and radiation, and then find the value of the 
scale factor at which they were equal. 

Using Eqs. (2.70) and (2.78), we see that the total energy density in radiation 
is 

Pr 4.15 X 10-^ _ Vtr 
Per hP'Oi'^ CL"^ ' 

To calculate the epoch of matter-radiation equality, we equate Equations (2.86) 

4-15 X 10-^ 

A different way to express this epoch is in terms of redshift z; the redshift of equaUty 
is 

1 + Zeq = 2.4 X lO^nrnh'^. (2.88) 

Note that — obviously — as the amount of matter in the universe today, Qmh^, goes 
up, the redshift of equality also goes up. For our purposes it will be very important 
that the redshift of equality is at least several times larger than the redshift when 
photons decouple from matter, z^ ~ 10"̂ . Thus, we expect photons to decouple 
when the universe is already well into the matter-dominated era. 

2.5 SUMMARY 

The smooth universe can be described with the Friedmann-Robertson-Walker met-
ric given in Eq. (2.4), which implies that physical distances are related to coordinate 
(comoving) distances with the time-dependent scale factor a{t). The time depen-
dence of the metric is determined by the Einstein equations. The time-time com-
ponent of the Einstein equations reduces to Eq. (2.39) in a fiat universe. 

Measuring distances in the expanding universe is tricky, but all relevant dis-
tances can be obtained from the comoving distance between us and a source at 
redshift z: 

Jo 
(2.89) 

H{z') 

Another important distance is that light could have traveled since t = 0. This is 
usually expressed as a time, the conformal time, 

,= r-^=r^fi. (2.90) 
' J, ait') A Hiz') ^ ^ 

The conformal time will be the natural time variable when we come to consider the 
evolution of perturbations in the universe. 
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Photons in the universe have a Bose-Einstein distribution with zero chemical 
potential, so their energy density can be determined by measuring their tempera-
ture. Neutrinos have a Fermi-Dirac distribution, also probably with zero chemical 
potential, but there is some ambiguity in their energy density because of our igno-
rance of the neutrino masses. Early on, this ambiguity is irrelevant since the tem-
peratures are so much larger than the masses and neutrinos behave relativistically. 
Thus, the uncertainty in neutrino mass does not affect Big Bang nucleosynthesis at 
temperatures of order 1 MeV and probably not even the epoch of matter radiation 
equality at temperatures of order 1 eV. The neutrino temperature is a factor of 
(4/11)^/'^ smaller than the photon temperature. This, and the difference in statis-
tics, implies that a species of massless neutrinos has an energy density equal to 
0.23 times that of photons. A single neutrino generation with mass rriiy contributes 
Qi, — 0.01(mi,/0.94eV/i^). In addition to photons and neutrinos, the universe con-
sists of baryons, best determined by nucleosynthesis to have Q^h^ = 0.0205±0.0018; 
dark matter {Qm c::^ 0.3); and dark energy (with fide — ^•^)i a new form of energy 
with negative pressure. 

There is significantly more energy today in nonrelativistic matter than in radi-
ation. However, since the energy density of radiation scales as a~^ while that of 
matter as a~^, the very early universe was radiation dominated. The epoch at which 
the matter density was equal to the radiation density dehneates these two regimes: 
fleq - 4.15 X lO-V^m/l^. 
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SUGGESTED READING 

My favorite book on general relativity at this level is A First Course in General 
Relativity (Schutz), which gives many simple examples to introduce the seemingly 
profound ideas of general relativity. Also very good are Flat and Curved Spacetimes 
(Elhs and Williams) and Essential Relativity (Rindler). Slightly more advanced is 
Gravitation and Cosmology: Principles and Applications of the General Theory of 
Relativity (Weinberg), which also has a nice discussion of the early universe in 
Chapter 15. Two more advanced books are General Relativity (Wald) and the clas-
sic Gravitation (Misner, Thorne, and Wheeler). Some of the thermodynamics and 
statistical mechanics introduced in this chapter is presented in The Early Universe 
(Kolb and Turner). The distance formulae of Section 2.2 are covered in all standard 
texts. Neutrinos and their relation to cosmology are covered in the standard texts 
as well, but there are also several other good books focused solely on neutrinos 
and astrophysics. Neutrino Astrophysics by the pioneer of the field, Bahcall, and 
Massive Neutrinos in Physics and Astrophysics by Mohapatra and Pal. 

A number of papers treat the topics in this chapter at an accessible level. An 
especially coherent review of all the different distance measures is given by Hogg 
(1999). Fukugita, Hogan, and Peebles (1999) do the baryon inventory outlined in 
Section 2.4.2. Since the supernova discoveries in the late 1990s, many popular arti-
cles have appeared attempting to explain the dark energy. The two seminal articles 
though — Perlmutter et al (1999) and Riess et al. (1998) — are extremely clear and 
well worth reading. 

EXERCISES 

Exercise 1. Convert the following quantities by inserting the appropriate factors 
of c,/i, and ks'-

To = 2.725K -^ eV 

1/HQ -^ cm 
• Pj^ TT^ToVlS -^ eV^ and g cm'^ 

• mpi = 1.2 X 10^^ GeV 

Exercise 2. Show that the geodesic equation gets the correct equations of motion 
for a particle traveling freely in two dimensions using polar coordinates. You can 
get the Christoffel symbols one of two ways (or both!) and then proceed to (b). 
(a) Get the Christoffel symbol either directly from the term in brackets in Eq. (2.17) 
or from the 2D metric 

9r:-{l ^2) (2.91) 

using Eq. (2.19). Show that the only nonzero Christoffel symbols are 

r?2 = rii = J ; Tl^ = -r (2.92) 

with 1,2 corresponding to r^6. 
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(b) Write down the two components of the geodesic equation using these Christoffel 
symbols. Show that these give the proper equations of motion for a particle traveling 
in a plane. 

Exercise 3. The metric for a particle traveling in the presence of gravitational 
field is g^i, = rj^i, -f /i^^ where hoo = —2(f) where (f) is the Newtonian gravitational 
potential; hio = 0; and hij = —2(t>Sij. Find the equation of motion for a massive 
particle travehng in this field. 
(a) Show that T^oo - d(l)/dt and T̂ oo = 5'W(t)/dx^. 
(b) Show that the time component of the geodesic equation implies that energy 
p^ + m0 is conserved. 
(c) Show that the space components of the geodesic equation lead to d?x^/dt^ — 
—m5^W(t)/dx^ in agreement with Newtonian theory. Use the fact that the particle 
is nonrelativistic so p^ :$> p\ 

Exercise 4. Find how the energy of a massive, nonrelativistic particle changes 
as the universe expands. Recall that in the massless case we used the fact that 
g^iuP^P^ = 0. In this case, it is equal not to zero, but to —m .̂ 

Exercise 5. Fill in some of the blanks left in our derivation of the Einstein equa-
tions. 
(a) Compute the Christoffel symbol T\f3 for a flat FRW metric. 
(b) Compute the spatial components of the Ricci tensor in a flat FRW universe, 
Rij. Show that the space-time component, i?io, vanishes. 

Exercise 6. Show that the space-space component of the Einstein equations in a 
flat universe is 

f^I^^i('^' = -,.GV (2.93) 
a 2 \ a J 

where V is the pressure, the T^ (no sum over i) component of the energy-
momentum tensor. 

Exercise 7. Find and apply the metric, Christoffel symbols, and Ricci scalar for a 
particle trapped on the surface of a sphere with radius r. 
(a) Using coordinates t, 9,0, the metric is 

- 1 0 0 \ 
PM- = I 0 r2 0 . (2.94) 

0 0 r'^sin^ej 

Show that the only nonvanishing Christoffel symbols are r^<^0,r'^0^, and T^od,. 
Express these in terms of 6. 
(b) Use these and the geodesic equation to find the equations of motion for the 
particle. 
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(c) Find the Ricci tensor. Show that contraction of this tensor leads to 

n = g'^-'R^. = ^ . (2.95) 

Exercise 8. Apply the Einstein equations to the case of an open universe. The 
interval in an open universe is 

ds^ = -dt" + a^{t) ( ^ ^""^ ^ + r^ (d02 + sin2 ^^^2) | (2.96) 

where r, ^, 0 are the standard 3D spherical coordinates, and ^k is the curvature 
density. 
(a) First compute the Christoffel symbols. Show that the only nonzero ones are 
equal to 

F^oj = HS'^j F ij = QijH 

r̂ -fc - Y [gij.k + giKj - OjkA • (2.97) 

(b) Show that the components of the Ricci tensor are 

i?oo = —3— 
a 

^ij ^^ 9ij a a? 

2 = 0 (2.99) 

(2.98) 

(c) From these, compute the Ricci scalar, and then derive the time-time component 
of Einstein equations. 

Exercise 9. Show that the geodesic equation we derived in a flat universe impUes 
that 

where 7] is the conformal time. 

Exercise 10. Assume that there is only matter and radiation in the universe (no 
cosmological constant) and that the universe is flat (po = Per)- Integrate Eq. (1.2) 
to determine the times when the cosmic temperature was 0.1 MeV and 1/4 eV. 

Exercise 11. Derive some simple expressions for the conformal time 77 as a function 
of a. 
(a) Show that r/ oc a^/^ in a matter dominated universe and a in one dominated by 
radiation. 
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(b) Consider a universe with only matter and radiation, with equahty at agq. Show 
that 

7] = ^^^—^ [y^a + tteq - v ^ ] • (2.100) 

What is the conformal time today? At decouphng? 

Exercise 12. Consider a galaxy of physical (visible) size 5 kpc. What angle would 
this galaxy subtend if situated at redshift 0.1? Redshift 1? Do the calculation in a 
flat universe, first matter-dominated and then with 30% matter and 70% cosmo-
logical constant. 

Exercise 13. How is the energy density of a gas of photons with a blackbody 
spectrum related to the specific intensity of the radiation? That is, what is the 
relation between p^ and / j , defined in Eq. (1.8)? 

Exercise 14. (a) Compute the pressure of a relativistic species in equilibrium 
with temperature T. Show that V — pjZ for both Fermi-Dirac and Bose-Einstein 
statistics. 
(b) Suppose the distribution function depends only on EjT as it does in equilib-
rium. Find dV/dT. A simple way to do this is to rewrite df/dT in the integral as 
-{E/T)df/dE and then integrate Eq. (2.62) by parts. 

Exercise 15. The general relativistic expression for the energy-momentum tensor 
in terms of the distribution functions is given by 

T^'uix^t) = 9ij —7^:33—(-det[5a/3]) ''^^^fi{x,p,t) (2.101) 
. . (27r) 

species 1 

where P^ was defined in Eq. (2.24), gi is the number of spin states for species i, and 
det[^^,y] is the determinant of the 4D matrix g^j^. Ehminate the comoving momenta 
P^ in favor of the magnitude of the proper momentum defined via 

p^ = g^^pPj (2.102) 

and the direction vector p. Note that while the comoving momenta Pi remain con-
stant as the universe expands, p falls off as a~^. Show that the time-time component 
of Eq. (2.101) agrees with the expression for the energy density given in Eq. (2.59). 
Use the fact that P^ = g^yP^^P^ — —w? for a particle of mass m. 

Exercise 16. Plot m — M as a function of redshift for a flat, matter-dominated uni-
verse (this can be done analytically) and for a flat universe with ^ A = 0.7, flrn = 0.3 
(for this you need to evaluate numerically a ID integral). Neglect the K correction. 
Compare with Figure 1.7. 

Exercise 17. Consider the entropy density, 5, defined in Eq. (2.66). For a massless 
particle, you showed in Exercise 14 that V = p/3, so 5 = 4p/3T. Express 5 as a 
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function of T for both bosons and fermions (assumed massless) in equilibrium with 
zero chemical potential. Show that the entropy density for a massive particle in 
equihbrium (T <C m; // = 0) is exponentially small. 

Exercise 18. Show that the number density of one generation of neutrinos and 
anti-neutrinos in the universe today is 

3 _o 
Tiiy = — n ^ = 112cm . 

For this calculation, you will also have to compute the photon number density; 
both can be expressed in terms of Riemann zeta functions (Eq. (C.27)). Using this 
result, verify Eq. (2.80). 

Exercise 19. We computed the epoch of equahty in the event that all three neu-
trinos are massless. Suppose instead that two are msissless, but the third has mass 
m = O.l eV. What is Ogq is this case? 



BEYOND EQUILIBRIUM 

The very early universe was hot and dense. As a result, interactions among particles 
occurred much more frequently than they do today. As an example, a photon today 
can travel across the observable universe without deflection or capture, so it has a 
mean free path greater than 10^^ cm. When the age of the universe was equal to 1 
sec, though, the mean free path of a photon was about the size of an atom. Thus in 
the time it took the universe to expand by a factor of 2, a given photon interacted 
many, many times. These multiple interactions kept the consitituents in the universe 
in equilibrium in most cases. Nonetheless, there were times when reactions could 
not proceed rapidly enough to maintain equilibrium conditions. These times are — 
perhaps not coincidentally — of the utmost interest to cosmologists today. 

Indeed, we will see in this chapter that out-of-equilibrium phenomena played a 
role in (i) the formation of the light elements during Big Bang nucleosynthesis; (ii) 
recombination of electrons and protons into neutral hydrogen when the temperature 
was of order 1/4 eV; and quite possibly in (iii) production of dark matter in the 
early universe. Each of these three periods, for obvious reasons, is the subject of 
intense study by many different groups. Often these studies are carried out in 
parallel, without the link among the three mentioned. I think it is important to 
understand that all three phenomena are the result of nonequilibrium physics and 
that all three can be studied with the same formalism: the Boltzmann equation. 
Section 3.1 introduces the Boltzmann equation and some approximations to it that 
are common to all three processes. The remaining three sections of the chapter are 
simply applications of this general formula. 

Beyond the intrinsic importance of these nonequilibrium phenomena, this chap-
ter also serves as a bridge between the smooth, homogeneous universe described in 
Chapter 2 and the inhomogeneous perturbations we will explore in the rest of the 
book. One way to think of this transition is in terms of phase-space distributions / 
of Eqs. (2.60) and (2.61). Until now, we have assumed that the chemical potentials 
are zero and temperatures uniform. In this chapter, we will have to abandon the 
idea of trivial chemical potentials in order to track abundances of particles losing 
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contact with the plasma. In succeeding chapters, we will move beyond uniformity 
and explore temperatures which depend on both position and direction of propa-
gation. 

3.1 BOLTZMANN EQUATION FOR ANNIHILATION 

The Boltzmann equation formalizes the statement that the rate of change in the 
abundance of a given particle is the difference between the rates for producing 
and eliminating that species. Suppose that we are interested in the number density 
rii of species 1. For simplicity, let's suppose that the only process affecting the 
abundance of this species is an annihilation with species 2 producing two particles, 
imaginatively called 3 and 4. Schematically, 1+2 <-> 3+4; i.e., particle 1 and particle 
2 can annihilate producing particles 3 and 4, or the inverse process can produce 1 
and 2. The Boltzmann equation for this system in an expanding universe is 

_^d{nia^) ^ r d^p^ r d^p2 f d^ps f d^p^ 

"" dt J {2n)^2Ei J (27r)32^2 J {27r)^2Es J {2i^Y2E^ 

X {2^)H\pi +p^-p^-p^)d{Ei +E2-E3- E4) \M\^ 

X {/3/4[l ± /l][l ± M - / l /2[ l ± /3][1 ± m . (3.1) 

In the absence of interactions, the left-hand side of Eq. (3.1) says that the density 
times the scale factor cubed is conserved. This reflects the nature of the expanding 
universe: as the comoving grid expands, the volume of a region containing a fixed 
number of particles grows as a^. Therefore, the physical number density of these 
particles falls off as a~^. Interactions are included in the right-hand side of the 
Boltzmann equation. Let's consider the interaction term starting from the last line 
and moving up. Putting aside the 1 ± / terms on the last line, we see that the rate 
of producing species 1 is proportional to the occupation numbers of species 3 and 
4, /3 and f^. Similarly the loss term is proportional to / i /2- The 1 ± / terms, with 
plus sign for bosons such as photons and minus sign for fermions such as electrons, 
represent the phenomena of Bose enhancement and Pauli blocking. If particles of 
type 1 already exist, a reaction producing more such particles is more likely to 
occur if 1 is a boson and less likely if a fermion. I have suppressed the momentum 
dependence of / , but of course all the occupation numbers depend on the corre-
sponding momentum (e.g., / i = fi(pi)). Moving upward, the Dirac delta functions 
on the second line in Eq. (3.1) enforce energy and momentum conservation; the 
factors of 27r are the result of moving from discrete Kronecker S's to the continuous 
Dirac version. The energies here are related to the momenta via E = \Jp^ + w?. 
The amplitude on the second line M is determined from the fundamental physics 
in question. For example, if we were interested in the Compton scattering of elec-
trons off of photons, M, would be proportional to a, the fine structure constant. In 
almost all cases of interest, this amplitude is reversible^ identical for 1 + 2 —> 3 + 4 
and 3 + 4 ^ - 1 + 2. Indeed, reversibility has been assumed in Eq. (3.1). 
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The last two lines of Eq. (3.1) depend on the momenta of the particles involved. 
To find the total number of interactions, we must sum over all momenta. The 
integrals on the first line do precisely that. As in Figure 2.4, the factors of (27r)"̂  
[really {27Th)^] represent the volume of one unit of phase space; we want to sum 
over all such units. Finally, the factors of 2£' in the denominator arise because, 
relativistically, the phase space integrals should really be four-dimensional, over the 
three components of momentum and one of energy. However, these are constrained 
to lie on the 3-sphere fixed by E'^ = p^ -\- m?. In equations. 

/

/•OO n nOC S [E — \J 1^^ + Vfl 
d^p / dE S{E^ -p^ -m^)= / d^p / dE -^ — 

2 4- rr72 j 

-. (3.2) 

Performing the integral over E with the delta function yields the factor of 2E. 
Equation (3.1) is an integrodifferential equation for the phase space distribu-

tions. Further, in principle at least, it must be supplemented with similar equations 
for the other species. In practice, these formidable obstacles can be overcome for 
many practical cosmological applications. The first, most important realization is 
that scattering processes typically enforce kinetic equilibrium. That is, scattering 
takes place so rapidly that the distributions of the various species take on the generic 
Bose-Einstein/Fermi-Dirac forms (Eqs. (2.61) and (2.60)). This form condenses all 
of the uncertainty in the distribution into a single function of time //. If annihila-
tions were also in equilibrium, ji would be the chemical potential, and the sum of 
the chemical potentials in any reaction would have to balance. For example, the 
reaction e"̂  + e~ -^ 7 -h 7 would cause /ie+ + //g- = 2^^. In the out-of-equilibrium 
cases we will study, the system will not be in chemical equilibrium and we will have 
to solve a diff'erential equation for //. The great simplifying feature of kinetic equilib-
rium, though, is that this diff'erential equation will be a single ordinary differential 
equation, as opposed to the very complicated form of Eq. (3.1). 

We will typically be interested in systems at temperatures smaller than E — fi. 
In this hmit, the exponential in the Bose-Einstein or Fermi-Dirac distribution is 
large and dwarfs the ±1 in the denominator. Thus, another simplification emerges: 
we can ignore the complications of quantum statistics. The distributions become 

f{E) ^ e^/^e-^/^ (3.3) 

and the Pauli blocking/Bose enhancement factors in the Boltzmann equation can 
be neglected. 

Under these approximations, the last fine of Eq. (3.1) becomes 

/3/4[l ± /l][l ± /2] - / l /2[ l ± /3][1 ± /4] 

_^ ^-{Ei+E2)/T rg(M3+M4)/T _ g(Mi+M2)/Tl ^ ^^^^^ 

Here I have used energy conservation, Ei^ E2 — E^^ E^^. We will use the number 
densities themselves as the time-dependent functions to be solved for, instead of fi. 
The number density of species i is related to iii via 



BOLTZMANN EQUATION FOR ANNIHILATION 61 

Table 3.1. Reactions in This Chapter: 1 + 2 ^ 3 + 4 

Neutron-Proton Ratio 

Recombination 
Dark Matter Production 

1 

n 

e 
X 

2 

UQ or e+ 

P 
X 

3 

P 
H 

I 

4 

e~ or Pg 

7 
/ 

^ 2 ^ 7 (27r)3 
(3.5) 

where ^^ is the degeneracy of the species, e.g., equal to 2 for the two spin states 
of the photon. It will also be useful to define the species-dependent equilibrium 
number density as 

9z^ 
(3.6) 

With this defintion, e^^/-^ can be rewritten as ni/n\ , so the last fine of Eq. (3.1) 
is equal to 

-{Ei-hE2)/T I ^3^4 
(0)^(0) 

no n 

nin2 (3.7) 

With these approximations the Boltzmann equation now simplifies enormously. 
Define the thermally averaged cross section as 

(av) 
d'p d'p3 d^PA 

(0)̂ (0) J (27r)32Ei J (2^)32^2 J {2n)^2Es J {2i:f2E. 

X {2^Y5\pi +P2~P3-PA)S{EI +E2-E:,- E^) \M\'. 

Then, the Boltzmann equation becomes 

_^d{nio?) „(o)„(o)/_..\ I ^3^4 nin2 

-{E^+E2)/T 

(3.8) 

a dt 
(0) (0)/ \ 

nf^nf^ (0)„(0) 
(3.9) 

n] n 

We thus have a simple ordinary diff"erential equation for the number density. 
Although the details will vary from application to application (see Table 3.1), we 
will in the remainder of the chapter s tar t from this equation when tracking abun-
dances. 

One qualitative note about Eq. (3.9). The left-hand side is of order ni/t^ or, 
since the typical cosmological t ime is H~^, uiH. The right-hand side is of order 
nin2{(Tv). Therefore, if the reaction rate n2{(Jv) is much larger than the expansion 
rate, then the terms on the right side will be much larger than the one on the left. 
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The only way to maintain equality then is for the individual terms on the right to 
cancel. Thus, when reaction rates are large, 

(3.10) 
77,3 ^714 ^ n[ 7̂7,2 

This equation, which follows virtually by inspection from the Boltzmann equation, 
goes under different names in different venues. The particle physics community, 
which first studied the production of heavy relics in the early universe, tends to 
call it chemical equilibrium. In the context of Big Bang nucleosynthesis, it is called 
nuclear statistical equilibrium (NSE), while students of recombination, the process 
of electrons and protons combining to form neutral hydrogen, use the terminology 
Saha equation. 

3.2 BIG BANG NUCLEOSYNTHESIS 

As the temperature of the universe cools to 1 MeV, the cosmic plasma consists 
of: 

• Relativistic particles in equilibrium: photons, electrons and positrons. 
These are kept in close contact with each other by electromagnetic interactions 
such as e"^e~ -^ 77. Besides a small difference due to fermion/boson statistics, 
these all have the same abundances. 

• Decoupled relativistic particles: neutrinos. At temperatures a little above 1 
MeV, the rate for processes such as z/e <-> z/e which keep neutrinos coupled to the 
rest of the plasma drops beneath the expansion rate. Neutrinos therefore share 
the same temperature as the other relativistic particles, and hence are roughly 
as abundant, but they do not couple to them. 

• Nonrelativistic particles: baryons. If there had been no asymmetry in the ini-
tial number of baryons and anti-baryons, then both would be completely depleted 
by 1 MeV. However, such an asymmetry did exist: {nh-ni)/s ~ 10~^° initially,^ 
and this ratio remains constant throughout the expansion. By the time the tem-
perature is of order 1 MeV, all anti-baryons have annihilated away (Exercise 12) 
so 

^, ^ ! ^ = 5.5 X 10-^0 W y (3 11) 
,0.020^ 

There are thus many fewer baryons than relativistic particles when T ~ MeV. 

Our task in this section will be to determine how the baryons end up. Were 
the system to remain in equilibrium throughout, the final state would be dictated 
solely by energetics, and all baryons would relax to the nuclear state with the lowest 
energy per baryon, iron (Figure 3.1). However, nuclear reactions, which scale as 
the second — or higher — power of the density, are too slow to keep the system 
in equilibrium as the temperature drops. So, in principle, we need to solve the 

^s is the entropy density which scales as a '̂ , as we saw in Chapter 2. 
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equivalent of Eq. (3.9) for all the nuclei, i.e., a set of coupled differential equations. 
In practice, at least for a qualitative understanding of the result, we can make 
use of two simplifications that obviate the need to solve the full set of differential 
equations. 

Lightning Introduction to Nuclear Physics 
A single proton is a hydrogen nucleus, referred to as ^H or simply 

p; a proton and a neutron make up deuterium, ^H or D; one proton and two 
neutrons make tritium, "̂ H or T. Nuclei with two protons are helium; these 
can have one neutron (^He) or two (^He). Thus unique elements have a fixed 
number of protons, and isotopes of a given element have differing numbers of 
neutrons. The total number of neutrons and protons in the nucleus, the atomic 
number^ is a superscript before the name of the element. 

The total mass of a nucleus with Z protons and A - Z neutrons 
differs slightly from the mass of the individual protons and neutrons alone. 
This difference is called the binding energy, defined as 

B = Zrrip -h (A - Z)mn - m (3.12) 

where m is the mass of the nucleus. For example, the mass of deuterium is 
1875.62 MeV while the sum of the neutron and proton masses is 1877.84 MeV, 
so the binding energy of deuterium is 2.22 MeV. Nuclear binding energies 
are typically in the MeV range, which explains why Big Bang nucleosynthesis 
occurs at temperatures a bit less than 1 MeV even though nuclear masses are 
in the GeV range. 

Neutrons and protons can interconvert via weak interactions: 

p + i? <r^ n-\-e'^ ; p-\-e~'^ n + v ; n<->p + e ~ + P (3.13) 

where all the reactions can proceed in either direction. The light elements are 
built up via electromagnetic interactions. For example, deuterium forms from 
p + n ^ D + 7. Then, D-hD ^ n+^He, after which ^He-fD -> p+^He produces 
^He. 

The first simplification is that essentially no elements heavier than helium are 
produced at appreciable levels.^ So the only nuclei that need to be traced are 
hydrogen and helium, and their isotopes: deuterium, tritium, and ^He. The second 
simplification is that, even in the context of this reduced set of elements, the physics 
splits up neatly into two parts since above T 2:̂  0.1 MeV, no light nuclei form: only 
free protons and neutrons exist. Therefore, we first solve for the neutron/proton 
ratio and then use this abundance as input for the synthesis of helium and isotopes 
such as deuterium. 

^An exception is lithium, produced at a part in 10^-10^^, and this trace abundance may be 
observable today. See, e.g., Pinsonneault et al. (2001). 
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Figure 3.1. Binding energy of nuclei as a function of mass number. Iron has the highest 
binding energy, but among the light elements, ^He is a crucial local maximum. Nucleosynthesis 
in the early universe essentially stops at ^He because of the lack of tightly bound isotopes at 
A = 5 — S. In the high-density environment of stars, three ^He nuclei fuse to form ^^C, but 
the low baryon number precludes this process in the early universe. 

Both of these simphfications — no heavy elements at all and only n/p above 0.01 
MeV — rely on the physical fact that, at high temperatures, comparable to nuclear 
binding energies, any time a nucleus is produced in a reaction, it is destroyed by a 
high-energy photon. This fact is reflected in the fundamental equilibrium equation 
(3.10). To see how, let's consider this equation applied to deuterium production, 
n + p -̂> D -|- 7. Since photons have the equilibrium condition becomes 

riD 

Tin. Tin 

The integrals on the right, as given in Eq. (3.6), lead to 

no 27rm/ 
3/2 

Anin-hmp IDMT 

(3.14) 

(3.15) 

the factor of 3/4 being due to the number of spin states (3 for D and 2 each for ip 
and n). In the prefactor, rriD can be set to 2mn — 2mp, but in the exponential the 
small difference between rrin^mp and rriD is important: indeed the argument of the 
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exponential is by defintion equal to the binding energy of deuterium, BD = 2.22 
MeV. Therefore, as long as equilibrium holds, 

no 3 f An ^ ^BO/T 

4 \m-pT 

3/2 

e"^'''. (3.16) 

Both the neutron and proton density are proportional to the baryon density, so 
roughly, 

"^^J^^'e-^ir. (3.17) 

As long as B^/T is not too large, the prefactor dominates this expression. And 
the prefactor is very small because of the smallness of the baryon-to-photon ratio, 
Eq. (3.11). 

The small baryon to photon ratio thus inhibits nuclei production until the tem-
perature drops well beneath the nuclear binding energy. At temperatures above 0.1 
MeV, then, virtually all baryons are in the form of neutrons and protons. Around 
this time, deuterium and helium are produced, but the reaction rates are by now 
too low to produce any heavier elements. We could have anticipated this by con-
sidering Figure 3.1. The lack of a stable isotope with mass number 5 implies that 
heavier elements cannot be produced via ^Re+p —^ X. In stars, the triple alpha 
process ^He-f^He+^He-^ ^^C produces heavier elements, but in the early universe, 
densities are far too low to allow three nuclei to find one another on relevant time 
scales. 

3.2.1 Neutron Abundance 

We begin by solving for the neutron-proton ratio. Protons can be converted into 
neutrons via weak interactions, p-\-e~ -^ n-\-Ue for example. As we will see, reactions 
of this sort keep neutrons and protons in equihbrium until T ~ MeV. Thereafter, 
one must solve the rate equation (3.9) to track the neutron abundance. 

From Eq. (3.6), the proton/neutron equilibrium ratio in the nonrelativistic limit 
[E = m-^p'^/2m) is 

The integrals here are proportional to m'^/^, but the resulting ratio {mp/rrin)^^'^ is 
sufficiently close to unity that we can neglect the mass difference. However, in the 
exponential the mass difference is very important, and we are left with 

(0) 

^ - e ^ / ^ (3.19) 

with Q = rrin — rUp — 1.293 MeV. Therefore, at high temperatures, there are as 
many neutrons as protons. As the temperature drops beneath 1 MeV, the neutron 
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fraction goes down. If weak interactions operated efficiently enough to maintain 
equilibrium indefinitely, then it would drop to zero. The main task of this section 
is to find out what happens in the real world where weak interactions are not so 
efficient. 

It is convenient to define 
X „ = ^ ^ , (3.20) 

that is, Xn is the ratio of neutrons to total nuclei. In equilibrium, 

1 
Xn -^ ^ n , E Q = _ , (Q) ( Q ) . ' ( ^ ' ^ ^ ^ 

To track the evolution of Xn, let's start from Eq. (3.9), with 1 = neutron, 3 
proton, and 2,4 = leptons in complete equiUbrium (n/ = n\ ^). Then, 

_^d{nna^) _ (0) 
dt -""' { npTVn 1 

a-':ii=ll = n «'M r-V^-nA^ (322) 

We have already determined the ratio rin /rip ^ = e~^l^ and we can identify 
n} \ov) as Anp, the rate for neutron -^ proton conversion since it multiplies Un 
in the loss term. Also if we rewrite Un on the left as {un + np)Xn, then the total 
density times a^ can be taken outside the derivative, leaving 

dX 

dt 
- = Kp {(1 - Xn)e-^^^ - Xn] . (3.23) 

Equation (3.23) is a differential equation for Xn as a function of time, but it 
contains the temperature T and the reaction rate A^p, both of which have compli-
cated time dependences. It is simplest therefore to recast the equation using as the 
evolution variable 

x = | . (3.24) 

The left-hand side of Eq. (3.23) then becomes xdXn/dx, so we need an expression 
for dx/dt = -xf/T. Since T oc a - \ 

the second equality following from Eq. (2.39). Nucleosynthesis occurs in the 
radiation-dominated era, so the main contribution to the energy density p comes 
from relativistic particles. Recall from Chapter 2 that the contribution to the energy 
density from relativistic particles is 

30 
L2=bosons 2=fermions 

{i relativistic) 
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= 5 * ^ T ^ (3.26) 

The effective numbers of relativistic degrees of freedom, ^*, is a function of tem-
perature. At temperatures of order 1 MeV, the contributing species are: photons 
{g^ = 2), neutrinos {g^, — 6), and electrons and positrons (^g^-^ — g^- = 2). Adding 
up leads to g^ ~ 10.75, roughly constant throughout the regime of interest. Then, 
Eq. (3.23) becomes 

with 
ATT^GQ^ 

H{x = l) = \ — ^ X VlO.75 = 1.13 sec-^ (3.28) 
V 45 

Finally, we need an expression for the neutron-proton conversion rate, A^p. Under 
the approximations we are using, the rate is (Bernstein 1988 or Exercise 3) 

Kv = 5 ( l 2 + 6x + x2), (3.29) 
TjiX 

with the neutron lifetime r̂ ^ = 886.7 sec. Thus, when T = Q (i.e., when x = 
1), the conversion rate is 5.5 sec~^, somewhat larger than the expansion rate. As 
the temperature drops beneath 1 MeV, though, the rate rapidly falls below the 
expansion rate, so conversions become inefficient. 

We can now integrate Eq. (3.27) numerically to track the neutron abundance 
(Exercise 4). Figure 3.2 shows the results of this integration. Note that the result 
agrees extremely well at temperatures above ~ 0.1 MeV with the exact solution 
which includes proper statistics, nonzero electron mass, and changing g^. The neu-
tron fraction X^ does indeed fall out of equlibrium once the temperature drops 
below 1 MeV: it freezes out at 0.15 once the temperature drops below 0.5 MeV. 

At temperatures below 0.1 MeV, two reactions we have not included yet 
become important: neutron decay (n —^'p-\-e~-\-y) and deuterium production 
(n + p -^ D -h 7). Decays can be added trivially by adding in a factor of e~^l'^'^ 
to the results of Figure 3.2. By the time decays become important, electrons and 
positrons have annihilated, so ^* in Eq. (3.26) is 3.36 and the time-temperature 
relation is (Exercise 5): 

, = 132s^f5iM!YV. (3.30) 

We will see shortly that production of deuterium, and other light elements, begins 
in earnest at T ~ 0.07 MeV. By then, decays have depleted the neutron fraction by 
a factor of exp[-(132/886.7)(0.1/0.07)2] = 0.74. So the neutron abundance at the 
onset of nucleosynthesis is 0.15 x 0.74, or 

Xn(Tnuc ) = 0 . 1 1 . (3 .31) 

We now turn to light element formation to understand the ramifications of this 
number. 
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Figure 3.2. Evolution of light element abundances in the early universe. Heavy solid curves 
are results from Wagoner (1973) code; dashed curve is from integration of Eq. (3.27); light 
solid curve is twice the neutron equilibrium abundance. Note the good agreement of Eq. (3.27) 
and the exact result until the onset of neutron decay. Also note that the neutron abundance 
falls out of equilibrium at T ~MeV. 

3.2.2 Light Element Abundances 

A useful way to approximate light element production is that it occurs instanta-
neously at a temperature Tnuc when the energetics compensates for the small baryon 
to photon ratio. Let's consider deuterium production as an example, with Eq. (3.17) 
as our guide. The equilibrium deuterium abundance is of order the baryon abun-
dance (i.e. if the universe stayed in equilibrium, all neutrons and protons would 
form deuterium) when Eq. (3.17) is of order unity, or 

ln{rjb) + - ln(T,, z/rup) 
BD (3.32) 

0.07 Equation (3.32) suggests that deuterium production takes place at Tnu 
MeV, with a weak logarithmic dependence on 775. 

Since the binding energy of helium is larger than that of deuterium, the expo-
nential factor e^^^ favors helium over deuterium. Indeed, Figure 3.2 illustrates 
that hehum is produced almost immediately after deuterium. Virtually all remain-
ing neutrons at T ~ Tnuc then are processed into ^He. Since two neutrons go into 
^He, the final ^He abundance is equal to half the neutron abundance at Tnuc- Often, 
results are quoted in terms of mass fraction; then. 
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X 4 = 
4rKH£ 

rib 
2-^n (-Mil (3.33) 

Figure 3.2 shows that this relation holds. Indeed, to find the final helium mass 
fraction, we need only take the neutron fraction at Tnuc, Eq. (3.31), and multiply 
by 2, so the final helium mass fraction is 0.22. This rough estimate, obtained by 
solving a single diff"erential equation, is in remarkable agreement with the exact 
solution, which can be fit via (Olive, 2000; Kolb and Turner, 1990) 

yp-= 0.2262 +0.0135 ln(ry6/10-'^). (3.34) 

One important feature of this result is that it depends only logarithmically on 
the baryon fraction. We saw in Eq. (3.32) that Tnuc has this dependence. You might 
think that the exponential sensitivity to Tnuc in the decay fraction would turn this 
into linear dependence. However, Tnuc is sufficiently early that only a small fraction 
of neutrons have decayed: the exponential in this regime is linear in the time. 
Therefore, the final hehum abundance maintains only logarithmic dependence on 
the baryon density. 

0.30 

200 

10^ O/H 

Figure 3.3. Helium abundance {Y = Yp) as a function of oxygen/hydrogen ratio. Lower 
oxygen systems have undergone less processing, so the helium abundance in those systems is 
closer to primordial. Line, and extrapolation to Yp = 0.238, from Olive (2000). Data from 
Pagel et al (1992), Skillman and Kennicutt (1993), Skillman et al (1994), and Izotov and 
Thuan (1998). Short lines connect the same region observed by different groups. 

The prediction agrees well with the observations, as indicated in Figure 3.3. The 
best indication of the primordial helium abundance comes from the most unpro-
cessed systems, typically identified by low metallicities. As Figure 3.3 indicates, the 
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primordial abundance almost certainly lies between 0.22 and 0.25. Although there 
have been claims of discord in the past, the agreement remains one of the pillars of 
observational cosmology. 

Figure 3.2 shows that not all of the deuterium gets processed into helium. A 
trace amount remains unburned, simply because the reaction which eliminates it 
(D -fp —> ̂ He + 7) is not completely efficient. Figure 3.2 shows that after Tnuĉ  
deuterium is depleted via these reactions, eventually freezing out at a level of order 
10~^-10~^. If the baryon density is low, then the reactions proceed more slowly, and 
the depletion is not as effective. Therefore, low baryon density inevitably results 
in more deuterium; the sensitivity is quite stark, as illustrated in Figure 1.8. As a 
result, deuterium is a powerful probe of the baryon density. Complementing this 
sensitivity is the possiblity of measuring deuterium in gas clouds as z ~ 3 by 
looking for absorbtion in the spectra of distant QSOs. For example, O'Meara et 
al. (2001) combine the measurements of primordial deuterium in four systems to 
obtain, D/H= 3.0 ± 0.4 x 10 -^ corresponding to fi^/i^ = 0.0205 ± 0.0018. 

3.3 RECOMBINATION 

As the temperature drops to ~ 1 eV, photons remain tightly coupled to electrons 
via Compton scattering and electrons to protons via Coulomb scattering. It will 
come as no surprise that at these temperatures, there is very little neutral hydrogen. 
Energetics of course favors the production of neutral hydrogen with a binding energy 
of 60 = 13.6 eV, but the high photon/baryon ratio ensures that any hydrogen atom 
produced will be instantaneously ionized. This phenomenon is identical to the delay 
in the production of light nuclei we saw above, replayed on the atomic scale. 

As long as the reaction*^ e ~ + p ^ - ^ H + 7 remains in equilibrium, the condition 
in Eq. (3.10) (with 1 = e, 2 = p, 3 =H) ensures that 

(0) (0) 
neUp _ Tie np ^ ^ ^ ^ ^ 

(0) 

We can go further here by recognizing that the neutrality of the universe ensures 
that Tie — Up. Let's define the free electron fraction 

Xe = """ = ""̂  , (3.36) 
He -f n / / Up-h UH 

the denominator equal to the total number of hydrogen nuclei. Carrying out the 
integrals on the right of Eq. (3.35) leads then to 

X2 1 

I - Xe Ue-^UH 

rp \3 /2 m (3.37) 

where we have made the familiar approximation of neglecting the small mass dif-
ference of H and p in the prefactor. The argument of the exponential is —CQ/T. 

"^Here p stands for free protons and H for neutral hydrogen, i.e., a proton with an electron 
attached. 
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Neglecting the relatively small number of helium atoms, the denominator rie + nn 
(or Up -h UH) is equal to the baryon density, rj^rij ~ 10~^T^. So when the temper-
ature is of order CQ, the right-hand side is of order 10^(me/T)^/^ :^ 10^^. In that 
case, Eq. (3.37) can be satisfied only if the denominator on the left is very small, 
that is if Xe is very close to 1: all hydrogen is ionized. Only when the temperature 
drops far below eo does appreciable recombination take place. As Xe falls, the rate 
for recombination also falls, so that equilibrium becomes more difficult to maintain. 
Thus, in order to follow the free electron fraction accurately, we need to solve the 
Boltzmann equation, just as we did for the neutron-proton ratio. 

In this case, Eq. (3.9) for the electron density becomes 

J ^ K ^ ) _ ^(0)^(0)/_A f ^H n\ = n ( % ( « ) ( a . ) < ! ^ -
2 

= n,{av) |(1 - Xe)[^y^'e-^o/T _ ̂ 2„^| (3 33) 

where the last line follows since the ratio ni ^rip /rvu is equal to the term in square 
brackets in Eq. (3.37). Meanwhile, since rihO^ is constant it can be passed through 
the derivative on the left after expressing rig as n^Xg, so that 

^ = { ( l - X e ) / 3 - X > , a ( 2 ) } (3.39) 

where the ionization rate is typically denoted 

/3-M(^)''Vwr (3.40) 

and the recombination rate 

a 
(2) = {av), (3.41) 

The recombination rate has superscript ^̂ ^ because recombination to the ground 
(n = 1) state is not relevant. Ground-state recombinations lead to production of 
an ionizing photon, and this photon immediately ionizes a neutral atom. The net 
effect of such a recombination is zero: no new neutral atoms are formed this way. 
The only way for recombination to proceed is via capture to one of the excited 
states of hydrogen; to a good approximation, this rate is 

The Saha approximation, Eq. (3.37), does a good job predicting the redshift 
of recombination, but fails as the electron fraction drops and the system goes out 
of equilibirium. Therefore, the detailed evolution of Xe must be obtained by a 
numerical integration of Eq. (3.39) (Exercise 8). Results from numerical integration 
of Eq. (3.39) are shown in Figure 3.4. 
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Figure 3.4. Free electron fraction as a function of redshift. Recombination takes place suddenly 
at z ^ 1000 corresponding to T ~ 1/4 eV. The Saha approximation, Eq. (3.37), holds in 
equilibrium and correctly identifies the redshift of recombination, but not the detailed evolution 
of Xe. Here Q^ = 0.06, Om = 1, /i = 0.5. 

The computation of the neutron/proton ratio affects the abundance of Hght 
elements today. Similarly, the evolution of the free electron abundance has major 
ramifications for observational cosmology. Recombination at z* ~ 1000 is directly 
tied to the decoupling of photons from matter.** This decoupling, in turn, directly 
affects the pattern of anisotropics in the CMB that we observe today. 

Decoupling occurs roughly when the rate for photons to Compton scatter off 
electrons becomes smaller than the expansion rate.^ The scattering rate is 

riear = XeUhOrT (3.43) 

where ar — 0.665 x 10~^^ cm^ is the Thomson cross section, and I continue to ignore 
helium, thereby assuming that the total number of hydrogen nuclei (free protons 
-f hydrogen atoms) is equal to the total baryon number. Since the ratio of the 

"^Notice from Figure 1.4 that even though photons stop scattering off electrons at 2; '^ 1000, 
electrons do scatter many times off photons until much later. This is not a contradiction: there 
are many more photons than baryons. In any event, many cosmologists shy away from the word 
decoupling to describe what happens at 2; ~ 1000 for this reason. 

^In Chapter 8 we will define a more precise measure of decoupling, making use of the visibility 
function, the probability that a photon last scattered at a given redshift. Using the visibility 
function, we will show that a CMB photon today most likely last scattered at a slightly higher 
redshift than inferred by the simple UCCTT ~ H criterion. 
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baryon density to the critical density is mpn]j/pcr = ^bd ^, n^ can be eliminated 
in Eq. (3.43) in favor of Qb-

near = 7.477 x 10"^°cm"^Xe^6/i^a"^ (3.44) 

Dividing by the expansion rate leads to 

^ = 0.0692a-^Xe^6/iTr- (3-45) 
H H 

The ratio on the right depends on the Hubble rate, which is given in Eq. (1.2). From 
that equation or from Figure 1.3, we see that at early times, the main contribution 
comes from either matter or radiation, so H/HQ = ^Irn a~^/^[l + agq/a]^/^. Then, 

^e^T , , o ^ . f^bh^\ f .15 y^^ fl + zV^^ 
H ^^^^^ V 0.02 ^mh^J VIOOOJ 

l + z 0.15 
-1/2 

(3.46) 

Here I have normalized with "best fit" values for the baryon and matter densi-
ties. When the free electron fraction Xe drops below ~ 10~^, photons decouple. 
From Figure 3.4, we see that X^ drops very quickly from unity to 10~^. Therefore, 
decoupling takes place during recombination. 

Let's forget all we just learned and ask what would happen if the universe 
remained ionzied throughout its history. In that hypothetical case, Xg = 1, and 
Eq. (3.46) can be trivially solved to find the redshift of decoupling. Setting the 
right hand side to 1 leads to 

/ 0 . 0 2 \ ^ / ^ fVt^K^y^^ 
1 + ^decouple = 43 f ——^ j ( ^ \ (no recombination). (3.47) 

Equation (3.47) tells us that even if the electrons remained ionized throughout the 
history of the universe, eventually the photons decoupled simply because expansion 
made it more difficult to find the increasingly dilute electrons. In theory, we do 
not expect the electrons to remain ionized throughout, so this calculation would 
appear academic. However, Eq. (3.47) is relevant for a more general reason. We 
do expect that at some late time, the electrons were reionized. We expect this 
because the universe we observe back to redshift 2 ^ 6 appears to be ionized. If 
the universe was reionized at very late times, much after the ^̂ decoupie 

ofEq. (3.47), 
there would not be a huge change in the CMB anisotropy pattern. However, if the 
universe was reionized earlier than this redshift, multiple scattering of the photons 
would dramatically alter the primordial anisotropy pattern set up at 2 ~ 1000. 
Observations of the most distant quasars (Becker et ah, 2001; Fan et a/., 2002) 
suggest that reionization took place at 2 :^ 6, so the alteration is expected to be 
shght. 

3.4 DARK MATTER 

There is strong evidence for nonbaryonic dark matter in the universe, with ^dm — 
0.3. Perhaps the most plausible candidate for dark matter is a weakly interacting 
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massive particle (WIMP), which was in close contact with the rest of the cosmic 
plasma at high temperatures, but then experienced freeze-out as the temperature 
dropped below its mass. Freeze-out is the inability of annihilations to keep the 
particle in equlibrium. Indeed, were it kept in equilibrium indefinitely, its abundance 
would be suppressed by e~'^l^\ there would be no such particles in the observable 
universe. The purpose of this section, then, is to solve the Boltzmann equation for 
such a particle, determining the epoch of freeze-out and its relic abundance. The 
hope is that, by fixing its relic abundance so that f̂ dm — 0.3, we will learn something 
about the fundamental properties of the particle, such as its mass and cross section. 
We then might use this knowledge to detect the particles in a laboratory. 

In the generic WIMP scenario, two heavy particles X can annihilate producing 
two light (essentially massless) particles /. The light particles are assumed to be 
very tightly coupled to the cosmic plasma, so they are in complete equilibrium 
(chemical as well as kinetic), with n/ — n\\ There is then only one unknown, 
nx , the abundance of the heavy particle. We can use Eq. (3.9) to solve for this 
abundance: 

a - % ^ = M { ( n ^ ° ' ) ^ - n ^ } . (3.48) 

To go further, recall that the temperature typically scales as a~^, so if we multiply 
and divide the factor of nx(^ inside the parentheses on the left by T^, we can 
remove {OTY outside the derivative, leaving T^d{nx/T^)/dt. Let's define then 

y ^ ^ . (3.49) 

The differential equation for Y becomes 

^-L^T\cjv){Yi^-Y']^ (3.50) 

with I E Q - n^x/T^' 
To go further, as in the neutron-proton case, it is convenient to introduce a new 

time variable, 
X = m/T (3.51) 

where m, the mass of the heavy particle, sets a rough scale for the temperature 
during the region of interest. Very high temperature corresponds to x <^ 1, in which 
case reactions proceed rapidly so F ~ ^EQ- Since the X particles are relativistic 
at these epochs, the m <^T limit of Eq. (3.6) implies that F ~ 1. For high x, the 
equilibrium abundance I E Q becomes exponentially suppressed (e~^). Ultimately, 
X particles will become so rare because of this suppression that they will not be 
able to find each other fast enough to maintain the equilibrium abundance. This is 
the onset of freeze-out. To change from ^ to x, we need the Jacobian dx/dt = Hx. 
Dark matter production typically occurs deep in the radiation era where the energy 
density scales as T^, so H = H{m)/x'^. Then the evolution equation becomes 
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where the ratio of the annihilation rate to the expansion rate is parameterized by 

A . ^ . • (3.53) 
H{m) 

In many theories A is a constant, but in some, the thermally averaged cross section 
is temperature dependent; this leads to slight numerical changes in the following 
but unchanged qualitative solutions. 

Equation (3.52) is a form of the Riccati equation, for which in general there 
are no analytic solutions. In this case, though, we can make use of our understand-
ing of the freeze-out process to get an analytic expression for the final freeze-out 
abundance Yoo = y{x = CXD). Let's review this understanding in the context of 
Eq. (3.52). The left-hand side is of order Y (for x ~ 1) while the right is of order 
F^A. We will see that A is typically quite large, so as long as F is not too small, the 
right-hand side must zero itself by setting Y = I E Q - At late times, as I E Q drops 
precipitously, the terms on the right-hand side will no longer be much larger than 
the one on the left. In fact, well after freeze-out, Y will be much larger than YEQ'-
the X particles will not be able to annihilate fast enough to maintain equilibrium. 
Thus at late times, 

f . - ^ ( . » ! ) . (3.54) 

Integrate this analytically from the epoch of freeze-out Xf until very late times 
X = 00 to get 

Typically Y at freeze-out Yf is significantly larger than Foo, so a simple analytic 
approximation is 

Yoo^"^. (3.56) 

This approximation is incomplete, in that it depends on the freeze-out temperature, 
which we have not determined. Although more precise determinations are possible 
(Exercise 10), a simple order-of-magnitude estimate for the dark matter problem is 
Xf ~ 10. 

Figure 3.5 shows the numerical solution to Eq. (3.52) for several different values 
of A. The abundances do track the equilibrium abundances until m/T ~ 10, after 
which they level off to a constant. The rough estimate Foo ~ 10/A is seen to be a 
reasonable approximation for the relic abundance. Note that particles with larger 
cross sections (e.g. in the figure, A = 10^°) freeze out later, and this later freeze-out 
carries along with it a lower relic abundance. Also note from the inset in Figure 3.5 
that the distinction between Bose-Einstein, Fermi-Dirac, and Boltzmann statistics 
is important only at temperatures above the particle's mass. For temperatures 
relevant to the freeze-out process, our use of Boltzmann statistics is completely 
warranted. 

There is one more piece of physics needed in order to determine the present-day 
abundance of these heavy particle relics. After freeze-out, the heavy particle density 
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Figure 3.5. Abundance of heavy stable particle as the temperature drops beneath its mass. 
Dashed line is equilibrium abundance. Two different solid curves show heavy particle abundance 
for two different values of A, the ratio of the annihilation rate to the Hubble rate. Inset shows 
that the difference between quantum statistics and Boltzmann statistics is important only at 
temperatures larger than the mass. 

simply falls off as a~^. So its energy density today is equal to m(ai/ao)^ times its 
number density where ai corresponds to a time sufficiently late that Y has reached 
its aymptotic value, Yoo- The number density at that time is Y^cTi, so 

Px mV^T^ 
(aiTiV mYc 

. - • (3-57) 
\aoToJ 30 ^ ^ 

The second equality here is nontrivial. You might expect that aT remains constant 
through the evolution of the universe, so that the ratio aiTi/aoTo would be unity. It 
is not, for the same reason that the CMB and neutrinos have different temperatures. 
We saw in Chapter 2 that photons are heated by e"̂  annihilation, while neutrinos 
which have already decoupled are not. Similarly, as the universe expands, photons 
are heated by the annihilation of the zoo of particles with masses between 1 MeV 
and 100 GeV, so T does not fall simply as a~^. You can show in Exercise 11 that as 
a result (aiTi/aoTo)^ ^ 1/30. Finally, to find the fraction of critical density today 
contributed by X, insert our expression for Y^ and divide by Pcr-

Q i 
Xf mT^ 

A 30pcr 

H{m)xfT^ 
(3.58) 
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To find the present density of heavy particles, then, we need to compute the 
Hubble rate when the temperature was equal to the X mass, H{m), for which we 
need the energy density when the temperature was equal to m. The energy density in 
the radiation era is given by Eq. (3.26) with g^ a function of temperature. Therefore, 

^ x = 
An^Gg^m) 

45 

1/2 
^^^0 (359) 

SO{av)pc 

We see that Qx does not explicitly depend on the mass of the X particle.^ So it is 
mainly the cross section which determines the relic abundance. 

Let's now see what order of magnitude is needed to get dark matter today, i.e., 
to get Qx = ^dm — 0-3. At the temperatures of interest for dark matter production, 
T ~ 100 GeV, g>^{m) includes contributions from all the particles in the standard 
model (three generations of quarks and leptons, photons, gluons, weak bosons, and 
perhaps even the Higgs boson) and so is of order 100. Normalizing g^{m) and Xf 
by their nominal values leads to 

The fact that this estimate is of order unity for cross sections of order 10""^^ cm-̂  
is taken as a good sign: there are several theories which predict the existence of 
particles with cross sections this small. 

Perhaps the most notable of these theories is supersymmetry, the theory which 
predicts that every particle has a partner with opposite statistics. For example, 
the supersymmetric partner of the spin zero Higgs boson is the spin-1/2 Higgsino 
(fermion). Initially it was hoped that the observed fermions could be the partners of 
the observed bosons, but this hope is not realized in nature. Instead, supersymmetry 
must be broken and all the supersymmetric partners of the known particles must 
be so massive that they have not yet been observed even in accelerators: they must 
have masses greater than 10 to 100 GeV. Which of the supersymmetric partners is 
the best candidate for the dark matter today? The particle must be neutral since 
the evidence points to dark matter that is truly dark, i.e., does not interact much 
with the known particles and especially does not emit photons. The particle must 
also be stable: if it could decay to lighter particles, then decays would have kept it 
in equilibrium throughout the early universe and there would be none left today. 
The first of these criteria restricts the dark matter to be the partner of one of 
the neutral particles, such as the Higgs or the photon.^ The second requires the 
particle to be the lightest (LSP for lightest supersymmetric partner) of these, for 
any heavier particles could decay into the lightest one plus some ordinary particles. 

^There is a slight implicit dependence on mass in the freeze-out temperature Xf and in ^*, 
which is to evaluated when T = m. 

^The other neutral boson in the Standard Model is the Z vector boson. The lightest supersym-
metric partner is likely a linear combination of the partners of all of these. 
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Figure 3.6. Constraints on supersymmetric dark matter (Baudis et al, 2000). Region above 
the solid curves Is excluded, while filled region is reported detection by DAMA (Bernabei et 
al, 1999). Lowest curve (labled HDMS project) is only a projected limit based on one future 
experiment. The CDMS experiment (Abusaidi et al, 2000) appears to rule out the DAMA 
detection. Points scattered throughout correspond to different parameter choices in a class 
of supersymmetric models. Note the limits on the cross section are in units of picobarns (1 
picobarn = 10"^^ cm^). 

Not only would weakly interacting particles such as LSP's annihilate in the 
early universe, but if they were around today they would scatter off ordinary mat-
ter. Although it is difficult to detect these reactions because the rate is so low, 
a number of experiments have been performed searching for dark matter parti-
cles. Figure 3.6 shows the limits on the masses and cross sections of dark matter 
from these experiments (note that the scattering cross section, while related to the 
annihilation cross section, is not identically equal to it). Apart from a tantalizing 
detection from the DAMA experiment, so far we have only upper limits. However, 
as indicated in the figure, in the coming years the experiments are expected to 
pierce into the region predicted by supersymmetric theories. 

3.5 SUMMARY 

The light elements in the universe formed when the temperature of the cosmic 
plasma was of order 0.1 MeV. Roughly a quarter of the mass of the baryons is in 
the form of "̂ He, the remaining in the form of free protons with only trace amounts 
of deuterium, ^He, and lithium. 
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These elements remain ionized until the temperature of the universe drops well 
below the ionization energy of hydrogen. The epoch of recombination — at which 
time electrons and protons combine to form neutral hydrogen — is at redshift z ~ 
1000 corresponding to a temperature T ~ 0.25 eV. Before recombination, photons 
and electrons and protons are tightly coupled with one another because of Compton 
and Coulomb scattering. After this time, photons travel freely through the universe 
without interacting, so the photons in the CMB we observe today offer an excellent 
snapshot of the universe at z ~ 1000. The importance of this snapshot cannot be 
overstated. 

The details of both nucleosynthesis and recombination are heavily influenced 
by the fact that the reactions involved eventually become too slow to keep up with 
the expansion rate. This feature may also be responsible for the production of dark 
matter in the universe. We explored the popular scenario wherein a massive, neutral 
stable particle stops annihilating when the temperature drops significantly beneath 
its mass. The present-day abundance of such a particle can be deterimined in terms 
of its annihilation cross section, as in Eq. (3.60). Larger cross sections correspond 
to more efficient annhilation and therefore a lower abundance today. Roughly cross 
sections of order 10~^^ are needed to get the dark matter abundance observed today. 
Such cross sections and the requisite stable, neutral particles emerge fairly natrually 
in extensions of the Standard Model of particle physics, such as supersymmetry, 
and may well be tested by accelerator experiments in the near future. 
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SUGGESTED READING 

The Early Universe (Kolb and Turner) contains especially clear treatments of the 
heavy particle freeze-out problem and Big Bang nucleosynthesis, also based on the 
Boltzmann equation. Kinetic Theory in an Expanding Universe (Bernstein) offers 
some semianalytic solutions to these problems, as well as the requisite Boltzmann-
ology. 

Work on nucleosynthesis in the early universe dates back to Gamow and col-
laborators, summarized in Alpher, Folhn, and Herman (1953). The first post-CMB 
papers were Peebles (1966) and Wagoner, Fowler, and Hoyle (1967); these got the 
basics right: 25% helium and roughly the correct amount of deuterium. Yang et al. 
(1984) helped many people of my generation understand that the baryonic density 
could be constrained with observations of the light elements. A nice review article 
on nucleosynthesis is Olive, Steigman, and Walker (2000). 

As I tried to indicate in the text, the process of recombination is very rich; 
it involves some subtle physics. The original paper which worked through all the 
details was by Peebles (1968). Ma and Bertschinger (1996) however managed to 
describe the physics succintly in just one page in their Section 5.8. Seager, Sasselov, 
and Scott (1999) have presented a more accurate treatment (although, as they 
emphasize, Peebles' more intuitive work holds up remarkably well), including many 
small effects previously neglected. 

Jungman, Kamionkowski, and Griest (1996) is a comprehensive review of all 
aspects of supersymmetric dark matter. Many papers have explored limits on super-
symmetric dark matter candidates from cosmology and accelerators. To mention 
just several: Roszkowski (1991) showed that the Higgsino is likely not the lightest 
supersymmetric partner; Nath and Arnowitt (1992) and Kane et al. (1994) showed 
that the hino^ the partner of the initial gauge eigenstate B, is the most likely — 
both from the point of view of physics and cosmology — LSP; Ellis et al. (1997) 
combined accelerator constraints with those from cosmology to place a lower limit 
on the mass of the LSP; Edsjo and Gondolo (1997) included some subtle effects 
in the relic abundance calculation which affects the limits if the LSP is composed 
primarily of the partner of the Higgs boson; and Bottino et al. (2001) explored the 
consequences if the signal seen in the DAM A signal is due to dark matter particles. 

EXERCISES 

Exercise 1. Compute the equilibrium number density (i.e., zero chemical poten-
tial) of a species with mass m and degeneracy ^ = 2 in the limits of large and 
small m/T. Take these limits for all three types of statistics: Boltzmann, Bose-
Einstein, and Fermi-Dirac. You will find Eqs. (C.26) and (C.27) helpful for the 
high-T Bose-Einstein and Fermi-Dirac limits. 

Exercise 2. In the text, we treated e^ as relevant to the energy density at temper-
atures above mg, but irrelevant afterwards (Eq. (3.30) and the discussion leading 



Exercises 8 1 

up to it). Track the e^ density through annihilation assuming n^i = n^±. This 
equahty holds during the BBN epoch because electromagnetic interactions (e.g., 
e"̂  + e~ <-̂  7 + 7) are so strong. When does the density fall to 1% of the photon 
energy density? lirib — ^^ 10~^^, at what temperature do you expect n^- to depart 
from n_7 

e 

Exercise 3. Compute the rate for neutron-to-proton conversion, Xnp- Show that it 
is equal to Eq. (3.29). There are two processes which contribute to Xnp- n -\- Ue ^ 
p-\-e~ and n+e"^ -^ p+j/g. Assume that all particles can be described by Boltzmann 
statistics and neglect the mass of the electron. With these approximations the two 
rates are identical. 
(a) Use Eq. (3.8) to write down the rate for n + Ue —^ p + e~. Perform the integrals 
over heavy particle momenta to get 

(27r)32p, /(^^(2+^^-^^)l^''- ^'-''^ 

(b) The amplitude squared is equal to |A^| = 32Gjr{l + 3g\)'^lPiyPej where QA is 
the axial-vector coupling of the nucleon. The present best measurement of QA is via 
the neutron lifetime, r^ = XoG'jp{l + 3g\)ml/{2n^)^ where the phase space integral 

pQ/rrie 

Xo= dxx{x - Q/mef{x^ - 1)^/^ = 1-636. (3.62) 

Carry out the integrals in Eq. (3.61) to get the rate, A p̂ in terms of r^. Don't forget 
to multiply by 2 for the two different reactions. 

Exercise 4. Solve the rate equation (3.27) numerically to determine the neutron 
fraction as a function of temperature. Ignore decays. There are (at least) two ways 
to perform this computation. The first is to treat it as a simple ordinary differential 
equation and solve numerically. The second is to proceed analytically and reduce 
the problem to an evaluation of a single numerical integral. This second method, 
which I'll lead you through here, is based on a numerical coincidence noted by 
Bernstein, Brown, and Feinberg (1988). 
(a) Using standard differential equation techniques, show that a formal solution to 
Eq. (3.27) is 

X^{x) = r dx' ^""'^^^''^ e^(-')-M(.) (3.63) 
Jx^ X 12 [X ) 

where Xi is some initial, very high temperature, and 
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(b) Use Eqs. (3.29) and (3.26) to compute the integrating factor /x analytically. 
Show that it is equal to 

255 47r^GQ^- ^ " ' / ' ^ * 
45 

\x^ x^ x) Kx"^ x'^ J 
(3.65) 

The simple form for ji is the result of numerical coincidence alone. 
(c) With the results of part (b), do the single numerical integral in (a) numerically. 
Compare the asymptotic result at x = CXD with the result in the text, Xn{x = oo) = 
0.15. 

Exercise 5. Integrate the Friedmann equation (1.2) to verify the time-temperature 
relation in Eq. (3.30) in the epoch after e^ annihilation, but before matter domi-
nation. 

Exercise 6. Determine rj^ in terms of Q^h'^. Show that it is given by Eq. (3.11). 

Exercise 7. An important parameter for CMB anisotropics is the sound speed at 
decoupling. This is determined by the ratio of baryons to photons. 
(a) Find 

as a function of a. Evaluate it at decoupling. Your answer should depend on Ct^h'^. 
(b) We will see in Chapter 8 that the sound speed of the combined photon/baryon 
fluid is 

' ^ (3.66) 
3{l + R)' 

Use your answer from (a) to plot the sound speed at decoupling as a function of 
ftbh'^ 

Exercise 8. Solve for the evolution of the free electron fraction. Do not compare 
your results with Figure 3.4 until you finish part (d). Throughout, take parameters 
n^ = 1,1̂ 6 = 0.06,/i = 0.5. 
(a) Use as an evolution variable x = EQ/T instead of time in Eq. (3.39). Rewrite 
the equation in terms of x and the Hubble rate at T = e^. 
(b) Using the methods of Section 3.4, find the final freeze-out abundance of the 
free electron fraction, XQ{X — CXD). 
(c) Numerically integrate the equation from (a) from x — I down to x = 1000. 
What is the final frozen-out Xg? 
(d) Peebles (1968) argued that even captures to excited states would not be impor-
tant except for the fraction of times that the n = 2 state decays into two photons or 
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expansion redshifts the Lyman alpha photon so that it cannot pump up a ground-
state atom. Quantitatively, he multiphed the right-hand side of Eq. (3.39) by the 
correction factor, 

where the two-photon decay rate is A27 = 8.227sec""^; Lyman alpha production is 

(87r)2 

Do this and show how it changes your final answer. Now compare the freeze-out 
abundance with the result of (c) and the evolution with Figure 3.4. 

A« - ^ ^ ^ - (3.68) 

Exercise 9. Find the redshift of decoupling as a function of 17 .̂ If you do not have 
the evolution code of Exercise 8, use the Saha equation to determine Xe-

Exercise 10. Find an approximation to the freeze-out temperature of annihilating 
heavy particles by setting Xf such that n^^\xf){crv) — H{xf). 

Exercise 11. Typically the temperature of the cosmic plasma cools as a~^ with 
the expansion. However, when particles annihilate, they deposit energy into the 
plasma, thereby slowing the cooling. (Scherrer and Turner, 1986, showed that the 
annihilations do not actually heat the universe: T never increases, it simply decreases 
more slowly than a~^.) Use the fact that the entropy density (Eq. (2.66)) scales as 
a~^ to compute the ratio of (aT)^ at T = 10 GeV (roughly the time when WIMPs 
decouple) to its present value today. 

Exercise 12. Suppose that there were no baryon asymmetry so that the number 
density of baryons exactly equaled that of anti-baryons. Determine the final relic 
density of (baryons+anti-baryons). At what temperature is this asymptotic value 
reached? 

Exercise 13. There is a fundamental limitation on the annihilation cross section 
of a particle with mass m. Because of unitarity, {av) must be less than or equal 
to 1/m^, give or take a factor of order unity. Determine Vtx for a particle which 
saturates this bound, i.e., for a particle with {av) — 1/m^. For what value of m is 
Q^x equal to 1? (Keep Xf and g^ equal to the nominal values given in Eq. (3.60).) 
Note that if m is greater than this critical value, Q.x > 1, which is ruled out. This is 
a strong argument against stable particles (and therefore dark matter candidates) 
with masses above this critical value. 
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We are interested in the anisotropies in the cosmic distribution of photons and 
inhomogeneities in the matter. Figure 4.1 shows why these are compHcated to cal-
culate. The photons are affected by gravity and by Compton scattering with free 
electrons. The electrons are tightly coupled to the protons. Both of these, of course, 
are also affected by gravity. The metric which determines the gravitational forces 
is influenced by all these components plus the neutrinos and the dark matter. Thus 
to solve for the photon and dark matter distributions, we need to simultaneously 
solve for all the other components. 

There is a systematic way to account for all of these couplings. We write down 
a Boltzmann equation for each species in the universe. We have already encoun-
tered the Boltzmann equation in its integrated form in Chapter 3. There we were 
interested solely in the number density of the dark matter, the neutrons, and the 
free electrons. The number density is the integral over all momenta of the distribu-
tion function. Here we will be interested in more detailed information, not just the 
integrated number density, but the full distribution of photons, say, as a function 
of momentum. We then need a more primitive version of Eq. (3.1). Schematically, 
the unintegrated Boltzmann equation is 

f = C[/]. (4.1) 

The right-hand side of the Boltzmann equation contains all possible collision terms. 
These terms in general are complicated functionals of the distribution functions of 
the various components. In the absence of collisions, the distribution funcjtion obeys 
df /dt — 0. This seemingly innocent equation says that the number of particles in 
a given element of phase space does not change with time. The catch is that the 
phase space elements themselves are moving in time in complicated ways due to the 
nontrivial metric. This catch makes the problem more difficult than it seems from 
Eq. (4.1). Nonetheless, we can still progress systematically by reexpressing the full 
derivative in terms of partial derivatives. 

84 
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Figure 4.1. The ways in which the different components of the universe interact with each 
other. These connections are encoded in the coupled Boltzmann-Einstein equations. 

In this chapter, we derive the Boltzmann equations for photons, eletrons, pro-
tons, dark matter, and massless neutrinos. This set of equations governs the evolu-
tion of perturbations in the universe. 

4.1 THE BOLTZMANN EQUATION FOR THE HARMONIC OSCILLATOR 

Before tackhng the problem of interest — the Boltzmann equation for all species 
in an expanding universe — let us treat a much simpler example of the Boltzmann 
equation: the nonrelativistic harmonic oscillator. This simple example is very similar 
to the full general relativistic version we will encounter in the next section, but the 
algebra is much less cumbersome. So here the physics will be quite transparent. It 
will be useful to keep this example in mind when the algebra threatens to obscure 
the physics in the next section. 

Consider a one-dimensional harmonic oscillator with energy 

2m 2 
(4.2) 

The distribution function of the harmonic oscillator depends on time t, position x, 
and momentum p. Thus, the full time derivative in Eq. (4.1) can be rewritten as 

df{t, X, p) df df dx df dp 
dt dt dx dt dp dt' 

(4.3) 
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Figure 4.2 illustrates the movement through phase space of a distribution of coUi-
sionless (C — 0) oscillators. The full time derivative df /dt vanishes since the number 
of particles in the bunch at î equals that at ^2- What has changed is the location 
of the phase space elements x{t) and p{t) themselves. Alternatively, we can think of 
X and p as independent variables (not dependent on t) and take partial derivatives 
of / with respect to i, x, and p. All of these partial derivatives are nonzero, but the 
appropriate weighted sum of the three vanishes. 

Figure 4.2. Distribution function for a set of collisionless harmonic oscillators. The initial 
distribution at ^i moves in phase space by time t2. The distribution function f{t,x,p) remains 
constant as long as the evolution of x{t) and p{t) is accounted for. 

To determine the coefficients dx/dt and dp/dt we must use the equations of 
motion. By the definition of momentum, 

dx 
It 

V_ 
m' 

(4.4) 

This equation will be generahzed to a fully relativistic, three-dimensional version 
in the next section. Indeed we already got a preview of this when we defined P^ = 
dx^/dX in Chapter 2. Newton's equation governing the motion of the oscillator is 

$ = -kx. 
dt 

(4.5) 

The analogue of this famihar equation in the next section will be the geodesic 
equation of general relativity. 

The colhsionless Boltzmann equation for the harmonic oscillator is thus 

2l + L^_kx^ = o. 
dt m dx dp 

(4.6) 
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The second term here governs how rapidly the oscillator moves in real space; the 
coefRcient in front is just the velocity, p/m. The last term governs how quickly 
particles lose momentum. 

In order to solve the Boltzmann equation, we need to know the initial conditions 
on the distribution function. Even without these, though, the Boltzmann equation 
offers some useful physics. Consider the equihbrium distribution, wherein df /dt = 
0. A general solution for the equilibrium distribution is 

f{p,x) = fEQ{E); (4.7) 

that is, / is a function only of energy E. To see that this is indeed a solution, 
consider 

p df{E) j^JfiE) _ df 
m dx dp m dx dp dE 

= 0. (4.8) 

So any function of the energy alone is an equilibrium distribution. Of course, in 
general, there will be interactions, or collisions. The only way for the full Boltzmann 
equation to be satisfied is if the collision terms also vanish. This will in general 
drive / to one of the famiUar equihbrium distributions, e.g., e~^l^ for the classical 
Maxwell-Boltzmann distribution. 

4.2 THE COLLISIONLESS BOLTZMANN EQUATION FOR PHOTONS 

Let us begin then by considering the left hand side of Eq. (4.1) for massless pho-
tons. First we must specify the form of the metric, accounting for perturbations 
around the smooth universe described by Eq. (2.4). Whereas the smooth universe 
is characterized by a single function, a(t), which depends only on time and not on 
space, the perturbed universe requires two more functions, ^ and $, both of which 
depend on both space and time. In terms of them, the metric can be written as 

Poo(̂ ,0 = - l - 2 * ( f , 0 

9oi{x,t) = 0 

grj{x,t) = a^6,j (1 + 2^ ( f , t ) ) . (4.9) 

In the absence of ^ and $, Eq. (4.9) is simply the FRW metric of the zero-order 
homogeneous, fiat cosmology. Similarly, in the absence of expansion [a = 1) this 
metric describes a weak gravitational field (Exercise 2.3). The perturbations to the 
metric are ^ , which corresponds to the Newtonian potential, and $, the perturba-
tion to the spatial curvature. Since the perturbations in the universe are small at 
the times and scales of interest, we will treat these ^ and $ as small quantities, 
dropping all terms quadratic in them. 



88 THE BOLTZMANN EQUATIONS 

There are two technical points about the metric in Eq. (4.9) which you don't 
need to worry about for most of this book, but which nonetheless are important 
to be aware of, if only to better understand the literature. First, one can break up 
perturbations into those behaving as scalars, vectors, and tensors under a trans-
formation from one 3D coordinate system to another. Equation (4.9) contains only 
scalar perturbations. In principle, it is possible that the metric of our universe 
also has vector or tensor perturbations. If so, g^iy would require other functions 
besides ^ and $ to fully describe all perturbations. For example, the off-diagonal 
elements become nonzero if there are vector perturbations. Indeed, there are many 
cosmological theories wherein there are both tensor and vector perturbations. For 
example, inflation tends to predict that there will be tensor perturbations, while 
models based on topological defects tend to produce large vector perturbations. 
For now we focus solely on the scalar perturbations; these are the only ones that 
couple to matter perturbations and are the most important that couple to photon 
perturbations as well. 

The other feature of Eq. (4.9) worth noting is that its form corresponds to 
a choice of gauge. The simplest way to understand this gauge freedom is to think 
back to electricity and magnetism. There, the vector potential A^ and its derivatives 
contain all possible information about the electric and magnetic fields. Since the 
physical E and B fields remain unchanged if a constant is added to A^, there is 
some residual freedom in choosing the potential. (For example, one often chooses 
^0 = 0 or d^A^ = 0.) In our case of perturbations to the metric, a similar freedom 
exists. Even if only scalar perturbations are considered, there is still considerable 
freedom in the variables one chooses to describe the fluctuations. Although any 
physical results must be insensitive to the gauge choice, it is possible to use a gauge 
which looks quite different from Eq. (4.9) and still describes the same physics. For 
the record, the gauge in Eq. (4.9) is called the conformal Newtonian gauge.^ 

We want to reexpress the total derivative in Eq. (4.1) as a sum of partial deriva-
tives. The distribution function depends on the space-time point x^ = {t,x) and 
also on the momentum vector defined as 

P ' ^ ^ (4.10) 

where A again parametrizes the particle's path, as in Eq. (2.18) (and again we will 
not need to specify A explicitly). Thus, in principle, / is a function defined in an 
8-dimensional space. However, not all the components of the momentum vector are 
independent since the masslessness of the photon imphes that 

P ' - ^M-P^P" = 0. (4.11) 

^Historically, the initial ground-breaking work on the evolution of fluctuations was carried out 
in synchronous gauge (Peebles and Yu, 1970; Wilson and Silk, 1981; Peebles 1982; Bond and Szalay, 
1983; Bond and Efstathiou, 1984). Recently, the physics of the anisotropics has been elucidated 
most clearly by using conformal Newtonian gauge (e.g., Hu and Sugiyama, 1995). Exercise 2 works 
out some of the relevant equations in synchronous gauge. 
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So there are only three independent components of the momentum vector. Before 
we choose which three we will use, let us enforce the constraint of Eq. (4.11), using 
the metric of Eq. (4.9). 

p2 ^ 0 = - (1 - f 2^){Py +p^ = 0 (4.12) 

where I have defined 
p^=9ijP'P^. (4.13) 

We can use the constraint equation then to eliminate the time component of P^: 

P^ = , ^ = p (1 - * ) . (4.14) 

This last equality holds since we are doing first-order perturbation theory in the 
small quantity ^ . With our sign convention, an overdense region has ^ < 0. There-
fore, in an overdense region, the term in parentheses on the right-hand side here is 
greater than one. Thus, Eq. (4.14) tells us photons lose energy—redshift—as they 
move out of a potential well. 

Equation (4.14) is the generalization of the relativistic expression E = pc to 
a perturbed Friedmann-Robertson-Walker metric. It allows us to eliminate P^ 
whenever it occurs in favor of p, the generalized magnitude of the momentum. 
Recall that in the harmonic oscillator case, we did not include a term proportional 
to df/dE in Eq. (4.3). Here, too, we do not need to include a term proportional 
to df/dP^ when expanding the total time derivative. We need include only the 
dependence of / on the momentum: both the magnitude p and the angular direction. 
For the direction vector, we'll use the unit vector p^ = Pi, which by definition 
satisfies Sijp^p^ = 1. 

We can now write Eq. (4.1) as 

dl^dl dl dx^.dldpdl dp^ 
dt dt dx^ ' dt dpdt dp^' dt' ^ ' ^ 

The easiest term in Eq. (4.15) is the last one since it does not contribute at first 
order in perturbation theory. To see this, first recall that the zero-order distribution 
function is simply the Bose-Einstein function which depends only on p, not on the 
direction p^. Therefore, df /dp^ is nonzero only if we consider the perturbation to 
the zero-order / ; i.e., it is a first-order term. But so is the term which multiplies it, 
dp^/dt, for the direction of a photon changes only in the presence of potentials $ 
and ^ . In the absence of these potentials, a photon moves in a straight line. Thus 
the last term is the product of two first-order terms, rendering it a second-order 
term. We can neglect it. 

Next let us reexpress the second term on the right-hand side of Eq. (4.15) by 
recalhng that (Eq. (4.10)) P' = dx'/d\ and P^ = dt/dX. Therefore, 

dx^ dx^ dX 

dt dX dt 
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pi 

= p o - (4-16) 

We want to reexpress this ratio in terms of our favored variables p and p*. Equa-
tion (4.14) does this for P^; let's do the same for the numerator P\ The comoving 
momentum P* is proportional to p*; call the proportionality constant C: 

P' = Cp\ (4.17) 

To determine the coefficient C, we can use Eq. (4.13): 

p2 = g,,p'fPC^ 

= a^{\ + 2^)5ijp'fPC^ 

= o?{l^2^)C^ (4.18) 

where the last equality holds because the direction vector is a unit vector. Equa-
tion (4.18) tells us that C = p(l — $ ) / a so whenever we encounter P \ we can always 
eliminate it in terms of p, p* via 

1 - $ 
P'=pp'- . (4.19) 

a 

Prom Eqs. (4.16) and (4.19), we see that 

^ = L (1 + ^ _ $ ) . (4.20) 
at a 

An over dense region has ^ < 0 and $ > 0, rendering the term in parentheses less 
than one. So, Eq. (4.20) says that a photon slows down {dx/dt becomes smaller) 
when traveling through an overdense region. This makes perfect sense: we expect 
the gravitational force of an overdense region to slow down even photons. Having 
said that, I now claim that we can neglect the potentials in Eq. (4.20). For, in the 
Boltzmann equation they multiply df/dx^ which is a first-order term. (Again, the 
zero-order distribution function does not depend on position.) So collecting terms 
up to this point, we have 

dl^dl fdl dldp 
dt dt a dx^ dpdt' ^ ' ^ 

The remaining term to be calculated is dp/dt. Alas, unlike the harmonic oscillator, 
here dp/dt ^ —kx. Rather we will need the geodesic equation from general relativity 
and more fortitude to compute dp/dt for photons in a perturbed FRW metric. 

To begin, let us recall that the time component of the geodesic equation (2.18) 
can be written as 

^ = - r ^ ^ P - P ^ . (4.22) 
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We can rewrite the derivative with respect to A as a derivative with respect to t ime 
multiphed by dt/dX = P^. Also, we can use Eq. (4.14) to ehminate P^ in terms of 
our favored variable p. Then the geodesic equation reduces to 

^ b ( i - ^ ) ] 
potpfS 

- r% (1 + *). (4.23) 

Expand out the t ime derivative to get 

J(i-^) = p_-r%^-( i + n (4.24) 

Now we multiply both sides by (1 - f ^ ) ; drop all terms quadratic in ^ ; and reexpress 
the total t ime derivative of ^ in terms of partial derivatives so tha t 

dp r d^ p' d^ 

dt \ dt a dx"^ J ' p 4 
papf3 

r\(3 (1 + 2*). (4.25) 

In order to evaluate dp/dt then we need to evaluate the product T^afsP^P^/p-
Recall t ha t the Christoffel symbol is best writ ten as a sum of derivatives of the 
metric (Eq. (2.19)). Here we are interested only in the T^a/s component. It multiplies 
P^P^, which is symmetric in a , (3. Thus, the first two metric derivatives contribute 
equally, and we have 

pO 
pap [3 r,Ol/ 

Q/3-
' dx^ dx^ 

pap 13 
(4.26) 

Now g^^ is nonzero only when i/ = 0, in which case it is simply the inverse of ^oo, 
so 

J- a 

pocp(3 _i ^ 2 * 
(3-

. dgoa dga(3 
dx^ dt 

pocp(3 
(4.27) 

Once again, poa in the first term in brackets is nonzero only when a = 0, in which 
case its derivative is —2d^/dx^. The second te rm in brackets multiphed by the 
product of momenta is 

dgc0 P^'P" dgoo P^'P^ dgij P'Pi 

dt dt 

5 * 2 . 

dt p 

2 — + 2 F ( l - f 2$) 
P'P^ 

(4.28) 

But, via Eq. (4.19), SijP'P^ = p^{l - 2 $ ) / a 2 , so we have 

pO 
p<^pi3 - 1 + 2 * 

a/3-
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- p | 2 ^ - f 2 / / ( l + 2 $ ) | ( l - 2 $ ) (4.29) 

The last line here simplifies since (1 -f 2<I>)(1 - 2$) -^ 1 at first order, and 1 — 2$ 
can be set to 1 when multiplying d^/dt. Summing over the index /3 in the first 
term then leads to 

•L a 

po^pf^ - 1 + 2 * 
/3-

a* 
'dt 

= {-1+2*} 
9 * d^ p^ r 9$ 

4-

We can insert this into Eq. (4.25) to get 

dp _ r 9 * p' a * 

Collecting terms, we finally have 

9 ^ 

dt 
p-2 

9 * pp' (9$ 

dx^ a P I dt 

" ) 

.4 

Idp 

p dt 
= -H-

~dt 

p^d<if 

a dx^ 

(4.30) 

(4.31) 

(4.32) 

Equation (4.32) is what we were after. It describes the change in the photon momen-
tum as it moves through a perturbed FRW universe. The first term accounts for 
the loss of momentum due to the Hubble expansion. To understand the significance 
of the next two terms in Eq. (4.32), we first need to remember that an overdense 
region has $ > 0 and * < 0 with our sign conventions. Therefore, the second term 
says that a photon in a deepening gravitational well {d^/dt > 0) loses energy. 
This is understandable: the deepening well makes it more difficult for the photon 
to emerge, thereby increasing the magnitude of the redshift. Finally, a photon trav-
eling into a well {p^d^^/dx^ < 0) gains energy because it is being pulled toward the 
center. Conversely, as it leaves the well, it gets redshifted. 

We are now in a position to write down the Boltzmann equation for photons. 
Using Eq. (4.32) in Eq. (4.21) leads to 

dt dt a dx' ^ dp 

9$ p' d^ 
^'dt'^l^'d^^ 

(4.33) 

This equation incorporates much of the physics with which we are already familiar, 
such as the fact that photons redshift in an expanding universe. It also leads directly 
to the equations governing anisotropics. Working through the terms on the right, 
the first two are familiar from standard hydrodynamics; when integrated, they lead 
to the continuity and Euler equations (Exercise 1). The third term dictates that 
photons lose energy in an expanding universe. We saw some of this in Chapter 2 
when considering geodesies. Shortly, we will see how the Boltzmann formalism 
enforces this result. Finally, the last two encode the effects of under-/overdense 
regions on the photon distribution function. 
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To go further we must now expand the photon distribution function / about its 
zero-order Bose-Einstein value. I will do this in a way that may seem odd at first. 
Let us write 

f{x,p,p,t) 
1 - 1 

exp' T(0[i + e(f,p,t)] 
1 (4.34) 

Here the zero-order temperature T is a function of time only (i.e., scales as a~^), 
not space. The perturbation to the distribution function is characterized by 0 , 
which could also be called ST/T. In the smooth zero-order universe, photons are 
distributed homogeneously, so T is independent of x, and isotropically, so T is 
independent of the direction of propagation p. Now that we want to describe per-
turbations about this smooth universe, we need to allow for inhomogeneities in the 
photon distribution (so 9 depends on x) and anisotropics (so 9 depends on p). 
There is one assumption built into Eq. (4.34). I have explicitly written down that 
9 depends on x,p, and t. This assumes that it does not depend on the magnitude of 
the momentum p. We will soon see that this is a vaHd assumption, following directly 
from that fact that the magnitude of the photon momentum is virtually unchanged 
during a Compton scatter. The perturbation 9 is small, so we can expand (again 
keeping only terms up to first order) 

r9 

/'"'-f̂ - (4.35) 

In the last line I have identified the zero-order distribution function as the Bose-
Einstein distribution with zero chemical potential, 

f{0) 
exp m 1 

- 1 
(4.36) 

and made use of the fact that for this function Tdf^^^/dT = -pdf^^^/dp. 

4.2.1 Zero-Order Equation 

We can now set about systematically collecting the terms of similar order in 
Eq. (4.33). Let us start with the zero-order terms, those with no $, ^ , or 9 . These 
lead immediately to 

dt 

Ofio) a/(o) 
Hp-

zero order 
dt dp 

0. (4.37) 

I have set df/dt here equal to zero, i.e., set the colUsion term on the right of 
Eq. (4.1) to zero. I could justify this by claiming that we are now looking only at 
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the collisionless Boltzmann equation. But there is a much deeper justification. In 
fact, even when we come around to including colHsions, we will see that there is 
no zero-order collision term. That is, the colhsion terms will be proportional to 0 
and other perturbatively small quantities. There is a profound reason for this: the 
zero-order distribution function is set precisely by the requirement that the colhsion 
term vanishes. Another, perhaps more familiar, way of saying this is to point out 
that any collision term includes the rate for the given reaction and for its inverse. 
If the distribution functions are set to their equilibrium values, the rate for the 
reaction precisely cancels the rate for its inverse. If a given component is out of 
equihbrium, collisions will drive it toward its equihbrium distribution. This is the 
reason we expected a Bose-Einstein distribution in the first place. Its observation 
is convincing evidence that photons were at one point in the early universe tightly 
coupled to the electrons. 

Returning to Eq. (4.37), we can rewrite the time derivative as 

a/(0) a/(o) dT 

dt dT dt 

so that the zero-order equation becomes 

dT/dt da/dt 

dT/dt a/(^) 

dp 
= 0. 

Thus dT/T = -da/a or 
1 

(4.38) 

(4.39) T o e - . 
a 

This is precisely what we expected from the heuristic argument about the photon's 
wavelength getting stretched as the universe expands (Section 1.1) and the more 
concrete argument of Section 2.1. It is reassuring to see this result emerge from the 
Boltzmann treatment. 

4.2.2 First-Order Equation 

We now return to Eq. (4.33) and extract the equation for the deviation of the 
photon temperature from its zero-order value, i.e., an equation for G. To do this, 
everywhere we encounter / in Eq. (4.33), we insert the expansion of Eq. (4.35): 

df_ 
dt = -P 

first order 

d_ 

dt 

5/(0) 

dp e a ox^ op op 

dfio) 

dp 

-p-
a/(°) 

dp 
d^ p_d^ 
'di^'a'dx'i 

(4.40) 

Consider the first term on the right-hand side here. The time derivative can be 
rewritten as a temperature derivative so 

d 

rt dp 
G = -P-

df^°^de dTd^f^°^ 
dp dt 

pO 
dt dTdp 
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a/(0)ae ^dTldt d • a/(o)-| 
dp 

(4.41) 
dp dt "^ T dp 

The second line follows here since df^^^/dT = —{p/T)df^^^/dp. The second term 
on this second line cancels the third term on the right in Eq. (4.40), so we can 
finally write down the equation governing the perturbation 0 : 

a/(o) 
dt = -P- dp 

first order 

de f de a$ p' a* 
dt a dx^ dt a dx^ 

(4.42) 

The first two terms here account for "free streaming," which translates into 
anisotropics on increasingly small scales as the universe evolves. The last two 
account for the effect of gravity. Note that every time x appears it is multiplied by 
a, the scale factor. This must happen, for physical distances are ax. 

4.3 COLLISION TERMS: COMPTON SCATTERING 

Our task in this section is to determine the influence Compton scattering has on 
the photon distribution function. The scattering process of interest is 

e~{q)^l{p} ^ e-{q')^^{p'), (4.43) 

where I have expHcitly indicated the momentum of each particle. 
We are interested in the change of distribution of photons with momentum p 

(with magnitude p and direction p). Therefore we must sum over all other momenta 
{q^q',p') which affect f{p). Schematically, then, the collision term is 

C\fm= E |Ampl i tude |2{/e(g ' ) / (p ' ) - /e{g) / (p)} . (4-44) 

The amplitude is reversible so it multiplies both the reaction and its inverse. The 
products of the electron distribution function fe and the photon distribution func-
tion simply count the number of particles with the given momenta. I have neglected 
stimulated emission and PauU blocking, which would lead to factors of 1 + / and 
1 — /e with the appropriate momenta. At first order this turns out to be a valid 
assumption. If one were to go to second order, though, stimulated emission would 
have to be included. Pauli blocking is never important after electron-positron anni-
hilation because the occupation numbers fe are very small (Exercise 4). 

Unfortunately, the collision term becomes a bit messier than the schematic ver-
sion when we put in all the factors of 2IT to properly account for the sums over 
phase space. Explicitly, the collision term is^ 

^Most of the phase space factors here follow from our discussion in Section 3.1, the exception 
being the factor of 1/p in front. You may have wondered about one other feature of the Boltzmann 
equation presented in this chapter: I started at the outset taking df /dt; does not general relativity 
require us to take the derivative with respect to the affine parameter A? Exercise 5 illustrates how 
these problems solve each other. 
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X { /e (g ' ) / ( p ' ) - / e (9 ) / (p )} - (4.45) 

Here the delta functions enforce energy momentum conservation. The energies at 
this order are the relativistic hmit for photons and non-relativistic Hmit for elec-
trons: E{p) — p and Ee{q) = rUe -f q'^/{2me). Note the similarity between this 
colhsion term and the general one (Eq. (3.1)) we considered in Chapter 3. The only 
difference is that I have not integrated this collision term over all photon momenta 
p, so there are only three momentum integrals. Again, this reflects our need to 
understand how photons travehng in different directions interact: we will see that 
the colhsion term depends on p. 

Since the kinetic energy of the electrons is very small at the epochs of interest 
compared with their rest energy, the factors of Ee in the denominator of Eq. (4.45) 
may be replaced with nie. Then using the three-dimensional momentum delta func-
tion to do the q' integral, we have 

d^q f (Pp' r .2 

''V'^^'^Jw?! (27r)V 

' q^ , {q-^p-p'r p _| p 
2mp 2me 

X \M\'' {feiq + p-pVip') - fe{q)f{p)} • (4.46) 

To go further, we need to understand the kinematics of nonrelativistic Compton 
scattering. The most important feature of this process for our purposes is that very 
httle energy is transferred. In particular, 

q2 ( ^ + ^ _ ^ / ) 2 
Ee{q)-Ee{q+p-p') 

2me 2me 

(P'-P^-\ (4.47) 

where the last approximate equahty holds since q is much larger than p*and ^ ' . In 
nonrelativistic Compton scattering, p' ~ p, scattering is nearly elastic. Therefore, 
p ' — p is of order p, of order the ambient temperature T. So the right-hand side of 
Eq. (4.47) is of order Tq/rrie ~ Tv\) where the baryonic velocity Vh is very small. The 
change in the electron energy due to Compton scattering is therefore of order Tvh-
Since the typical kinetic energy of the electrons is also of order T, the fractional 
energy change in a single Compton collision is very small, of order Vb- It makes 
sense, therefore, to expand the final electron kinetic energy {q -\- p — p')'^/{2me) 
around its zero-order value of q^/{2m^). The delta function can be expanded as 

q^ , {q-^v-v'f 
P+ T; P -

2me 2me 

+ {EM')~Ee{q)) 
d6(p + Ee{q)-p'-E,{q')) 

dEeiq') 
E,(q) = EM') 
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= Sip-p')^^I^nil^J(^ (4.48) 
nie op' 

where the second equahty makes use of the fact that for a general function / of 
the sum of two variables, df{x — y)/dx — —df{x — y)/dy. This formal expansion 
appears ill-defined at present, but when integrating over momenta, the derivatives 
of delta functions will be handled by integrating by parts. With this expansion, and 
using the fact that fe{Q + p — v') — feio)^ the collision term becomes 

x{«(p-p' )+<tf f lJ?fc£l | ,;(p.)_/(Pl}. ("9) 

To proceed further, we need the amphtude for Compton scattering. This can 
be computed using Feynman rules as explicated for example in Bjorken and Drell 
(1965). We will take it to be constant: 

\M\^ ^STrarml (4.50) 

where ax is the Thomson cross-section. This is wrong, and it is wrong for two 
regisons. First of all, the amplitude squared has an angular dependence oc (1 + 
cos^lp-p ']). Ignoring this angular dependence, as I now propose to do, makes a small 
difference in the final collision term. It needs to be included in calculations which 
aspire to 1% accuracy. But it would simply distract us here, so let us ignore it for 
the present. The second reason a constant amplitude is wrong is a little more subtle 
and, when properly accounted for, opens up a whole new branch of CMB study. In 
particular, the amplitude squared has a polarization dependence (oc \e • e'p, where 
€ and e' are the polarizations of the incoming and outgoing photons) which I have 
implicitly summed over here. The dependence on polarization means that at a small 
level the CMB will be polarized due to Compton scattering (Bond and Efstathiou, 
1984; Polnarev, 1985). It turns out that the information carried by the polarization 
spectrum is as valuable as that carried by the temperature spectrum (Seljak, 1997; 
Seljak and Zaldarriaga, 1997; Kamionkowski, Kosowsky, and Stebbins, 1997a,b). We 
will devote considerable time in Chapter 10 to understanding polarization. Even if 
we were not concerned with polarization, the temperature anisotropies are coupled 
to the polarization field, so an accurate determination of the former requires a 
treatment of the latter. Again, though, I will neglect this small effect here in the 
derivation of the collision term. It is straightforward to include both the effects 
of polarization and the angular dependence of Compton scattering using the same 
formalism we are now in the midst of. The algebra is simply a bit more tedious. 

Once we have assumed that \M\'^ is constant, we can multiply out the terms in 
brackets in Eq. (4.49) keeping only terms first order in energy transfer. Also, the 
q integral simply gives a factor of n^ (or rieVh for the term which has a factor of 
q/rrie). So, 
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cim] 
27r^ne(7x f cfip' 

x{/(p')-/(p)-p'^e(p')+P^©(p)} 

+(p- p') 
_ d5{p 

•Vb 
•P') 

dp' (/(°)(P')-/'°'(P)) (4.51) 

where Q^ is the sohd angle spanned by the unit vector p\ On the first Hne, I 
have broken up the difference f{p') — f{p) into a zero-order piece,"^ which doesn't 
contribute when multiplying S{p—p'), and a first-order part which can be neglected 
when multiplying the velocity term. 

There are only two terms in Eq. (4.51) which depend on p' and therefore which 
must be accounted for when integrating over solid angle fi'. First, there is the 
perturbation to the distribution function, Q{p')- It is convenient at this stage to 
introduce the notation 

eo(f ,0 = — I dQ.'e{p',x,t). 
An J 

(4.52) 

So Go does not depend on the direction vector; it is an integral of the perturbation 
over all directions. In other words, it is the monopole part of the perturbation. 
Note that we cannot absorb this monopole into the definition of the zero order tem-
perature since the latter is constant over all space. The perturbation Go therefore 
represents the deviation of the monopole at a given point in space from its average 
in all space. Later on we will generalize Eq. (4.52) to all other multipoles. 

The second term in Eq. (4.51) which depends on p ' is the exphcit factor p' -Vh-
This term integrates to zero since v\y is a fixed vector. Thus, the integration over 
solid angle leaves 

c\!m = ^ /~ *v W - !>') (-"' -.^/'%„+,f|^e,p,) 
5p' dp 

+P -^^^^(/^°>(y)-/<°'(p)) (4.53) 

Now the p' integral can be done: in the first line by trivially integrating over the 
delta function and in the second by integrating by parts. We are left with 

^Note that we are expanding in two small quantities simultaneously, the small perturbations 
and the small energy transfer. Here, we are breaking up f{^) — f{p) into terms zero and first 
order in the small perturbations. 
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C[f{p)] = 
Ofio) 

-p——Hear [9o &{p)-^P'Vh] (4.54) 

Already, we can anticipate the effect of Compton scattering on the photon distri-
bution. In the absence of a bulk velocity for the electrons (^b = 0), the collision 
terms serve to drive 0 to GQ. That is, when Compton scattering is very efficient, 
only the monopole perturbation survives; all other moments are washed out (Fig-
ure 4.3). Intuitively, strong scattering means that the mean free path of a photon 
is very small. Therefore, photons arriving at a given point in space last scattered 
off very nearby electrons if Compton scattering is efficient. These nearby electrons 
most hkely had a temperature very similar to the point of observation. Therefore, 
photons from all directions have the same temperature. This is the characteristic 
signature of a monopole distribution: the temperature on the sky is uniform. 

Figure 4.3. A plane wave perturbation in the matter and its effect on tightly coupled photons. 
Dark (white) regions represent hot (cold) spots in the electron temperature. If Compton scat-
tering is very efficient then photons last scattered very near the point of observation. Circles 
denote last scattering surfaces for observation points indicated by stars. The temperature on 
these surfaces is very close to uniform, so the distribution is almost all monopole. Note though 
that different circles (corresponding to different observers) have different temperatures due to 
the perturbation. So the monopole varies in space. 

The situation changes shghtly if the electrons carry a bulk velocity. In that case, 
the photons will also have a dipole moment, fixed by the amplitude and direction 
of the electron velocity. Even in this case, though, all higher moments will vanish. 
Thus Compton scattering produces a photon distribution which is extremely simple 
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to categorize: it has only a nonvanishing monopole and dipole. This is equivalent 
to saying that the photons behave like a fluid. Indeed, strong scattering, or tight 
coupling, produces a situation wherein the photons and electrons behave as a single 
fluid. 

4.4 THE BOLTZMANN EQUATION FOR PHOTONS 

We can now collect the left- and right-hand sides of the Boltzmann equations from 
the previous two sections. A few more definitions will complete the first goal of this 
chapter, a linear equation for the perturbation to the photon distribution. Equating 
Eqs. (4.42) and (4.54) leads to 

At this point, it is convenient to reintroduce the conformal time ry, defined in 

Eq. (2.41), as our time variable. In terms of the conformal time, the Boltzmann 

equation becomes 

dQ . d<if 
® ^ ^ ' a ? ^ ^ " ^ ^ ' ^ ^ ''''^^'' [Go - 9 4-p • iTb]. (4.56) 

Here, and from now on, overdots represent derivatives with respect to conformal 
time. 

Equation (4.56) is a partial differential linear equation couphng © to other vari-
ables $, ^ , and v\y which also evolve linearly. If we Fourier transform all these 
variables, so that d/dx^ —> ki{= A:*), the resulting Fourier amplitudes obey ordi-
nary differential equations, which are much simpler to solve. In the case of small 
perturbations around a smooth universe, there is an added benefit of Fourier trans-
forming. Since the background is smooth, the only x dependence in Eq. (4.56) is 
hidden in the perturbation variables themselves. In general, an equation of the form 

aA{x) = bB{x) (4.57) 

gets transformed into 
aA{k) = bB{k). (4.58) 

That is, every Fourier mode evolves independently: A{ki) can be evolved even if 
we know nothing of ^(^2)- So the Fourier transform of Eq. (4.56) produces a set of 
ordinary differential equations for the Fourier modes, and this set of equations is 
uncoupled. Instead of solving an infinite number of coupled equations, we can solve 
for one /c-mode at a time. 

Note that this simplification arises because the perturbations are small (equiv-
alently the equations are linear). In this case, the different Fourier modes all evolve 
independently. Perturbations to the CMB remain small at all cosmological epochs, 
so Fourier transforms are very useful. In contrast, perturbations to matter are more 
complicated. Initially they are small, and they remain small until relatively recently. 
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The largest scales today are still in the linear regime, so Fourier transforming is 
certainly useful for the matter perturbations as well. However, to completely char-
acterize the matter field today requires accounting for nonhnearities, and for this 
purpose, Fourier transforms lose much of their appeal. Different Fourier modes cou-
ple when nonlinear behavior becomes important, so the codes which follow matter 
perturbations all the way until today work in real space. Even these codes, however, 
start at 2 ~ 20 with the initial conditions set by linear evolution. 

Our Fourier convention will be 

j^e^'-'Q{k). (4.59) 

We will often characterize a mode by the magnitude of its wavevector^ : k == yWk^. 
Before rewriting Eq. (4.56) in terms of Fourier modes, let us make two final 

definitions. First, define the cosine of the angle between the wavenumber k and the 
photon direction p to be 

/ x ^ ^ . (4.60) 

From now on, /i will be the variable describing the direction of photon propagation. 
A good way to think of /i is to go back to Figure 4.3. The wavevector k is pointing 
in the direction in which the temperature is changing, so it is perpendicular to the 
gradient {k is horizontal in the figure). When /x = 1 then the photon direction is 
aligned with k, so the photon is traveling in the direction along which the tem-
perature is changing. A photon traveling in a direction in which the temperature 
remains the same (vertically in the figure) has /x = 0. We will typically assume that 
the velocity points in the same direction as k (this is equivalent to saying that the 
velocity is irrotational), so v\^ - p = v\^/j.. Next, we define the optical depth 

r{r]) = / dr]' rieara. (4.61) 

At late times, the free electron density is small, so r <^ 1, while at early times, it 
is very large. Note that I have defined the limits of integration in such a way that 

f = ^ = -jieara. (4.62) 
dr] 

With these definitions, we are finally left with 

6 + ikfxQ 4- 4 + iki2^ = - f [GO - G + fid^] . (4.63) 

"^Note that k^ is a 3D vector in Eudclidean space so that ki — k^\ you do not need a factor of 
Qij to go back and forth. The same goes for the velocity vl^. 
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4.5 THE BOLTZMANN EQUATION FOR COLD DARK MATTER 

We can apply the formalism developed in the previous sections to derive the Boltz-
mann equation for any other constituent in the universe. Of particular importance 
is the evolution of the dark matter. In almost all currently popular models of struc-
ture formation, dark matter plays an important role in structure formation and in 
determining the gravitational field in the universe. 

It is perhaps simplest to derive the evolution equations for dark matter by 
imposing conservation of the energy-momentum tensor, as we did in Chapter 2 in 
the homogeneous case. UnHke the photons, the dark matter always behaves Uke 
a fluid so can always be described completely by T^i^. Nonetheless, here we will 
sacrifice simplicity and use the Boltzmann formalism to derive the dark matter 
equations. This will (i) reinforce the calculations of the previous sections and also 
(ii) pave the way for the electron/proton equations of the next section. 

There are several ways in which the dark matter distribution diff'ers from that 
of the photons. First, by definition, "dark" matter does not interact with any of 
the other constituents in the universe. Thus we need not deal with any collision 
terms. Second, cold dark matter, in contrast to the photons, is nonrelativistic. So 
we need to redo some of the kinematics which led to the left side of the Boltzmann 
equation. In particular, the constraint Eq. (4.11) now becomes 

g^.P^P'' = -m^ (4.64) 

where m is the mass of the dark matter particle. It is also useful to define the energy 
as 

E = ^J^^^T^, (4.65) 

where p is defined exactly as in Eq. (4.13): p^ = gijP^PK In the massless case, of 
course, Eq. (4.65) says that E = p, so E is superfluous. Here it will be convenient to 
let E replace p as one of the variables on which the distribution function depends 
(in addition to position x, time t, and the direction vector p). We can now derive 
the equivalent of equations (4.14) and (4.19) for the four-momentum of a massive 
particle: 

k ( l - * ) , p p ^ P^ (4.66) 

Only the time component is different from that of a massless particle, with E 
replacing p. 

Using E as one of the dependent variables means that the total time derivative 
of the dark matter distribution function /dm is 

dfdm ^ dfdm dfdm dx' Of dm dE dfdm dp' 
dt dt dx^ dt dE dt dp' dt' ^ ' ^ 

Once again, the last term here vanishes since it is the product of two first-order 
terms. Because of the change in the constraint equation, the coeflacients of the 
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derivatives of the distribution function with respect to x^ and E are slightly dif-
ferent than they were in the massless case. Working through the algebra, which is 
otherwise identical to the calculation presented in Section 4.2, leads to the colli-
sionless Boltzmann equation for nonrelativistic matter: 

dfdm P' P dfdm _ dfdm 
dt a E dx^ dE 

da/dt p^ p 2 ^ p'pd'i 

a 'E "̂  ~E'dt '^~a'dx' 
0. (4.68) 

Equation (4.68) reduces to Eq. (4.33) in the massless Hmit as it must. The main dif-
ference between the two is the presence of factors of p/E, or velocity. For dark mat-
ter particles, these velocity factors suppress any free streaming, as we will shortly 
see. 

In the massless case, to proceed further we used our knowledge of the distri-
bution function. Namely, we knew that the zero-order distribution function was 
Bose-Einstein, and we perturbed around this zero-order solution. For cold dark 
matter particles, we do not need such detailed information about the zero-order 
distribution function. All we need to know is that these particles are very nonrela-
tivistic. So we can neglect the thermal motion of the dark matter (Exercise 9). We 
cannot however neglect p/m completely, because the density perturbations them-
selves induce velocity flows in the dark matter via the continuity equation. These 
coherent flows give rise to p/m ~ v terms, which must be retained. What we can 
do, however, in our linear treatment, is to neglect terms second-order in p/E. 

Instead of assuming a form for /dm, we will take moments of Eq. (4.68). First, 
multiply both sides by the phase space volume d^p/{27r)^ and integrate. This leads 
to 

d^p dUmP^ d_ f d^p 1 d f d^P r F^ \da/dt 9$1 f 
(27r)3 dE E 

Im'^-t'-'- <--) id^ f d^p df, 
a dx 

Note that, since they are independent variables, the integral over p passes through 
the partial derivatives with respect to x^ and t. The last term here can be neglected 
since the integral over the direction vector is nonzero only for the perturbed part of 
/dm- Thus the integral is first order and it multiplies the first-order term d^/dx\ 
The rest of the terms are all relevant, though. To simplify, let us recall that the 
dark matter density is^ 

nd. = / ( 0 3 / < i - (4-70) 

while the velocity is defined as 

^dm 

^Here I have incorporated the spin degeneracy g^m into the phase space distribution /dm- ^ ^ 
impUcitly did the same thing in the last section for the electrons. 



104 THE BOLTZMANN EQUATIONS 

The first two terms in Eq. (4.69), then, can be simply expressed in terms of the 
velocity and the density. The third term is a bit more subtle; to relate it to the 
density, we need to integrate by parts. Since dE/dp = p/E, the integrand can be 
reexpressed as p 5/dm/^p. Thus, the integral becomes 

d^P „ ^ / d m 47r [^ ^^ 3 a / d m f d'p a/dm 47r p 3 
dp 

-'(I?/ '̂ '̂̂ -
= -3ndm- (4-72) 

So the zeroth moment of the Boltzmann equation leads to the cosmological gener-
alization of the continuity equation: 

dt a dx^ 
da/dt a $ 

a dt 
ndm = 0. (4.73) 

The first two terms here are the standard continuity equation from fluid mechanics. 
The last term arises due to the FRW metric and its perturbations. 

To go further, we can collect zero-order and first-order terms in Eq. (4.73). The 
velocity is first order as is $, so the only zero-order terms are 

dn^ da/£ JO) _ 
dt 

+ 3 - ^ n ^ ' ^ = 0 (4.74) 

where n^̂ ^ is the zero-order, homogeneous part of the density. Equivalently, we have 

(0) ^ „ -3 
0 = ^ "drn ^ ^ ' (4-75) 

a relation we anticipated back in Chapter 1 as an obvious ramification of the expan-
sion. We also proved this scaling in Chapter 2 by using the conservation of the 
energy momentum tensor. 

Now let us extract the first-order part of Eq. (4.73). All factors of ndm multi-
plying the first-order quantities v and $ may be set to n^J^. Everywhere else, we 
need to expand ndm out to include a first-order perturbation. In particular, we will 
set 

"dm = 4°^[l+<5(x, t)] , (4.76) 

which defines the first-order piece as n^^ (̂̂ . Since the energy density of matter is 
equal to mass times n, 6 is also the fractional overdensity, Sp/p, of the dark matter. 

M m ' After dividing by n | j^, the first-order equation is therefore 

dt adx^ dt 
As it stands, we have introduced two new perturbation variables for the dark 

matter, the density perturbation 6 and the velocity v. Equation (4.77) is only one 
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equation, though, for these two variables. We need another. To get it, we return to 
the unintegrated Boltzmann equation (4.68). W'e have just taken its zeroth moment; 
to extract a second equation, let us take its first moment. In particular, multiply 
Eq. (4.68) by d^p{p/E)p^/{2TT)'^ and then integrate. The first moment equation is 
then 

" / -^P ^ Pf^ , ^ ^ f ^'^P r P^P'P^ ^ d_ f _£P_r PP^ l_^ f dp I 
dtj (27r)^^^"^ E ^ adx^ j {2iif^""'''' E'^ 

da/dt a$ 
a at 

[ _fp_dUnllp^ _ 1 ^ / rfV dU,,p^p^p^ 
J (27r)'̂  dE E^ a Ox' J {2ixf dE E '^ ' ^ 

The first two terms are straightforward: the first is the time derivative of nd,n^'' 
while the second can be safely neglected since it is of order {{p/E)'^). The last sets 
of terms must be handled more carefully, though, because of the partial derivatives. 
Since {p/E)d/dE = d/dp the third term is actually of order p/E while the last is 
independent of velocity. Let us do the integration by parts explicitly in the third 
term. The integral is: 

d'p dh^p^pi fdnp^ r ^ p^df, 
J (2;r)3 dp E J (2^^ Jo ^ 

f dnf_ r 

dm 

E dp 

r.3 ^5 

^p/d. ( f - - | j j . (4.79) 

The p^/E^ term is completely negligible, so the only relevant contribution to the 
integral comes from the —Ap^/E term: its integral is —An^^vK The same steps 
carry through for the last term in Eq. (4.78); the one additional fact we need is 
that 

dQ^p'fP =6''%. (4.80) 
/ • 3 

So the first moment of the Boltzmann equation is 

% ^ + 4 ^ ^ n , ^ . ^ + ! ^ | i = 0 . (4.81) 
at a a oxJ 

This equation has no zero-order parts, since the velocity is a first-order quantity. 
Therefore, we need extract only the first-order terms, which allows us to set Tidm —̂  
^dm everywhere. Using the time dependence we found in Eq. (4.75) we arrive at 

dv^ da/dt , I d^ , ^^, 
— + - ^ 1 ; ^ + - — - = 0 . 4.82 
at a a oxJ 

Equations (4.77) and (4.82) are the two equations governing the evolution of 
the density and the velocity of the cold, dark matter. The momentum conservation 
equation (4.82) does not have the standard {v • W)v term, since any term with two 
factors of v is manifestly second order. An interesting feature of the two equations is 
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generic to this process of integrating the Boltzmann equations to get the fluid equa-
tions. Note that the equation for the density depends on the next highest moment, 
the velocity. This is generah the integrated Boltzmann equation for the /th moment 
depends on the / + 1 moment. In principle, then, this process of integrating leads 
to an infinite heirarchy of equations for the moments of the distribution function. 
Indeed, we will see that this is one way of solving the Boltzmann equation for the 
photons, Eq. (4.63), which we have not yet integrated over. One might expect, 
then, that the velocity equation would depend on the next highest moment, the 
quadrupole, of the dark matter distribution. Why doesn't it? The answer hes in 
our assumption that the dark matter is cold. We have explicitly dropped all terms 
of order {p/E)'^ and higher. These terms correspond to the higher moments of the 
distribution, but since we are dealing with cold, dark matter they are irrelevant. 
Thus, the set of two equations, (4.77) and (4.82), are a closed set of equations for 
the cold, dark matter distribution.^ If we were interested in dark matter particles 
with much smaller masses, such as massive neutrinos, we would need to keep these 
higher moments. 

Let us finally rewrite Eqs. (4.77) and (4.82) in terms of conformal time 7] and 
the Fourier transforms. The density equation becomes 

6-hikv +3^ = 0 (4.83) 

where I have assumed that the velocity is irrotational so v^ = {k^/k)v. The velocity 
equation is 

d-\- -v-\- ik^ = 0. (4.84) 
a 

4.6 THE BOLTZMANN EQUATION FOR BARYONS 

The final components of the universe which require a set of Boltzmann equations 
are the electrons and protons. These components are often grouped together and 
called baryons^ nomenclature which is obviously ridiculous (electrons are leptons, 
not baryons) but nonetheless common. 

Electrons and protons are coupled by Coulomb scattering {e+p -^ e + p). The 
Coulomb scattering rate is much larger than the expansion rate at all epochs of 
interest (Exercise 12). This tight coupling forces the electron and proton overden-
sities to a common value: 

(0) (0) 

Pe -Pe _P,- P,_ ^ ^^ (4 35) 
Pi°' Pf' 

where we bow to common usage with the subscript h. Similarly the velocities of the 
two species are forced to a common value. 

^Of course, we still need equations for the gravitational potentials ^ and ^ . These come from 
Einstein's equations, as does the zero-order equation for a. 
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Ve=Vp = Vh- (4 .86) 

We need to derive equations then for 5^ and v^- The starting point will be the 
unintegrated equations for electrons and protons: 

= {CepjQQ'q' + {Ce-yjpp'q' (4.87J 
dt 

dfp{x,Q,t) 
{Cep)qq'Q'^ (4 .88) 

dt 

The notation here is more compact, and therefore more deceiving, than that in 
previous sections. We will need this compactness in what follows, so let's walk 
through it slowly. First, notice that initial and final momenta for the photon are p 
andp'] for electron ^and q'\ and the proton has been assigned Q and Q'. Consider 
the Compton collision term in the equation for the electron distribution function. 
I have defined the unintegrated part of the collision term as 

(4.89) 
and the angular brackets denote integration over all momenta in the subscripts: 

The Coulomb collision term is similar, the main difference being the amplitude for 
the two processes. 

In principle, Eq. (4.88) should contain a term accounting for scattering of pro-
tons off photons. In practice, though, the cross section for this process is much 
smaller than for Compton scattering off electrons (in each case the cross section is 
inversely proportional to the mass squared). So the interactions of the combined 
electron-proton fluid with the photons is driven by Compton scattering of electrons, 
and the proton-photon process can be ignored. Also, in principle, we should include 
ionization and recombination terms in Eqs. (4.87) and (4.88). These however would 
merely distract us here, so we treat all electrons as ionized. 

With this notation defined, we can now proceed and derive equations for Sb and 
v\). First, multiply both sides of Eq. (4.87) by the phase space volume d^q/{27r)^ 
and integrate. The left-hand side then becomes identical to the left-hand side we 
derived for dark matter in Eq. (4.73). So we can immediately write 

due 1 d{nevl) 
dt a dx' 

da/dt a$ 
a dt 

= {Cep)QQ'q'q + {Ce-y) pp'q'q - (4-91) 

Both terms on the right vanish. The mathematical way to see this is to realize that 
the integration measure in the first term on the right, e.g., is completely symmetric 
under the interchange of Q <-> Q' and q ^^ q' - Because of the factors of the distri-
bution function, the integrand — c^p — is antisymmetric under this interchange. So 
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the full integral vanishes. More intuitively, the processes we are considering con-
serve electron number so they certainly cannot contribute to dn/dt. That is, the 
integral over fe{(l')fp{Q') counts the total number of electrons that are produced 
in Coulomb scattering. But this is obviously equal to the integral over feiQ)fp{Q)i 
which counts the number of electrons lost in Coulomb scattering. More generally, 
any time we multiply an unintegrated collision term by a conserved quantity and 
then integrate we will get zero. 

The perturbed version of Eq. (4.91) equation is therefore identical to Eq. (4.77). 
Switching to Fourier space and using conformal time leads to 

h + ikvy, + 3l> = 0. (4.92) 

The second equation for the baryons is obtained by taking the first moments of 
both Eqs. (4.87) and (4.88) and adding them together. We did something similar 
for the dark matter; there we first multiplied by p/E and then integrated over all 
momenta. Here we will take the moments by first multiplying the unintegrated 
equations by q (and Q for the protons) instead of by q/E. Therefore, our results 
from the dark matter case carry over as long as we multiply them by a factor of 
m. The left-hand side of the integrated electron equation, for example, will look 
exactly like the left-hand side of Eq. (4.81) except it will be multiplied by mg. The 
proton equation will be multiplied by rUp. Since the proton mass is so much larger 
than the electron mass, the sum of the two left-hand sides will be dominated by 
the protons. So, following Eq. (4.81), we have 

d(n]jvl) da/dt A vn^n\, d"^ 
Trip—Hr^+4—^—mpTii^vl + —^^—^— 

at a a ox^ 
= {Cep{q^ -f Q^))QQ'q'q + {CeW)pp'q'q' (4-93) 

The right-hand side here is the sum of that from both the electron and proton 
equations. Both equations have the Coulomb term, so it is weighted by q (by which 
we multiplied the electron equation) -\-Q (from the proton equation). Only the 
electron equation has the Compton term, so there is only the factor of q there. 
Once again we can use a conservation law, this time conservation of momentum, to 
argue that the integral of Cep{q-\- Q) over all momenta vanishes. So dividing both 
sides by^ p^ = m^nf ,̂ we are left with 

dvj da/dt J 1 a ^ _ 1 
dt a ^ a dx^ pb + - T - ^ b + T^TT = ~{ceW)pp'q'q- (4.94) 

Here I have used the by now familiar n[̂  ^ oc a ^ scaling to eliminate the n^ ^ time 
derivative and three of the four factors of the da/dt term on the left. 

"^Note that convention here, which I will stick with, that p^ is the zero order baryon energy 
density. The total baryon density is therefore pb{l + S\^). 
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The final step is to evaluate the average momentum q in Compton scattering. 
As before, we can use the conservation of total momentum q-{- p to argue that 

\Ceyq)pp'q'q = ~ \Ce^P)pp'q'q- [4i.^0) 

Now switch to Fourier space and multiply both sides of Eq. (4.94) by k^. Since 
k • p = pfi, the right-hand side of Eq. (4.94) becomes —{ceyPfi)pp'q'q/pb' We have 
already computed {cej)p'q'q in Eq. (4.54). We need simply multiply this by pp and 
integrate over all p to find the right-hand side of Eq. (4.94): 

{Ce^V^)pp'q'q UeCTT f d^P 2 ^ / ^ ^ ^ \r\ nf \ A. " ] 

Pb pb J {27Ty dp L J 

Pb Jo 27r̂  dp J_^ 2 I J 

The integral over p can be done by integrating by parts: it is —4/9^. The /i-integration 
over the first and third terms is straightforward (first term vanishes and second 
gives v\^/3). The second term is the first moment of the perturbat ion 0 . Recall tha t 
the zeroth moment was defined as 0 o . It makes sense therefore to define the first 
moment as 

e i ^ 2 | ^ ^ M © ( M ) (4.97) 

where the factor of z is a convention and the definition holds in either real or Fourier 
space. 

We now have an expression for the collision term which can be inserted into 
Eq. (4.94), and after switching to conformal time, we have: 

v^-{--v^-\-ik<if = T - ^ 
a 6pb 

3z0i + Vh (4.98) 

Why is there a factor of pb in the denominator? That is, since photons scatter 
primarily off electrons, why does the total baryon density (which is dominated by 
protons) appear in this velocity equation? Physically, it arises from the fact that 
moving electrons is difficult because they are tightly coupled to protons via Coulomb 
scattering. If the proton was infinitely heavy, so pb —^ oo, Compton scattering would 
not change the electron velocity at all; it would not have any impact on the combined 
proton-electron fluid. We derived Eq. (4.98) by setting rie = rip = rib, but it turns 
out to be valid even if there is an appreciable amount of neutral hydrogen, so that 
Tie y^ rib- Indeed after recombination, most protons are bound in neutral hydrogen 
atoms. And even before recombination, a small fraction are in helium atoms or ions. 
You might be tempted therefore to replace pb in the denominator of Eq. (4.98) by 
the density of free protons. In fact, though, even neutral hydrogen and helium are 
tightly coupled to electrons and protons (see Exercise 12), so all baryons should 
be included. Equation (4.98) quite generally governs the evolution of the baryon 
velocity. 
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4.7 SUMMARY 

The constituents of the universe are not distributed completely uniformly in space. 
For the nonrelativistic components such as the dark matter and the baryons, this 
means that some regions are more dense than others and that there are small 
coherent velocities. For the dark matter we denote the fractional overdensity as 
S{x^t) and the velocity as v{x,t). The equivalent perturbations for the baryons 
are 6h{x,t) and v\^{x,t). In solving the linear evolution equations, it is simplest to 
work with Fourier transforms of all of these. It turns out that the evolution of a 
mode associated with wavevector k depends only on the magnitude of A:, so we 
have equations for 5{k,t). We have found it convenient to use conformal time rj as 
the evolution variable. Also, it is conventional^ in the literature to drop the^s over 
Fourier transformed variables, so our equations will be for 6{k,rj),6h{k,rj),v{k,'r]), 
and Vh{k,r}). The scalar velocities here are the components parallel to k; these are 
the only ones that are cosmologically relevant. 

Relativistic particles such as photons and neutrinos require more information 
to characterize. They have not only a monopole perturbation (the equivalent of 
5) and a dipole (the equivalent of a velocity), but also a quadrupole, octopole, 
and higher moments as well. In other words, the photon distribution depends not 
only on x and time but also on the direction of propagation of the photon, p. In 
Fourier space, therefore, the photon perturbations depend not only on k and rj 
but also on p ' k, which we defined as fi. Thus, the photon perturbation variable 
is 6(A:,/i, 7/), the Fourier transform of ST/T^ the fractional temperature difference. 
Neutrino perturbations require a separate variable with the same dependence; let's 
call it J\f{k,fx,r]). 

We found it useful to define the monopole (Eq. (4.52)) and dipole (Eq. (4.97)) of 
the photon distribution. These moments, @o{k,rj) and Qi{k,rj)^ do not completely 
characterize the photon distribution. More generally, it is useful to define the Ith 
multipole moment of the temperature field as 

ei^-^l'^^Viin)e{n), (4.99) 

where Vi is the Legendre polynomial of order /. The quadrupole corresponds to 
1 = 2, octopole to / = 3, etc. The higher Legendre polynomials have structure on 
smaller scales (see Figure 4.4), so the higher moments capture information about 
the small scale structure of the temperature field. So the photon perturbations can 
be described either by G(/c, /x, rj) or by a whole hierarchy of moments, &i{k, rj). And 
of course similar freedom applies to the neutrino distribution. 

I have postponed a discussion of polarization until Chapter 10, but I mentioned 
in Section 4.3 that a completely accurate treatment of anisotropics in the temper-
ature requires us to incorporate polarization effects. Again, waiting until Chap-
ter 10 for more formal definitions, let's call the strength of the polarization Op. It 

^Conventional, but "abominable" according to one early reviewer. 
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Figure 4.4. Some Legendre polynomials. Note that the higher order ones vary on smaller 
scales than do the low-order ones. In general Vi crosses zero / times between —1 and 1. 

describes the change in the polarization field in space. Upon Fourier transforming, 
it too depends on /c, /x, and ry. 

We now collect the equations we have derived for the photons, dark matter, and 
baryons and supplement them with a trivial extension to massless neutrinos: 

9 + 2fc/i0 =: - $ - ifc/X^ - f 0 0 -

n = 02 + Gp2 -f Qpo 

Qp + ikjiQp = —f -Gp-f ~ (1 -P2 

S -\-ikv = —3$ 

a 

6h + ikv]:y = - 3 $ 

^ + -J [̂ b + 3201] 

0 + I^Vh -

[nW 

- \'P2Mn (4.100) 

(4.101) 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

(4.106) 

M + ik^Af = - $ - z/c/x*. (4.107) 

Equation (4.100) is the Boltzmann equation for photons we have derived. The 
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one change from our derivation is the last term 7^2n/2, which requires some expla-
nation. First, note that it is proportional to the second Legendre polynomial, 
p2(/i) = (3/i2 - l ) /2 . From Eq. (4.101), one of the new terms then is P2B2/2; 
this term accounts for the angular dependence of Compton scattering, which we 
ignored in Section 4.3. The other parts of 11 represent the fact that the tempera-
ture field is also coupled to the strength of the polarization field 0 p which obeys 
Eq. (4.102). Note that 0 p is sourced by the quadrupole, 82, and none of the other 
temperature moments. 

In the equation for the baryon velocity (4.106), the ratio of photon to baryon 
density has been defined as 

Equation (4.107) governs perturbations to the neutrino distribution. A/*. It is iden-
tical to the photon equation except that there is no scattering term since neutrinos 
interact only very weakly. Here I have assumed that the neutrinos are massless. 
If any of the neutrinos had appreciable mass, then Eq. (4.107) would have to be 
amended to account for this. Exercise 11 discusses the question of how large a mass 
is interesting. 
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SUGGESTED READING 

In the 1960s a national magazine ran a cartoon showing dozens of businessmen 
and -women walking the streets of Manhattan looking very important and serious. 
Thought bubbles over each head revealed their true focus: each was imagining a 
raucus sex scene. In at least some ways, the Boltzmann equation plays a similar role 
for physicists and astronomers: no one ever talks about it, but everyone is always 
thinking about it. 

Two excellent astronomy textbooks which do make abundant use of the Boltz-
mann equation — either explicitly or implicitly — are Radiative Processes in Astro-
physics (Rybicki and Lightman) and Galactic Dynamics (Binney and Tremaine). 
In the context of cosmology, in addition to the books mentioned in Chapter 1, The 
Large Scale Structure of the Universe (Peebles), written by the field's pioneer, uses 
the Boltzmann equation extensively, working in synchronous gauge. If you strug-
gled through Section 4.3, you will be amused (angered?) to see §92 of Peebles' book, 
where he takes much less space to derive terms due to Compton scattering. 

A number of papers deriving the Boltzmann equation for cosmological pertur-
bations are well worth reading. There is the path-breaking work by Lifshitz (1946), 
Peebles and Yu (1970), and Bond and Szalay (1983). A nice review was written by 
Efstathiou (1990). The treatment of Compton scattering presented here is based on 
Dodelson and Jubas (1995). If you were to read just one paper in this area, I would 
recommend Ma and Bertschinger (1995), which skips many of the steps presented 
here but has all the relevant formulae and the added virtue of equations in both 
conformal Newtonian and synchronous gauges. For derivation of the polarization 
terms in the Boltzmann equations, see Kosowsky (1996). The first paper to present 
the Boltzmann equation for tensors was Crittenden et al. (1993). 

We will not spend too much time in this book on different gauges or on the 
decomposition of perturbations into scalar, vector, and tensor parts. Two excellent 
review articles which discuss both of these topics in detail are Mukhanov, Feldman, 
and Brandenberger (1992) and Kodama and Sasaki (1984). Both of these are also 
very good on the subjects of the next two chapters, the perturbed Einstein equations 
and inflation. 

EXERCISES 

Exercise 1. Derive the fluid equations for the colhsionless, one-dimensional har-
monic oscillator by taking the moments of Eq. (4.6). The relevant quantities are the 
number density and the velocity defined as integrals over the distribution function: 

'i^f. (4.109) 
7-00 27r ' n J_,^ 

Exercise 2. The metric in a synchronous gauge is 

gooi^^t) = - 1 
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gij{x,t) = a^ [S^J + h^j], (4.110) 

with perturbations 
-2fi 0 0 

hij = I 0 - 2 ^ 0 1 (4.111) 
0 0 h + Afj^ 

where fj has nothing to do with conformal time. Here I have chosen the wavevector 
k to he in the z direction. Derive the equivalent of Eq. (4.63) in synchronous gauge: 

0 + ik^e - ^ - V2{fi)fl = - f [00 - G + ^v]. (4.112) 

Exercise 3. Start from the zero-order unintegrated Boltzmann equation (4.37). 
Integrate this equation over all momenta to show that the number density falls off 
as a^. In the course of this, you will have justified the left-hand side of Eq. (3.1). 

Exercise 4. Show that the Pauli blocking factor l — fe can be set to 1 for all epochs 
of interest. First find fe as a function of temperature and number density using the 
results/approximations of Section 3.1 (i.e. assume that Te <^ rrie). Then, show that 
as long as the temperature is much less than m^, fe is much less than 1. 

Exercise 5. Suppose we started this chapter by writing 

^=C'. (4.113) 

Change from this form to the one in Eq. (4.1) (with df/dt) on the left. How is 
the collision term here, C related to C in Eq. (4.1)? Argue that the first-order 
perturbations in the factor relating the two collision terms can be dropped since 
the collision terms themselves are first-order. 

Exercise 6. Derive Eq. (4.68), the unintegrated Boltzmann equation for a massive 
particle. 

Exercise 7. Account for the angular dependence of Compton scattering. Start 
from Eq. (4.49) but instead of assuming the amplitude is constant, take 

\M\^ = eTTarmlil + cos^[p • p ']). 

Show that correctly accounting for the angular dependence introduces the factor of 
(l/2)'p2(i^)©2 presented in Eq. (4.100). 

Exercise 8. Show that the temperature of nonrelativistic matter scales as a~^ in 
the absence of interactions. Start from the zero-order part of Eq. (4.68) and assume a 
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form /dm c< e~^l^ — e~^ /2mT^ Note that this argument does not apply to electrons 
and protons: as long as they are coupled to the photons, their temperature scales 
as a~^. 

Exercise 9. In Exercise 8, you showed that a thermal distribution of nonrelativistic 
particles which do not interact has a temperature which scales as a""̂  , as opposed 
to that of relativistic particles which we have seen scales as a~^. So Tdm oc T^. Fix 
the normalization by requiring T^m = T when each is equal to the dark matter 
mass. Estimate the typical thermal velocity of a dark matter particle with mass 
equal to 100 GeV when the photon temperature is 1 eV. 

Exercise 10. The purpose of this problem is to derive the results of Section 2.3 
using the Boltzmann equation. Multiply the zero-order part of Eq. (4.68) by 
d'^pE{p)/{27T)^ and integrate. Show that the resulting equation is identical to 
Eq. (2.55). 

Exercise 11. Consider the effect of a massive neutrino on the evolution equations. 
(a) Start from the Boltzmann equation for a massive particle (4.68). Turn it into 
an equation for J\f, the perturbation to the massive neutrino distribution function. 
Use the fact that to first order the neutrino distribution function is 

U = fl'^^'^T^M (4.114) 

where fl — [ê /-̂ '̂  -h 1]~^. Express the final equation in Fourier space using con-
formal time as the evolution variable. 
(b) Recent experiments measuring the atmospheric neutrino flux suggest that the 
mass of the tau neutrino is 0.07 eV, far larger than either the electron or muon 
neutrino. Find the contribution of a 0.07-eV neutrino to the energy density today. 
You may assume it is nonrelativistic. 
(c) Consider the following two scenarios. Each has energy density equal to the crit-
ical density divided up between only two components: a cold, dark matter particle 
and a neutrino. The neutrino in each case has the standard abundance and tem-
perature. The only difference between the two scenarios is in one the neutrino is 
massless while in the other it has a mass of 0.07 eV. Plot the energy density as a 
function of scale factor in each of the these scenarios. Note that they should agree 
very early on (in each case there is only a relativistic neutrino early on) and very 
late. The only difference comes in the middle. 

Exercise 12. Show that ordinary matter is tightly coupled during the relevant 
epochs in the early universe. 
(a) Compute the ratio of the Coulomb scattering rate to the Hubble rate. You may 
assume that all electrons and protons are ionized. 
(b) Show that the rate for neutral hydrogen to scatter off ionized protons is always 
much larger than the expansion rate even when the ionization fraction is on the 
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- 4 order of 10 

Exercise 13. Consider tensor perturbations to the metric. These do not perturb 
9oo{= — 1) or ^oi(= 0). However, the spatial part of the metric is now 

9ij 

Derive the equation for the photon distribution function in the presence of ten-
sor perturbations. UnUke scalar perturbations, tensor perturbations induce an 
azimuthal dependence in G/, so decompose the anisotropy due to tensors into 

e^(/c, /i, (j)) = el{k, fi){l - /i^) cos(20) + ej( /c , /i)(l - /x )̂ sin(20). (4.115) 

Show that both the + and the x component satisfy 

9 
10 

(4.116) 

where i stands for either x or +, and the moments are defined as were the scalar 
moments, in Eq. (4.99). 
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The previous chapter set up the formahsm to describe how perturbations in the 
gravitational field affect particle distributions. This formalism led to the set of equa-
tions (4.100) -(4.107). We need to supplement these equations with an account of 
how the perturbations to the particle distributions affect the gravitational field. For 
this, we need the Einstein equations of general relativity. The calculation detailed 
in this chapter expands the Einstein equations perturbatively around the zero-
order homogeneous solution. Far from being subtle or complex as one might expect 
from general relativity's reputation, this calculation is completely straightforward, 
although a bit long. Still, working through it is a "must-do-once" exercise, so the 
steps are presented in some detail. 

5.1 THE PERTURBED RICCI TENSOR AND SCALAR 

The fundamental equation of general relativity (2.30) is a 4D tensor equation, so 
in principle it represents 16 separate equations. However, since both sides of the 
equation are symmetric tensors, only 10 of these are distinct. We are interested 
though in only two of the 10, since the metric we are focusing on has only two 
independent functions, ^ and ^ . 

Evaluating the left-hand side of the Einstein equation requires three pre-steps: 

• Compute the Christoffel symbols, T^ap^ for the perturbed metric of Eq. (4.9). 
• From these, form the Ricci tensor, R^i,, using Eq. (2.31). 
• Contract the Ricci tensor to form the Ricci scalar, 7Z = g^^R^y 

Note that, unfortunately, even if we are interested in only several components 
of the Einstein equations, we need to compute all the elements of the Ricci tensor. 
For all the components of the Einstein tensor Ĝ ^̂  = R^u — ^yui/^/2 depend on the 
Ricci scalar, which depends on all elements of R^^,. 

117 
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5.1.1 ChristofFel Symbols 

We have already computed the zeroorder Christoffel symbols in Eqs. (2.22) and 
(2.23). Now we need to look at the first-order terms, those that are linear in $ 
and/or ^ . First let us consider F^^^ ,̂ which by definition is 

where again ^^ means the derivative with respect to x^. The only nonzero compo-
nent of g^^ is the time component/ which is the inverse of ^oo = — 1 — 2^ . So, to 
first-order in the perturbations, f̂̂^ = —1 + 2^ , and 

r^M^ = — 2 — [^OM,^ + 5^01/,̂  - gfj,iy,o] • (5.2) 

Take each component in turn: first the one with /j, = v = 0. Each of the terms 
in square brackets is identical, so the brackets give goo,o = —2^,o- Since we are 
interested only in first-order terms the factor of 2 ^ out in front can be dropped 
and we are left with 

r%o = ^,0. (5.3) 

The next possibility is that one of the indices /i or i/ is spatial and the other 
time. It doesn't matter which, since the Christoffel symbol is symmetric in its 
lower indices. In this case, only one of terms in brackets in Eq. (5.2) is nonzero, 
^00,i = —2^,i. Once again since this is first-order, we can drop the factor of 2 ^ in 
front, leading to 

r%i = T\o = ^,r = ih^- (5.4) 

The final equality here moves to Fourier space, where we will stay from now on. 
Recall our convention of not using~s for Fourier transformed variables: ^ on the far 
right is really ^ . 

Finally, if both lower indices in Eq. (5.2) are spatial, the first two terms in 
brackets vanish since goi — 0 and only the last term survives, leaving 

r% = ^ | [ M ' ( i + 2$)]. (5.5) 

There is a zero-order term here, the one we computed in Eq. (2.22), and three 
first-order terms: 

r^zi = c5,,a2 \H + 2H{^ - ^ ) + ^,o] (5.6) 

with H = {da/dt)/a. 
Computing the Christoffel symbols, F^^^ ,̂ will be left as an exercise. They are 

Too = %^ 

^We will do the calculation with x^ = t, not conformal time. Therefore, ^ ,o for example means 
derivative with respect to time. Since our convention is now ^ = d'^/dr], ^ ,o = ^ / a . 
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r^o = r\j = 6ij {H + $,o) 

Vjk == i^ [6ijkk + 6ikkj - 6jkki]. (5.7) 

Note that the only nonvanishing zero-order component is T^jo, in agreement with 
Eq. (2.23). Also remember that both 6ij and the 3-vector ki live in Euclidean space, 
so we can freely interchange their upper and lower indices. 

5.1.2 Ricci Tensor 

The Ricci tensor is most easily expressed in terms of the Christoffel symbols, as in 
Eq. (2.31). First, consider the time-time component: 

i?oo = r"oo,a — r^oQ,o + r^^c^r oo — r^^or oa- (5.8) 

All of these terms contribute at first-order. One simplification comes from consid-
ering the a = 0 part of all these terms. The first and second terms are equal and 
opposite to each other as are the last two. So the sum over the index a contributes 
only when a is spatial. Let's consider each of the terms one by one. 

• The first is 

Poo.i = 4 - * ' (5.9) 

using the first of equations (5.7). 
• The second term in Eq. (5.8) is 

-Poi,o = - 3 ( ^ ^ -H' + $,oo) (5.10) 

using the second of equations (5.7). The factor of 3 in front comes from the 
implicit sum in Su. 

• The next term is T^/^T^oo- Note that F^oo is first order no matter what /? is, 
so we need keep only the zero-order part of T^ip. However, the last of equations 
(5.7) shows that F%/5 is first-order unless /? = 0. So to first-order, 

r i T^3 r^i -pO 

1(3^ 00 = J- iOi 00 

= 3if ^,0. (5.11) 

• Finally the last term is -F*/3or^oi- In this case, if /3 = 0 both F's are first-order, 
so their product is second-order and can be neglected. Therefore, only spatial f3 
need be considered, leading to 

- r ^ o r 02 = —F̂ jor̂ ôi 

= - 3 (//2 + 2if ^,o) . (5.12) 
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Collecting these four sets of terms gives 

iJ. 00 
(Pa/di^ 

r ^ - 3 ^ , 0 0 - f 3 / / ( ^ , o - 2 $ , o ) . 
a a^ 

Note that the zero-order term agrees with Eq. (2.34). 
The space-space part of the Ricci tensor is left as an exercise. It is 

(5.13) 

Ri Sij 2a2iy2 + a ^ V l + 2 $ - 2 * ) 

+ a^H (6$,o - *,o) + a^^.oo + k"^^ + fc,/c^($ + * ) . (5.14) 

We can now contract the indices on the Ricci tensor and find the Ricci scalar: 

[-1 + 2*] 

1 - 2 $ 

^ * - 3 $ , o o + 3i/(4',o-2$,o) 

K('"'"^^4)('^^*-^*) 
+ a2F(6$,o - I'.o) + a^^.oo + ^^^ j + fc^($ + *) (5.15) 

First let us check the zero-order part of 1Z. Combining terms, we find that it is 
6(7J2 + ^^^^)^ in agreement with Eq. (2.37). To get the first-order part, 611, we 
go through the by-now-familiar routine of multiplying terms, keeping only those 
first-order in $ and ^ . This gives 

571 = - 6 ^ ^ — + ^ ^ + 3^,00 - 3i/(^,o - 2^,o) 
a a 

6^ ( 2^2 + 
d^a/df 

+ 3/ / (6$,o-^ ,o) 

(5.16) 

where the first hne contains the terms from i?oo (the second hne in Eq. (5.15)) and 
the last two from Rij (the last two hnes in Eq. (5.15)). Combining these leads to 

Sn = - 1 2 * I H^ + '- 1 + ^ ^ * + 6$,oo 

(5.17) 
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5.2 TWO COMPONENTS OF THE EINSTEIN EQUATIONS 

We can now derive the evolution equations for $ and ^ , the perturbations to 
the Friedmann-Robertson-Walker metric. There is some freedom here because the 
Einstein equations 

G^^ = STTGT^^ (5.18) 

have 10 components and we need only two. All of the other eight components will 
either be zero at first-order or be redundant.^ 

The first component we will use is the time-time component. Thus we need to 
evaluate 

^ 0 — ^ ^ 0 0 - -;^9oo^ 

= ( - l + 2 ^ ) i t ! o o - | . (5.19) 

Here one of the indices has been raised by multiplying GQO by g^^ (recall that g^'^ 
vanish). This turns out to simplify the energy-momentum tensor (see Exercise 3) 
which sources the Einstein tensor. Also note that the second line follows from the 
first since ^^^^oo = 1- We have computed the time-time component of the Ricci 
tensor (Eq. (5.13)) and the perturbed Ricci scalar (Eq. (5.17)), so the first-order 
part of the time-time component of the Einstein tensor is 

SG% = -G^^^l^ + ^ ^ + 3^,00 - 3/f (^,0 - 2$,o) 
a a^ 

+ 6* i/2 + '- - _ $ - 3$,oo 
\ a J a-^ 

+ 3 / / ( * . o - 4 $ , o ) - 2 ^ r - (5-20) 

Combining terms leads to 

SG^o = -6H^ 0 4- 6^//2 - 2 - ^ . (5.21) 

Einstein's equation equates G^o with STTGT^O where T^^ is the energy-
momentum tensor. To complete our derivation of the first evolution equation for 
^ and ^ , therefore, we need to compute the first-order part of the source term, 
T^o- Recall from Section 2.3 that — T^o is the energy density of all the particles 

^This is true for scalar perturbations. When we come to conside. tensor perturbations, some 
of the other components will be useful. 
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in the universe, and that the contribution from each species is an integral over the 
distribution function (Eq. (2.59)), 

T%{x,t) = - J2 9^ I - ^ Ei{p)fM£,t). (5.22) 
all species i 

Recall also that Qi is the spin degeneracy of the species (has nothing to do with 
the metric); Ei = y^p^ + mf is the energy of a particle with momentum p and 
mass rrii; and fi is the distribution function. In Section 2.3, we considered the 
zero-order distributions of the smooth universe. To get the first-order part of the 
energy-momentum tensor, we must naturally consider the first-order part of the 
distribution functions, i.e. the perturbation variables we defined in Chapter 4 for 
the photons, neutrinos, dark matter, and baryons. This is easiest for the dark matter 
and baryons. For we defined the right-hand side as —pi{l-\-6i) where i labels either 
dark matter or baryons. For photons, a little more care is required. Using the 
definition of 9 in Eq. (4.35), we have 

d^p 
) 3 ^ /'"'-f̂ -: (photons). (5.23) 

The first term here is just the zero-order photon energy density, p^. To reduce the 
second term, we first do the angular integral, which picks out the monopole 6o from 
G. Then, we do the radial integral by parts. This changes the sign and introduces 
a factor of 4 since dp^ /dp = 4p^, leading to 

T% = -p^ [1 + 460] (photons). (5.24) 

The factor of 4 here is obvious in retrospect. The perturbation variable © is the 
fractional temperature change, while the energy momentum tensor is interested in 
the perturbed energy density, 5p. We should have expected that since p (x T^^ 
8plp = 4:5T/T. In any event, it falls out of the algebra. I harp on it only to warn 
those who turn to the literature that authors are virtually split between those who 
define 0 as Sp/p and those who opt for the convention we use here. Finally, note 
that the first-order contribution from massless neutrinos is identical in form, 

r % - -p^ [1 + 4A/'o] (neutrinos). (5.25) 

In principle, we should also include a term for the perturbation to the dark 
energy. In practice, though, most models of the dark energy predict that (i) it 
should be smooth and (ii) it should be important only very recently. Both of these 
features are inherent in the cosmological constant model for example. There are 
some models which deviate from one or both of these conditions, but for the most 
part we are justified in neglecting the dark energy as a source of perturbations to 
the metric. 
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Returning to Einstein's equation, we equate Eq. (5.21) with STTG times the first-
order part of the time-time component of the energy-momentum tensor. Dividing 
both sides by 2 leads to 

- 3 F $ , o + 3^H^ ~ ^ = - ^ ^ ^ ['"dm^ + PbSi, + 4p^eo + 4p,Aro]. (5.26) 

It is again useful to write the equation in terms of conformal time. This introduces 
an extra factor of 1/a every time a time derivative appears, so 

k^^ + 3 ^ U - ^^^ = AnGa^ [p^^d + p^Sy, + Ap^Qo + ^P.-^o] • (5.27) 

This is our first evolution equation for ^ and ^ . In the limit of no expansion 
(a = constant), Eq. (5.27) reduces to the ordinary Poisson equation for gravity (in 
Fourier space). The left-hand side is - V ^ ^ while the right-hand side is AnGdp. 
The terms proportional to a account for expansion and are typically important for 
modes with wavelengths (~ a/k) comparable to, or larger than, the Hubble radius, 
H~^. We need this general relativistic expression when we consider the evolution of 
parturbations, because almost all modes of interest today used to have wavelengths 
larger than the Hubble radius. More on this in Chapter 6. 

We now obtain a second evolution equation for $ and ^ . Since we have already 
dealt with the time-time component of the Einstein tensor, let's focus on the spatial 
part oiG^y, 

G'j = 9'' [Rk, - f 7̂ ] = ^ ' ' ^ ' - ' ^ \ , , - ^fn. (5.28) 

FVom Eq. (5.14), we see that most of the terms in Ri^j are proportional to 6}^j. 
When contracted with 5*̂  this will lead to a host of terms proportional to Sij, in 
addition to the last term here, the one proportional to IZ. Therefore, 

G', = AS^, + ^ i M l l ^ (5.29) 

where A has close to a dozen terms which we would rather not write down. Since 
all of these terms are proportional to 6ij they all contribute to the trace of G'^j. 
To avoid dealing with these terms, consider the longitudinal, traceless part of G*j, 
which can be extracted by contracting G'^j with kik^ — {1/3)61, a projection operator. 
That is, it picks out the piece which is longitudinal, traceless and only that part 
(Exercise 4). This projection operator kills all terms proportional to 6ij^ leaving 
only 

{k,y - {l/3)5i) Ĝ - = {k,y - {l/3)Si) (^KM^±11^ ^ _L^2(^ ^ ̂ )_ 
(5.30) 

This is to be equayed with the longitudinal, traceless part of the energy-
momentum tensor, extracted in the same fashion: 
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(i..t̂ -,V3M;)r< . J:^ „j^/V^jiplr,,y ,„i) 

We can immediately recognize the combination /i^ — 1/3 as proportional to the 
second Legendre polynomial, more precisely equal to (2 /3 )P2 (M) - Therefore, the 
integral picks out the quadrupole part of the distribution. Of course the zero-order 
part of the distribution function has no quadrupole, so the source term is first order, 
proportional to Q2, which is nonzero only for neutrinos and photons. The integral 
in Eq. (5.31) for photons is 

^/^^'^/:f^-w-t/ dpp^ 2^/(0) 
-P 27r2 ^ dp 

= - ? ^ (5.32) 

where the first equality follows from the definition of the quadrupole and the second 
from an integration by parts. This component of the energy-momentum tensor is 
called the anisotropic stress. Nonrelativistic particles, such as baryons and dark 
matter, do not contribute anisotropic stress. 

For the second Einstein equation, we therefore equate Eq. (5.30) with STTG times 
the photon and neutrino anisotropic stresses: 

e{^ + ^ ) =. -327rGa^ [p^Os + Pu^f2] • (5.33) 

That is, the two gravitational potentials are equal and opposite unless the pho-
tons or neutrinos have appreciable quadrupole moments. In practice, the photons' 
quadrupole contributes little to this sum, because it is very small during the time 
when it has appreciable energy density. [Recall the argument after Eq. (4.54).] 
Only the collisionless neutrino has an appreciable quadrupole moment early on 
when radiation dominates the universe. 

5.3 TENSOR PERTURBATIONS 

Until now, we have focused almost exclusively on scalar perturbations to the homo-
geneous FRW universe. Formally, this means that the perturbations $(x, t) and 
^(x, t) transform as scalars as :r —> x'; i.e., they remain unchanged under a spatial 
coordinate transformation. This focus is reasonable: as we have seen, scalar pertur-
bations to the metric are sourced by density fluctuations and vice versa. For the 
most part, the density fluctuations that led to the structure of the universe are our 
primary interest. 

Nonetheless, many theories of structure formation produce, in addition to scalar 
fluctuations, tensor perturbations to the metric. These are potentially detectable 
because they produce observable distortions in the CMB, especially on large scales. 
Sprinkled throughout the book, therefore, are exercises (with hints) relating to 
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tensor perturbations. The tools needed to study these are precisely those we crafted 
when studying scalar perturbations. For the most part, therefore, I regard the 
evolution of tensor perturbations as one rather large homework problem, one which 
introduces no new physics. 

One question which naturally arises when working out these exercises, though, 
is why consider scalar and tensor perturbations separately? To answer this question 
(and to alleviate the homework load) this section derives Einstein's equations for 
tensor perturbations. We will see that scalar and tensor perturbations decouple; that 
is, they evolve completely independently. So the presence of tensor perturbations 
does not affect the scalars and vise versa. Contrast this with $ and ^ . We have just 
shown that they are quite tightly coupled to each other. It is impossible to learn 
about $ without also solving for ^ . The decoupling of scalars and tensors is a man-
ifestation of the decomposition theorem. Needless to say, it is much more instructive 
to work out an example of this theorem than to prove it abstractly. Incidentally, 
as you would expect, the same theorem can be applied to vector perturbations. 
These too are produced by some early-universe models (but not as ubiquitously as 
tensors) and can be treated completely independently. 

Tensor perturbations can be characterized by a metric with ^oo = — 1, zero 
space-time components ^oi == 0, and spatial elements 

j 

aH 
\ 

(l + h+ 
hx 
0 

hx 
1 - / 1 + 

0 

0 
0 
1 

9ij=a^ \ hx 1 - /i+ 0 . (5.34) 
V 0 0 1/ 

That is, the perturbations to the metric are described by two functions, /i+ and h^, 
assumed small. For definiteness, I have chosen the perturbations to be in the x-y 
plane. This corresponds to an implicit choice of axes; in particular, it corresponds to 
choosing the 2-axis to be in the direction of the wavevector, k. More generally, /i+ 
and hx are two components of a divergenceless, traceless, symmetric tensor. If this 
perturbation tensor is written as Tiij, divergenceless means that k^Jiij = k^Tiij = 0. 
This is clearly satisfied by Eq. (5.34) since there are no components in the k — z 
direction. Tracelessness is also satisfied since the sum of the perturbations along 
the diagonal vanishes. 

Once the metric in Eq. (5.34) has been written down, we can blast away and 
derive the Einstein equations. Once again the derivation proceeds in three steps: 
(i) Christoffel symbols, (ii) Ricci tensor, and (iii) Ricci scalar. 

5.3.1 Christoffel Symbols for Tensor Perturbations 

First consider T^a(3' The metric we are considering in Eq. (5.34) has constant ^oo 
and vanishing g^i. Recall that the Christoffel symbol is a sum of derivatives of the 
metric. The only terms that will be nonzero are those which involve derivatives of 
the spatial part of the metric, gij^oc Therefore, we can immediately argue that 

r%o = rO,o = 0. (5.35) 
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The term with two lower spatial indices is 

00 
po _ 9 
^ ij — 2 ^̂ -̂ '̂  

= l^Qij^Q' (5.36) 

Let's use the notation mentioned earlier: the 3D matrix Hij contains the per-
turbations, which in this basis (with k in the z direction) is equal to 

Hij - ( /ix -h^ 0 (5.37) 

0 0 0 / 

so that Qij = o?{8ij -f- 'Hij)' Therefore, 

Qij^o = "^Hg^j + a^n^J,o (5.38) 

where the Hubble rate H is not to be confused with tensor perturbations H. The 
first nonzero Christoffel symbol is therefore 

T^j = Hg,, + ^ ^ . (5.39) 

When both lower indices on T are 0, the Christoffel symbol vanishes. The two 
remaining components are F^oj and T'^jk- The former is 

ik 

r'o,- = ^gjkfi. (5.40) 

The time derivative of gjk acts on both the scale factor and on the perturbations 
h^^xi as in Eq. (5.38), so 

ik 

r'oj = ^— [2Hgjk + a^njk^o] • (5.41) 

But g'^^gjk = Siji so the first term here is simply 6ijH. To get the second, we can 
set g^^ — Sjk/o?' (i.e., neglect first-order terms) since it multiplies the first-order H. 
So, 

r*o, - H8ii + ^Wij,o, (5.42) 

where I have used the fact that Tiij is symmetric. 
The last Christoffel symbol we need is T^jk- fn Exercise 7 you will show that 

r̂ -fc = \ [kk-Hij + kjHik - kiHjk] • (5.43) 
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5.3.2 RIcci Tensor for Tensor Perturbations 

Following the same steps as in the scalar perturbation case, we now combine these 
Christoffel symbols to form the Ricci tensor. First we compute the time-time com-
ponent of the Ricci tensor: 

i?00 — r*^00,a — r^Oa,0 + r " / 3 a r 00 - r ' ^^or Oa- (5.44) 

We have shown that the Christoffel symbol vanishes for tensor perturbations when 
the two lower indices are time-time. Therefore, the first and third terms here are 
zero. Using the same argument, the indices a and /? in the second and fourth terms 
must be spatial, so 

î oo = -^Vo-^'io^^•o^. (5.45) 
Using Eq. (5.42) for F ĵo which is the only element appearing, we find that 

- (nSij + ^n^J,o] Us^j + ^n^j,o] • (5.46) 

On the first line, the trace Ha vanishes since h^ appears in the metric with opposite 
signs along the diagonal. Expanding the second line out to first-order leads to a 
similar cancellation: Hij is multiplied by Sij, so there are no first-order terms. The 
zero-order terms combine to form 

i?oo = - 3 ^ ^ ^ ^ , (5.47) 
a 

an equation in which we are by now quite confident since this is the third time 
we have derived it (see equations (2.34) and (5.13)). Of course the big news here 
is not that we have correctly derived the zero-order term, but rather that tensor 
perturbations do not appear at first-order in RQQ. Looking ahead, we will soon 
see that the Ricci scalar also has no tensor contribution (even though Rij does). 
Therefore, we can anticipate that the time-time component of Einstein's equations 
contains no tensor perturbations. This is important for it tells us that density 
perturbations— which form the right hand side of the time-time component as 
shown in Eq. (5.26) — do not induce any tensor perturbations. We are beginning 
therefore to get a glimmer of the decomposition theorem. Density perturbations 
and scalar perturbations to the metric are coupled; indeed their names are often 
used as synonyms. Tensor perturbations, however, are decoupled from these and 
evolve on their own. 

The spatial components of the Ricci tensor do depend on the tensor perturbation 
variables. We now turn to 
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Let's consider the first two terms together. Expanding out leads to 

-I- ij,a ~ -I- ia,j = -I- ij.O ~l~ -'- ij,k ~~ ^ ikj [oA\)) 

since a = 0 does not contribute in T^iaj because of Eq. (5.35). The hardest (i.e., 
longest) term here is the first, which involves multiple time derivatives. Let's post-
pone its calculation by recalling that T^ij — ^2j,o/2 so that the first term can be 
written in shorthand as gij^oo/2. The last term in Eq. (5.49) vanishes since T^ik = 0 
for tensor perturbations. Combining the other terms then leads to 

Recall that we chose k to be along the z-axis. Therefore, the indices i and k in the 
first term in brackets must be equal to 3. But these multiply Tijk = Wj3 = 0 so this 
term and its cousin kjkkHik must both vanish. Therefore, 

-pa _ r<^ — ^^J^QQ I _ ' 7 - / (^ ^^\ 
^ ij,a ^ ia,j — O O J^' \0.oij 

The third term in Eq. (5.48), T'^apT^ij^ is nonzero only when the index a is 
spatial, so 

r^a^r ij = r \or ij + r /̂r ij. (5.52) 
But each of the Christoffel symbols in the second term here are first-order, so their 
product vanishes. In the first term, the sum over k makes the first-order terms go 
away, so T^ko is purely zero-order, 3H. Therefore, 

3 
2' 

The final term in Eq. (5.48) will be left as an exercise; it is 

r^c.pr^^J = 7,H9^J,o• (5.53) 

r^fSjT^ra = 2H^g^j + 2a^Hn^J,o• (5.54) 

We can now combine all four terms in Eq. (5.48) to get 

p _ 9ij,00 , ^ n j _^^ TJn 

- 2H^g^j - 2a^Hn^J,o. (5.55) 

We now need to expand out the time derivatives of the metric. Using Eq. (5.38), 
one finds 

^̂ J,oo = 2g^j f^^ML + HA + 4a^Hn^J,o + a^n^J,oo• (5.56) 

Therefore the Ricci tensor is 

a 2 



TENSOR PERTURBATIONS 129 

+ a^lllj^ + •l^Uij. (5.57) 

Again we see that we have successfully recaptured the zero-order part of the Ricci 
tensor. Remarkably, we will see that the first-order parts — when used in Einstein's 
equations — do not couple to the scalar perturbations. 

First, though, we must compute the Ricci scalar: 

7^ = ôOî oo + ^^^•i^^,. (5-58) 

The time-time product is all zero-order, so we can neglect it when considering the 
first-order piece SIZ. The space-space contraction has two types of terms. First, there 
are the terms in Eq. (5.57) proportional to the metric gij. But g^^gij — 3, so there 
are no first-order terms here. All the other terms in Eq. (5.57) are proportional 
to Hij^ so when contracting them we can set g^^ to its zero-order value, dij/o?. 
This corresponds to taking the trace of the first-order terms in Eq. (5.57). Since 
all first-order terms are proportional to l~Lij^ the trace vanishes. Therefore, tensor 
perturbations do not aff'ect (at first order) the Ricci scalar. 

5.3.3 Einstein Equations for Tensor Perturbations 

Now let's read off the perturbations to the Einstein tensor induced by tensor modes. 
Since the Ricci scalar is unperturbed by tensor perturbations, the first-order Ein-
stein tensor is simply 

6G'j =dR'j. (5.59) 

To get R^j, we contract g^^Rkj, using the Ricci tensor we computed in Eq. (5.57). 
The first term, proportional to the contraction of g^^gkj — 5]^ has no first-order 
piece; the remaining terms are explicitly first-order in W, so we can set g'^^ = 5^^/o?^ 
leading to 

5G'j = S ik (5.60) 

We can now derive a set of equations governing the evolution of the tensor variables, 
/i+ and hx-

To derive an equation for /i+, let us consider the difference between the ^i and 2̂ 
components of the Einstein tensor. The Einstein tensor in Eq. (5.60) is proportional 
to Hij and its derivatives. Since Hu — —H22 = ^+, ^G^i is equal and opposite to 
^G^2' Therefore, 

iP'h 
6G\ - 5G^2 = 3i//i+,o + /i+,oo + - ^ . (5.61) 

Change to conformal time so that /i+,o = h-^/a and /i+,oo = hj^jo? — {a/a^)hj^. 
Then, 

a^ \6G^i - ^0^21 = /i+ + 2-/1+ + k^h^. (5.62) 
a 
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The right-hand side of this component of Einstein's equations is zero (Exer-
cise 8), and hx obeys the same equation (Exercise 9), so the tensor modes are 
governed by 

h^ + 2-h^-\-k'^ha = 0 (5.63) 
a 

where a = +, x. Equation (5.63) is a wave equation, and the corresponding solu-
tions are called gravity waves. For example, if we neglect the expansion of the 
universe so that the damping term in Eq. (5.63) vanishes, we immediately see that 
the two solutions are ha ex: e^^^^. In real space, then the perturbation to the metric 
is of the form 

ha{x, r])= f d^ke'^-^ [Ae^^^ -f Be"^^^] (no expansion). (5.64) 

The two modes here corresponds to waves traveling in the ±z direction at the speed 
of Hght. 
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Figure 5.1. Evolution of gravity waves as a function of conformal tinne. Three different modes 
are shown, labeled by their wave numbers. Smaller scale modes decay earlier. 

Equation (5.63) is a generalization of the wave equation to an expanding uni-
verse. Exercise 12 illustrates that if the universe is purely radiation or matter dom-
inated, exact analytic solutions can be obtained. These are oscillatory, like the 
simple ones in Eq. (5.64), but also damp out. Figure 5.1 shows the evolution of h^ 
for three different wavelength modes. The large-scale mode (with /cr/o = 10) remains 
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constant at early times when its wavelength is larger than the horizon fcry < 1. Once 
its wavelength becomes comparable to the horizon, the amplitude begins to die off, 
oscillating several times until the present. The small-scale mode kr]o = 1000 shown 
in Figure 5.1 also begins to decay when its wavelength becomes comparable to the 
horizon. Its entry into the horizon occurs much earlier, though, so the decay is much 
more efficient. By today, the amplitude is extremely small. 

An important point about the effect of gravity waves on the CMB anisotropy 
spectrum can be gleaned from Figure 5.1. Because small-scale modes decay ear-
lier than large-scale modes, at decoupling (at rj/rjo ^ 0.02) only modes with kijo 
less than about 100 persist. All smaller scale modes can be neglected. Therefore, 
anisotropics on small angular scales will not be affected by gravity waves. Only the 
large-scale anisotropics are impacted by gravity waves. 

5.4 THE DECOMPOSITION THEOREM 

The decomposition theorem states that perturbations to the metric can be divided 
up into three types: scalar, vector, and tensor. Each of these types of perturbations 
evolves independently. That is, if some physical process in the early universe sets 
up tensor perturbations, these do not induce scalar perturbations. Conversely, to 
determine the evolution of scalar perturbations, we will not have to worry about 
possible vector or tensor perturbations. 

Now that we have computed the contributions to the Einstein tensor G^i, from 
scalars and tensors, we can demonstrate the decomposition of these two types of 
perturbations. To do this, remember that we obtained the scalar equations by con-
sidering the two components of Einstein's tensor: 

G% ; (^ ,%-( l /3 ) (5 , , ) f f , . (5.65) 

Inserting these components into Einstein's equations led to equations (5.27) and 
(5.33). If we can show that tensor perturbations do not contribute to these two com-
ponents, then we will have convinced ourselves of at least part of the decomposition 
theorem, namely that the equations governing scalar equations are not affected by 
tensors. 

It is easy to see that tensor perturbations do not contribute to G^Q. For G^o 
depends on î oo and IZ. But we have seen that both of these do not depend on /i+ 
or hx-

Now let's show that {kikj — 5ij/3)G^j also does not pick up a contribution from 
tensor perturbations. Multiply Eq. (5.60) by the projection operator: 

(kikj - {l/3)6ij) 5G'j = {S,s6js - {l/3)Sij) 

(5.66) 
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where the equahty holds since we have chosen k to he in the z direction. The terms 
in which indices i and j are set to 3 vanish since H33 = 0. The only remaining terms 
are those proportional to 6ij. But the Kronecker delta instructs us to take the trace 
of 7i. This too vanishes. The scalar equations we derived in the previous section 
are therefore unchanged by the presence of tensor modes. This is a manifestation 
of the decomposition theorem. 

5.5 FROM GAUGE TO GAUGE 

Let's go back to scalar perturbations. Until now, we have characterized these with 
^ and $ in the form of Eq. (4.9). This corresponds to a choice of gauge or a choice 
of a coordinate system with which to study the space-time. If we changed the 
coordinate system we use, we would get a metric of a different form, i.e., a different 
gauge. Although we will work almost exclusively in the gauge corresponding to 
Eq. (4.9), the conformal Newtonian gauge, historically many other gauges have been 
used, and for different parts of the "cosmological perturbation" problem, different 
gauges have their advantages. Indeed, we will see in Section 6.5.3 that people who 
work on the theory of inflation sometimes prefer a gauge with spatially flat slicing 
{gij unperturbed), since the equations for the perturbations generated by inflation 
simplify considerably. Also, the code currently used by most people to compute 
anisotropics and inhomogeneities in the universe uses synchronous gauge^ partly 
because the equations are better behaved numerically in that gauge. So the ability 
to move back and forth between different gauges is useful, and I want to spend a 
few pages describing how to do this. 

Most generally, scalar perturbations to the metric can be written down as 

^00 = - (1 + 2A) 

goi = —aBi 

gij = 0? {6^J [1 + 27/;] - 2E,^j^ . (5.67) 

There are four functions which characterize scalar perturbations to the metric: 
A,B,xp, and E. They all depend on space and time, and they are all scalars. For 
example, the goi components are the derivatives of a scalar function, not an inde-
pendent vector function with its own orientation. In conformal Newtonian gauge, 
^ = ^ and ^ = $, while B = E = 0. 

How do we transform from one gauge to another? The invariant distance of 
Eq. (2.2) does not change if different coordinates x are used instead of x. Therefore, 

ga(3{x)dx^dx^ = g^iy{x)dx^dx^, (5.68) 

where I have used a different set of dummy indices on both sides to make the 
upcoming few lines clearer. One of the differentials on the left-hand side can be 
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written as dx^ = {dx^/dx^)dx^ and similarly with the other differential, so equat-
ing coeffients of dx^dx^ leads to 

9c.(3{x) 
dx^dx^ 
dx^^ dx^ 9ny{x)' (5.69) 

This equation is what we are after: a prescription for how the metric changes under 
a coordinate transformation. 

The most general coordinate transformation is generated by 

t -^ t =. t + ^°(t,x) 

e -^x' =x' ^3'^i^j{t,x), (5.70) 

where we take ^^ and ^ to be small perturbations of the same order as the variables 
characterizing the perturbations. Let's examine how the metric changes under such 
a transformation. I'll work out one component explicitly and leave the rest as an 
exercise. Consider the oo component of Eq. (5.69): 

(5.71) 

I claim that the only term that contributes to the left-hand side is the one with 
a = ;5 = 0. Consider for example a = 0 and P = i. The off-diagonal component 
of the metric goi is proportional to Bi a first-order perturbation. But dx^/dt is 
proportional to the first-order variable ^, so the product is second-order and can 
be neglected. A similar argument holds for the a — i; P = j terms. Therefore, the 
left-hand side is simply 

1 + 2A 
7\ 2 

1 + 2A -f 
7 df 

Equating this with goo leads to 

-2A, 

so under the coordinate transformation specified by Eq. (5.70) 

A-^A = A--i°. 
a 

In a similar vein, the other components of the metric transform into 

(5.72) 

(5.73) 

(5.74) 
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a 

E = E-^^. (5.75) 

One technical point: Eqs. (5.74) and (5.75) describe how the components of the 
metric tensor transform under general coordinate changes. These equations, which 
have become standard, are a bit misleading, though, because each of the individual 
functions, A for example, transforms as a scalar, i.e., does not change under a spatial 
coordinate transformation. Here we have transformed the metric and accomodated 
the resulting changes in new definitions of A,B,'0, and E. This is not the same 
thing as seeing how A by itself changes under a transformation. 

To sum up, then, there are four functions which characterize scalar perturba-
tions, but these can be manipulated with two other functions which characterize 
coordinate transformations. For example, starting with a metric in which E j^ 0^ 
it is trivial to make a transformation to eliminate E: simply choose ^ = —E^ and 
the resulting E = 0. Thus, there are really only 4 — 2 = 2 functions which mat-
ter. Indeed, this is the reason that we had only $ and ^ in conformal Newtonian 
gauge. More generally, one might hope to construct two gauge invariant variables, 
those which remain unchanged under a general coordinate transformation. Bardeen 
(1980) first identified two such variables: 

^^ = A+-^\a{E-B) 
a or] I 

$// = - ^ -h aH{B - E). (5.76) 

In conformal Newtonian gauge, in which E = B = 0, ^A = "^ and ^H — — ̂ • 
These invariants are very useful: if equations simplify in a particular gauge, then 
one can do calculations in that gauge, form the gauge-invariant variables, and then 
turn these into the perturbations in any other gauge. We will do precisely this 
in Section 6.5.3. In other words, ^A and $// are useful shortcuts or recipes for 
transforming from one gauge to another. 

Under a general coordinate transformation, the components of the energy-
momentum tensor T^j^ also change. In exact analogy with the metric tensor, 

Again, though, Bardeen found combinations of the components of T^^ which remain 
invariant and therefore facilitate mapping from one gauge to another. In particular, 
in Fourier space 

{p^-V)a 
remains invariant under a coordinate transformation. In conformal Newtonian 
gauge, for matter, v is indeed equal to the v we defined in Chapter 4. For radi-
ation, V = —3z©r,i, i.e., proportional to the dipole, again in conformal Newtonian 
gauge. A second invariant is the generalized perturbation to the energy density. 
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e„ = - 1 - ^ + ^k'T^i. (5.79) 

For matter, in conformal Newtonian gauge, Cm = <̂  + {3aHv/k)', i.e., it reduces 
to the ordinary overdensity S on scales smaller than the horizon. For radiation. 
Cm = 40r,o — 12z©^^iaiJ/fc, again reducing to the standard overdensity on small 
scales. 

5.6 SUMMARY 

The Einstein equations relate perturbations in the metric to perturbations in the 
matter and radiation. Taking two components of the Einstein equations Gf^iy = 
SirGT^jy, we found equations governing the evolution of the two functions which 
describe scalar metric perturbations, ^ and ^ of Eq. (4.9). It is easiest to write 
these equations in Fourier space. Again recalling our convention of dropping the^s 
on transformed variables, we can write 

kH + 3 - f $ - ^-] = inGa^ [pmSm + ^Pr&r,o] (5.27) 
a \ a) 

k^[^ + ^ ) = -327rGaVr0r,2. (5.33) 

Here subscript m includes all matter such as baryons and dark matter and subscript 
r all radiation such as neutrinos and photons. More precisely 

PmVm = PdmV "h pbVh ] Pr^r,! = Pj®! + PiyJ^l- (5 .80) 

Some of the other components of Einstein's equation are redundant; they add no 
new information about the evolution of ^ and ^ . An example is the time-space 
component, which you can derive in Exercise 5. At times, though, one form of the 
evolution equation will be more useful than another. For example, one combination 
(Exercise 6) of these equations leads to an algebraic equation for the potential. 

k^^ = AnGa'^ 
3aH / 

-h 4/9^6^,0 + —j— [^PmVm + ^Pr^r,lj (5.81) 
k 

Other components of Einstein's equation contain information not about the 
scalar perturbations $ and ^ , but about vector and tensor perturbations. Scalar, 
vector, and tensor perturbations are decoupled: each evolves independently of the 
others. We will see in Chapter 6 that inflation can produce tensor perturbations, so 
it is important to know what the Einstein equation says about their evolution. We 
showed that there are two functions which can characterize tensor perturbations, 
/i+ and /ix; each of these evolves independently and satisfies 

ha + 2-ha-hk'^hc,=0 (5.63) 
a 

where a denotes +, x. In an expanding universe, the amplitude of a gravity wave 
described by Eq. (5.63) falls off once the mode enters the horizon. 
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SUGGESTED READING 

Most cosmology books offer some treatment of the perturbed Einstein equations in 
cosmology. Again The Large Scale Structure of the Universe (Peebles) is a useful 
reference, especially for synchronous gauge. Cosmological Inflation and Large Scale 
Structure (Liddle and Lyth) has a very nice treatment which, among other virtues, 
explains the physics of gauge choices. Probably the two most comprehensive works 
are the review articles by Mukhanov, Feldman, and Brandenberger (1992) and 
Kodama and Sasaki (1984), with the former slightly more accessible and the latter 
more general. These are both based on the seminal Bardeen (1980) article which 
is remarkable for its clarity and conciseness in its treatment of gauge invariant 
variables. 

The general relativity books mentioned in Chapter 2 all have good discussions 
of gravity waves. Before turning to any of the technical literature, though, you must 
read Black Holes and Time Warps (Thorne), a wonderful mixture of the history, 
science, and personalities associated with 20th-century general relativity. It is the 
best popular science book I have ever read. 

EXERCISES 

Exercise 1. Derive the Christoffel symbols, F̂ ^̂ y, given in Eq. (5.7). When doing 
this, you will need g'^K Show that it is equal to ^̂ (̂1 — 2$)/a^. 

Exercise 2. Show that Rij is given by Eq. (5.14). 

Exercise 3. Use the full general relativistic expression for the energy momentum 
tensor given in Eq. (2.101), which holds even in the presence of metric perturbations. 
Show that, with scalar perturbations to the metric, the phase space integral for the 
time-time component reduces to that in Eq. (5.22). Show that the contribution 
from species a to T^^ is 

T\ = 9ca j ^p,Up,x,t). (5.82) 

Note the extra factor of a. 

Exercise 4. Consider a 3D matrix with components Gij = (kikj —5ij/3)G^. Show 
that this form is traceless and satisfies CijkGkiji = 0 so it is the proper form for 
the longitudinal component. 

Exercise 5. Compute the time-space component of the Einstein tensor. Show that, 
in Fourier space, 

G^^ = 2ih i--H^\. (5.83) 

Combine with the energy-momentum tensor derived in Exercise 3 to show that 
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6 - aH"^ = ——— [pamV + PbVh - 4i/>^ei - 4.ipj,J\fi]. (5.84) 

The time-space component of Einstein's equations adds no new information once 
we already have the two equations derived in the text. Deciding which two to use 
is a matter of convenience. 

Exercise 6. Take the Newtonian hmit of Einstein's equations. Combine the time-
time equation (5.27) with the time-space equation of Exercise 5 to obtain the alge-
braic (i.e., no time derivatives) equation for the potential given in Eq. (5.81). Show 
that this reduces to Poisson's equation (with the appropriate factors of a) when the 
wavelength is much smaller than the horizon [kr] » 1). 

Exercise 7. Fill in the blanks in the derivation of the tensor equation. 
(a) Show that T^jk is given by Eq. (5.43) in the presence of tensor perturbations. 
(b) Show that the last term in Eq. (5.48) is given by Eq. (5.54). 

Exercise 8. We defined the perturbations to the photon distribution function via 
Eq. (4.34). Show that, if O depends only on //, the cosine of the angle between 
k{= z here) and p, then T^i — T^2 vanishes. This is indeed the dependence we have 
been dealing with so far. This is yet another aspect of the decomposition theorem: 
the terms 0 that source the scalar perturbations (and are sourced by them) do not 
affect tensor perturbations. Anisotropics induced by tensor perturbations will have 
6 of the form 

e(/i , 0) = (1 - IJ?) cos(20)e+(//) (5.85) 

for those perturbations generated by /i+ and a similar expression for h^ with the 
cos replaced by a sin. These, however, have a negligible impact on the evolution of 
the gravity waves, so we are justified in setting the right-hand side of Eq. (5.63) to 
zero. 

Exercise 9. Use the 2̂ component of the Einstein equations to show that h^ obeys 
the same equation as does /14-. 

Exercise 10. Show that scalar perturbations ($ and ^ ) do not contribute to either 
G^i — G^2 or to G^2- This completes the demonstration of the decomposition the-
orem for scalars and tensors. 

Exercise 11. Consider vector perturbations to the metric. These can be described 
by two function h^z and hyz where again only the spatial part of the metric is 
perturbed. The perturbative part of gij is 

0 hxz\ 
(5.86) 

Show that hxz and hyz do not affect any of the equations we have derived so far 
for scalar or tensor evolution — yet another aspect of the decomposition theorem. 
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Exercise 12. Solve the wave equation (5.63) if the universe is purely matter dom-
inated. Do the same for the radiation-dominated case. 

Exercise 13. Define the transfer function for gravity wave evolution as 

You should recognize the term in parentheses as the inverse of the matter-dominated 
solution you derived in Exercise 12. Solve Eq. (5.63) numerically and compute the 
transfer function. Compare your solution with the fit of Turner, White, and Lidsey 
(1993), 

r ( y ) - [1 + 1.34^ + 2.52/2]'/' (5.88) 

where y = {krjo/370h) (with h parametrizing the Hubble constant). Assume the 
universe today is flat and matter dominated, but account for transition from matter 
to radiation. 

Exercise 14. Derive the transformations in the metric components given by 
Eq. (5.75). Show that ^A and ^H do not change under a general coordinate trans-
formation. 



INITIAL CONDITIONS 

In order to understand structure in the universe, we have derived the equations 
governing perturbations around a smooth background. Before we start solving these 
equations, we need to know the initial conditions. This quest for initial conditions 
will lead to an entirely new realm of physics, the theory of inflation. Inflation 
was introduced (Guth, 1981; Linde 1982; Albrecht and Steinhardt, 1982) partly to 
explain how regions which could not have been in causal contact with each other 
have the same temperature. It was soon realized (Starobinsky, 1982; Guth and 
Pi, 1982; Hawking, 1982; Bardeen, Steinhardt, and Turner, 1983; Brandenberger, 
Kahn, and Press, 1983; Guth and Pi, 1985) that the very mechanism that explains 
the uniformity of the temperature in the universe can also account for the origin 
of perturbations in the universe. Therefore, in order to produce a set of initial 
conditions, we will need to detour into the world of inflation. One warning: we are 
not sure that inflation is the mechanism that generated the initial perturbations. 
It is very difficult to test a theory based on energy scales well beyond the reach of 
accelerators. Nonetheless, it is by far the most plausible explanation. Indeed, one 
of the current problems in cosmology is that there is really no viable alternative to 
inflation. Also, the next generation of CMB and large-scale structure observations 
will put inflation to some stringent tests. 

6.1 THE EINSTEIN-BOLTZMANN EQUATIONS AT EARLY TIMES 

Chapters 4 and 5 contain nine first-order differential equations for the nine per-
turbation variables we need to track. In principle, we need initial conditions for 
rll of these variables. In practice, though, a combination of arguments will relate 
many of these variables to each other, and we need only determine the initial con-
ditions for one of these. This section determines the way all variables depend on 
the gravitational potential $ at early times; the remaining sections work out the 
initial conditions for $. 

Let us consider first the Boltzmann equations (4.100)-(4.107) at very early 
times. In particular, we want to consider times so early that for any k-mode of 

139 
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interest, kr] ̂  1. This inequality immediately leads to several important simplifi-
cations. Consider the terms O and ikfxQ in Eq. (4.100). The first term is of order 
9/7/, while the second is of order kQ. Therefore, the first is larger than the second 
by a factor of order l/{kri), which, by assumption, is much greater than 1. In a 
similar way, we can argue that all terms in the Boltzmann equations multiplied 
by k can be neglected at early times. Physically, this means that, at early times, 
all perturbations of interest have wavelengths (~ k~^) much larger than the dis-
tance over which causal physics operates. A hypothetical observer then who sees 
only photons from within his causal horizon will see a uniform sky. Thus higher 
multipoles (61 ,02 , . . . ) are much smaller than the monopole, 60. Therefore, the 
perturbations to the photon and neutrino temperatures evolve according to 

00 + 6 = 0 

M) + ^ = 0. (6.1) 

The same principles can be applied to the matter distributions. The overdensity 
equations reduce to 

b̂ = -36 . (6.2) 

The velocities are comparable to the first moments of the radiation distributions, 
so they are smaller than the overdensities by a factor of order kr} and may be set 
to zero initially. In fact, the baryon velocity is not only comparable to the photon 
first moment, 0 i : it is equal to it by virtue of the strength of Compton scattering. 
That is, the largeness of f in Eq. (4.106) ensures that Vh — —3i&i. We will use this 
later when reexamining the Boltzmann equations closer to decoupling. For now, we 
are interested in times so early that the only relevant fact is that higher moments 
are all negligibly small. 

Now let us turn to the Einstein equations at early times. First consider 
Eq. (5.27). The first term there contains a factor of k'^ so may be neglected. Also 
the two matter terms on the right are negligible at early times since radiation 
dominates. Therefore, we have 

3 7 ( ^ - 7 ^ ) = 167rGa2 {p^Oo + p.^o) • (6.3) ] - (^ ^ 

a \ a 
But since radiation dominates, a (x r/ (recah Eq. (2.100) and the discussion imme-
diately afterward) so a/a = l/r]. Therefore, 

r] T 3 \ p p J 

= ̂ ((^eo+'-Xo) (6.4) 

where the last equality follows by virtue of the zero-order Einstein equation. 
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To simplify further, we can define the ratio of neutrino energy density to the 
total radiation density as 

U^^^- (6.5) 

Then multiplying Eq. (6.4) by 77̂  leads to 

677 - ^ = 2 ([1 - /.]eo + UMo) . (6.6) 

Recall that Eq. (6.1) relates the derivative of the monopoles to the derivative of the 
potential. We can therefore eliminate both monopoles from Eq. (6.6) by diff'erenti-
ating both right- and left-hand sides. Then, 

l>r/ + 4 -4^ = - 2 ^ (6.7) 

where the right-hand side follows since both ©0 and A/Q are equal to — $ for these 
large scale modes. 

So far we have used only one Einstein equation. The second, Eq. (5.33), describes 
how the higher moments of the photon and neutrino distributions cause ^ + $ to 
be nonzero. Let us here neglect these higher order moments, which cause the sum 
of the gravitational potentials to be slightly nonzero.^ Under this approximation, 
we can eliminate ^ everywhere by simply setting it to — ̂ . Then, 

^7y-f46 = 0. (6.8) 

Setting ^ = rjP leads to the algebraic equation 

p{p-l)+Ap^O (6.9) 

which allows two solutions: p = 0,-3. The p = — 3 mode is the decaying mode. If it 
is excited very early on, it will quickly die out and have no impact on the universe. 
The p = 0 mode, on the other hand, does not decay if excited. It is the mode we 
are interested in. If some mechanism can be found which excites this mode, this 
mechanism may well be responsible for the perturbations in the universe. 

Focusing therefore on only the p — 0 mode, we see that Eq. (6.6) relates the 
gravitational potential to the neutrino and photon overdensities: 

$ = 2 ( [ l - / , ] e o + /.Aro). (6.10) 

Both Oo and A/o are also constant in time. In most models of structure formation, 
they are equal since whatever causes the perturbations tends not to distinguish 
between photons and neutrinos. Therefore, we will set 

eo(A:,ry,)=Aro(^,7yO (6.11) 

which leads to 

where I have explicitly written the /c-dependence of all these variables and the fact 
that we are setting up the initial conditions at some early time r/̂ . 

^See Exercise 2 for a careful accounting of the effect of the neutrino quadrupole; the photon 
quadrupole is kept minuscule by Compton scattering, so it really does not contribute to Eq. (5.33). 
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The initial conditions for matter, both 6 and Sh, depend upon the nature of the 
primordial perturbations. Combining the first of equations (6.1) and (6.2) leads to 

d = 300 + constant (6.13) 

for the dark matter overdensity, with an identical equation for the baryon overden-
sity. Primordial perturbations are often divided into those for which the constant 
in Eq. (6.13) is zero {adiabatic perturbations) and those for which the constant 
is nonzero {isocurvature perturbations). Adiabatic perturbations have a constant 
matter-to-radiation ratio everywhere since 

(0) 

n^ 
1±L 
+ 300 

(6.14) 

The prefactor, the ratio of zero-order number densities, is a constant in both space 
and time. For the ratio of matter to radiation number density to be uniform, there-
fore, the combination inside the brackets which linearizes to 1 -\- 8 — 30o must be 
independent of space. So the perturbations must sum to zero, 

6 = 300, (6.15) 

for adiabatic perturbations. By similar arguments for the baryons, 6^ = 300- There 
are models based on isocurvature perturbations, but these have not been very suc-
cessful to date; we will focus on adiabatic initial conditions. 

For the most part, velocities and dipole moments are negligibly small in the very 
early universe. However, we will encounter situations where we need to know the 
initial conditions for these as well. You will show in Exercise 3 that the appropriate 
initial conditions are 

(6.16) 
6aH 

6.2 THE HORIZON 

If this book were a novel or a biography, a better title for this section might be 
Midlife Crisis. The main character would have attended a good high school, studied 
hard, and gone on to a solid university. There he fell in love with an exciting, but 
sensible, woman; upon graduating, he set up some interviews, and got a good job 
downtown. He married his college girlfriend, and after several years in the city, they 
moved to the suburbs and had three kids. Our hero contributed to the community 
and was recognized all over town as a solid citizen. He was moving up fast in his 
company and there was talk about a political position. Just when he was about 
to declare his candidacy, he began to have doubts. "What have I been doing with 
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my life? What is really important? Were all those years of study and work simply 
a 'track'? Did I take this path just because everyone else was moving in the same 
direction? Where is the innovation and the signature that my life is mine?" And 
worse, he has a secret, an underlying feeling that everything he has built is based 
on a fallacy. 

OK, maybe it wouldn't be a bestseller, but it does serve as a useful metaphor 
for our study of perturbations in the universe. Until now, we have done everything 
in a systematic, proper way. We reviewed the standard Big Bang cosmology. We 
expanded about this zero-order smooth universe, getting evolution equations for 
the perturbations to the particle distributions and to the gravitational fields. We 
realized that these coupled differential equations needed initial conditions so in the 
last section we set those up. However, now we must ask. What caused those initial 
perturbations? It is one thing to say that ^ = 2Qo initially. It is quite another to 
explain what caused $ to be nonzero in the first place. 

And it is worse than that. To understand why let us recall the physical meaning 
of the conformal time ry: it is the maximum comoving distance traveled by light 
since the beginning of the universe. Equivalently, objects separated by comoving 
distances larger than r] today were not ever in causal contact: there is simply no way 
information could have propagated over distances larger than 77. For this reason, rj 
is called the comoving horizon. 

With this in mind, we can now revisit the condition used in the previous section 
that kr] <^ I. The wavenumber k is roughly equal to the inverse of the wavelength 
of the mode in question (give or take a factor of 27r). Therefore kr] is the ratio of 
the comoving horizon to the comoving wavelength of the perturbation. If this ratio 
is much smaller than 1, then the mode in question has a wavelength so large that 
no causal physics could possibly have affected it. A picture worth remembering is 
shown in Figure 6.1. The horizon grows as the scale factor increases. On the other 
hand, comoving wavelengths remain constant. All modes of cosmological interest 
therefore had wavelengths much larger than the horizon early on. Eventually these 
cosmological modes enter the horizon; after that, causal physics begins to operate 
on them. 

The truly disturbing feature of this realization is most apparent when consid-
ering the microwave background today. On all scales observed the CMB is very 
close to isotropic. How can this be? The largest scales observed have entered the 
horizon just recently, long after decoupling. (An example is the scale corresponding 
to the quadrupole moment of the CMB, shown in Figure 6.1.) Before decoupling, 
the wavelengths of these modes are so large that no causal physics could force devi-
ations from smooothness to go away. After decoupling, the photons do not interact 
at all; they simply freestream. So even though it is technically possible that photons 
reaching us today from opposite directions had a chance to communicate with each 
other and equilibrate to the same temperature, practically this could not have hap-
pened. Why then is the CMB temperature so uniform? This is a profound problem 
that we have glossed over by simply assuming that the temperature is uniform and 
that perturbations about the zero-order temperature are small. 
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Figure 6.1. The comoving horizon as a function of the scale factor. Also shown are two 
comoving wavelengths, which remain constant with time. Early in the history of the universe, 
both of these modes — as well as all other modes of cosmological interest — had wavelengths 
much larger than the horizon. The CMB comes from the last scattering surface at a ~ 10~^. 
At that time, the largest scales (e.g., the one labeled "quadrupole") were still outside the 
horizon. The horizon problem asks how regions separated by distances larger than the horizon 
at the last scattering surface can have the same temperature. 

A more intuitive picture of the horizon problem is shown in Figure 6.2. At 
any given time, the region within the cone is causally connected to us (at the 
center). Photons that we observe today from the last scattering surface were well 
outside our horizon when they were first emitted. The most disturbing aspect of 
this is the observation of large-angle isotropy, an indication that photons apparently 
separated by many horizons at the last scattering surface nonetheless shared the 
same temperature (to a part in 10^). 

6.3 INFLATION 

This section describes a beautiful solution to the horizon problem outlined in the 
previous section. First, we explore a logical way out of the previous argument by 
realizing that an early epoch of rapid expansion solves the horizon problem. Then 
we consider the Einstein equations to tell us what type of energy is needed in 
order to produce this rapid expansion, showing that negative pressure is required. 
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Figure 6.2. The horizon problem. The region inside the cone at any time is causally connected 
to us (at the center). Photons emitted from the last scattering surface (at redshift ^ 1000) 
started outside of this region. Therefore, at the last scattering surface, they were not in causal 
contact with us and certainly not with each other. Yet their temperatures are almost identical. 

Finally, we consider a scalar field theory and show that negative pressure is easy to 
accommodate in such a theory. 

Two comments about the field theory implementation. First, field theory has 
a reputation as a difficult subject. It is, but the part we will need for inflation is 
decidedly simple. Indeed, almost all we will need to know about field theory we've 
already used in the previous chapter on general relativity. The second point is that 
there is no known scalar field which can drive inflation. (A skeptic might point out 
that there is no known fundamental scalar held at all!) Therefore, it may well be 
true that the idea of inflation is correct but it is driven by something other than 
a scalar field. Having said that, there are a number of reasons to work with scalar 
fields, as we will do whenever we need to specify the source of infiation. Almost 
all fundamental particle physics theories contain scalar fields. In fact, historically 
it was particle physicists studying high-energy extensions of the Standard Model 
(in particular Grand Unified Theories) who proposed the idea of infiation driven 
by a scalar field as a natural byproduct of some of these extensions. Indeed, almost 
ah current work on infiation is based on a scalar field (or sometimes two). The 
alternative from a particle physics point of view is to use a vector field (such as 
the electromagnetic potential) or a set of fermions (similar to the way condensates 
induce superconductivity) to drive inflation. Neither of these choices works very 
well, but they both complicate things severely, so we will stick to a scalar field. 
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6.3.1 A Solution to the Horizon Problem 

To motivate a solution to the horizon problem, let me rewrite the comoving horizon 
as 

The comoving horizon then is the logarithmic integral of the comoving Hubble 
radius^ 1/aH. The Hubble radius is the distance over which particles can travel 
in the course of one expansion time, i.e., roughly the time in which the scale fac-
tor doubles. So the Hubble radius is another way of measuring whether particles 
are causally connected with each other: if they are separated by distances larger 
than the Hubble radius, then they cannot currently communicate. There is a sub-
tle distinction between the comoving horizon r] and the comoving Hubble radius 
{aH)~^. If particles are separated by distances greater than ry, they ne?;er could have 
communicated with one another; if they are separated by distances greater than 
{aH)~^, they cannot talk to each other now. It is therefore possible that 7] could 
be much larger than {aH)~^ now, so that particles cannot communicate today but 
were in causal contact early on. This might happen if the comoving Hubble radius 
early on was much larger than it is now so that r] got most of its contribution from 
early times. This could happen, but it does not happen during matter- or radiation-
dominated epochs. In those cases, the comoving Hubble radius increases with time, 
so typically we expect the largest contribution to 77 to come from the most recent 
times. Indeed, this is precisely what Figure 6.1 indicates. 

Look again at Figure 6.1. On top of the figure I have drawn an axis which depicts 
the temperature of the cosmic plasma for the given value of the scale factor. We 
know quite a bit about physics going up to the limits on the plot, several hundred 
GeV. Beneath these energies, the standard model of particle physics works very well. 
Beyond those energies, although we have ideas, there is no experimental reason to 
prefer one theory over another. Since the energy content of the universe determines 
a(t), when you mentally extrapolate the horizon in Figure 6.1 back to a = 0, or 
equivalently to infinitely high temperatures, you are really making an assumption. 
You are assuming that nothing strange happened early on, in particular that the 
universe was always radiation dominated at early times. If this were true, then 
it does indeed follow that the comoving horizon received a negligible contribution 
from the very early universe, that photons can travel only very small distances in 
the first fraction of a second after the Big Bang. 

This suggests a solution to the horizon problem: perhaps early on, the universe 
was not dominated by either matter or radiation. Perhaps, for at least a brief time, 
the comoving Hubble radius decreased. Then, we would have the situation depicted 
in Figure 6.3. The comoving Hubble radius would decrease dramatically during this 
epoch. In that case, the comoving horizon would get most of its contribution not 
from recent times, but rather from primordial epochs before the rapid expansion of 
the grid. Particles separated by many Hubble radii today, for example those outside 
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the circle in the bottom panel of the figure, were in causal contact — were inside 
the Hubble circle in the top panel — before this epoch of rapid expansion. 

How must the scale factor evolve in order to solve the horizon problem? We 
can first answer this question qualitatively. If the comoving Hubble radius is to 
decrease, then aH must increase. That is, 

d 

dt 

da/dt 
a 

$ > « • ( « " ) 

So to solve the horizon problem, the universe must go through a period in which it is 
accelerating, expanding ever more rapidly. This is the origin of the term inflation. 
To understand the epoch of inflation more quantitatively, let me give away the 
punchline that most inflationary models typically operate at energy scales of order 
10^^ GeV or larger. How big was the comoving Hubble radius when the temperature 
was 10^^ GeV? We can get an order of magnitude estimate by ignoring the relatively 
brief epoch of recent matter domination and assuming that the universe has been 
radiation dominated since the end of inflation (you can correct this assumption in 
Exercise 6). Then H scales as a~^ so aoHo/aeHe — ag where ag is the scale factor 
at the end of inflation. If Oe corresponds to a time at which the temperature was 
10^^ GeV, then ae ~ TQ/IO^^ GeV c::̂  lO'^^. So the comoving Hubble radius at the 
end of inflation was 28 orders of magnitude smaller than it is today. For inflation 
to work, the comoving Hubble radius at the onset of inflation had to be larger than 
the largest scales observable today, i.e., larger than the current comoving Hubble 
radius. So during inflation, the comoving Hubble radius had to decrease by some 
28 orders of magnitude. 

The most common way to arrange this is to construct a model wherein H is 
constant during inflation. In that case, since da/a = Hdt, the scale factor evolves 
as 

a{t) = aee"^^-'^^ t < te (6.19) 

where t^ is the time at the end of inflation. The decrease in the comoving Hubble 
radius {aH)~^ is now due solely to the exponential increase in the scale factor. For 
the scale factor to increase by a factor of 10^^, the argument of the exponential 
must be of order ln(10^^) ~ 64 (but remember the corrections in Exercise 6), so 
inflation can solve the horizon problem if the universe expands exponentially for 
more than 60 e-folds. 

Thus, consider Figure 6.4, which shows the comoving Hubble radius as a func-
tion of the scale factor. The right side of this plot is virtually identical to Figure 
6.1, which tells us that the comoving scales of interest to us were much larger than 
the Hubble radius in the standard cosmology. The left-hand side of the plot though 
shows that an inflationary epoch reduces the comoving Hubble radius dramati-
cally. This makes sense: since the scale factor is inflating very rapidly, it becomes 
increasingly difficult for photons to move along the comoving grid (which is itself 
expanding with a). Before inflation started, the comoving Hubble radius was very 
large, larger than any scale of cosmological interest today, so all such scales were 
well within the horizon. 
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Hubble Volume 

Inflation 

Figure 6.3. Particles on the comoving grid before (top) and after (bottom) inflation. Open 
circles are the same particles on top and bottom. Before inflation, the comoving Hubble radius 
was quite large, encompassing dozens of cells on the grid. After inflation, the comoving Hubble 
radius has shrunk to just one cell. (In this caricature, the scale factor has grown by a factor 
of order 7; during inflation the scale factor increases by greater than e^°.) The shrinkage of 
the comoving Hubble radius means that particles which were initially in causal contact with 
one another (within the large circle at top) can now no longer communicate. Note that the 
physical Hubble radius, depicted by large circles on the top and bottom grids, remains roughly 
constant during inflation. 
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Figure 6.4. The comoving Hubble radius as a function of scale factor. Scales of cosmological 
interest (shaded band) were larger than the Hubble radius until a ~ 10~^. Dark shaded 
regions show when these scales were smaller than the Hubble radius, and therefore susceptible 
to microphysical processes. Very early on, before inflation operated, all scales of interest were 
smaller than the Hubble radius and therefore susceptible to microphysical processing. Similarly, 
at very late times, scales of cosmological interest came back within the Hubble radius. 

Note the symmetry in Figure 6.4. Scales just entering the horizon today — 
roughly 60 e-folds after the end of inflation — left the horizon 60 e-folds before 
the end of inflation. The amplitude of the perturbations on these scales remained 
constant as long as they were super-horizon. So, when we measure them today, we 
are actually seeing them as they were when they first left the horizon during the 
inflationary era (modulo whatever processing has taken place since they reentered 
the horizon, processing we will study in great detail in Chapters 7 and 8). To explain 
the structure in the universe today, then, it is clearly important to understand the 
generation of perturbations during inflation. 

We have until now discussed inflation in comoving coordinates. But it is also 
profitable to think of the exponential expansion in physical coordinates. The idea 
that the horizon blows up early on is depicted in Figure 6.5. The physical size 
(a times the comoving size) of a causally connected region blows up exponentially 
quickly during inflation. So regions that we observe to be astronomical today were 
actually microscopically small before inflation, and they were in causal contact with 
each other. 

The total comoving horizon ceases to be an effective time parameter after infla-
tion because it becomes large very early on, and then changes very little as the 
universe expands during the matter- and radiation-dominated eras. A simple way 
to rectify this is to subtract off its primordial part r/prim, and redefine ij as 
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Inflation 
Figure 6.5. Inflationary solution to the horizon problem. Larger cone shows the true horizon in 
an inflationary model; smaller inner cone shows the horizon without inflation. During inflation, 
the physical horizon blows up very rapidly. All scales in the shaded region were once in causal 
contact so it is not surprising that the temperature is uniform. 

f' dt' 
(6.20) 

so that the total comoving horizon is r]prim-hT]- This is the convention we will follow; 
note that this means that during inflation, rj is negative, but always monotonically 
increasing. A scale leaves the horizon in the sense of Figure 6.4 when k\r]\ becomes 
less than 1, and returns at late times when krj becomes larger than 1. 

To sum up, inflation — an epoch in which the universe accelerates — solves the 
horizon problem. During the accelerated expansion the physical Hubble radius 
remains fixed, so particles initially in causal contact with one another can no longer 
communicate. Regions which are separated by vast distances today were actually 
in causal contact before and during inflation. At that time, these regions were given 
the necessary initial conditions, the smoothness we observe today, but also, as we 
will soon see, the small perturbations about smoothness that eventually grew into 
galaxies and other structure in the universe. 
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6.3.2 Negative Pressure 

We have shown that an accelerating universe can solve the horizon problem. Since 
general relativity ties the expansion of the universe to the energy in it, we now need 
to ask what type of energy can produce acceleration. We can get an immediate 
answer if we appeal to the time-time and space-space components of the zero-order 
Einstein equations. They are (Eqs. (2.39) and (2.93)) 

fda/dtV _ STTG 

^ ! ^ ^ + i f ^ ^ - 4 . G P . (6.21) 
a 2 \ a J 

Multiplying the first of these by one-half and then subtracting one from the other 
eliminates the first derivative of a, leaving 

^ ^ ^ ^ = - ^ ( . + 37^). (6.22) 
a 3 

Acceleration is defined to mean that dPa/dt^ is positive. For this to happen, the 
terms in parentheses on the right must be negative. So inflation requires 

V<-^. (6.23) 

Since the energy density is always positive, the pressure must be negative. This 
result is perhaps not surprising: we saw back in Chapter 2 that the accelerated 
expansion which cause supernovae to appear very faint can be caused only by dark 
energy with negative pressure. Inflation was apparently driven by the a similar form 
of energy, one with 7̂  < 0. To reiterate what we emphasized in Chapter 2, negative 
pressure is not something with which we have any familiarity. Nonrelativistic matter 
has small positive pressure proportional to temperature divided by mass, while a 
relativistic gas has V = -l-p/3, again positive. So whatever it is that drives inflation 
is not ordinary matter or radiation. 

6.3.3 Implementation with a Scalar Field 

We have become familiar with the fields ^(x , t) and ^(x, t), deriving equations for 
them which govern their evolution (the Einstein equations) and the evolution of 
particles which are affected by them. These two fields are parts of the multicompo-
nent field, the metric g^i^. The metric is one of the fundamental fields in physics, 
but there are others. Every elementary particle — the electron, neutrino, quarks, 
photon, etc. — is associated with its own field. It would be wonderful if one of these 
fields, the electromagnetic potential associated with photons say, could serve as the 
source for an inflationary model. Unfortunately we do not yet have such a con-
crete model. Instead, I will discuss inflation in terms of a generic scalar field (not 
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a fermion like the quarks and leptons or a vector like the electromagnetic field). 
The simplest version of the standard model does indeed have within it one such 
field, the Higgs field. But, again unfortunately, we know too much about the Higgs 
of the standard model. Its interactions and properties are constrained enough for 
us to know that it cannot serve as the source for inflation. So we will drop any 
pretensions of connecting the generic scalar field which drives inflation to known 
physics. Making this connection is left as a homework problem for a future Nobel 
laureate. 

We want to know if a scalar field — which I will call (j){x, t), not to be confused 
with the metric perturbation $(x, t) —can have negative p -\- 3V- So our first task 
is to write down the energy-momentum tensor for 0. This is 

2^ ^x^'^x^ ^^^ 
(6.24) 

Here F(0) is the potential for the field. For example a free field with mass m has 
a potential F(0) = m?4?/2. K warning about signs: if you delve into the literature 
you will invariably find diff'erent signs than those in Eq. (6.24). These are dictated 
by the choice of metric. Although our metric signature ( — , + , + , + ) is probably 
most common in the context of cosmology, it is probably not as common in particle 
physics. Beware. We will assume that 0 is mostly homogeneous, consisting of a 
zero-order part, (t)^^\t), and a first-order perturbation, S(t){x^t). In this section we 
will derive information about the zero-order homogeneous part, its energy density 
and pressure, and its time evolution. Later we will consider its perturbations, 50, 
and how they are generated. 

For the homogeneous part of the field, only time derivatives of 0 are relevant so 
the indices a and P in the first term in Eq. (6.24) and /i, ly in the second must be 
equal to zero. The energy-momentum tensor then reduces to 

The time-time component of T^o is equal to —p, so the energy density is 

The first term here is the kinetic energy density of the field, the second its potential 
energy density. A homogeneous scalar field therefore has much the same dynamics 
as a single particle moving in a potential [think of (l)^^\t) as the position of the 
particle x{t)]. In fact this analogy dominates even the language used to describe 
inflation. The pressure for the homogeneous field is P = T̂ ^̂ % (no sum over spatial 
index i), so 

A field configuration with negative pressure is therefore one with more potential 
energy than kinetic. An example is shown in Figure 6.6, in which a field is trapped 
in a false vacuum, i.e., a local, but not the global, minimum of the potential. 
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Figure 6.6. A scalar field trapped in a false vacuum. Since it is trapped, it has little kinetic 
energy. The potential energy is nonzero, however, so the pressure is negative. The global 
minimum of the potential is called the true vacuum, since a homogeneous field sitting at the 
global minimum of the potential is in the ground state of the system. 

There is something important to notice about a field trapped in a false vacuum, 
bmce is constant, its energy density, which is all potential, remains constant 
with time. Constant energy density is much different than anything with which we 
are familiar. The densities of both matter and radiation, for example, fall off very 
rapidly as the universe expands. Therefore, even if the universe initially contains 
a mixture of matter, radiation, and false vacuum energy, it will quickly become 
dominated by the vacuum energy. For a trapped field, it is trivial to determine 
the evolution of the scale factor. Since the energy density is constant, Einstein's 
equation for the evolution of a is 

da/dt SnGp 
constant. (6.28) 

We immediately see that a field trapped in a false vacuum produces exponential 
expansion as in Eq. (6.19), with H oc p^/^ constant. The primordial comoving 
horizon, that generated before the end of inflation, is then obtained by integrating 
the inverse of Eq. (6.19) over time. 

^PH. = j ^ (e^(*-*^) - l ) (6.29) 

where 4 is the beginning of inflation. So if the field is trapped for at least 60 
e-foldings {H{te — h) > 60), the horizon problem is solved. 
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Guth's (1981) initial formulation of inflation used a scalar field trapped in a false 
minimum of the potential, but it was quickly realized (Guth and Weinberg, 1983; 
Hawking, Moss, and Stewart, 1982) that such a scenario is not viable. The only way 
for the field to evolve to its true minimum is similar to the way an alpha particle 
migrates out of the potential barrier in a nucleus: it tunnels quantum mechanically. 
Thus, initially small localized regions tunnel from the false to the true vacuum. 
These bubbles of the true vacuum state must coalesce in order for the universe 
as a whole to move to the true vacuum state. Careful calculations showed that 
these bubbles would never coalesce, that the regions of false vacuum would expand 
rapidly and remain, so that the true vacuum state of the universe would never be 
attained. 

To avoid the problem of the universe never reaching its true vacuum state, 
subsequent models of inflation (Linde, 1982; Albrecht and Steinhardt, 1982) made 
use of a scalar field slowly rolling toward its true ground state. The energy density 
of such a field is also very close to constant (if the potential is not too steep) so 
it quickly comes to dominate. To determine the evolution of (f)^^^ in general when 
the field is not trapped, we return to the Einstein equations as given in Eq. (6.21). 
Consider the first of these. If the dominant component in the universe is 0, then the 
energy density on the right-hand side becomes (dcj)^^^/dt)'^/2 -f- V. Differentiating 
this first equation therefore leads to 

da/dt d^a/dt^ fda/dtV 
a \ a J 

STTG fd[^\fd^\ d^ 
\ dt ) \ dt^ ) + V' 

dt 
(6.30) 

where V is defined as the derivative of V with respect to the field 0^^^ We can 
replace the first term in brackets on the left by —47rG(p/3-f P) as in Eq. (6.22). Sim-
ilarly the second term on the left is SirGp/S. The left-hand side therefore becomes 

^^87rG[-{p/3) -V -2p/3] = -SnGH ( ^ ) . (6.31) 

Equating this to the right side of Eq. (6.30) leads to the evolution equation for a 
homogeneous scalar field in an expanding universe, 

^ + 3 / / ^ + V ' = 0. (6.32) 
dt^ dt 

A more useful form for us will be with the conformal time r] as the time variable; 
then it is straightforward (Exercise 8) to show that 

0(0) + 2aiJ(/)(°) + a V ' = 0 (6.33) 

where overdots still denote derivatives with respect to conformal time rj. 
Most models of infiation are slow roll models, in which the zero-order field, 

and hence the Hubble rate, vary slowly. Therefore, a simple relation between the 
conformal time rj and the expansion rate holds. In particular, during inflation 

da 

J tte 
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HJa 
"da 

2 
a 

. ± (6.34) 

where the rough equahty on the second hne holds because H is nearly constant, 
and the one on the third because the scale factor at the end of inflation is much 
larger than in the middle (og > a). To quantify slow roll, cosmologists typically 
define two variables which vanish in the limit that (j) remains constant. First, define 

^ ^ ^ ^ " ^ (6.35) 
dt\HJ aH^' 

Since H is always decreasing, e is always positive. During infiation, it is typically 
small, whereas it is equal to 2 during a radiation era. In fact, one definition of an 
inflationary epoch is one in which e < 1. A complementary variable which also 
quantifies how slowly the field is rolling is: 

^ ^ 1 d20(O)/dt2 _ - 1 

- 1 

ai7(/)(0) - 0(0) 

ai7(/)(o) 
3aH<j)^^^ +a^V'\ . (6.36) 

Here the paucity of Greek letters becomes a hindrance. The second slow-roll param-
eter is more conventionally defined as 77, but we obviously cannot follow that conven-
tion as 7] is our conformal time. (Early universe cosmologists use r for conformal 
time, freeing up 77, but we do not have that luxury since we need r for optical 
depth.) My choice of 6 is also fairly common, but we need to bear in mind that 
this has nothing to do with the overdensities introduced in Chapter 4. The second 
line here follows from Eq. (6.33). Again, in most models 5 is small. We will see 
in Section 6.6 that some unique features of inflation, deviations from the simplest 
possible spectrum and the production of gravity waves, are proportional to e and S. 
If these features are one day measured, they will not only be unique signatures of 
inflation but also allow us to learn something about the physics driving inflation. 

6.4 GRAVITY WAVE PRODUCTION 

Inflation does more than solve the horizon problem. The power of inflation is its 
ability to correlate scales that would otherwise be disconnected. The zero-order 
scheme outlined in the previous section ensures that the universe will be uniform 
on all scales of interest today. There are perturbations about this zero-order scheme, 
though, and these perturbations — produced early on when the scales are causally 
connected — persist long after inflation has terminated. 

We are most interested in scalar perturbations to the metric since these couple 
to the density of matter and radiation and ultimately are responsible for most of 
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the inhomogeneities and anisotropies in the universe. In Section 6.5 we will study 
these in detail. In addition to scalar perturbations, though, inflation also generates 
tensor fluctuations in the gravitational metric, so-called gravity waves. As we saw 
in Chapter 5, these are not coupled to the density and so are not responsible for 
the large-scale structure of the universe, but they do induce fluctuations in the 
CMB. In fact, these fluctuations turn out to be a unique signature of inflation 
and offer the best window on the physics driving inflation, so they are clearly 
worthy of our study. I choose to study the production of tensor perturbations first 
before scalar perturbations for a subtle technical reason. Tensor perturbations to 
the metric are not coupled to any of the other perturbation variables,^ so when 
we consider them, we will be looking at the fluctuations in a single field. Scalar 
perturbations to the metric couple to energy density fluctutations. The coupled 
fields fluctuate together and this coupling requires a bit of work to understand. 
This work, while important, is not the main point: the most important idea is that 
quantum mechanical fluctuations during inflation are responsible for the variations 
around the smooth background that so fascinate us. This idea is best introduced 
in the much simpler context of a single field, so we start with tensor perturbations. 

During inflation, the universe consists primarily of a uniform scalar field and a 
uniform background metric. Against this background, the fields fluctuate quantum 
mechanically. At any given time, the average fluctuation is zero, because there are 
regions in which the fleld is slightly larger than its average value and regions in 
which it is smaller. The average of the square of the fluctuations (the variance), 
however, is not zero. Our goal is to compute this variance and see how it evolves as 
inflation progresses. Looking ahead, once we know this variance, we can draw from 
a distribution with this variance to set the initial^ conditions. 

6.4.1 Quantizing the Harmonic Oscillator 

In order to compute the quantum fluctuations in the metric, we need to quantize 
the fleld. The way to do this, in the case of both tensor and scalar perturbations, is 
to rewrite the problem so that it looks like a simple harmonic oscillator. Once that 
is done, we will appeal to our knowledge of this simple system. Therefore, let's flrst 
record some basic facts about the quantization of the harmonic oscillator. 

• A simple harmonic oscillator with unit mass and frequency uj is governed by the 
equation 

+ cj^x = 0. (6.37) 
d^x 

dt^ 
• Upon quantization, x becomes a quantum operator 

x = v{u;,t)a + v%u,t)d^ (6.38) 

•^This is not quite true. The quadrupole moments act as sources for tensor perturbations, but 
these vanish if a scalar field drives inflation. See Exercise 10 

^Initial here means those when the modes of interest are still far outside the horizon. This is 
well before any processing can take place, but well after inflation has generated them. 
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where a is a quantum operator which acts on the state of the system, and f is a 
solution to Eq. (6.37), v oc e"^^*. 

• In particular, a annihilates the vacuum state |0), in which there are no particles. 
It also satisfies the commutation relation 

[a, o)] = aa^ — a'^a = 1. (6.39) 

Other commutators vanish: [a,a] = [a^,a^] = 0. It is straightforward to show 
(Exercise 9) that these commutation relations are equivalent to the (perhaps 
more familiar) relations between x and its momentum p: 

[x,p] = i , (6.40) 

as long as v is normalized via 

v{u;,t)=-=. (6.41) 

These facts enable us to compute the quantum fluctuations of the operator x in 
the ground state |0): 

(If |2) = (Olftxlo) 

= (0| (i;*a+ + va) {va + v*d^) |0). (6.42) 

Since a|0) = 0, the first term in the second set of parentheses vanishes. Similarly, 
(0|at = (a|0))t = 0, so we are left with 

{\x\'') = \v{w,t)f{0\aa^O) 

= |u(w,t)|2(0|[a,at]+ata|0). (6.43) 

The second term again vanishes since a annihilates the vacuum, while the first is 
unity, so the variance in x is 

{\x\^) = \v{co,t)f, (6.44) 

in this case l/2cc;. This is (almost) all we need to know about quantum fluctuations 
in order to compute the fluctuations in the early universe generated by inflation. 

6.4.2 Tensor Perturbations 

Recall that tensor perturbations to the metric are described by two functions h^ 
and /ix, each of which obeys Eq. (5.63), 

h-\-2-h + k'^h = 0. (6.45) 
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We would like to massage this equation into the form of a harmonic oscillator, so 
that h can be easily quantized. To do this, define^ 

h ^ - ^ . (6.46) 

Derivatives of h with respect to conformal time can be rewritten as 

h h a -

\/l67rG a a^ 
(6.47) 

and 

\/l67rG a 
= ^-2U-^h^2^h. (6.48) 

Inserting these into Eq. (6.45), and multiplying by \/l67rG, gives 

h ^ a r d ~ ^(a)^~ ^a f h a ~\ ^nh 
- - 2 — h-—h + 2 ^ h + 2- ^/i + / c2 -
a a^ a^ a^ a \ a a"^ a 

h+{k'--]h 
a 

= 0. (6.49) 

This is precisely the form we know how to use. It has no damping term ((x h) so 
we can immediately write down an expression for the quantum operator 

h{k, rj) = v{k, 7])a^ + ^* (A:, ry)al, (6.50) 

where the coefficients of the creation and annihilation operators satisfy the equation 

v + ( e - - \ v = 0. (6.51) 

We will shortly solve Eq. (6.51), but first let's see how the eventual solution 
determines the power spectrum of the fluctuations of the tensor perturbations. 

^Regarding the factor of VTGTTG here, the only way I know of deriving this is to write down 
the action for the fields /i+,x- The kinetic term is then multiplied by a factor of l/32nG. A 
canonical scalar field has prefactor equal to a half. So the additional 167rG must be absorbed 
into a redefinition of the field. The hard part of this is writing down the action to second order 
in perturbation variables. We have seen that even first-order perturbations are cumbersome to 
track. On the other hand, by dimensional analysis — the fact that h(x) is dimensionless while a 
canonical scalar field has dimensions equal to mass — we could have guessed that the factor of 
TTipi = G~^l'^ is required. Note that this prefactor does not affect the equation for h\ it simply 
provides the normalization that becomes important when trying to determine the amplitude of 
the gravity-wave spectrum. 
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Using our harmonic oscillator analogy, we can write the variance of perturbations 
in the h field as 

{h {k,r])h{k\r])) - \v{k,r])\^{27rf5^{k-k'). (6.52) 

There is one difference between this expression and the analogous expression for 
the one-dimensional harmonic oscillator in Eq. (6.44). A quantum field is defined in 
all space, so it can be considered as a collection, an infinite collection, of oscillators, 
each at a different spatial position (or, in Fourier space, at different values of k). 
The quantum fiuctnations in each of these oscillators are independent (as long as 
the equations are linear) so h{k) is completely uncorrelated with h{k^) \ik ^ k'. The 
Dirac delta function in Eq. (6.52) enforces this independence; the (27r)^ allows for 
the fact that we have moved to the continuum limit. Recalling that h — ah/y/WnG^ 
we see that 

(/it(fc,r?)Mfc',77)> = ^ \v{k,rjt {27rfSHk-k') 

= {27TfPh{k)5^{k-k') (6.53) 

where the second line defines the power spectrum of the primordial perturbations to 
the metric. Conventions for the power spectrum abound in the literature; the one 
Tve chosen in Eq. (6.53) is not the most popular in the early universe community. 
Often a factor oi k~^ is added so that the power spectrum is dimensionless. I prefer 
to omit this factor to be consistent with the large scale structure community which 
likes its power spectra to have dimensions of k~^. In any event, with this definition, 

P,(fc) = 1 6 7 r G M ^ . (6.54) 

We have now reduced the problem of determining the spectrum of tensor per-
turbations produced during inflation to one of solving a second-order differential 
equation for v{k, rj), Eq. (6.51). To solve this equation, we first need to evaluate a/a 
during inflation. Recall that overdots denote derivative with respect to conformal 
time, so d = a^H ^ ~a/r] by virtue of Eq. (6.34). Therefore, the second derivative 
of a in Eq. (6.51) is 

d I d fa 
a a dr] \rj 

2 
(6.55) 

So the equation for v is 

v+(k^ - ^ j v = 0. (6.56) 

The initial conditions necessary to solve this equation come from considering v at 
very early times before inflation has done most of its work. At that time, —rj is 
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large, of order r/prim, so the A:̂  term dominates, and the equation reduces precisely 
to that of the simple harmonic oscillator. In that case, we know (Eq. (6.41)) that 
the properly normalized solution is e~*^^/\/2fc. This knowledge enables us to choose 
(Exercise 11) the proper solution to Eq. (6.56), 

Q-ikr) 

V = 
2k krj 

(6.57) 

This obviously goes into the correct solution when the mode is well within the 
horizon {k\r]\ ̂  1). Even if you don't work through Exercise 11 (which arrives at 
the relatively simple solution of Eq. (6.57) in a rather tortured way), you should at 
least check that the v given here is indeed a solution to Eq. (6.56). 

After inflation has worked for many e-folds k\r]\ becomes very small. Now that v 
has been normalized, we can determine the amplitude of v, and hence the variance 
of the super-horizon gravitational wave amplitude, by taking the small argument 
limit of Eq. (6.57): 

lim v{k,r]) = ^ ^ f^. (6.58) 
-kv^o ^ '^ y/2k kr] 

Figure 6.7 shows the evolution of /i ex v/a during inflation. At early times h falls 
as 1/a as inflation reduces the amplitude of the modes. Once —kr] becomes smaller 
than unity, the mode leaves the horizon, after which h remains constant. 

The primordial power spectrum for tensor modes, which scales as |t 'p/a^, is 
therefore constant in time after inflation has stretched the mode to be larger than 
the horizon. This constant determines the initial conditions for the gravity waves, 
those with which to start off /i+^x at early times (where in this context "early" 
means well after inflation has ended but before decoupling). Equations (6.54) and 
(6.58) show that this constant is 

Ph{k) = 
WTTG 1 

a2 2A:3r/2 

k^ ' 
(6.59) 

The second hue here follows from Eq. (6.34). We have assumed that H is constant 
in deriving this result; more generally, H is to be evaluated at the time when the 
mode of interest leaves the horizon. This is our final expression for the primordial 
power spectrum of gravity waves. Detection of these waves would, quite remarkably, 
measure the Hubble rate during inflation. Since potential energy usually dominates 
kinetic energy in inflationary models, a measure of H would be tantamount to 
measuring the potential V, again quite remarkable in view of the likelihood that 
inflation was generated by physics at energy scales above 10^^ GeV, 12 orders of 
magnitude beyond the capacity of present-day accelerators. There is no guarantee 
that gravity waves produced during inflation will be detectable. Indeed, since H^ (x 
p/rripi' ^^^ power spectrum is proportional to p/mpj, the energy density at the time 
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Figure 6.7. The root mean square fluctuations in the tensor field during inflation for two 
different /c-modes. Time evolves from left to right: 77 is negative but gets closer to zero during 
inflation. Once a mode "leaves the horizon" (77 ~ —1/A:), its RMS amplitude remains constant. 
Note that after a mode has left the horizon, its RMS amplitude times k^^'^ is the same for all 
modes. This is called a scale-free spectrum, strictly true only if the Hubble rate is constant 
when the scale of interest leaves the horizon (the choice here). 

of inflation in units of the Planck mass. If inflation takes place at scales sufficiently 
smaller than the Planck scale, then primordial gravity waves will not be detected. 
Later in the book, we will develop the machinery necessary to answer the question, 
How small can the gravity wave component be and still be detected? 

Two final technical points are in order regarding Eq. (6.59). Although I have 
not emphasized this feature of the spectrum of these primordial perturbations, the 
fluctuations in h are Gaussian, just as are the quantum-mechanical fluctuations of 
the simple harmonic oscillator. Gaussianity is a fairly robust prediction of inflation; 
as such, many studies have been undertaken searching for signs of primordial non-
Gaussianity in CMB and large-scale structure data, signs that would jeopardize the 
inflationary picture. Although there have been some hints, none have held up under 
greater scrutiny, so this prediction of inflation too appears to be verified. Second, 
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Eq. (6.59) is the power spectrum for h^ and hx separately; these are uncorrelated, 
so the power spectrum for all modes must be multiplied by a factor of 2. 

6.5 SCALAR PERTURBATIONS 

The goal of this chapter is to find the perturbation spectrum of ^ (or $; we assume 
throughout that they are equal in magnitude) emerging from inflation. With that 
spectrum, we can use the relations in Section 6.1 to determine the spectrum of the 
other perturbation variables. Finding the spectrum for ^ ,however, turns out to 
be complicated, more so than was the tensor case considered earlier. The primary 
complication is the presence of perturbations in the scalar field driving inflation, 
perturbations which are coupled to ^ . 

To deal with this problem, we will flrst ignore it: in Section 6.5.1, we compute the 
spectrum of perturbations in the scalar field (p generated during inflation, neglect-
ing ^ . This turns out to be relatively simple to do, since it is virtually identical to 
the tensor calculation we went through above. Why are we justified in neglecting 
^ and how do the perturbations get transferred from 0 to ^ ? The next two sub-
sections take turns answering this question from two diff'erent points of view. First, 
Section 6.5.2 argues that — in a sense to be defined there — until a mode moves far 
outside the horizon, ^ is indeed negligibly small. Once it is far outside the horizon, 
this no longer holds, but we will find that a linear combination of ^ and Scj) (the 
perturbations to the scalar field driving inflation) is conserved. This will allow us to 
convert the initial spectrum for Sep into a final spectrum for ^ . The second way of 
justifying the neglect of perturbations to the metric is to switch gauges and work in 
a gauge in which the spatial part of the metric is unperturbed, a so-called spatially 
flat slicing. In such a gauge, the calculation of Section 6.5.1 is exact; the only ques-
tion remaining is how to convert back to conformal Newtonian gauge to move on 
with the rest of the book. In Section 6.5.3, we identify a gauge-invariant variable^ 
one which does not change upon a gauge transformation, which is proportional to 
Sep in a spatially fiat slicing. It is then a simple matter to determine this variable 
in conformal Newtonian gauge, thereby linking ^ in conformal Newtonian gauge 
to Sep in spatially flat slicing. Note that the two solutions to the coupling problem, 
as worked out in Sections 6.5.2 and 6.5.3, are simply alternative approaches to the 
same problem. If you are comfortable with gauge transformations. Section 6.5.3 is 
probably a more elegant approach; the more brute-force approach of Section 6.5.2 
gives the same answer though and requires less formalism and background. 

6.5.1 Scalar Field Perturbations around a Smooth Background 

Let's decompose the scalar field into a zero-order homogeneous part and a pertur-
bation, 

(/)(x,t) = (t)^^\t)-^S(l){x,t), (6.60) 
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and find an equation governing Scj) in the presence of a smoothly expanding universe, 
i.e., with metric ^oo = —^\9ij = ^ijO?- Consider the conservation of the energy-
momentum tensor. 

9x^ ^^;/^ = -HTTT + r ^ a ^ ^ " . - T^u^T^c = 0. (6.61) 

The v — 0 component of this equation, expanded out to first order, gives the desired 
equation for Scj). Since we are assuming a smooth metric, the only first-order pieces 
are perturbations in the energy-momentum tensor. All the F's are either zero-order 
{T^ij = 5ijO?H and F^oj = r*jo — SijH ) or zero (the rest of the components), as 
we found in Eqs. (2.22) and (2.23). So, writing the perturbed part of the energy-
momentum tensor as ^T^^, and considering the 1^ = 0 component of the perturbed 
conservation equation leads to 

0 = — - ^ + ihSTo + 3H6T^o - H5T\. (6.62) 

It remains to determine the perturbations to the energy-momentum tensor in terms 
of the perturbations to the scalar field. 

First let's compute (5T ô- Since the time-space components of the scalar metric 
are zero, the second set of terms in Eq. (6.24), those with prefactor g^(^^ vanish. 
Therefore, 

T\ = ^^>,.0,o (6.63) 

where I have returned to using ^^ to denote the derivative with respect to x^. Since 
g^^ = a~'^Siiy^ the index v must be equal to i. Recall that the zero-order field 0̂ ^̂  
is homogeneous, so (j)\ = 0. The space-time component of the energy-momentum 
tensor therefore has no zero-order piece. To extract the first-order piece, we can set 
(j)^i to S(j)^i = iki5(j). Then, setting all other factors to their zero-order values leads 
to 

5T\ = ^ 0 ( 0 ) J(/). (6.64) 

The additional factor of a enters the denominator here because 0 Q = (j)^^^ /a (recall 
tha t ' is derivative with respect to conformal time). 

The time-time component of the energy-momentum tensor is a little more dif-
ficult: 

T% = 5°°(<A,o)' - lg''U.a4>.p - V. (6.65) 

Setting (j) = (/)̂ °̂  + 6(() leads to 

T% = ^ ('/'̂ o^ + 50,o) ' - ^ < 5 0 , M , , - V(0(°) + 6cP). (6.66) 

The spatial derivatives come in pairs, and pairs of first-order variables ((50,i) lead 
to second-order terms. These may therefore be neglected. The potential may be 
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expanded as a zero-order term, y(0^^^) plus a first-order correction, F'(50, so the 
first-order correction to the energy-momentum tensor is 

- V'S4>. (6.67) 

Similarly, you can show that the space-space component is 

STj^Siji^^-V'sA- (6.68) 

Therefore, the conservation equation (6.62) becomes 

Carrying out the time derivatives (the only subtle one is dV/dr] — Vcjy^^'^), mul-
tiplying by a^, and collecting terms leads to 

+ J0 (^_0(o) _ 4^^^(0) _ ^2^/^ _̂  ^^ ( - a V 0 ( ^ ) - e^^""^) = 0. (6.70) 

The V" term here is typically small, proportional to the slow-roll variables e and 
S (Exercise 14), so it can be neglected. The coefficient of (50, the first set of paren-
theses, is equal to — 2ai/0^^^ using the zero-order equation (6.33), so after dividing 
by —</)̂ \̂ we are left with 

6(1) + 2aHS(l) -h k^S(p = 0. (6.71) 

This equation for perturbations to Sep is identical to Eq. (6.45) for tensor pertur-
bations to the metric. Thus we can trivially copy our result from Section 6.4.2 and 
write immediately that the power spectrum of fluctuations in Sep is equal to 

Ps, = ~ . (6.72) 

Compare this with Eq. (6.57). It is identical apart from a factor of 167rG. Recall 
that we inserted this factor (with a bit of hand-waving; see the footnote on page 
158) in the tensor case to turn the dimensionless h into a field with dimensions 
of mass. To get the result for 5(j) which is already a scalar field with the proper 
dimensions, we simply remove this factor. 

6.5.2 Super-Horizon Perturbations 

Until now, we have neglected the metric perturbations. When the wavelength of 
the perturbation is of order the horizon or smaller, this approximation is valid, as 
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we will shortly see. In the process of seeing this, we will also find that, by the end of 
inflation, the metric perturbation has become important. So, although the inflation-
induced perturbations start out all-"(50," they end up as a linear combination of 
^ and Sip or more generally as a linear combination of ^ and perturbations to 
the energy-momentum tensor. The trick is to find the linear combination which 
is conserved outside the horizon. The value of this conserved linear combination is 
determined by 6(j) at horizon crossing; we can then evaluate it after inflation solely in 
terms of ^ . The resulting equation will be of the form ^ oc 50 with the left-hand side 
the post-inflation metric perturbation and the right the scalar fleld perturbation 
produced during inflation (the power spectrum for which we have calculated above). 
We can then flnally relate P^ (and the spectra of all other perturbation variables 
using the results of Section 6.1) to the P^^ of Eq. (6.72). 

Let's begin by rewriting the equation for conservation of energy, this time in the 
presence of the metric perturbation. It is straightforward to show that Eq. (6.62) 
gets generalized to 

dt 

(9^ 
-h iki5To + 3H6T^o - H5T\ = - 3 ( P + p) — (6.73) 

where V and p are the zero-order pressure and energy density. Were we correct to 
neglect ^ in the last section? We were, as long as the right-hand side is significantly 
smaller than the individual terms on the left. Taking the first term on the left as 
an example, we require 

* « | - ^ . (6.74) 

A simple way to see that this inequality holds is to use the Einstein equations 
we derived in Chapter 5. The most convenient for these purposes is the time-time 
(Eq. (5.21)) component: 

kH + 3ai7(^ + aH^l) = AiiGa^ST^o. (6.75) 

Here I have simply copied the results from Chapter 5, replacing $ with — ̂ . The 
left-hand side here is of order /c^^ ~ o?H^^ for modes which are crossing the 
horizon. Therefore, 

The left-hand side must be much less than the term in parentheses; equivalently, 
the prefactor {V -f- p)/p must be small. In fact, during infiation, the pressure is 
almost equal to minus the energy density, so this prefactor is very small. In terms 
of the slow-roll parameters, it is equal to 26/3. So, at least in slow-roll models of 
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inflation, we are justified in neglecting metric perturbations when computing the 
spectrum of Scf). 

The above argument holds only for modes that have not yet passed outside the 
horizon. Super-horizon modes, on the other hand, require more careful treatment. 
Indeed, it is inevitable that the inequality of Eq. (6.74) will break down sometime 
before the end of inflation. To see this, recall that after inflation, when the universe 
is dominated by radiation, 5T^Q = —4p^0o and V -\- p = 4p^/3. Therefore, after 
inflation, the right-hand side of Eq. (6.74) is - 3 6 o . According to Eq. (6.12), ^ = 
—26o right after inflation, so it is certainly not true that the inequality of Eq. (6.74) 
is satisfied for all times. At some point before inflation ends, perturbations to ^ 
must grow in importance relative to those in the energy-momentum tensor. 

One way to deal with the coupling between the metric perturbations and those 
to the energy density is to define 

For sub-horizon modes and those which have just left the horizon, ^ is negligible; 
P + p = (0^°V^)^ from Eqs. (6.26) and (6.27); and Eq. (6.64) fixes the numerator 
of the first term in C^. We are left with 

C = -aH6(t)/^^^^ (6.78) 

around the time of horizon crossing. After infiation ends, ikiST^i — AakprOi, pro-
portional to the dipole of the radiation. Since the pressure of radiation is equal to 
a third of the energy density, 

3 
- : - - ^ (post infiation). (6.79) 

The second equality follows from the initial conditions relating the dipole to the 
potential (Eq. (6.16)). 

The variable (" is so important because it is conserved when the perturbation 
moves outside the horizon (Figure 6.8). We will show that (" is conserved shortly, 
but first let's appreciate the importance of this conservation. Since we know that, 
after infiation, ( = —3^/2, we can immediately relate ^ coming out of infiation to 
the Scf) at horizon crossing. 

^ 
post inflation 3 0(^) 

(6.80) 
horizon crossing 

Equivalently, the post-inflation power spectrum of ^ is simply related to the 
horizon-crossing spectrum of 5(j): 

2 
4 faHV 

''̂  ^ 9 i^J ^̂^ aH=k 
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Horizon Crossing Inflation Ends 

Time ^ 
Figure 6.8. Cartoon view of the evolution of scalar, adiabatic perturbations during inflation in 
conformal Newtonian gauge. When a mode is sub-horizon, quantum-mechanical fluctuations 
are set up in the scalar field driving inflation {ih6T^^H/k'^{p ^-V) = aHScj)/^'^^^). Scalar 
perturbations to the metric are negligible at this time. Once the mode leaves the horizon, 
the linear combination C = -ikiST^iH/k'^{p-\-V) - ^ is conserved. Well after inflation has 
ended, the metric perturbation has grown in importance, but the linear combination ( remains 
unchanged. 

9k^ V ^(0) ) 
(6.81) 

aH=k 

the second line following from Eq. (6.72). Another way to express the power spec-
trum of scalar perturbations is to eliminate <j)^^^ in favor of the slow-roll parameter 
e. You will show (Exercise 12) that {aH/(j)^^^Y = 47rG/e, so 

P^ = P^{k) = 
STTGH^ 

9/c3 
(6.82) 

aH=k 

The first equality here follows from our ubiquitous assumption that anisotropic 
strsses are small, so that ^ = — $. Comparing to Eq. (6.59), we see that the ratio 
of scalar to tensor modes is of order 1/e; that is, we expect scalar modes to dominate. 
Finally, another way of writing the scalar power spectrum is to eliminate e in favor 
of the potential and its derivative, using the result of Exercise 14, 
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P^{k) = 
USlT^G^ / / / 2 y 2 

9A:3 y/2 
(6.83) 

aH=k 

It remains to prove that ( is conserved on super-horizon scales. To see this, let's 
turn to the conservation equation, Eq. (6.73). On large scales, kiST'^o is proportional 
to k'^ and so can be ignored, leaving 

^ + 3HST-,-H6T\ = -3{V + p)^. (6.84) 

On large scales, you will show (Exercise 13) that the energy-momentum tensor 
satisfies 

Therefore, on large scales 

A;2 

c = - * -

3 

1 ST% 

3p + r 
Eliminating ^ in favor of ( in the conservation equation leads to 

d6T% 
dt 

+ 3HST°o - H6T' 3(^ + p ) | + ( . + P ) | 
ST% 

P + V 

(6.85) 

(6.86) 

(6.87) 

The partial derivative on the right acting on 6T^o cancels the first term on the left, 
leaving 

ST% 
1 (dp dV\ 

- H5T\ = 3(V + p) 
dt' 

(6.88) 

Recall from Eq. (2.55) that dp/dt = -3H{p + V), so the first term in brackets 
cancels the second, and 

dt 
-1 

3(p + P)2 
H{p + V)5T\ - ST\ 

.0 dV 

dt 
(6.89) 

I claim that the two terms in brackets on the right cancel for the class of perturba-
tions we are considering. To see this, first rewrite H{p + 'P) as —{l/3)dp/dt. Thus, 
the terms in brackets are proportional to 

(6.90) 

since —ST^o is the perturbation to the energy density, while ST\/3 is the pertur-
bation to the pressure. If we know the background pressure-energy density relation 
dV/dp, then given an overdensity 5p, we expect the pressure perturbation to be 
proportional to the overdensity with coefficient dV/dp. Indeed, this is the charac-
teristic feature of adiabatic perturbations, precisely those set up during inflation. 
Thus, C is indeed conserved on large scales. 
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6.5.3 Spatially Flat Slicing 

The treatment of the previous subsection is complete, but it is not the most elegant 
way to understand scalar perturbations in inflation. A much simpler way is to move 
back and forth between different gauges, making use along the way of the concept 
of a gauge-invariant variable, one which does not change under these transforma-
tions. Here I outline this method, leaving some of the more detailed calculations as 
problems. 

We saw earlier that one of the major complications in conformal Newtonian 
gauge was that perturbations to the scalar field Sep are coupled to the potential ^ . 
It would obviously be nice to transform to a gauge in which these perturbations 
decoupled. Consider a gauge with spatially flat slicing, with the spatial part of the 
metric gij = dijO^. In this gauge the line element is 

ds'^ ̂  - ( 1 + 2A)dt^ - 2aB^^dx'dt + 5ija^dx'dx^, (6.91) 

i.e., there are two functions A and B characterizing the perturbations. In this case, 
the equation for Scj) is given exactly (Exercise 16) by Eq. (6.71): the perturbations 
in the scalar field do not couple to those in the gravitational metric. Therefore, 
without having to neglect any couplings, we can identify the power spectrum for 
Scj) as given by Eq. (6.72). 

The next step is to identify a gauge-invariant variable, one which remains the 
same when transforming from one gauge to the next. Bardeen (1980) identified 
several such variables, two characterizing scalar perturbations to the metric and 
two characterizing perturbations to the matter. Of course any linear combination 
of these is still gauge invariant. We would like to identify the combination that is 
proportional to 50 in the gauge with spatially flat shcing. In this gauge, Bardeen's 
velocity (Eq. (5.78)) is 

v = ikB- , \ ^ , \ (spatially flat slicing) (6.92) 
{p-\-V)a^ 

where I have evaluated ST^i with Eq. (6.64). Thus, we can create a gauge-invariant 
variable proportional to dcf) in a spatially flat slicing if we subtract off the kB term. 
Bardeen's ^H (Eq. (5.76)) is simply equal to aHB, so the combination 

C = -^H-'-^v (6.93) 

is gauge invariant and in spatially flat slicing is equal to 

n Ff 

C = —-T—- S(t) (spatially flat shcing). (6.94) 
0(0) 

We can immediately relate the power in ^ to the power in (50, 

P<=(||;)V«^ (6.95) 
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We know P^^ from Eq. (6.72) and the prefactor is AnG/e, so 

27rGi/2 

^ ^ ^ ek^ 
(6.96) 

aH=k 

Equation (6.96) is very useful, for it expresses the power spectrum of a gauge 
invariant quantity. Although we computed it in a gauge of the form in Eq. (6.91), 
once we have this answer, we can compute ( in any gauge and then relate the power 
in the perturbation variables of that gauge to P(^. 

Throughout this book, we have been working in conformal Newtonian gauge. In 
this gauge, ^H = —^, so C as defined in Eq. (6.93) is indeed given by Eq. (6.77). 
We argued in Section 6.5.2 that in conformal Newtonian gauge, after inflation, 
C = 3^/2, so P$ = 4P^/9, or using Eq. (6.96), 

(6.97) 

iH=k 

in exact agreement with our earlier calculation finalized in Eq. (6.82). 
This is the end of the calculation, but not quite the end of the story. Bardeen 

and others have argued that $// has a nice geometrical interpretation, one shared 
by ( in certain gauges. In particular, the curvature of the three-dimensional space 
at fixed time is equal to 4A:^$///a^. Therefore, perturbations in $// represent cur-
vature perturbations: even though the zero-order space is flat, perturbations induce 
a curvature which varies from place to place. In conformal Newtonian gauge or in 
a spatially flat slicing this interpretation would seem irrelevant to perturbations in 
C, since C is a combination of both ^H and the velocity. However, if one moves 
to a comoving gauge, one in which the velocities vanish, then ( is equal to $// . In 
comoving gauges, then, it is clear that a perturbation to C is a curvature perturba-
tion, and indeed the scalar perturbations generated during inflation are often called 
curvature perturbations. 

6.6 SUMMARY AND SPECTRAL INDICES 

In order to understand how scales which should be uncorrelated today are observed 
to have almost identical temperatures, we are virtually forced into the theory of 
inflation. In addition to explaining away the nagging fine-tuning problems of the 
standard cosmology, inflation is also a mechanism for generating primordial pertur-
bations over the smooth universe. 

Inflation predicts that quantum-mechanical perturbations in the very early uni-
verse are flrst produced when the relevant scales are causally connected. Then these 
scales are whisked outside the horizon by inflation, only to reenter much later to 
serve as initial conditions for the growth of structure and anisotropy in the universe. 
The perturbations are best described in terms of the Fourier modes. The mean of 
a given Fourier mode, for example for the gravitational potential, is zero: 
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{^{k)) = 0. (6.98) 

Further, the perturbations to one Fourier mode are uncorrelated with those to 
another. However, a given mode has nonzero variance, so 

{^{k)^%k')) = {27TfP^{k)S^{k - k'), (6.99) 

the Dirac delta function enforcing the independence of the different modes. In 
the case of scalar perturbations, the ones of most importance for us, the power 
spectrum is given by Eq. (6.82). Perturbations to the tensor part of the metric 
are also produced and are also Gaussian with mean zero; the power spectrum of 
tensor modes is given by Eq. (6.59). The scalar spectrum depends on the slow roll 
parameter e, defined in Eq. (6.35), which is proportional to the derivative of the 
Hubble rate. Since the Hubble rate is close to constant during inflation — because 
of the dominance of potential energy — e is typically small. 

A spectrum in which k^P^{k) is constant (i.e., does not depend on k) is called 
a scale-invariant or scale-free spectrum. Apart from small deviations encoded in 
the slow-roll parameters, both the scalar and the tensor perturbations are scale 
free. This is both a blessing and a curse. It is good because it is a fairly definite 
prediction, easy to test. It is unfortunate because a scale-free spectrum is what one 
might have expected even without the complex machinery of inflation. Indeed, a 
scale-free spectrum is also referred to as a Harrison-Zel'dovich-Peebles spectrum, 
crediting the smart people who first proposed it as the appropriate distribution for 
the initial conditions, a proposal that predates infiation by many years. This really is 
too bad, because if we observe a scale-free spectrum, and most present observations 
are consistent with this, then inflation cannot fairly claim all the credit. However, 
if we observe a small mixture of tensor modes and/or a small deviation from a 
scale-free spectrum, then this will go a long way toward convincing skeptics that 
inflation is responsible for the primordial perturbations. 

To quantify the deviations from scale invariance, it is conventional to write the 
primordial power spectra as 

P^{k) 
STT H^ 

9k^ em? PI 

507r̂  f k \^ 9̂ / VLJ^ 
6i - 9/c3 \HOJ "\D,{a=l) 

iH=k 

Ph{k)^--^ 
STT ^ 2 

k"^ m' PI 

^Ark""^-^. (6.100) 
aH=k 

These equations serve to define the scalar and tensor amplitudes, 8H (subscript H 
for amplitude at horizon crossing) and AT, and the spectral indices, n and UT- Note 
that this convention — which has become common — says that a scale-free scalar 
spectrum corresponds to n — 1, while n^ = 0 for a scale-free tensor spectrum. The 
factor of VtmlDi{a = 1), where Q^rn is the fraction of the critical density in matter 
today and Di is the growth function which will be defined in Chapter 7 (Eqs. (7.4) 
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and (7.77)), is part of this convention. It is inconvenient at this stage because we 
have not even encountered the growth function yet, but it has become standard 
to include in the definition of 5H (Liddle and Lyth, 1993; Bunn and White, 1997). 
The resulting expression for the matter power spectrum today looks much simpler 
when these factors are included here. We pay the price of complexity now for the 
benefit of simplicity later. 

We can relate the primordial spectral indices n and TIT to the slow-roll param-
eters e and 5. Consider first the tensor spectrum. By virtue of the definition in 
Eq. (6.100), 

d\nk 
riT — 3. (6.101) 

The logarithmic derivative has two terms, first the trivial one d\n{k~^)/d\n{k) 
which cancels the —3 here, leaving UT — 2d\nH/d\n{k). The logarithmic derivative 
of the Hubble rate at horizon crossing is a bit subtle: 

d\nH 

dink 
aH=k 

k dH df] 

H dr] dk 
(6.102) 

aH=k 

By definition (Eq. (6.35)), H = -aH'^e, and dr]\aH=k/dk = -d{aH) ^\aH=k/dk = 
1/k^, so 

d\nH 

dink 

k oHh 
H k^ 

(6.103) 

\aH=k \aH—k 

Therefore, the primordial spectral index of tensor perturbations produced by infla-
tion is 

riT = -2e. (6.104) 

The scalar spectral index follows from a similar argument. Taking the logarith-
mic derivative of P$ leads to 

n-l = 
dln{k) 

[ln{H^)-ln{e)\. (6.105) 

The derivative of H again gives — 2e while the logarithmic derivative of e is —2(6+^) 
(Exercise 12). So, 

n = 1 -46 -2 (5 . (6.106) 

The fact that the tensor index TIT is proportional to e leads to one of the robust 
predictions of inflation. Many inflationary models have been proposed which off'er 
different predictions for e and 6. Almost all of these, however, maintain the feature 
that the ratio of tensor to scalar modes (which we saw earlier was proportional 
to e) is directly related to the tensor spectral index (here also seen to be directly 
proportional to e). As you progress through this book, moving from the evolution 
of anisotropics to their analyses, try to bear in mind the crucial question of whether 
this prediction can be put to the observational test. 
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The slow-roll parameters are a convenient way to summarize the predictions of 
an inflationary model. However, ultimately we are interested in the physics, so we 
are interested in how these parameters relate back to the fundamental entity, the 
potential V of the scalar field responsible for inflation. You will show in Exercise 14 
that these parameters can be expressed in terms of the potential and its derivatives. 
Therefore, extracting the values of e and 6 from the data is tantamount to probing 
the potential of the field driving inflation. Given that the expected scale of this 
potential is on the order of 10^^ GeV (Exercise 18), this is quite an impressive 
probe! 
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SUGGESTED READING 

The 30 or so pages on inflation in this chapter, which were heavily slanted toward 
production of perturbations, off'er but a glimpse into the many facets of this remark-
able theory. Recently, Guth wrote a popular account of his discovery of inflation. 
The Inflationary Universe. One of the other originators of the theory, Linde, has a 
more technical book, Inflation and Quantum Cosmology, which emphasizes model 
building much more than I have here. As I mentioned earlier, The Early Universe 
(Kolb and Turner) has an excellent chapter on inflation. The recent Cosmological 
Inflation and Large Scale Structure (Liddle and Lyth) is most similar in spirit to 
this book, with a heavy emphasis on perturbations. The discussion there of the 
perturbation spectrum is laden with less algebra than the one in Section 6.5 so is 
worth reading. (Beware that their Planck mass is our mpi/>/87r.) 

An extremely clear and deep look into inflation is given in 300 Years of Gravita-
tion (ed. Hawking and Israel) in the article by Blau and Guth. Many other articles 
in that thick compilation volume are also fascinating. The initial article by Guth 
(1981) is completely accessible and as clear a statement possible of the problems 
that led to inflation and the initial attempt (old inflation) to solve them. Indeed, 
I would recommend reading Guth's initial article because this chapter motivates 
inflation with the horizon problem, while Guth had several different problems in 
mind, including the monopole problem and the flatness problem (Exercise 4). 

There have been many papers reviewing the production of perturbations during 
inflation. Two clear reviews are Lidsey et al (1997) and Lyth and Riotto (1999). 
The former focuses on methods for going beyond the predictions elucidated here, 
which are accurate only to flrst order in the slow-roll parameters e and 5, and on 
extracting the potential V from observations. The latter summarizes efforts to tie 
inflation to realistic particle physics models. The eight-page paper of Stewart and 
Lyth (1993) is a remarkably concise treatment of the techniques used to go beyond 
the first-order slow-roll approximation. Hollands and Wald (2002) have written a 
thoughtful critique of inflation, which is a refreshing antidote to some of the eupho-
ria emanating from the discoveries of the late 1990s. Besides the importance of this 
critique in its own right, the paper has one of the clearest quahtative descriptions 
of perturbation generation during inflation that I have ever read. 

The initial conditions relating the various perturbations described in Section 6.1 
are perhaps most clearly discussed in the review article by Efstathiou (1990). Isocur-
vature perturbations, for the most part ignored here, are treated in detail there. 

I have ignored the possibility of perturbations produced by topological defects. 
These theories, while fascinating, have not succeeded in making robust predictions; 
to the extent that predictions can be extracted from them, they are wrong. Nonethe-
less the numerics involved in their study is sufficiently complicated that I would 
not be shocked to see them make a comeback some day. There exist many books 
with comprehensive discussions of topological defects. Among them are Cosmic 
Strings and Other Topological Defects (Vilenkin and Shellard) and The Formation 
and Evolution of Cosmic Strings (ed. Gibbons, Hawking, and Vachaspati). 



bxercises 175 

EXERCISES 

Exercise 1. Find the ratio of neutrino to radiation energy density, fjy. Assume 
that there are three species of massless neutrinos. 

Exercise 2. Account for the neutrino quadrupole moment when setting up initial 
conditions. 
(a) Start with Eq. (4.107). This is an equation for Af{fi). Turn this into a hierarchy 
of equations for the neutrino moments: 

Afo + A:^ = - ^ 

M^ - IkMi - 0. (6.107) 
5 

To do this, you need to recall the definition of these moments, which is equivalent to 
that for photons, Eq. (4.99). A good way to reduce Eq. (4.107) into this hierarchy 
is to multiply it first by VQ and then integrate over /_^ d/i. This leads to the first 
equation above. Then multiply Eq. (4.107) by Vi to get the second and V2 to get the 
third. More details are given in Section 8.3, where we go through the same exercise 
for the photon moments. In the third equation you may neglect A/3 because it is 
smaller than A/2 by a factor of order kr] (prove this!). 
(b) Eliminate A/i from these equations and show that 

A/-2 = —- (^ + A/'o - 2U2). (6.108) 
15 

Drop A/2 on the right-hand side because it is much smaller than ^ + A/Q • 
(c) Rewrite Einstein's equation (5.33) as 

M2 = - ( f c ^ ) ' ^ ^ - (6109) 

This neglects the photon quadrupole. Argue that Compton scattering sets 62 <C A/2 
so this is a reasonable assumption. 
(d) Now differentiate this form of Einstein's equation twice to get an expression 
for A/2. Equate this to the expression for A/2 derived in part (b). (You may drop 
all derivatives of $ and ^ when doing this since the mode of interest is the p = 0 
constant mode.) Use this equation to express A/Q in terms of $ and ^ . 
(e) Finally assume that QQ = A/Q and use your expression for A/Q to rewrite 
Eq. (6.12) as a relation between the two gravitational potentials. Show that this 
relation is 

$ = - ^ f l + ? ^ ) . (6.110) 
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Exercise 3. Show that the initial conditions for the velocities and dipoles of matter 
and radiation are as given in Eq. (6.16). 

Exercise 4. Inflation also solves the flatness problem. This is the question of why 
the energy density today is so close to critical. 
(a) Suppose that 

is equal to 0.3 today, where p counts the energy density in matter and radiation 
(assume zero cosmological constant). From Eq. (1.2), plot Q{t) — 1 as a function of 
the scale factor. How close to one would fl{t) have been back at the Planck epoch 
(assuming no inflation took place so that the scale factor at the Planck epoch was 
of order 10~^^)? This fine-tuning of the initial conditions is the flatness problem. 
If not for the fine tuning, an open universe would be obviously open (i.e., ft would 
be almost exactly zero) today. 
(b) Now show that inflation solve the flatness problem. Extrapolate Q{t) — 1 back 
to the end of inflation, and then through 60 e-folds of inflation. What is Q{t) — 1 
right before these 60 e-folds of inflation? 

Exercise 5. Another way of looking at the problems that inflation solves is to 
consider the entropy within our Hubble volume. This is proportional to the total 
number of particles in the volume, with a proportionality constant of order unity. 
How many photons are there within our Hubble volume today? Explain how infla-
tion produces entropy this large. 

Exercise 6. We showed that, if the universe was always dominated by ordinary 
matter or radiation early on, then the comoving horizon when the scale factor was 
tte (very small) was aoHo/aeHe times the comoving Hubble radius today. Compute 
this ratio assuming that the temperature was equal to 10^^ GeV at ag. Account for 
the radiation-to-matter transition at a ~ 10~^. 

Exercise 7. Consider a free, homogeneous scalar field with mass m. The potential 
for this field is F = m?(j)^/2. Show that, if m > if, the scalar field oscillates with 
frequency equal to its mass. Also show that its energy density falls off as a~^, so it 
behaves exactly like ordinary nonrelativistic matter. 

Exercise 8. Show that Eq. (6.33) follows from Eq. (6.32) by changing variables 
from t to rj. 

Exercise 9. Compute some well-known properties of the quantized harmonic oscil-
lator. 
(a) The momentum of the harmonic oscillator with unit mass is p — dx/dt. Com-
pute 
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and show that it is equal to i. You can obtain the operator p by differentiating x 
(Eq. (6.38)) with respect to time. 
(b) Compute the zero-point energy of the harmonic oscillator with unit mass. Do 
this by quantizing the energy 

E = '^ + 
^ J'x^ 
2 2 

and then computing its expectation value in the ground state: (0|E'|0). 

Exercise 10. Show that gravity waves are not sourced by the scalar field during 
inflation. To do this, recall that the right-hand side of Eq. (6.45) is 

where ^T is the perturbation to the energy-momentum tensor (assumed to be 
dominated by 0) and, as in the derivation of Eq. (5.63), I have chosen k to be in 
the z direction. Show that this right-hand side is indeed zero for the scalar field. 

Exercise 11. Show that Eq. (6.57) is the appropriate solution to Eq. (6.56). 
(a) Define v — v/rf and rewrite Eq. (6.56) in terms of v. 
(b) The resulting equation is the spherical Bessel equation. Write down the general 
solution to this as a linear combination of two functions of krj. 
(c) Use the boundary conditions of Eq. (6.58) to determine the coefficients of part 
(b). Show that Eq. (6.57) is the correct solution for these boundary conditions. 

Exercise 12. Derive some useful identities involving the slow-roll parameters dur-
ing infiation. 
(a) Show that 

±(1_\^ -1 
dr] \aHj ' • 

(b) Show that 

inGi^^^'^f^ea^H^ (6.112) 

(c) Using the definitions of e and 6, show that 

^ = -2aHe(e + S). (6.113) 
dr] 

Use this to show that d\ne\aH=k/d\n{k) — —2(e + S). 

Exercise 13. Show that on large scales Eq. (6.85) holds. One way to do this is to 
combine Einstein's equations, the time-time (5.27) and time-space (Exercise 5 of 
Chapter 5) components, and take the large-scale limit. 
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Exercise 14. Express the slow-roll parameters e and 77 in terms of the potential V 
and its derivatives with respect to <j>. Show that, to lowest order, 

1 /V 

IGTTG V V 

where primes denote derivatives with respect to (p^^K 

Exercise 15. There are a number of ways of describing pressure in the universe 
and of relating the pressure to the energy density. One was introduced back in 
Chapter 2, the equation of state^ 

w = - . (6.114) 
P 

The second is the sound speed, 

cl . | . (6.1,5, 

The way to compute c^ is to differentiate both V and p with respect to time and 
take the ratio. Finally, there is the ratio of perturbations in the energy density to 
those in the pressure, 

? = 4^, (6.116) 

where the minus sign accounts for the fact the the time-time component of the 
energy-momentum tensor is minus the energy density with our convention, and the 
factor of 3 negates the sum over the three spatial indices. For adiabatic perturba-
tions, SV/Sp = Cg. Show that this holds for three separate cases: matter, radiation, 
and a single scalar field during inflation at the time of horizon crossing. For the last 
case, it is enough to show that the difference SV/6p — c^ is of order the slow-roll 
parameters e and S. 

Exercise 16. Show that in a gauge given by Eq. (6.91), the equation governing 
the perturbations to a scalar field Sc/) is Eq. (6.71). 
(a) Bardeen's equation for the gauge-invariant density in the absence of anisotropic 
stress is 

f- (a^pem) = -{p + V)a^kv (6.117) 

with gauge-invariant density defined as 

pem = -p- ST% + ^^h5T\ (6.118) 

and velocity v via Eq. (6.92). Compute pem for a scalar field in a gauge with spatially 
flat slicing. Show that, to lowest order in slow-roll parameters e (not e^) and 5, the 
equation reduces to 
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^ (a^(^(o)50) = -ea^^^'^Scp. (6.119) 

(b) Again using the slow-roll approximation reduce Eq. (6.119) to the form of 
Eq. (6.45). 

Exercise 17. Show that the curvature in conformal Newtonian gauge is equal to 
Ak'^^/a^. To do this, compute the three-dimensional Ricci scalar arising from the 
spatial part of the metric gij — 6ija'^{l + 2$). 

Exercise 18. Determine the predictions of an inflationary model with a quartic 
potential, 

v{4>) = x<p\ 

(a) Compute the slow roll parameters e and 6 in terms of 0. 
(b) Determine (pe^ the value of the field at which inflation ends, by setting 6 = 1 at 
the end of inflation. 
(c) To determine the spectrum, you will need to evaluate e and S at —kr] = 1. 
Choose the wavenumber k to be equal to aoHo, roughly the horizon today. Show 
that the requirement —krj — l then corresponds to 

N N' 

^l e 
e „ 6 0 _ / ^ ^ / 

{H{N')/H,) 

where He is the Hubble rate at the end of inflation, and N is defined to be the 
number of e-folds before the end of inflation: 

TV ^-m-
(d) Take the Hubble rate to be a constant in the above with H/He equal to 1. This 
implies that N ^ 60. Turn this into an expression for </>. The simplest way to do 
this is to note that N = J^ ^ dt'H{t') and assume that H is dominated by potential 
energy. Show that this mode leaves the horizon when cfp' = 60mpj/7r. 
(e) Determine the predicted values of n and UT-
(f) Estimate the scalar amplitude in terms of A. As a rough estimate, assume that 
k^P^{k) for this mode is equal to 10~^ (we will flnd a more precise value when we 
normalize to large-angle anisotropics in Chapter 8). What value does this imply for 
A? 
This model illustrates many of the features of contemporary models. In it, (i) the 
field is of order — even greater than — the Planck scale, but (ii) the energy scale V 
is much smaller because of (iii) the very small coupling constant. 
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Having set up the system of equations to be solved and the initial conditions for 
the perturbations, we can now calculate the inhomogeneities and anisotropics in 
the universe. In this first solutions chapter, we start with the perturbations to the 
dark matter. In principle these are coupled to all other perturbations. In practice, 
though, perturbations to the dark matter depend very little on the details of the 
radiation perturbations. Dark matter, by definition, is affected by radiation only 
indirectly, through the gravitational potentials. At late times, when the universe is 
dominated by matter, these potentials are independent of the radiation. At early 
times, while it is true that the potentials are determined by the radiation, it is also 
true that the radiation perturbations are relatively simple, so that all moments 
beyond the monopole and dipole can be neglected. The converse is not true, as we 
will see in the next chapter: To treat the anisotropics properly we will need to know 
how the matter perturbations behave. 

The ultimate goal of this exercise is to compare theory with observations. We 
will solve for the evolution of each Fourier mode, 6{k^rj). Given this solution, and 
the initial power spectrum generated by inflation, we can construct the power spec-
trum of matter today. At least on large scales, this is the most important observ-
able. On small scales, comparison with observation today is more difficult: one must 
worry about nonlinearities and gas dynamics when comparing with the galaxy dis-
tribution. Nonetheless, even on small scales, the linear power spectrum, which we 
compute in this chapter, is often the starting point for any quantitative statement 
about the distribution of matter. 

7.1 PRELUDE 

Gravitational instability is a powerful idea, easy to understand, and most likely 
responsible for the structure in our universe. As time evolves, matter accumulates 
in initially overdense regions. It doesn't matter how small the initial overdensity 
was (e.g., in typical cosmological scenarios, the overdensity was of order 1 part in 
10^); eventually enough matter will be attracted to the region to form structure. 

180 



PRELUDE 181 

Pressure 

Figure 7.1. Gravitational instability. Mass near an overdense region is attracted to the cen-
ter by gravity but repelled by pressure. If the region is dense enough, gravity wins and the 
overdensity grows with time. 

The F = ma of gravitational instability is the equation governing overdensities 
6. Schematically, it reads 

6 + [Pressure - Gravity] ^ = 0. (7.1) 

These basic forces, depicted in Figure 7.1, act in opposite directions. Gravity acts 
to increase overdensities, grabbing more matter into the region. Since there are 
more particles in an overdense region, random thermal motion causes a net loss of 
mass in an overdense region. Therefore, if pressure is strong, inhomogeneities do 
not grow. As indicated by the cartoon equation (7.1), if pressure is low, S grows 
exponentially; if it is large, 6 oscillates with time. 

We will see many manifestations of the simple form of gravitational instability 
depicted in Eq. (7.1). Different ambient cosmological conditions alter the growth 
rate. For example, in a matter-dominated universe, 6 grows only as a power of 
time, not exponentially, whereas in a radiation-dominated universe, the growth is 
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but logarithmic. We will treat super-horizon versions of this equation as well as 
the more familiar sub-horizon version. When going though the math, though, it is 
useful to bear in mind the dueling concepts of gravity and pressure. 

7.1.1 Three Stages of Evolution 

1 

0.8 

^ 0.6 

^ 0 . 4 

0.2 

0 

i| I iiiimi I I imiii—I Ilium 

\ 

\ 

ill I I 'iiml I I I I i n " " ! 

I fimiB—I 11 IMIII—n 

k = .001 J 

0.1 

2 h Mpc - 1 

"I ' •"•'"I I 11 mill I 11 mm 

1 o-'̂ i 0-610-^1 o-n 0-310-2 0.1 1 
a 

Figure 7.2. The linear evolution of the gravitional potential $ . Dashed line denotes that the 
mode has entered the horizon. Evolution through the shaded region is described by the transfer 
function. The potential is unnormalized, but the relative normalization of the three modes is 
as it would be for scale-invariant perturbations. Here baryons have been neglected, Qm — 1, 
and h = 0.5. 

The evolution of cosmological perturbations breaks up naturally into three 
stages. To see this, let's cheat and look at the solutions for several different modes. 
Figure 7.2 shows the gravitational potential as a function of scale factor for long-, 
medium-, and short-wavelength modes. Early on, all of the modes are outside the 
horizon {hrj <^ 1) and the potential is constant. At intermediate times (shaded in 
the figure), two things happen: the wavelengths fall within the horizon and the uni-
verse evolves from radiation domination {a <^ agq) to matter domination (a » aeq). 
Without getting into the details, we see that the order of these epochs (agq and 
the epoch of horizon crossing) greatly affects the potential. The large-scale mode, 
which enters the horizon well after agq̂  evolves much differently than the small-scale 
mode, which enters the horizon before equality. Finally, at late times, all the modes 
evolve identically again, in this case (where flrn — 1) remaining constant. 



PRELUDE 183 

We are able to observe the distribution of matter predominantly at late epochs, 
in the third stage of evolution, when all modes are evolving identically. If we wish 
to relate the potential during these times to the primordial potential set up during 
inflation, and we do, we can write schematically 

^{k,a) = ^p{k) X jxransfer Function(A:)| x jCrowth Function(a)|. (7.2) 

where $p is the primordial value of the potential, set during inflation. The trans-
fer function describes the evolution of perturbations through the epochs of horizon 
cossing and radiation/matter transition (the shaded region in Figure 7.2), while 
the growth factor describes the wavelength-independent growth at late times. This 
schematic equation is indeed roughly how the growth factor and the transfer func-
tion are deflned, with two caveats, both due to convention. Notice from Figure 
7.2 that even the largest wavelength perturbations decline slightly as the universe 
passes through the epoch of equality. This decline is conventionally removed so that 
the transfer function on large scales is equal to 1. Therefore, the transfer function 
is defined as 

^Large—Scalev'^5 ^ l a t e j 

where aiate denotes an epoch well after the transfer function regime and the Large-
Scale solution is the primordial $ decreased by a small amount. We will derive in 
Section 7.2 that — neglecting anisotropic stresses — this factor is equal to (9/10). 
The second caveat concerns the growth function. The ratio of the potential to its 
value right after the transfer function regime is defined to be 

$(a) Di{a) , , , ^ , , 

^ ( a i a t e ) a 

where Di is called the growth function. In the flat, matter-dominated case depicted 
in Figure 7.2, then, the potential is constant so Di{a) = a. With these conventions, 
we have 

$(fc,a) = l $ p ( f c ) T ( f c ) ^ ^ (a > aiate). (7.5) 

The easiest way to probe the potential is to measure the matter distribution. 
Figure 7.3 shows the evolution of the matter overdensity for three different modes. 
Notice that at late times — when the potential is constant and all the modes are 
within the horizon — the overdensity grows with the scale factor {5 ex a). This 
explains the seemingly odd nomenclature above (Why is it called a growth function 
if the potential remains constant?): Di describes the growth of the matter pertur-
bations at late times. This growth is completely consistent with our intuition that 
as time evolves, overdense regions attract more and more matter, thereby becoming 
more overdense. 

We can now express the power spectrum of the matter distribution in terms of 
the primordial power spectrum generated during inflation, the transfer function, 
and the growth function. The simplest way to relate the matter overdensity to the 
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Figure 7.3. The evolution of perturbations to the dark matter in the same model as plotted in 
Figure 7.2. Amplitude starts to grow upon horizon entry (different times for the three different 
modes shown here). Well after aeq, all sub-horizon modes evolve identically, scaling as the 
growth factor. In the case plotted, a flat, matter dominated universe, the growth factor is 
simply equal to a. 

potential at late times is to use Poisson's equation (the large-/c, no-radiation limit 
of Eq. (5.81)) 

^ = ? ? ^ - {a > aiate). (7.6) 
fc2 

The background density of matter is Pm — ^mpcr/a^^ and AnGpcr = {3/2)HQ, SO 

6{k^a) {a > aiate). (7.7) 
(3 /2)0^ i72 

This, together with Eq. (7.5), allows us to relate the overdensity today to the 
primordial potential 

3 k 
(7.8) 

^mJ-J-Q 

Equation (7.8) holds regardless of how the initial perturbation $p was generated. 
In the context of inflation, ^p(^) is drawn from a Gaussian distribution with mean 
zero and variance (Eq. (6.100)) P^ = (507rV9/c^)(A:/i/o)''"^^H(^m/^i(a = 1))^ 
So the power spectrum of matter at late times is 

P{k,a) = 2^^d%j^T\k) [-^^)' (« > '^late). (7.9) 
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The power spectrum has dimensions of (length)"^. If we want to express the power 
as a dimensionless function, then, we must multiply by k^. More precisely, one often 
associates (PkP{k)/{27T)^ with the excess power in a bin of width dk centered at k. 
After integrating over all orientations of k, this becomes {dk/k)IS? {k) ̂  with 

^\k) ^ ^ ^ . (7.10) 

Small A then corresponds to small inhomogeneities, while large A indicates nonlin-
ear perturbations. Note that, with our conventions, a Harrison-Zel'dovich-Peebles 
spectrum today has A^ = 5|^ on a horizon-sized scale {k — HQ). 

Figure 7.4 shows the power spectrum today for two different models. Note that 
in both of the models P oc k on large scales, where the transfer function is unity. 
This behavior is apparent from Eq. (7.9) and corresponds to the simplest infla-
tionary model, wherein n = 1. On small scales the power spectrum turns over. 
To understand this, look back at Figure 7.2. The small-scale mode there (k = 2h 
Mpc~^) enters the horizon well before matter/radiation equality. During the radi-
ation epoch the potential decays, so the transfer function is much smaller than 
unity. The effect of this on matter perturbations can be seen in Figure 7.3, where 
the growth of 6 is retarded starting at a ~ 10~^ after the mode has entered the 
horizon and ending at a ^ 10~^ when the universe becomes matter dominated. 
Modes that enter the horizon even earlier undergo more suppression. Thus, the 
power spectrum is a decreasing function of k on small scales. 

This leads to the realization that there will be a turnover in the power spectrum 
at a scale corresponding to the one which enters the horizon at matter/radiation 
equality. The power of this realization is apparent in Figure 7.4, which shows two 
different models: one corresponding to a flat, matter-dominated universe today 
(often called standard Cold Dark Matter or sCDM) and the other a universe with 
a cosmological constant today (Lambda Cold Dark Matter or ACDM). The major 
difference between the two models is that sCDM has more matter {Ctm = 1) and 
hence an earlier aeq. An earlier Ogq means only the very small scales enter the 
horizon during the radiation-dominated epoch, and therefore the turnover occurs 
on smaller scales. Finally, another important scale to keep in mind is the scale 
above which nonlinearities cannot be ignored. This is roughly set by A{kn\) — 1, 
which corresponds to k^i — 0.2 h Mpc~^ in most models. The power spectra shown 
in Figure 7.4 are the linear power spectra today. On scales smaller than fcni, one 
cannot blindly compare the spectra from Figure 7.4 with the matter distribution 
today. 

7.1.2 Method 

What are the evolution equations for the dark matter overdensity? In principle, 
these are the full set of Boltzmann equations derived in Chapter 4 and the pair of 
Einstein equations from Chapter 5. In practice, though, the full set of equations 
is not needed. To understand why, recall that early on (before recombination at 
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Figure 7.4. The power spectrum in two Cold Dark Matter models, with (ACDM) and without 
(sCDM) a cosmological constant. The spectra have been normalized to agree on large scales. 
The spectrum in the cosmological constant model turns over on larger scales because of a 
later aeq. Scales to the left of the vertical line are still evolving linearly. 

a = a*), the photon distribution can be characterized by only two moments, the 
monopole Go and the dipole ©i. All other moments are suppressed because the 
photons are tightly coupled to the electron/proton gas. After decoupling this ceases 
to be true, and to completely characterize the photon distribution we will need to 
follow high moments. However, for the purposes of the matter distribution, what 
the photons are doing after a* is irrelevant. For, by that time, which is typically well 
into the matter era, the potential is dominated by the dark matter itself. To sum 
up then, we can neglect all photon moments except for the monopole and dipole 
when we are considering the evolution of the matter distribution. 

Neglecting the higher radiation moments, the four relevant Boltzmann equations 
(Section 4.7) become 

©r 0 + kQ r.l - $ 

k —k 
©r.l - ^©r.O = - y ^ 

S -\-ikv = - 3 ^ 

(7.11) 

(7.12) 

(7.13) 

V -\—V = ik^. 
a 

(7.14) 

Even with the assumption that only the monopole and dipole are retained, getting 
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from Eq. (4.100) to Eqs. (7.11) and (7.12) requires some explanation and work. 
First, the explanation: The subscript r here refers to radiation, both neutrinos 
and photons. Both species contribute to the gravitational potential (which is our 
interest in this chapter) and both start out with the same initial conditions. It is 
not quite as obvious that both follow the same evolution equations (the f terms can 
be neglected in Eq. (4.100)) or that these evolution equations are the ones given in 
(7.11) and (7.12). But it is true, at least in the limit of small baryon density, and 
again only for the purposes of following the matter evolution. You can work out 
the details in Exercise 1, and we will explore the full photon evolution equation in 
the next chapter. 

To close the set of equations for the dark matter density, we need an equation for 
the gravitational potential $. You may have noticed that in Eqs. (7.11)-(7.14), I set 
^ ^ — $, an approximation valid in the limit that there are no quadrupole moments 
(Eq. (5.33)). Since some of the Einstein equations are redundant, we have several 
choices for one last equation relating ^ to the radiation and matter overdensities. 
We can use the time-time component, Eq. (5.27), 

e^ + 3 - f 6 + -^) = AnGa^ [p^^S + 4p,e, ,o]. (7.15) 
a \ a J 

Here, again I have set ^ to —$, neglected the baryons,^ and merged the neutrino 
and photon contributions to the potential. The alternative is to use the algebraic 
(no time derivatives) equation (5.81): 

A:2$ = 4nGa^ PdmS -h 4.prQr,0 + —j— [ipdmV + 4 p r © r , l j (7.16) 

Both of these equations will be useful to us at various times, although only one is 
necessary to close the set of equations for the five variables (5, v, 6^,0, 0r , i , and ^ . 

At this stage, the simplest thing to do is solve the set of five coupled equations 
numerically (Exercise 2). If Eq. (7.15) is used, there are no numerical difficulties, 
and with very little work, you can have a code which computes the transfer function 
(in the absence of baryons) in less than a second. 

Analytic solutions for the dark matter density are harder to come by. I know of 
no analytic solution valid on all scales at all times. To make progress, we will have 
to take some limits which reduce the full set of five equations to a more managable 
two or three. The cost is that these limits will be valid only for certain scales at 
certain times. Patching these analytic solutions together to obtain a reasonable 
transfer function is as much art as science. 

As a guide to this analytic work which will occupy us much of the rest of 
this chapter, consider Figure 7.5. The solid curve is the comoving horizon (confor-
mal time), which increases with time, equal to about 30 h~^ Mpc at the epoch of 

^This is a fairly good approximation since in most models, the baryon density is much smaller 
than the dark matter density. We will explore the effects of baryons in Section 7.6. 
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Figure 7.5. Physics of the transfer function. Hatched regions show where analytic expressions 
exist. The gaps in the center show that no analytic solutions exist to capture the full evolution 
of intermediate scale modes. The curve monotonically increasing from bottom left to top right 
is the comoving horizon. 

equality.^ A given comoving scale remains constant with time. Take for example, a 
comoving distance of 10 h~^ Mpc, corresponding to wavenumber A; = 0.1 ft Mpc~^. 
At early times (a < 10~^) this distance is larger than the horizon, so krj <C 1. 
We can then drop all terms proportional to k in the evolution equations. In Sec-
tion 7.2.1, we will derive an exact solution for the potential in this super-horizon 
limit. Unfortunately, Figure 7.5 indicates that, for the mode in question, this super-
horizon solution is valid only until a ~ 10~^. At much later times (a > 10""^) the 
mode is well within the horizon and the radiation perturbations have become irrel-
evant (since the universe is matter dominated). We will see in Section 7.3.2 that, 
under these conditions, another analytic solution can be found. The difficulty is 
matching the super-horizon solution to the sub-horizon solution. 

The problem of matching the super-horizon solution to the sub-horizon solution 
can be solved for very large scale {k < 0.01 h Mpc~^) and very small scale (A: > 0.5 h 
Mpc~^) modes. In the large-scale case, we will see in Section 7.2.2 that once the 
universe becomes matter dominated, $ = constant is a solution to the evolution 

^This is model dependent; the plot shows sCDM, with h = 0.5. 
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equations even as the mode crosses the horizon. This fact serves as a bridge between 
the super- and sub-horizon solutions, both of which have constant $ in the matter-
dominated regime. In the small-scale case, we can neglect matter perturbations as 
the mode crosses the horizon, since these modes cross the horizon when the universe 
is deep in the radiation era. Then, once the mode is sufficiently within the horizon, 
radiation perturbations decay away, and we can match on to the sub-horizon, no-
radiation perturbation solution of Section 7.3.2. 

With analytic expressions on both large and small scales, we can obtain a good 
fit to the transfer function by splining the two solutions together. We will see in 
Section 7.4 that this works, primarily because the transfer function is so smooth, 
monotonically decreasing from unity on large scales. 

7.2 LARGE SCALES 

On very large scales, we can get analytic solutions for the potential first through the 
matter-radiation transition and then through horizon crossing. We start with the 
super-horizon solution valid through the matter-radiation transition. The results 
of Section 7.2.1 will be that the potential drops by a factor of 9/10 as the universe 
goes from radiation to matter domination. 

100 0.01 

0.1 

7.2.1 Super-horizon Solution 

For modes that are far outside the 
horizon, krj <^ 1 and we can drop 
all terms in the evolution equations 
dependent on k. From Eqs. (7.11) and 
(7.13), we see that, in this limit, the 
velocities {v and 0r,i) decouple from 
the evolution equations. This imme-
diately reduces the number of equa-
tions to solve from five to three. For 
the third equation, we notice that 
Eq. (7.16) has terms inversely propor-
tional to k. These will be difficult to deal with, so let us choose Eq. (7.15) instead 
We are left with 
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e.,0 = - ^ 

5 = - 3 $ 

(7.17) 

(7.18) 

3 - I $ + - $ ) = iirGa^ [pdmS + iprOr,o] • (7.19) 

We can go a step further by realizing that the first two equations require 6 — 3@r,o 
to be constant. Further, we know that this constant is zero (these are the initial 
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conditions). So let us use the dark matter equation (7.18) and the Einstein equation 
with Qrfi set to S/3. The Einstein equation is then 

3 - U + - $ ) =4nGa^pdmS 1 + 
32/ 

(7.20) 

a 
y = — 

Oft 

(7.21) 
Here I have introduced 

Pdm 

^eq Pr 

which we will use as an evolution variable instead of ry or a. Again I emphasize that 
we are ignoring baryons, so Oeq is determined solely by pdm; in the real world, the 
numerator in the last term in Eq. (7.21) would be pm, accounting for all matter 
including baryons. 

Equations (7.18) and (7.20) are two first-order equations for the two variables 5 
and $. The stategy will be to turn these two first-order equations into one second-
order equation and then solve. First, though, let us rewrite the equations in terms of 
the new variable y. The derivative with respect to y is related to that with respect 
to rj via the Jacobian, 

dr] 

dy d 
dfj dy 

aHy d_ 
dy' 

(7.22) 

where the second line follows from the definition of y and the fact that a — a^H. 
In terms of y then, the Einstein equation becomes 

y ^ ' - h ^ y r 

2(y + i) 

^y±±^ 

4 

6(^ + 1) 
(7.23) 

where prime denotes derivatives with respect to y and the right side of the first line 
follows since 87rGy9dm/3 = {87TGp/3)y/{y + 1) = H^y/{y + 1). 

In general, to turn two first-order equations into one second-order equation, the 
trick is to difi'erentiate one of them. Here, to simplify the algebra, we first rewrite 
Eq. (7.23) as an expression for S; then diff'erentiate with respect to y; and finally 
set 6' to —3^' thanks to the dark matter equation (7.18). This leads to 

- 3 ^ ' = ^ / ^ ^ ^ + ^ ^ 
dy\ 3y + 4 

y$' + $ (7.24) 

Carrying out the derivative is tedious but straightforward. We are left with 

$" + 
21J/2 + 542/ + 32 

$' + 
$ 

2y(j/+l)(3y + 4) y{y + l){3y + 4) 
0. (7.25) 
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Remarkably, Kodama and Sasaki (1984) found an analytic solution to Eq. (7.25). 
They introduced a new variable 

y 
= ̂ . 

In terms of this variable, you will show (Exercise 4) that Eq. (7.25) becomes 

3 

(7.26) 

u" + u' 
- 2 , 3/2 
y l^y 3?/ + 4j 

- 0 . (7.27) 

That is, there is no term proportional to u. Instead of a second-order equation for 
^ , then, we have a first-order equation for u'. Fortunately, this first-order equation 
is integrable. Starting from 

du' 
dy 

3/2 ^ 3 

y 1-hy 3y-\-4: 

we can integrate to get 

\n{u') = constant + 2\n{y) - (3/2) ln(l + y) + \n{3y -h 4). 

Then exponentiating gives 
,2/'(3y + 4) 

(7.28) 

(7.29) 

(7.30) 
( l+y)3/2 

where A is a constant to be determined. 
We are one integral away from an analytic expression for the gravitational poten-

tial. Remembering the definition of u (Eq. (7.26)), we can integrate Eq. (7.30) to 
obtain 

y . $ 
h ^ (1 + 2/0^/^-vT+^^ ^Vo ^̂  (1 + ^0^/2- ^^'^^^ 

Note that there should be another constant, i^(0), here. However, since y^^ ^^ 0 
early on, this constant is vanishes. By similar logic, we can determine the constant 
A even before performing the integral. For small y, the integrand becomes 4?/'^, so 
for small y, Eq. (7.31) becomes ^ = 4 ^ / 3 . Therefore, A = 3^(0)/4. The integral 
can be done analytically (Exercise 4 again) leaving 

$ = 
^(0) 1 

10 ^ 
16 v^TT^ + 9^' + 2?/2 - 8?/ - 16 (7.32) 

Equation (7.32) is our final expression for the potential on super-horizon scales. 
Although it is not obvious, at small y this expression sets ^ = ^(0), a constant. 
This must be so, since we chose the two constants of integration with precisely this 
condition. At large ^, once the universe has become matter-dominated, the y^ term 
in the brackets dominates, so ^ ^> (9/10)^(0). This is precisely the result we were 
after: the potential on even the largest scales drops by 10% as the universe passes 
through the epoch of equality. 
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Figure 7.6. Super-horizon evolution of the potential in a CDM model with no baryons, h = 0.5 
and Qrn = 1- Thick solid line shows the analytic result of Eq. (7.32), valid only on large scales. 
White curve within is for the mode k = 0.001/i Mpc~^ Two other smaller scale modes are 
shown. 

Let us compare this analytic result, valid only when modes are super-horizon, 
with the numerical results. Figure 7.6 shows that the solution works perfectly on the 
largest scales and even tolerably well (better than 10%) for scales as small as A: = 
0.01 h Mpc~^. This is slightly better than we had anticipated from a crude estimate 
of where the super-horizon solution is valid (Figure 7.5) and will be important for 
us later on when spline together the large and small scales solutions. A feature of 
the analytic solution which may be surprising to you is that, although it is true that 
the (large scale) potentials are constant in both the matter and radiation epochs, 
the transition between the pure matter and pure radiation eras is quite long. For 
example, and this is an important example for the purposes of the CMB as we will 
see in the next chapter, the potentials, even for the largest scale modes, are still 
decaying as late as a ~ 10""^, significantly after aeq. In models with less matter, 
fleq is pushed even closer to 10~^ so the decay of the potentials becomes even more 
apparent at the time of recombination. 

7.2.2 Through Horizon Crossing 
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One interesting feature of Figure 
7.6 which you should take note of is 
that large-scale potential (the numeri-
cal solution) becomes constant at very 
late times (a > IQ-^). For k = 10"^ h 
Mpc~^, the mode enters the horizon 
at 7/ -̂  fc-^ = 1000/i-^ Mpc which 
corresponds to a ~ 0.03 in the flat, 
matter-dominated universe depicted in 
Figure 7.6. The potential remains con-
stant as the mode crosses the horizon. 
This result is valid as long as the universe is matter dominated. We now set out to 
prove it. 

We are interested then in our set of five equations in the limit that radiation is 
not important. The potential depends only on the matter inhomogeneities, so we 
can neglect the two radiation equations, (7.11) and (7.12). In addition to the two 
matter equations, we now keep the second of Einstein's equations (7.16). This is 
an algebraic equation, meaning that we could in principle eliminate $ in the two 
matter equations and be left with a system of two first-order differential equations. 
These two first-order equations in general have two solutions. Instead of solving 
them directly, though, we can cheat using our knowledge of the initial conditions. 
Here is the idea: we just learned that, deep in the matter epoch, super-horizon 
potentials are constant. Therefore, the initial conditions for our problem are that 
the potential is constant ($ = 0). If we can show that constant $ is one of the 
two general solutions to the set of matter-dominated equations, then we don't care 
what the other solution is. For, the initial conditions ensure that the constant $ 
solution will be the solution. 

We want to see, then, if the set of equations 

S-^ikv = 0 

V 4- aHv = ik^ 

(7.33) 

(7.34) 

2 
(5 + 

SaHiv 
(7.35) 

admits a solution with $ a constant in time. We can use the algebraic equation 
(7.35) to eliminate S from the other two equations. In the matter dominated era, 
H oc a-^/2, so d{aH)/dri = -a^H'^/2. Replacing S in Eq. (7.33) with $ and v 
therefore leads to 

2fc2$ 2A:2$ 
-f 

3aHiv Sa^H'^iv ., 
H ; f- ikv = 0. (7.36) 

3a2/f2 • 3 ^ ^ fc • 2fc 

We now have two first-order equations for $ and v. The strategy is to turn these two 
equations into one second-order equation for $ . First eliminate v trom Eq. (7.36) 
by using the velocity equation. This leaves 
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3a2i/2 
w 2$ 9a2/f2 

+ A;M = 0. (7.37) 

If the second-order equation is of the form a $ + /3^ = 0 , that is, if it has 
no terms proportional to i>, then $ — constant is a solution to the equations. So 
we differentiate Eq. (7.37) with respect to rj but consider only the terms propor-
tional to $, dropping all terms proportional to derivatives of <E>. Using the fact that 
{d/dri){aH)~^ = 1/2, we see that the remaining terms are 

iv $ 
fc""^ "3 

9a^H^ 
+ k'] + 

iv 2^ 

iaHv 

d 9a^H^ 
dri 2 

2$ 

T {9a'H' + e (7.38) 

where I have ehminated i; by using the velocity equation again. But Eq. (7.37) tells 
us that the term in square brackets on the right here is proportional to $. So there 
are no terms in the second-order equation proportional to $. Constant potentials 
are therefore a solution in the matter-dominated era. Since the initial conditions 
pick out this mode, constant potential is the solution in the matter-dominated era. 

Potentials remain constant as long as the universe is matter dominated. At much 
later times (a > 1/10), it is conceivable that the universe becomes dominated by 
some other form of energy — dark energy for example — or, less hkely, by curvature. 
If so, then the potentials will decay. This decay is described by the growth function, 
though (Section 7.5), and does not affect the transfer function. The main result of 
this section is that the transfer function as defined in Eq. (7.3) is very close to unity 
on all scales that enter the horizon after the universe becomes matter dominated. 
That is, it is unity for all k <C aeqi/(aeq), the inverse comoving Hubble radius at 
equality. You will show in Exercise 5 that the relevant scale is 

A:eq = OmSMpc'^ ^mh^. (7.39) 

In the limit in which we are working, where baryons and anisotropic stresses are 
neglected, the transfer function depends only on k/keq- To get a feel for when 
the large-scale approximations of this section are valid, look back at Figure 7.6, 
plotted for the standard CDM model with Qrn — 1 and h — 0.5. The transfer 
function for the curve labeled 10~^ is 7% lower (0.84/0.9) than unity. For that 
mode, /c/Â eq = 0.01/(0.073/i) — 0.27. So if we are interested in 10% accuracy in the 
transfer function, then we can use the large-scale approximation for k < k^^jZ. 

7.3 SMALL SCALES 

We were able to solve for the evolution of large-scale perturbations in the previous 
section because the modes crossed the horizon well ajitr the epoch of equality. 
Therefore, the problem neatly divided into (i) super-horizon modes passing through 
the epoch of equality and then (ii) modes in the matter-dominated era which cross 
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the horizon. The converse is true for the small-scale modes considered in this section. 
They cross the horizon when the universe is deep in the radiation era. So the 
problem divides neatly into (i) modes in the radiation era crossing the horizon 
and then (ii) sub-horizon modes passing through the epoch of equality. Step (i) we 
treat in Section 7.3.1, step (ii) in Section 7.3.2. Notice that we are unable to treat 
analytically modes which enter the horizon around the epoch of equality. 

7.3.1 Horizon Crossing 

When the universe is radiation 
dominated, the potential is determined 
by perturbations to the radiation. The 
dark matter perturbations — the ones 
we are interested in in this chapter — 
are influenced by the potential, but do 
not themselves influence the potential. 
So the situation is as depicted in Fig-
ure 7.7. To solve for matter perturba-
tions in this epoch, therefore, is a two-
step problem. First, we must solve the 
coupled equations for 0r,Oj0r,i, and $. Then we solve the equation for matter 
evolution using the potential as an external driving force. 

100 b- ^ 0.01 

o 
I 

Radiation _ ^ .̂ , 
Perturbations .f-. Potential 

©O'^l 
^ - ^ 

Matter 
Perturbations 

<5.v 

Figure 7.7. Coupling of perturbations in the radiation era. Radiation perturbations and the 
gravitational potential affect each other. Matter perturbations do not affect the potential but 
are driven by it. 

To solve for the potential in the radiation dominated era, we choose Eq. (7.16). 
Dropping the matter source terms, we have 

$ 
fc2 

(7.40) 

since H^ = SnGpr/S in the radiation era. Also in the radiation era, aH — 1/rj. 
Armed with this fact, we can use Einstein's equation (7.40) to eUminate Qr,o i^^om 
the two radiation equations, (7.11) and (7.12). These become 

- T - 0 r l +fc© 
KT] 

yr,i 1 + fcvj 
= - $ 1 + 

k^rj^ 
$ 

k'^rj 
(7.41) 
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1 —k 
0r,l + -0^,1 - - - $ 

V 3 
fcV (7.42) 

We can turn these two first order-equations for $ and 0^,1 into one second-order 
equation for the potential. Use Eq. (7.42) to ehminate 6^,1 from the first equation, 
which then becomes 

^ + -<E> = - ^ 0 . , i . (7.43) 

We now have an expression for Or,i solely in terms of the potential and its first 
derivative. To arrive at a second-order equation for $, we differentiate. When we do, 
we will encounter terms proportional to Or-,i and its derivative. Each of these can 
be ehminated with Eq. (7.42) and Eq. (7.43). The resulting second-order equation 
is 

4 . A-̂  
^ 4 - - ^ + — ^ = 0. (7.44) 

V 3 
To determine the behavior of the potential in the radiation-dominated era, we 

must solve Eq. (7.44) subject to the initial conditions that ^ is constant. It can be 
solved analytically by defining u = ^r]. Then Eq. (7.44) becomes 

2 //c^ 2 \ 
i x + - w + - - - — U = 0. (7.45) 

V V 3 TJ 

This is the spherical Bessel equation of order 1 (see Eq. (C.13)) with solutions 
ji{kr]/y/3)—the spherical Bessel function — and ni{krj/\/3) — the spherical Neu-
mann function. The latter blows up as ry gets very small, so we discard it on the basis 
of the initial conditions. The spherical Bessel function of order 1 can be expressed 
in terms of trigonometric functions (Eq. (C.14)), so 

sm {krj/y/3) - {kr]/V3)cos{kr]/V3) 

{kv/Vsy 
$ ^ 3<̂ p ^̂ ^H^̂ // y^)- V^̂ //̂ -̂ ^̂  ̂ ^^^^^// ^ -̂ ^ ) (7.46) 

where $p is the primordial value of ^ . The factor of 3 in front here arises because 
the T] ^ 0 limit of the expression in parentheses is 1/3. 

Equation (7.46) tells us that, as soon as a mode enters the horizon during the 
radiation-dominated era, its potential starts to decay. After decaying, the poten-
tial oscillates, as depicted in Figure 7.8. Qualitatively, we could have anticipated 
as much. From the qualitative discussion surrounding Eq. (7.1), we expected that 
when the pressure is large, as it is when radiation dominates, perturbations will 
oscillate in time. If perturbations to the dominant component (here radiation) do 
not grow, then the potential in an expanding universe will begin to decay simply 
due to the dilution of the zero-order density. This is evident in Eq. (7.40) which 
(neglecting the dipole well within the horizon) says that ^ ~ Oo/v^- Since QQ 
oscillates with fixed amplitude, the potential also ocillates, but with an amplitude 
decreasing as r/"^. Indeed, this is precisely the large kij limit of Eq. (7.46). The 
decay and oscillation of the potential is shown in Figure 7.8, with both the analytic 
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Figure 7.8. Evolution of the potential in the radiation-dominated era. For two small scale 
modes which enter the horizon well before equality, the exact (solid curve) solution is shown 
along with the approximate analytic solution (dashed curve) of Eq. (7.46). 

expression of Eq. (7.46) and the numerical solution including matter perturba-
tions. Note that the approximate description — in which the effect of matter on the 
potential is neglected — is valid only deep in the radiation era. The analytic solu-
tion for the k — Ih Mpc~^ mode already begins to depart from the exact solution 
at a ~ 3 X 10~^, well before equality (here, in the sCDM model I have taken for 
illustrative purposes, a t a ~ 2 x l 0 ~ ^ ) . 

Armed with knowledge of the potential in the radiation dominated era, we can 
now determine the evolution of the matter perturbations, the second half of Figure 
7.7. To do this, we turn the two matter evolution equations— (7.13) and (7.14) — 
into one second-order equation with the potentials serving as an external source. 
Differentiate Eq. (7.13) and use Eq. (7.14) to ehminate v: 

a 

Now we can use Eq. (7.13) to eliminate v, leading to 

V 

where the source term is 

(7.47) 

(7.48) 

V 
(7.49) 
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The two solutions to the homogeneous equation (5 = 0) associated with 
Eq. (7.48) are S = constant and S = In (a) (or, equivalently in the radiation-
dominated era, Inlry]). In general, the solution to a second-order equation is a 
linear combination of the two homogeneous solutions and a particular solution. 
In the absence of a revelation about the particular solution, one can construct it 
from scratch from the two homogeneous solutions (call them si and S2) and the 
source terms. It is the integral of the source term weighted by the Green's function 
[si{v)s2(v') - si{v')^2{v)]/[h{r]')s2{r]') - Si{r]')s2{rj')]. So here, we have 

S{k, ry) = Ci + C2 Hv) - I dri'S{k, r]'W iH^v] - H^v]) • (7-50) 

At very early times the integral is small, so our initial conditions {S constant) dictate 
that the coefficient of In(ry), C2, vanishes and Ci = (5(/e, rj = 0) = 3$p/2. Now let us 
consider the integral in Eq. (7.50). The source function decays to zero along with 
the potential as the mode enters the horizon. Thus, the dominant contribution to 
the integral comes from the epochs during which krj is of order 1. The integral 
over S{r]^) \n{kTj') therefore will just asymptote to some constant, while the integral 
over S{rj^)\n{krj) will lead to a term proportional to \n{kr]) with the constant of 
proportionality being just that, a constant. Thus, we expect that after the mode 
has entered into the horizon, 

S{k,r]) = A^p\n{Bkr]), (7.51) 

i.e., a constant (^^pln[5]) plus a logarithmic growing mode {A^pln[kr]]). 
We can determine the constants A and B in Eq. (7.51) by referring to the 

relevant parts of Eq. (7.50). The constant term, A^pln{B), is equal to Ci plus the 
integral over In(ry'), or 

o /.OO 

A% \n{B) = -%- dr^'S{k, rj'W HW). (7.52) 
^ Jo 

while the coefficient of the \n{krj) term is set by the remaining integral 

A^ 
nOC 

p = / drj^S{k,r]^W- (7-53) 
Jo 

Note that in both integrals here, I have set the upper limit to infinity in accord 
with our expectation that the integrals asymptote to some constant value at large 
77. Using the expression for the source term, Eq. (7.49), and our analytic approxima-
tions to the potential, Eq. (7.46), we can evaluate the integrals here and determine 
A and B. I find A = 9.0 and B = 0.62. Hu and Sugiyama (1996), who introduced 
this method for following the dark matter evolution at early times, found that inte-
grating the exact potentials (instead of the approximate ones of Eq. (7.46)) leads 
to slightly different values, A = 9.6 and B = 0.44. 

Figure 7.9 shows the exact solution for 6 in the radiation era along with the 
approximation of Eq. (7.51). Setting aside the details for a moment, we see that 
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Figure 7.9. Matter perturbations in the radiation-dominated era. The two scales shown here 
both enter the horizon in the radiation era and lock onto the logarithmically growing mode 
after some oscillations. Heavy solid curves are the exact solutions, light dashed curves the 
logarithmic mode of Eq. (7.51). The perturbations have been artificially normalized by their 
values at early times: inflation actually predicts a larger initial amplitude (by a factor of 10^^^) 
for the larger scale mode. 

matter perturbations do indeed grow even during the radiation era. The growth is 
not as prominent as during the matter era (when the constant potentials derived 
in Section 7.2 imply S oc a) due to the pressure of the radiation, but it still exists. 
For both scales shown in Figure 7.9 the perturbations do indeed settle into the 
logarithmic growing mode once they enter the horizon. As the universe gets closer 
to matter domination, though, the pressure of the radiation becomes less important, 
and the perturbations begin to grow faster. Indeed, you might be worried that our 
approximation for the k — Ih Mpc~^ mode is not very useful. Fortunately, we will 
be using these solutions only to set the initial conditions for growth in the sub-
horizon epoch (next subsection), so the approximation need be valid only for a very 
limited range of times. As long as we choose the matching epoch appropriately, the 
logarithmic approximation will be extremely good. 

7.3.2 Sub-horizon Evolution 
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o 

We saw in the last subsection that 
radiation pressure causes the gravita-
tional potentials to decay as modes 
enter the horizon during the radia-
tion era. Although I did not focus on 
the radiation perturbations themselves 
(we will do this in the next chapter), 
you might expect that the pressure 
suppresses any growth in 6^,0. This 
is correct, and it is in sharp contrast 
to the matter perturbations which, we 
just saw, grow logarithmically. Although initially the potential is determined by 
the radiation (since the universe is radiation dominated), eventually the growth in 
the matter perturbations more than offsets the fact that there is more radiation 
than matter. That is, eventually pdm^ becomes larger than Pr0r,o even if pdm is 
smaller than pr. Once this happens, the gravitational potential and the dark matter 
perturbations evolve together and do not care what happens to the radiation. In 
this subsection, we want to solve the set of equations governing the matter pertur-
bations and the potential and then match on to the logarithmic solution (7.51) set 
up during the epoch in which the potential decays. 

Once again our starting point is the set of equations governing dark matter evo-
lution, (7.13) and (7.14), and the algebraic equation for the gravitational potential 
(7.16). And, once again, we want to reduce this set of three equations (two of which 
are first-order differential equations) to one second-order equation. We will want to 
follow the sub-horizon dark matter perturbations through the epoch of equality, so 
it proves convenient again to use y (Eq. (7.21))—the ratio of the scale factor to 
its value at equality — as the evolution variable. In terms of ?/, the three equations 
become 

6' + ikv 
aHy 

y 

kH = 

-W 

aHy 

^ 
2(y + i) 

a^H^6. 

(7.54) 

(7.55) 

(7.56) 

Several comments are in order about this version of our fundamental equations. 
First, notice that the time derivatives in the first two equations have been replaced 
by derivatives with respect to y (indicated by primes), and this transformation 
leads to the factors of ^ = aHy in the denominators of the unprimed terms. Sec-
ond, the gravitational potential is now expressed solely in terms of 6: there is no 
dependence on radiation perturbations because of our arguments above that these 
are subdominant, and there is no aHv/k dependence because the perturbations are 
well within the horizon and aH/k <C 1. Finally, the coefficient of the 6 source term 
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is AnGpdmCi^ —̂  {3/2)0^H^y/{y -h 1) since we are interested in times early enough 
that any curvature or dark energy is neghgible. 

We now go through the famihar routine of turning Eqs. (7.54) and (7.55) into 
a second-order equation for 6: differentiate the first of these to get 

„ ik{2 + 3y)v o^ / / , _ ^ ! 5 _ (7^7^ 
^ - 2aHy^l^y) = '^^ + ^ ^ ^ V ^ ^ 

where v' has been ehminated using the velocity equation. Also I have used the fact 
that d(l/aHy)/dy = —(1 + y)~^(2aHy)~^. The first term on the right is much 
smaller than the second, since the latter is multiplied by (fc/aif)^, and we are 
focusing on sub-horizon modes. Using Eq. (7.56), we recognize this second term 
as 35/[2y{y -f 1)]. We can rewrite the velocity on the left using Eq. (7.54) but 
neglecting the potential which on sub-horizon scales is much smaller than 5. Thus, 
the combination ikv/{aHy) can be simply replaced by —6' leaving 

3" + ,^^^^J - ,—^--5 = 0. (7.58) 
2y{y^l) 2y{y + l) 

This is the Meszaros equation governing the evolution of sub-horizon cold, dark 
matter perturbations once radiation perturbations have become negligible. 

To understand the growth of dark matter perturbations, we need to obtain the 
two independent solutions to the Meszaros equations and then match on to the 
logarithmic mode established in the previous subsection. To solve this diff'erential 
equation, we can use our knowledge of the solution deep in the matter era. We 
know that sub-horizon perturbations in the matter era grow with the scale factor, 
so one of the solutions to Eq. (7.58) is a polynomial in y of order 1. Therefore, for 
one mode at least, S" vanishes. Therefore, the equation governing this first mode, 
the growing mode,^ is D[/Di = 3/(2 -h 3y), the solution to which is 

Di{y)=y + 2/3. (7.59) 

To find the second solution, notice that the Meszaros equation tells us that u = 
6/Di satisfies 

(1 + 3y/2y' + — ^ [(21/4)2/2 + 3^ + 1] - 0. (7.60) 
y{y + ^) 

Since there is no term proportional to u^ Eq. (7.60) is actually a first-order equation^ 
for u\ We can therefore integrate to obtain a solution for u' and then integrate again 
to get the second Meszaros solution. The first integral gives 

^Di is the growth function mentioned in Section 7.1. Note though that in this section we are 
assuming that only matter, and not curvature or dark energy, dominates the landscape. Therefore, 
our expression for the growth function will be valid only when a < 0.1. For the generalization to 
later times, see Section 7.5. 

'^Indeed this is a general trick for obtaining the second solution to a differential equation once 
the first is known. We will use it again later on to obtain the growth factor. 
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Integrating again leads to the second Meszaros solution 

D2(y) = Z?i(y)ln yrri^ + i 
[y r r^ - i j 2yrT^. 

(7.61) 

(7.62) 

At late times (j/ ^ 1), the growing solution D\ scales as y while the decaying mode 
D2 falls off as y-3/2. 
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Figure 7.10. Evolution of small-scale, sub-horizon, dark matter perturbations. Solid curves 
are exact solutions; dashed curves (almost imperceptible because the goodness of fit in the 
10/i Mpc~' case) the Meszaros solution with coefficients given by the matching condition, 
Eq. (7.64). The dashed straight lines at a > 10~^ are the asymptotic solution of Eq. (7.67). 

The general solution to the Meszaros equation is therefore 

6{k,y) = CiD,{y) + C2D2{y) y :s> yH (7.63) 

where yn is the scale factor when the mode enters the horizon divided by the 
scale factor at equality (Exercise 6). To determine the constants Ci and C2 we can 
match on to the logarithmic solution of Eq. (7.51). That solution is valid within the 
horizon but before equality: z/// <C y <C 1. So we can hope to arrive at a reasonable 
approximation for the evolution of dark matter perturbations only for those modes 
that enter the horizon before equality. For those modes, we match the two solutions 
and their first derivatives 

A^p\n{Bym/yH) - CiD^{ym) + C2D2{ym) 
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A^ 

Vr 
^ = CiD[{ym) + C2D'^{yr, (7.64) 

where the matching epoch ym must satisfy ?/// <C ym <^ 1- Note that I have replaced 
the argument of the log in Eq. (7.51) — kr] — with y/yH, vahd as long as the match-
ing epoch is deep in the radiation era. Figure 7.10 shows the evolution of two modes 
along with the analytic solutions to the Meszaros equation with coefficients set by 
the matching conditions laid out in Eq. (7.64). Not suprisingly, for larger scale 
modes than the ones shown the approximation breaks down. 

7.4 NUMERICAL RESULTS AND FITS 

In Section 7.2 and Section 7.3, we derived analytic solutions following the dark 
matter perturbations deep into the matter era. Here, we assimilate these results 
and spline them together to form the transfer function. Also, I will present a well-
known fitting function for the transfer function. 

First, we need to transform our expression ((7.63) along with Eqs. (7.64)) for the 
small-scale matter density into an expression for the transfer function. The transfer 
function is determined by the behavior of S well after equality when the decaying 
mode has long since vanished. We can extract an even simpler form for S in this 
a ^ tteq limit. The key constant in that case is Ci, the coefficient of the growing 
mode. Multiplying the first matching condition in Eq. (7.64) by D2 and the second 
by D2 and then subtracting leads to 

Ci = 
D'2{ym)A\n{Bym/yH) - D2{ym){A/ym) 

Di{ym)D'2{ym) - D[{ym)D2{ym) 
$ p- (7.65) 

The denominator D1D2 — D[D2 = —(4/9)^^^(^m +1) ^̂ 5̂ which is approximately 
equal to —A/dym since ^^ <C 1. Similarly for small ym-> D2 —^ (2/3) ln(4/y) - 2 and 
D'2 -^ -2lZy. Therefore, 

Ci 
- 9 A ^ . - 2 

ln(5y^/2/H)-(2/3)ln(4/2/^) + 2 (7.66) 

which fortuitously does not depend on ym- Therefore, at late times we have an 
approximate solution for the small-scale dark matter perturbations 

6[k, a) = -^^—^ In 
4^e-^a, 

an 
Di{a) a > tteq. (7.67) 

On very small scales, the argument of the log simplifies because tteq/a// = \/2A://Ceq 
(Exercise 6). To turn Eq. (7.67) into a transfer function, we need to remember 
how 5 is related to ^p. Comparing Eq. (7.8) with Eq. (7.67) leads to an analytic 
expression for the transfer function on small scales: 

T{k) 
oJillfYiTiQ 

In 
'4Be-^V2k 

/c> M eq- (7.68) 
^eq 
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Recall that the wavenumber entering the horizon at equality is defined as keq = 
aeqH{aeq) = \/2ffo<^eq , SO the prefactor is also a function of /c/Zcgq only. Then, 
plugging in numbers leads to 

12P 

St eq 

k > ke (7.69) 

Figure 7.11 shows the power spectrum for a standard CDM model (n = 1; 
h = 0.5; but no baryons) matching the large-scale transfer function {T — I) with 
the small-scale transfer function of Eq. (7.69). Also shown is the exact solution 

0.001 0.01 0.1 1 
k (h Mpc-» ) 

Figure 7.11. The power spectrum in a standard CDM model with a Harri-
son-Zel'dovich-Peebles spectrum. The thick solid curve uses the BBKS transfer function; 
the dashed curve interpolates between the analytic transfer function on large scales (equal to 
1) and small scales (Eq. (7.68)). The data points are a compilation (and interpretation) by 
Peacock and Dodds (1994). 

(again in the no-baryon limit), or equivalently, the fitting form of Bardeen, Bond, 
Kaiser, and Szalay (1986, BBKS), 

T{X = k/kec) 
ln[l + Q.171x] 

(0.171x) 
1 + 0.284a: + (1.18x)2 + (0.399x)^ 

H-(0.490x)^ 
- 0 . 2 5 

(7.70) 

Note that the BBKS form agrees very well with the analytic solution on small scales; 
i.e., both aymptote to ln(/c)//c^ with the same coefficients. Since wavenumbers are 
measured in units of h Mpc~ \ the ratio /c/Zceq depends on ftrnh. So defining T = 
fi^/i, the BBKS transfer function can also be written as 
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-0.25 

(7.71) 
Several final comments are in order. First, our analytic work has enabled us to 

understand the origin of the asymptotic, small-scale behavior of the power spec-
trum. Had there been no logarithmic growth in the radiation era, the modes which 
entered very early on would have experienced no growth from horizon entry until 
the epoch of equality. Their amplitude relative to large-scale modes would then have 
been suppressed by a factor of order (/cgq/A:)̂ . The logarithmic growing mode in the 
radiation era somewhat ameliorates this suppression. Second, although our analytic 
expression and its BBKS counterpart are good approximations, it is important to be 
aware of some small effects which affect the transfer function in the real world. We 
have assumed no anisotropic stresses ($ = —^). Dropping this assumption changes 
the factor of 9/10 by which the potential drops for large-scale modes to 0.86, result-
ing in a corresponding rise in the small-scale transfer function. Including a realistic 
amount of baryons leads to even more severe small-scale changes. We will address 
these in Section 7.6. Third, all of our work in this section has been on the transfer 
function, i.e., on the evolution of perturbations early on when the only components 
of the universe were matter and radiation. At very late times, the growth function 
depends on other hypothetical components, the most likely of which is dark energy. 
Finally, the theoretical power spectrum in Figure 7.11 has been normalized by fixing 
SH in Eq. (7.9) using the observations of CMB anisotropics on large scales (more on 
this in Chapter 8). We see that (i) the large-scale normalization is roughly correct 
and that (ii) the shape of the standard CDM power spectrum is wrong. The sCDM 
power spectrum turns over on relatively small scales, in distinct disagreement with 
the data. The universe as we observe it appears to have a smaller /cgq than sCDM. 
This observation motivates consideration of variations of sCDM; we will consider 
these in Section 7.6. 

7.5 GROWTH FUNCTION 

At late times {z < 10) all modes of interest have entered the horizon. You might 
think then, that the y ^ I limit of the Meszaros equation, which describes sub-
horizon modes in the matter era, would apply. This is true if fim = 1- If the energy 
budget of the universe has another item at late times — either dark energy or cur-
vature — then we must retrace the steps which led to the Meszaros equation. Before 
doing this, I want to point out that, no matter what constitutes the energy budget 
today, all modes will experience the same growth factor. We saw this in the previous 
section, where the Meszaros equation was independent of k. And we will soon see 
it again, when we generalize the Meszaros equation to account for other forms of 
energy. This uniform growth is a direct result of the fact that cold, dark matter 
has zero pressure. Therefore, once a mode enters the horizon, there is no way for 
pressure to smooth out the inhomogeneities and all modes evolve identically. 
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We want to derive an evolution equation analagous to the Meszaros equation, 
but allowing for the possibility of energy other than matter or radiation. We can 
take the y ^ 1 limit of Eqs. (7.54)--(7.56), but we must rethink the coefficient 
of the source term in the Poisson equation. Since radiation can be ignored, the 
coefficient multiplying 5 in Eq. (7.56) is now 47rGpcim = {S/2)HQQma^^. Also when 
differentiating Eq. (7.54) previously, we set {l/aHyY = —{1 + y)~^{2aHy)~^; here 
we need to account for other contributions to H' so Eq. (7.57) becomes 

Replacing the velocity term using the continuity equation as before leads to 

da'^ \ da a J da 2a^H'^ 

Here I have divided by a^^ and we will now use a as the variable instead of y. In 
this large y limit, all factors of aeq disappear. 

There are two solutions to Eq. (7.73). One solution \s 5 (x H. It is easy to check 
this if all the energy is nonrelativistic matter, so that the solution is proportional 
to a"^/^. Then all three terms scale as a~^/^; the coefficient of the first is 15/4, the 
second —9/4, and the last 3/2. The sum of these does indeed vanish. In Exercise 7, 
you will be asked to show that (5 oc ^ is a solution if there are other components of 
energy in the universe. This solution is pretty, but it is not the one we want since 
almost all current models of the universe have a nonincreasing Hubble rate. The 
modes we are interested in —those that remain long after horizon crossing—^ are 
the growing modes. So we are interested in the other solution of Eq. (7.73). 

To obtain the growing mode, we try a solution of the form u = S/H. The 
evolution equation for u then becomes 

d^ 

da^ 
d\n{H) 1 

-— - 0. (7.74) 
da da a 

This first-order equation for u' can be integrated to obtain 

5^ oc {aH)-\ (7.75) 
da 

Integrating again and remembering that the second solution, the growth factor, is 
uH leads to an expression for the growth factor 

I have glossed over the proportionality constant. This is fixed by the definition of 
Eq. (7.4), which says that, early on when matter still dominates (say at z ^ 10), 
Di should be equal to a. At those times, H = Hoftrn a"^!'^ so the growth factor is 
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5fi„ H{a) r da' 

The growth factor in an open universe without dark energy can be computed ana-
lytically (see Exercise 8). 

1+z 

0 
0.1 

n„ = 0.3 

J L J I L 

Figure 7.12. The growth factor in three cosmologies. Top two curves are for flat universes 
without and with a cosmological constant. Bottom curve is for an open universe. 

Figure 7.12 shows the growth factor for three different cosmologies. As men-
tioned above, if the universe is flat and matter dominated, the growth factor is 
simply equal to the scale factor. In both open and dark energy cosmologies, though, 
growth is suppressed at late times. This leads to an important qualitative conclu-
sion: structure in an open or dark energy universe developed much earlier than 
in a flat, matter-dominated universe. There has been relatively little evolution at 
recent times if the universe is open or dark energy-dominated. Therefore, whatever 
structure is observed today was likely in place at much earlier times. We will see 
some quantitative implications of this in Section 9.5. 

7.6 BEYOND COLD DARK MATTER 

There is more to the universe than just cold dark matter. Although CDM is the 
main component in most cosmological models, so that the transfer function we 
derived earlier is a good approximation to reality, there are trace amounts of other 
stuff. To be completely accurate we need to account for this other stuff. Here I 
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Figure 7.13. The ratio of the transfer function to the BBKS transfer function (Eq. (7.70)) 
which describes dark-matter-only (no baryons) perturbations. Top curve (and all other curves 
as well) has 5% baryons. Two middle curves show different values for a massive neutrino. 
Bottom curve has a cosmological constant Q^A — 0.7. 

focus on three additional components. First, we consider the effect of the baryons, 
which constitute roughly 10% of the total matter in most models, on the transfer 
function. Then, we entertain the possibility that neutrinos have mass and examine 
the resultant effect on the transfer function. Finally, dark energy — one model for 
which is the cosmological constant — is considered. 

Figure 7.13 shows the transfer functions accounting for these components. A 
realistic baryon fraction suppresses the transfer function on small scales. A massive 
neutrino does the same, with the nature and amplitude of the suppression depending 
on the neutrino mass. Dark energy, here in the form of a cosmological constant, 
moves the epoch of equality to later times, thereby reducing /Ceq. The break in the 
transfer function therefore comes on much larger scales than in the standard CDM 
model, in apparent agreement with the data exhibited in Figure 7.11. 

7.6.1 Baryons 

Baryons account for about 4% of the total energy density in the universe. As such, 
their effect on the matter power spectrum is small. A careful examination of Figure 
7.13 reveals two signatures of a nonzero baryon density. The first is that the power 
spectrum is suppressed on small scales. This is not surprising: at early times, before 
decoupling, baryons are tightly coupled to photons. Therefore, just as radiation 
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perturbations decay when entering the horizon, so too do baryon overdensities. 
After decoupHng, baryons are released from the relatively smooth radiation field 
and fall into the gravitational potentials set up by the dark matter. The depth 
of these wells is smaller than we estimated in Section 7.3, though, because only a 
fraction ^cdm/^m of the total matter was involved in the collapse. 

The second effect of baryons is less noticable in Figure 7.13 and indeed may 
never get measured in real life either. Nonetheless, it is extremely important if only 
because it hints at a fundamental feature of the radiation field. In all the curves in 
Figure 7.13, except the fti, = 0.3 case, you can see small oscillations in the transfer 
function centered around k c^ 0.1 h Mpc~^. These are not numerical artifacts. 
Rather, they are manifestations of the oscillations that the combined baryon/photon 
fluid experience before decoupling. We got a glimpse of these in Section 7.3.2 (e.g.. 
Figure 7.8) when we considered the potential in the radiation-dominated era. Just 
as the potential oscillates in this era, the baryon/photon fluid also oscillates. It is 
the traces of these oscillations that are imprinted on the matter transfer function. 
They are barely (if at all) detectable because baryons are such a small fraction of the 
total matter. In the baryon-only model plotted in Figure 1.13, the oscillations were 
much more noticeable.^ And these oscillations are also prominent in the spectrum 
of the radiation perturbations, as we will see in the next chapter. 

7.6.2 Massive Neutrinos 

Neutrinos are known to exist, and the standard Big Bang model gives a definite 
prediction for how many there are in the universe (Eq. (2.77)). Massive neutrinos 
may play an important role in structure formation. Conversely, an accurate mea-
surement of the power spectrum may enable us to infer neutrino masses. For orien-
tation, recall the difference between massless (Eq. (2.78)) and massive (Eq. (2.80)) 
neutrino energy densities. The best bet from experiments is that the most massive 
neutrino has a mass of order 0.05 eV, therefore contributing Q ,̂ c^ 10~^. Even this 
trace amount might eventually be detectable if the power spectrum can be mea-
sured accurately enough. There is also the possibility that one or more neutrinos 
has a larger mass (see the footnote on Page 46). Current upper limits from structure 
formation hover around 2 eV (Elgaroy et a/., 2002). 

The reason why even a small admixture of massive neutrinos affects the power 
spectrum is that, especially if they are light, neutrinos can move fast (they are not 
cold dark matter) and stream out of high-density regions. Perturbations on scales 
smaller than the free-streaming scale are therefore suppressed. Indeed, a long time 
ago, cosmologists considered the possibility that all the dark matter in the universe 
was in the form of neutrinos. If this were so, then there would be no power on small 
scales and structure would have to form from the "top down." 

We can estimate the scale on which perturbations are damped by computing the 
comoving distance a massive neutrino can travel in one Hubble time at equality. 

^Incidentally, we now also understand why the power in Figure 1.13 is so low in the baryon-only 
universe: there is no dark matter which can cluster before recombination. 
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This calculation is trivial, however, if the neutrino mass is in the eV range. For 
then, the average velocity, Ty/vfiy, is of order unity at equality. So neutrinos can 
freestream out of horizon-scale perturbations at equality. This leads to a suppression 
in power on all scales smaller than A:eq. 

Figure 7.13 shows this suppression. Note, though, that the effect is a little subtle. 
A lighter neutrino can free-stream out of larger scales, so the suppression begins 
at lower k for the fij^ = 0.1 mass than for the Q.y = 0.3 case. On the other hand, 
the more massive neutrino constitutes more of the total density so it suppresses 
small-scale power more than does the lighter neutrino. 

7.6.3 Dark Energy 

Cosmologists have recently accumulated tantalizing evidence for dark energy in the 
universe above and beyond the dark matter that we have spent so much time on in 
this chapter. If dark energy exists, how does it affect the matter perturbations? 

The first effect of dark energy is indirect. Since theoretical prejudice and evi-
dence both indicate that the universe is flat, ^̂ de — 0.6-0.7 implies that the matter 
density, Q^, is less than 1. This has a huge impact on the power spectrum, because 
we have seen that the power spectrum turns over at /ceq, which is proportional to 
Vtjri' So dark energy leads to a turnover in the power spectrum on a scale much 
larger than predicted in standard CDM. In fact, as we saw in Figure 7.11, this is 
one of the pieces of evidence for dark energy. The turnover in the power spectrum 
does not appear on the scale predicted by standard CDM. 

The second effect is again related to the smaller matter density in most models 
of dark energy. As a result of the Poisson equation (7.7), overdensities are inversely 
proportional to ^m for a fixed potential. Therefore, the amplitude of the power 
spectrum increases as the matter decreases, or equivalently in a fiat universe as 
the dark energy content goes up. With a few caveats to be discussed in Chapter 8, 
large-angle CMB anisotropics fix the potential on large scales. When normalizing 
to these large-angle results, therefore, the power spectrum for a model with dark 
energy is normalized higher than one without. 

The third effect of the dark energy on the density inhomogeneities is more 
direct and more model dependent. At late times, amplification of perturbations is 
controlled by the growth factor of Eq. (7.77). The evolution of the Hubble rate 
depends on the model of dark energy, so different models of dark energy predict 
different growth factors. If we parameterize the dark energy by its equation of state 
(2.84), then the Hubble rate in a fiat universe evolves as 

H{z) r ^ ^ ^^'^ 

H. 
{1.1^) 

at late times. Using this time dependence, it is straightforward to perform the 
integral in Eq. (7.77) and find the growth factor for a given equation of state (see 
Exercise 11). 
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To sum up, dark energy affects the power spectrum by changing fcgq and the 
normahzation (this depends only on f̂ de) and by changing the growth factor at late 
times (depends on both f̂ de and w). Careful observations of the matter spectrum 
therefore may enable us to learn about dark energy. 
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SUGGESTED READING 

Once again The Large Scale Structure of the Universe (Peebles) is a useful reference. 
Since it was written before the implications of cold dark matter and inflation were 
explored, though, it does not contain a transfer function or power spectrum such as 
the ones we have derived (although Peebles himself was instrumental in computing 
these things several years after the book was published). A more up-to-date book, 
which is particularly strong on large-scale structure is Structure Formation in the 
Universe (Padmanabhan). 

The first papers to work out the CDM transfer function are particularly instruc-
tive to read, not least because they also focus on some of the physical implica-
tions of the hierarchical theories. See Blumenthal et al. (1984) and Peebles (1982). 
The most important recent paper is Seljak and Zaldarriaga (1996), not so much 
because it contains a concise description of the set of coupled equations to be solved 
(although it does that), but because it makes available CMBFAST, a code which 
computes transfer functions and CMB anisotropy spectra. It is currently avail-
able at http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html. The treat-
ment in this chapter follows most closely the small scale analytic solution of Hu 
and Sugiyama (1996), a paper which is extremely rich and well worth reading. A 
more recent paper by Eisenstein and Hu (1998) employs the analytic small-scale 
solution to derive accurate fitting formulae that move beyond those presented by 
Bardeen, Bond, Kaiser, and Szalay (1986, BBKS). 

EXERCISES 

Exercise 1. Derive Eqs. (7.11) and (7.12). 
(a) First neglect the scattering term in Eq. (4.100), the one proportional to f. 
Then the photon evolution equation is identical to the neutrino evolution equa-
tion (4.107). Show that this collisionless equation reduces to the two equations for 
the monopole and dipole. To get the monopole equation, multiply Eq. (4.107) by 
{d/j/2)Vo{fi) = dii/2 and integrate from /x = - 1 to 1. To get the dipole, multiply 
by {dfi/2)Pi{fi) and integrate. 
(b) Show that, in the limit of small baryon density, the scattering term in 
Eq. (4.100) can indeed be neglected. Neglect 11, since the quadrupole and polariza-
tion are very small. Then show that the scattering term is proportional to R, 3/4 
times the baryon-to-photon ratio. You will want to use Eq. (4.106). It cannot be 
emphasized enough that this series of approximations is valid only for the purposes 
of this chapter, wherein we are interested in the matter distribution. 

Exercise 2. Solve the set of five equations ((7.11)-(7.14) and (7.15)) numerically 
to obtain the transfer function for dark matter. Use the initial conditions derived in 
Chapter 6. The one numerical problem you may encounter using Eq. (7.15) occurs 
on small scales when you try to evolve all the way to the present. The photon 
moments then become difficult to track, and even a good differential equation solver 
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will balk at late times. However, there are several simple solutions to this: (i) by the 
late times in question, the potential is constant so there is no need to evolve all the 
way to the present or (ii) stop following the photon moments after a certain time; 
they don't have any effect on the matter distribution at late times anyway. Plot 
the transfer function for sCDM (with Hubble constant h = 0.5) and ACDM (with 
Q/i = 0.7 and h = 0.7). Compare with the BBKS transfer function of Eq. (7.70). 

Exercise 3. The four subsections in Sections 7.2 and 7.3 correspond to four differ-
ent approximations to the full set of Einstein-Boltzmann equations. In the following 
table, fill in the regime of validity for each approximation: 

krj<^l 

ki] ^ I \ 

/cr/> 1 

a < aeq a ~ tteq a > tteq 

For example, the super-horizon solution of Section 7.2.1 is valid along the whole 
top row, since it sets kr] ^^ 0. Note that time evolves from upper left to bottom 
right, so the fact that none of the approximations work in the center square means 
that only those scales that enter the horizon well before or well after equality will 
be subject to analytic techniques. 

Exercise 4. Fill in some of the algebraic detail left out of Section 7.2.1. 
(a) Show that Eq. (7.24) leads to Eq. (7.25) by carrying out the differentiation. 
(b) Show that Eq. (7.25) is equivalent to Eq. (7.27) when the definition of u from 
Eq. (7.26) is used. 
(c) Show that the integral in Eq. (7.31) can be done analytically with the result 
given in Eq. (7.32). One way to do the integral is to define a dummy variable 
x = y/T~+~y. 

Exercise 5. Find the wavenumber of the mode which equals the inverse comoving 
Hubble radius at equality. That is, define /cgq to be equal to aeqi/(aeq). Show that 
this definition implies 

l2nmH^ 
•^eq (7.79) 

Then use Eq. (2.87) to show that /cgq is given by Eq. (7.39). Show that if you define 
A:eq by setting it to l/rjeq, you get a number 17% lower. 

Exercise 6. Define an, the scale factor at which wavelength k equals the comoving 
Hubble radius, via aHH{aH) = k. Express an/aeq in terms of k and /ceq. Show that 
in the limit k ^ /cgq, this expression reduces to 
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lim an ^eq 
A:>/eeq tteq y/2k ' 

(7.80) 

Exercise 7. Show that 5 ex i7 is a solution to the evolution equation (7.73) if the 
universe is flat with a cosmological constant. You will need to use Eq. (1.2). Show 
also that the solution is valid if the universe has zero cosmological constant, but is 
open with Q̂ n < 1-

Exercise 8. Derive the growth factor for an open universe with r^^ < 1: 

Diia.rtm) = 
2(1 - Qm) ,3/2 In (y/TTx - V^) + 1 + - (7.81) 

where x = (1 — ftm)ci/^m- There may be easier ways to do this (e.g., you might 
want to check The Large Scale Structure of the Universe^ Section 11), but I found 
it easiest to define a dummy variable y = Vim/a] write the integral of Eq. (7.77) as 

nOO dy 
y2(y+ 1 - ^ ^ ) 3 / 2 de d\ 

pOO dy 

la (y-^e)v^TA 
(7.82) 

e=0,A=l-ri„ 

and then use 2.246 from Gradshteyn and Ryzhik. 

Exercise 9. One popular way to characterize power on a particular scale is to 
compute the expected RMS overdensity in a sphere of radius i?. 

4 - (4(̂ ))-
Here 

6R{X)= l(fix'S(x')WR (f 

(7.83) 

(7.84) 

where WR{X) is the tophat window function, equal to 1 for x < i? and 0 otherwise; 
the angular brackets denote the average over all space. 
(a) By Fourier transforming, express aR in terms of an integral over the power 
spectrum. 
(b) Use the BBKS transfer function to compute as {R — Sh~^ Mpc) for a standard 
CDM model {h = 0.5,n = 1 , ^ ^ = 1). We will see in Chapter 8 that COBE 
normalization for this model is 

SH = 1.9 X 10 - 5 (7.85) 

The value of as you find is yet another sign of the sickness of the model. For galaxies, 
as is known to be unity (or less, depending on galaxy type). A model with as > I 
then requires galaxies to be less clustered than the dark matter. Present models of 
galaxy formation suggest that this is unlikely. There are even direct measures of as 
of the mass (e.g.. Section 9.5); these too constrain as to be less than one. 
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(c) In the same model, plot a^ as a function of R. Since aR monotically increases, 
small scales tend to go nonlinear before large scales, the signature of a hierarchical 
model. 

Exercise 10. Rewrite a from Exercise 9 as 

f 
Jo 

fA\k)Wl{k), (7.86) 

where WR is the Fourier tranform of the tophat window function and A^ = 
da'^/d\n{k) is the contribution to the variance per ln(A:). A useful transition point 
is the value of k at which A exceeds 1. Scales larger than this are linear, while 
smaller scales have gone nonlinear. Find k^i defined in this way for the sCDM 
model described in Exercise 9. 

Exercise 11 . Compute the growth factors in a universe with f̂ de = 0-7, ^m = 0-3, 
and w — —0.5. Plot as a function of a. Compare with the cosmological constant 
model {w = —1) with the same f̂ de, ^m-



8 
ANISOTROPIES 

The primordial perturbations set up during inflation manifest themselves in the 
radiation as well as in the matter distribution. By understanding the evolution of 
the photon perturbations, we can make predictions about the expected anisotropy 
spectrum today. This evolution is again completely determined by the Einstein-
Boltzmann equation we derived in Chapters 4 and 5, and one way to go would be 
to simply stick all the relevant equations in those chapters on a computer and solve 
them numerically. Historically, this is a pretty good caricature of what happened. 
Long before we developed deep insight into the physics of anisotropics, various 
groups had codes which determined the expected spectra from diff'erent models. 
Only much later did we come to understand both qualitatively and quantitatively 
why the spectra look hke they do.^ In this chapter, I will mangle the history and 
simply explain what we have learned about the physics of anisotropics. 

Perturbations to the photons evolved completely differently before and after 
the epoch of recombination at 2: ~ 1100. Before recombination, the photons were 
tightly coupled to the electrons and protons; all together they can be described as 
a single fluid (dubbed the "baryon-photon" fluid). After recombination, photons 
free-streamed from the "surface of last scattering" to us today. After an overview 
which qualitatively explains the anisotropy spectrum. Sections 8.2-8.4 work through 
the physics of the baryon-photon fluid before recombination. Then Sections 8.5-
8.6 treat the post-recombination era, culminating in the predicted spectrum of 
anisotropics today. Finally Section 8.7 discusses how these spectra vary when the 
cosmological parameters change. 

^Understanding the anisotropics actually helped make the codes much more efficient. The prime 
example of this is the popular code CMBFAST (Seljak and Zaldarriaga, 1996) which is based in 
part on the analytic solution presented in this chapter. 

216 
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8.1 OVERVIEW 

Let's begin as we did in the last chapter, by cheating and looking at the answers 
first. Figure 8.1 shows the evolution of the perturbations to the photons. Four 
Fourier modes corresponding to perturbations on four different scales are shown. 
Qualitatively, the most important feature of Figure 8.1 is that perturbations to the 
photons do not grow appreciably with time. This stands in stark contrast to the 
matter perturbations, which do grow. And this contrast is something we should 
have expected: the pressure of the photons is so large that it can withstand the 
tendency toward collapse. This means that the small perturbations set up during 
inflation stay small; they remain linear all the way up to the present. 

Before going further and examining the evolution of the different modes in more 
detail, a technical note: I have plotted not simply the perturbation to the photons 
but rather the combination A:^/^(9o + ^ ) . The /c^/^ factor balances the fact that 
the amplitude of the perturbations (in a simple inflationary model) scales as /c""^/^. 
I have added the gravitational potential ^ because the photons we see today had 
to travel out of the potentials they were in at the time of recombination. As they 
emerged from these potential wells, their wavelengths were stretched (if the region 
was overdense and ^ < 0), thereby decreasing their energy. Thus, the temperature 
we see today is actually 0o at recombination plus ^ . 

The large-scale mode in Figure 8.1 evolves hardly at all. This is not surprising: 
no causal physics can affect perturbations with wavelengths larger than the horizon, 
so a super-horizon mode should exhibit little evolution. This means that when we 
observe large-scale anisotropics — which are sensitive to modes with wavelengths 
larger than the horizon at recombination — we are observing perturbations in their 
most pristine form, as they were set down at very early times, presumably during 
inflation. 

Figure 8.1 shows that the smaller scale modes evolve in a more complicated way 
than the super-horizon modes. Consider the curve labeled "First Peak." As the 
mode enters the horizon, the perturbation begins to grow until it reaches an appar-
ent maximum at the time of recombination. If we observe anisotropics on scales 
corresponding to this mode, we would expect to see large fluctuations. Hence the 
label: the anisotropy spectrum will have a peak at the angular scales corresponding 
to the mode which has just reached its peak at recombination. 

The mode in Figure 8.1 which enters the horizon slightly earlier peaks earlier and 
then turns over so that its amplitude at recombination is zero. By recombination, 
it has undergone half of an oscillation; so we see our first clear signal of the acoustic 
oscillations due to the pressure of the relativistic photons. The phase of this mode 
is such that, at recombination its amplitude is zero. Therefore, when we observe 
anistropies today corresponding to these scales, we expect very small fluctuations. 
There will be a trough in the anisotropy spectrum on these angular scales. 

And on it goes. The curve labeled "Second Peak" entered the horizon even earlier 
and has gone through one full oscillation by recombination. As such, this mode will 
have large fluctuations and lead to a second peak in the anisotropy spectrum. You 
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Figure 8.1. Evolution of photon perturbations of four different modes before recombination 
at 77*. Normalization is arbitrary, but the relative normalization of the 4 curves is appropriate 
for perturbations with a Harrison-Zel'dovich-Peebles (n = 1) spectrum. Model is standard 
CDM with h = 0.5, Qm = 1, and Qb — 0.06. Starting from the bottom left and moving 
upward, the wavenumbers for the modes are k 

(8,260,400,540)/7yo. 
(7 X 10-^,0.022,0.034,0.045) Mpc"^ or 

might expect that there will be a never-ending series of peaks and troughs in the 
anisotropy spectrum corresponding to modes that entered the horizon earlier and 
earlier. And you would be right: this is exactly what happens. 

We can see this more clearly by looking at the spectrum of perturbations at one 
time, the time of recombination. Figure 8.2 shows this spectrum for two diflFerent 
models, one with a very low baryon content. We do indeed see this pattern of peaks 
and troughs. There are two more quantitative features of these oscillations that 
are important. First, note that — at least in the higher baryon model — the heights 
of the peaks seem to alternate: the odd peaks seem higher than the even peaks. 
Second, and this is clearest in the low baryon model, perturbations on small scales 
^^0 ^ 500 are damped. 

To understand the first of these features, we can write down a cartoon version 
of the equation governing perturbations. Very roughly, this equation is 

00 + k'ciQ^ - F (8.1) 

where F is a driving force due to gravity and Cs is the sound speed of the combined 
baryon-photon fluid. This is the equation of a forced harmonic oscillator (see box on 
page 220). Qualitatively, it predicts the oscillations we have seen above. But it also 
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Figure 8.2. Perturbations to the photon distribution at recombination in two models. The 
larger damping length of the low-H^ model is clearly evident in the suppression of perturbations 
for modes with k > SOO/r/o. 

explains something about the heights of the peaks. As we add more baryons to the 
universe, the sound speed goes down (baryons are heavy so they reduce the speed). 
Thus the frequency of the oscillations goes down. The peaks at TITT/LJ are shifted 
to larger k (you really should read that box!), and the spacing between peaks gets 
correspondingly larger. Further, as the frequency goes down, the disparity between 
the heights of the odd and even peaks gets larger. We clearly see both of these 
features in Figure 8.2. Another way of understanding the alternating peak heights 
is to note that the perturbations for the first peak mode have been growing since 
they entered the horizon. By decreasing the pressure (or equivalently increasing the 
importance of gravity) these modes will grow even more. The second peak mode on 
the other hand, corresponds to an underdensity of photons in the potential wells. 
Decreasing the pressure makes it harder for photons to escape the well and therefore 
reduces the magnitude of the perturbation (makes it less underdense). 
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Consider a simple harmonic oscillator with mass m and force constant k. In addition 
to the restoring force, the oscillator is acted on by an external force FQ. Thus the full 
force is FQ — kx where x is the oscillator's position. The equation of motion is 

.. k Fo 
X H X — — . 

m m 
(8.2) 

The term on the right-hand side — representing the external force — is driving the 
oscillator to large values of x. The restoring force on the other hand tries to keep 
the oscillator as close to the origin as possible. The solution therefore will be that 
oscillations will be set up around a new zero point, at positive x. 

The solution to Eq. (8.2) is the 
sum of the general solution to the 
homogeneous equation (with the 
right-hand side set to zero) and 
a particular solution. The gen-
eral solution has two modes, best 
expressed as a sine and cosine 
with arguments ut, with the fre-
quency u defined as a; = y ^ . 
A particular solution to Eq. (8.2) 
is constant x = Fo/muj^, so 
the full solution is the sum of 
the sine and cosine modes plus 
this constant. Let us assume that 
the oscillator is initially at rest. 
Then, since x(0) is proportional 
to the coefficient of the sine 
mode, this coefficient must van-
ish, leaving 

Forced Harmonic Oscillator 

x = Acos{ujt) -h 
Fo 

;.3) 

This solution is shown in the 
figure at right. The solid line 
is the unforced solution: oscil- ^ ^ 
lations about the origin. The 
dashed curves are the forced solutions for two different choices of frequencies. In 
both cases, the oscillations are not around x = 0 as they would be if the system 
was unforced. Once an external force is introduced, the zero point of the oscillations 
shifts in the direction of the force. Two curves are drawn to show that this shift is 
more dramatic for lower frequencies. The bottom panel shows the square of the oscil-
lator position as a function of time. All three oscillators experience a series of peaks 
at t = TiTr/u corresponding to the minima/maxima of the cosine mode. (Note that 
if only the sine mode was present these peaks would be at t = (2n + 1)7T/UJ.) The 
heights of these peaks are identical in the case of the unforced oscillator and equal to 
the height at ^ = 0. In the forced case, though, the height of the odd peaks — those at 
t = {2n-\-l)7r/u — is greater than that of the even peaks. The effect is most dramatic 
for low frequencies. If the frequency is low, the force has a greater effect, producing 
the greater zero-point offset, and hence the greater odd/even disparity. The other 
feature of this example is that the even peaks correspond to negative positions of the 
oscillator: points at which it is farthest from where the force wants it to go. 
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Photon Diffusion 

Figure 8.3. Photon diffusion through the electron gas. Electrons are denoted as points. Shown 
is a typical photon path as it scatters off electrons. The mean free path is AMFP- After a Hubble 
time, the photon has scattered many times, so that it has moved a distance of order A D -

To understand the damping evident in Figure 8.2, we need to remember that 
the approximation of the photons and electrons and baryons moving together as 
a single fluid is just that, an approximation. It is valid only if the scattering rate 
of photons off of electrons is infinite. Of course this condition is not met: photons 
travel a finite distance in between scatters. Consider Figure 8.3, which depicts the 
path of a single photon as it scatters off a sea of electrons. It travels a mean distance 
AMFP in between each scatter. In our case this distance is (ngCTT)" .̂ If the density 
of electrons is very large, then the mean free path is correspondingly small. In the 
course of a Hubble time, H~^, a photon scatters of order ne(JTti~^ times (simply 
the product of the rate and the time). As depicted in Figure 8.3, each scatter 
contributes to the random walk of the photon. We know that the total distance 
traveled in the course of a random walk is the mean free path times the square 
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root of the total number of steps. Therefore, a cosmological photon moves a mean 
distance 

= ^ ^ (8.4) 

in a Hubble time. Any perturbation on scales smaller than XD can be expected 
to be washed out. In Fourier space this will correspond to damping of all high k-
modes. Note that this crude estimate gets the f̂^ dependence right. Models with 
small baryon density have a larger \D (since rZg is proportional to Q^h when the 
universe is ionized). Therefore, the damping sets in at larger scales, or smaller k. 
This is precisely what we saw in Figure 8.2. 

The final step is to relate the perturbations at recombination, as depicted in 
Figure 8.2, to the anisotropics we observe today. The math of this is a little com-
plicated, but the physics is perfectly straightforward. Consider one Fourier mode, a 
plane-wave perturbation. Figure 8.4 shows the temperature variations for one mode 
at recombination. Photons from hot and cold spots separated by a typical (comov-
ing) distance k~^ travel to us coming from an angular separation 9 ~ k~^/{rjo — rj^) 
where r]o — 77* is the (comoving) distance between us and the surface of last scat-
tering.^ If we decompose the temperature field into multipole moments, then an 
angular scale 6 roughly corresponds to 1//. So, using the fact that ry* <^ ryo, we 
project inhomogeneities on scales k onto anisotropics on angular scales / ĉ  krjQ. 

There is one final caveat to this picture of free-streaming. We have been implic-
itly assuming that nothing happens to the photons on their journey from the last 
scattering surface to Earth. In fact, if the universe was fiat and matter dominated 
through this whole time, then gravitational potentials remain constant, and this 
assumption is correct. However, recombination takes places not too much later than 
the epoch of equality, so the remnant radiation density means potentials are not 
exactly constant right after recombination. Also, at late times, dark energy does not 
behave like matter and leads to potential decay. You can imagine other disruptions 
to matter domination. All of these so-called integrated Sachs-Wolfe effects produce 
new perturbations to the photons, leading to changes typically of order 10%. 

And that's it; we now understand how primordial perturbations are processed 
to form the present-day anisotropy spectrum. Let's work through it again quanti-
tatively. 

8.2 LARGE-SCALE ANISOTROPIES 

To find the large-scale solution for the photon perturbation, we make use of the 
super-horizon equation, (7.17). This immediately tells us that QQ = —^ plus a 

•^This is true only in a flat universe. In an open universe, the distance to the last scattering 
surface is larger, so the same physical scale is projected onto a smaller angular scale. 
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Ptrfurbotion mHh iiNiv«riunnb«r k 

Figure 8.4. Free-streaming. Perturbations in the temperature at recombination from one plave 
wave with wavenumber k. Hot and cold spots are shaded light and dark. After recombination, 
photons from the hot and cold spots travel freely to us, here denoted by the star at the center. 
This mode contributes anisotropy on a scale 6 ~ k~^/{Distance to last scattering surface). 

constant. The initial conditions are such that Go — ̂ / 2 , so the constant is 3$p/2, 
where $p is the primordial potential set up during inflation. We have an exact 
expression for the large-scale evolution of $, Eq. (7.32). If recombination takes place 
long after the epoch of equality, then we can take the y ^ I limit of this expression, 
^ -^ 9$p/10. Therefore, at recombination, large-scale photon perturbations satisfy 

©0(^,77*) = -^(A:,?7*) + 
3^p(A:) 

2^(/c,r/*) 
(8.5) 

The observed anisotropy is ©0 + ^ , which to a good approximation is Go — ^ 
since ^ :^ — $. Therefore, 

ieo + ^){k,v.) = l^{k,v*)- (8.6) 

Another useful way of expressing the large-scale perturbations at recombination is 
in terms of the density field. The initial conditions derived in Chapter 6 were that 
6 — 3$/2. Integrating the large-scale evolution equation, 5 = —3^, leads to 

KV*) = o*P - 3[$(r?.) - *p] 
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= 2$(r?0- (8-7) 

So the observed anisotropy expressed in terms of the dark matter overdensity is 

(eo + *)(fc,7?.) = -^<5(7?.). (8.8) 

Equations (8.6) and (8.8) will be useful to us when we compute the large-
scale anisotropy spectrum. However, even now, they contain a fascinating piece of 
information. From the Fourier transform of Eq. (8.8), we see that the observed 
anisotropy of an overdense region will be negative. This is such a surprising result 
that it is worth repeating. For large-scale perturbations, overdense regions do indeed 
contain hotter photons at recombination than do underdense regions: i.e., 6o > 
0 when ^ < 0. However, to get to us today, these photons must travel out of 
their potential wells. In so doing they lose energy, and this energy loss more than 
compensates for the fact that the photons were initially hotter than average: i.e., 
6o + ^ is negative when ^ < 0. To sum up, when we observe large-scale hot spots 
on the sky today, we are actually observing regions that were underdense at the 
time of recombination. 

The other important feature of Eq. (8.8) is the coefficient 1/6. It enables us to 
relate ''6T/T' (the left-hand side) to "^p/p" (the right). Very roughly speaking, 
an anisotropy of order 10~^ corresponds to an overdensity of 6 x 10~^. One of 
the important questions which must be addressed by the picture of gravitational 
instability is whether the observed anisotropy is consistent with the overdensities 
needed to form structure by today. This factor of 6 is a huge help. In almost all 
models of structure formation other than inflation, this factor of 6 is replaced by 
a number much closer to unity (see Exercise 1 for a specific example). Therefore, 
they struggle with the fact that the observed level of anisotropy is too small to 
account for the clustering of matter in the universe. Equivalently, when normalized 
to large-angle anisotropics, the matter power spectrum is too small.^ 

8.3 ACOUSTIC OSCILLATIONS 

8.3.1 Tightly Coupled Limit of the Boltzmann Equations 

When all electrons were ionized, before ry*, the mean free path for a photon was 
much smaller than the horizon of the universe. Compton scattering caused the 
electron-proton fluid to be tightly coupled with the photons. We now proceed to 
explore this regime quantitatively using the Boltzmann equations. 

The tightly coupled limit corresponds to the scattering rate being much larger 
than the expansion rate: r :^ 1, where r is the optical depth defined in Eq. (4.61). I 

^This realization has been most important in theories in which structure is generated by cosmic 
strings. Several papers which pointed out the problem in the aftermath of the COBE detection 
include: Albrecht and Stebbins (1992), Perivolaropoulos and Vachaspati (1994), and Pen and 
Spergel (1995). 
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want to argue that in the r ^ 1 Hmit, the only nonneghgible moments, O/, are the 
monopole {I = 0) and the dipole (/ = 1). All others are suppressed. In this sense, 
photons behave just like a fluid, which can be described with only two variables: the 
density p and the velocity v. In order to show this, let's go back to the Boltzmann 
equation (4.100) for photons. We want to turn this differential equation for 6(ry,/i) 
into an infinite set of coupled equations for 9/ (ry). The advantage is that — as we 
will see — the higher moments are small and so can be neglected. The strategy is 
to multiply by Vi{fi) and then integrate over //. Using Eq. (4.99), the Boltzmann 
equation for / > 2 becomes 

^' + (T^Tr l \ YM:PKM)e(/x) = fOi. (8.9) 

Note that all other terms (e.g., —6) have simple fi dependence (scale as /i° or /i^) 
so a lH > 2 moments vanish for them. To do the integral, we make use of the 
recurrence relation for Legendre polynomials, Eq. (C.3), to get 

Let us consider the order of magnitude of the terms in Eq. (8.10). The first term 
on the left is of order Gi/r] which is much smaller than the term on the right which 
is of order TQI/T]. Neglecting the 0/+i term for the moment, this tells us that in 
the tightly coupled regime % 

e , ~ ^ e , _ i . (8.11) 

For horizon size modes kr] ~ 1, this means that 0/ <C 6 / - i . (By the way, this is 
justification for throwing out the 0/+i term in making our estimate.) This estimate 
is valid for all modes higher than the dipole, so all such modes are very small 
compared to the monopole and dipole. 

Before making use of this fact and deriving the tightly coupled equations in the 
Hmit in which only the monopole and dipole are nonzero (the fluid approximation), 
I want to explain why higher moments are damped in a tightly coupled environ-
ment. Indeed this observation is extremely important not only in cosmology but 
in all settings in which the fluid approximation is used. To understand the fluid 
approximation, consider one plane-wave perturbation as depicted in Figure 8.5. 
An observer sitting at the center of the perturbation sees photons arriving from 
a distance of order the mean free path, ij/r. A wavelength of order the horizon r] 
is much larger than this distance, so the photons arriving at the observer all have 
the same temperature. There is very little anisotropy. You might think that a per-
turbation with a very small wavelength (with kr] ^ r) would lead to anisotropy. 
In fact, though, such a mode has a wavelength much smaller than the damping 
scale. So all perturbations on such small scales are smoothed out, again leading 
to no anisotropy. The bottom line is there is essentially no anisotropy beyond the 
monopole and the dipole in the tightly coupled regime. 
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Ti'qhtly Coupled Limit 

Figure 8.5. Anisotropies in the tightly coupled era. Perturbations on the scale of the horizon 
cannot be observed by an observer [denoted by the star here], for the photons observed come 
from the last scattering surface a distance rj/r away. This last scattering surface is so close 
that photons arriving from all angles have virtually identical temperatures. 

Armed with this knowledge, we can now turn to the equations for the first two 
moments, which — after disposing of ©2 — read: 

00 + A:ei - - $ 

Oi 
A:eo k^ 

+ f e i 
3 

(8.12) 

(8.13) 

These follow by mutiplying Eq. (4.100) by VQ[II) and Pi(/i) and integrating over /i. 
They are supplemented by the equations for the electron-baryon fluid, Eqs. (4.105) 
and (4.106). Let us first rewrite the velocity equation, (4.106), as 

^b -3i0i + ? 
r 

Vh + -'̂ ^b + ik"^ (8.14) 

The second term on the right here is much smaller than the first since it is suppressed 
by a relative factor of order T"^. Thus, to lowest order, v\^ = —3zGi. A systematic 
way to expand, then, is to use this lowest order expression everywhere in the second 
term, leading to 

R 
Vh -3i@i + -3201 -Si-Oi +ik^ 

a 
(8.15) 

Now let us insert this expression into Eq. (8.13), eliminating Vh- After rearranging 
terms, we find 
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We now have two first-order coupled equations for the first two photon moments, 
Eqs. (8.12) and (8.16). We can turn these into one second-order equation by differ-
entiating Eq. (8.12) and using Eq. (8.16) to ehminate Gi: 

0O + /C 
k"^ a R ^ k ^ 

©1 + 7777—7^00 - - ^ . (8.17) 
3 al + R ' 3[1-^R] 

Finally, we use Eq. (8.12) to eliminate ©i here. This leaves 

^o + ^j^eo + k'clQo = -^^-^-^^~^^Fik,v) (8.18) 

where I have defined the forcing function on the right as F and the sound speed of 
the fluid as 

' ^ (8.19) 
3(1+ i?) 

The sound speed depends on the baryon density in the universe. In the absence of 
baryons, it has the standard value for a relativistic fluid, Cg = 1/V^. The presence 
of baryons, though, makes the fluid heavier, thereby lowering the sound speed. We 
will see shortly that the fluid oscillates in both space and time, with a period which 
is determined by the sound speed, and hence by the baryon density. Note that 
Eq. (8.18) is the "grown-up" version of Eq. (8.1); it diff'ers only through the Qo 
damping^ term (see Exercise 2). The presence of this term does not change any of 
the qualitiative conlcusions we reached in Section 8.1. Finally, note that ^ enters 
on the right in a very similar way as 6o does on the left. An alternate version of 
Eq. (8.18) takes adavantage of this: 

d'^ R d ; 2 2 r^ ..1 ^^ ^ - $ _ ^ 
l + R 

^.20) 

8.3.2 Tightly Coupled Solutions 

The equation we have derived governing acoustic oscillations of the photon-baryon 
fluid, (8.20), is a second-order ordinary differential equation. To solve it, we will 
again (as in Section 7.3.1) use Green's method to find the full solution. First we 
find the two solutions to the homogeneous equation. Then we use these to construct 
the particular solution. 

In prnciple, to obtain the homogeneous solutions, we must solve the damped, 
harmonic oscillator equation, (8.20) with the right-hand side equal to zero. In prac-
tice, the damping term is of order i?(0o + ^)/iff' while the pressure term is much 

^This "damping" term is not to be confused with the damping of perturbations on small scales 
treated in the next section. They are completely different effects. 
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larger, of order A:̂ ĉ (Oo + ^) (at least it's larger when modes are within the horizon 
or when R is small). Physically we expect pressure to induce oscillations in the 
photon temperature; the time scale for these oscillations is much shorter than the 
damping introduced by the expansion of the universe. To a first approximation, 
then, let us neglect the damping term and simply obtain the oscillating solutions.^ 
In this limit, the two homogeneous solutions are 

Si{k,r]) = sm[krs{v)] ; 52(/c,r/) = cos[krs{r])] (8.21) 

where I have defined the sound horizon as 

Tsirj)^ rdr^'csir^'). (8.22) 
Jo 

Since ĉ  is the sound speed, the sound horizon is the comoving distance traveled by 
a sound wave by time r]. 

The tightly coupled solution for the photon temperature can be constructed 
from the homogeneous solutions of Eq. (8.21): 

eo{ri) + Hn) = CiSM + C2S2(ri) 

Here again, I have dropped all occurences of R except in the arguments of the 
rapidly varying sines and cosines. That is, the argument of ^ i , for example, is still 
taken to be kvs with its nonzero value of R. We can fix the constants Ci and C2 in 
Eq. (8.23) by appeahng to the initial conditions, when both Go and $ are constants. 
The coefficient of the sine term therefore, Ci, must vanish, and C2 = 6o(0) + ^(0). 
The denominator in the integrand reduces to —kcs(ri') -^ — A:/\/3 in the limit in 
which we are working. Finally, the diff'erence of the products in the numerator of 
the integrand is simply — sin[A:(rs — r^)], so 

©o(r?) + ^{ri) = [60(0) + $(0)] cos(A:r,) 

+ A ^ ' drj^ [$(^/) _ qj^r^^)] ^in [fc(r,(ry) - r,(7y0)] • (8.24) 

Equation (8.24) is an expression for the anisotropy in the tightly coupled limit, 
first derived by Hu and Sugiyama in 1995. If you are not impressed with this solution 
since it still involves an integral over the gravitational potentials, I urge you to 
reconsider. First, look at Figure 8.6, which compares the solution of Eq. (8.24) with 
exact results obtained by integrating the full set of coupled Einstein-Boltzmann 
equations. The approximate solution gets the peak locations dead on, and it does 
fairly well with the heights as well. The later peaks — those at krjo > 500 — are 

^You can rectify this by applying the WKB approximation in Exercise 5. 
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Figure 8.6. The monopole at recombination in a standard CDM model. The exact solution is 
the heavily weighted solid line. The light dashed line is the undamped solution of Section 8.3, 
Eq. (8.24); the heavier curve in the middle accounts for damping using the treatment of 
Section 8.4. 

clearly overestimated by our solution, but we will shortly rectify this when we 
include damping due to diffusion in the next section. A second reason to respect the 
approximate solution is that it divides the problem neatly into first (i) a calculation 
of the external gravitional potentials generated by the dark matter and then (ii) the 
effect of these potentials on the anisotropics. Third, the solution clearly illustrates 
that the cosine mode is the one excited by inflationary models. This is important, 
because it is very hard to imagine this mode excited by any other mechanism. If 
causality is respected, then there should be no perturbations with krj <^1 early on. 
We know that inflation evades this constraint by changing the true horizon; it is 
tempting to say that if this mode is observed, we are seeing evidence for inflation. 
Fourth, we now have a more accurate expression for the frequency of oscillations 
and therefore for the locations of the acoustic peaks. In the limit that the first term 
in Eq. (8.24) dominates, the peaks should appear at the extrema of cos(A:rs), e.g., 
at 

/Cp ^ rni/rs n= 1,2,.. ^.25) 

And the final reason Eq. (8.24) is impressive is that the full set of Einstein-
Boltzmann equations involve literally thousands of coupled variables (e.g., the 9/'s). 
Reducing those thousands of differential equations to just one is a huge leap in 
knowledge. 
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In addition to the monopole, the photon distribution has a nonneghgible dipole 
at recombination. Using Eq. (8.12), we can obtain an analytic solution for the dipole 
by differentiating Eq. (8.24): 

61(77) = -^ [0o(O) + ^(0)] sin(^r,) 
V3 

- \ f dr^' mi) - ^(r?0] cos [A:(r,(r/) •rs(r /0)] - (8.26) 

The first term is completely out of phase with the monopole (sin(A:rs) versus 
cos(A:r5)). Figure 8.7 shows that this feature remains even after accounting for 
the integral term. This mismatch of phase will have important implications for the 
final anisotropy spectrum. 
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Figure 8.7. The monopole and dipole at recombination in a standard CDM model. The dipole 
vanishes for the longest wavelength modes that have not entered the horizon by recombination. 
It is completely out of phase with the monopole. 

8.4 D I F F U S I O N D A M P I N G 

Figure 8.6 makes it clear that we must account for diffusion to get accurate CMB 
spectra. To analyze diffusion quantitatively, we must return to the equations for 
the moments of the photon distribution, Eqs. (8.12), (8.13) and (8.10). Until now, 
we have neglected G2 and all higher moments. Diffusion is characterized by a small 
but nonneghgible quadrupole. 
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We must therefore supplement the set of equations we wrote down in the last 
section with an equation for the quadrupole, 02- Our task is somewhat simplified 
by the fact tha t we will be interested in phenomena occurring only on small scales. 
On these scales, recall from Chapter 7 (e.g., Figure 7.8) tha t the potentials are very 
small because of radiation pressure, so we can drop $ and ^ everywhere. Also, we 
will see tha t diffusion manifests itself in the moments by making each successive 
moment proportional to a higher power of 1/f. Thus we will need to keep only the 
I = 2 mode; all higher ones can be neglected. Wi th these approximations, we have 

0 0 -h /cOi = 0 

e. + M > - i e „ ) = . e,-?J 

62 
2k 

Oi 
10 

r rOo. 

(8.27) 

(8.28) 

(8.29) 

These three equations need to be supplemented by an equation for v\^. This is best 
expressed as a slight rewriting of Eq. (8.14): 

3z9i + Vh 
R 

f a 
(8.30) 

where again I have dropped the gravitational potential. 
To solve this set of equations, we appeal to the high-frequency nature of damp-

ing. Let us write the t ime dependence of the velocity as 

Vh oc e 
j ujdr) 

(8.31) 

and similarly for all other variables. We already know tha t uo ^ kcs in the tightly 
coupled limit. Now we are searching for damping, an imaginary par t to uo. Since 
damping occurs on small scales, or high frequencies. 

a 
(8.32) 

a/a is of order rj ^ while LJ is of order k. So we can drop the second term on the 
right in Eq. (8.30) and the velocity equation then becomes 

Vh = - 3 i 6 i 

- 3 i e i 

1 -

1 + 

iujR 

(JOR rujRy 
(8.33) 

where I have expanded out to f ^ because Vh^-'^iQi is multiplied by f in Eq. (8.28). 



232 ANISOTROPIES 

The equation for the second moment of the photon field, (8.29), can be reduced 
similarly. First we can drop the 02 term since it is much smaller than f©2- This 
leaves simply 

02 = -~ei (8.34) 
9T 

which shows that our approximation scheme is controlled: higher moments are sup-
pressed by additional powers of k/f. The equation for the zeroth moment becomes 

iuj&o = —A:6i. 

Inserting all of these into Eq. (8.28) gives the dispersion relation 

8 P 
^^ - ^ + (k^Siuj) 

iujR 

f r-( 
Collecting terms we get 

3 r 
u;2/?2 + 8 F 

27 

^ ) ' : 

0. 

(8.35) 

(8.36) 

(8.37) 

The first two terms on the left, the leading ones in the expansion of 1/f, recover 
the result of the previous section, that the frequency is the wavenumber times the 
speed of sound. We can write the frequency as this zero-order piece plus a first-
order correction, 6uj. Then, inserting the zero-order part into the terms inversely 
proportional to f leads to 

5uo le 
2(1+ i?)f 

clR^^ 
27 

Therefore, the time dependence of the perturbations is 

Go, ©1 ~ exp sik j drjCs \ exp < - p - > 

where the damping wavenumber is defined via 

kl{ri) Jo 

dr^' 

6(1 + R)ne(JTa{r]') 

R^ 8 
L(l + it!) ^ 9 

(8.38) 

(8.39) 

.40) 

Putting aside factors of order unity, this equation says that l/k^ '^ [r]/ne(JT(iY^'^, 
which agrees with our heuristic estimate at the beginning of this chapter. 

As a first estimate of the damping scale, we can work in the prerecombination 
limit, in which all electrons (except those in helium) are free. In Chapter 3 we 
estimated the optical depth in this limit, but ignored helium. The mass fraction 
of helium is usually denoted as Yp and is approximately 0.24. Since each helium 
nucleus contains four nucleons, the ratio of helium to the total number of nuclei is 
Yp/A. Each of these absorbs two electrons (one for each proton), so when counting 
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the number of free electrons before hydrogen recombination, we must multiply our 
estimate of Eq. (3.46) by 1 - Y^jl. Using the fact that H^ = 3.33 x 10"^ h M p c - \ 
we have, in the prerecombination limit, 

n^Gra = 2.3 x lO-^Mpc'^Vtbh^a-^ ( 1 " y ^.41) 

Using this, you can show (Exercise 8) that an approximation for the damping scale 
IS 

A:-2 = 3.1xl0^MpcV/VD(a/aeq)(O,/z2) ' (^ " y ) ( ^ - ^ ' ) '^ ' (^-42) 

where f^^ defined in Eq. (8.88), goes to 1 as a/agq gets large. 
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Figure 8.8. Damping scale as a function of the scale factor for two different values of Q5 
(with h = 0.5). Heavy curves (exact) numerically integrate over the standard recombination 
history, while light curves use the approximation of Eq. (8.42) which assumes electrons remain 
ionized. Right axis shows the equivalent koVO' damping occurs on angular scales / > koVo-

Figure 8.8 shows the evolution of the damping scale before recombination. 
Neglecting recombination is a good approximation at early times but, as expected, 
leads to quantitative errors right near 77*, when using Eq. (8.41) for the free electron 
density does not accurately account for the electrons swept up into neutral hydro-

1 /2 
gen. In the absence of recombination, ko scales as Q^^ . Note from the late time 
behavior in Figure 8.8 that the messy details of recombination change this simple 
scaling: ko for the 0.^ — 0.06 case is less than 2 -̂̂  as big as the ftb = 0.03 case. 

Figure 8.8 requires one final comment. The damping of anisotropics due to pho-
ton diffusion is sometimes referred to as being caused by the "finite thickness of 
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the last scattering surface." That is, it is argued that if recombination took place 
instantaneously at ry*, then there would be no damping. Figure 8.8 shows that 
this is patently false. Even if recombination had occurred in this way, the universe 
before recombination would not have been inifinitely optically thick. Photons would 
still stream a reasonable distance and hence damp anisotropics. In the examples 
shown, the damping scale would have been smaller (larger /) by less than a factor 
of 2 if recombination had occurred instantaneously. On the other hand, we will 
see in the next section that the anisotropics today are determined by integrating 
over the visibility function, essentially a filter centered at the epoch of recombina-
tion but broadened due to the finite thickness of the last scattering surface. When 
incorporating the effects of damping (Seljak, 1994; Hu and Sugiyama, 1995), one 
must account for this finite thickness by integrating the damping function e~^ ^^^ 
weighted by the visibility function. Thus the finite thickness of the last scatter-
ing surface has both qualitative and quantitative effects on the final anisotropy 
spectrum. 

8.5 INHOMOGENEITIES TO ANISOTROPIES 

We now have a good handle on the perturbations to the photons at recombination. It 
is time to transform this understanding into predictions for the anisotropy spectrum 
today. First, we will solve for the moments Qi today in the next subsection. Then 
we will spend a bit of time relating these moments to the observables. Thus the 
main purpose of the following subsections is to derive Eq. (8.56), which relates the 
moments today to the monopole and dipole at recombination, and Eq. (8.68), which 
expresses the CMB power spectrum in terms of the Fourier moments today. 

8.5.1 Free Streaming 

We want to derive a formal solution for the photon moments today Qi{rjo) in terms 
of the monopole and dipole at recombination. A formal solution can be obtained 
by returning to Eq. (4.100). Subtracting fG from both sides leads to 

e -f {ikfi - f ) 0 - e-^ '̂̂ ^+^-f- [Ge^'^^^-^l = S (8.43) 
df] 

where the source function is defined as 

S = -^ - ikfi"^ - f eo + / i ^ b - 2 ^ 2 ( / i ) n (8.44) 

Hold your curiosity about the~in the definition. Multplying both sides of Eq. (8.43) 
by the exponential and then integrating over 77 leads directly to 

6(770) - 0(ryinit)e^^^(^^-^^-^«)e-^(^^"*^) + / dr/5(77)e^^^(^-^°)-^(^^ (8.45) 

where I have used the fact that r(r/ = r/o) = 0 since r is defined as the scattering 
rate integrated from r/ up to T/Q. We also know that, if the initial time rj-mit is early 
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enough, then the optical depth T{rj[nit) will be extremely large. Therefore, the first 
term on the right side of Eq. (8.45) vanishes. This corresponds to the fact that 
any initial anisotropy is completely erased by Compton scattering. By the same 
reasoning, we can set the lower limit on the integral to zero: any contribution to 
the integrand from r/ < rjinit is completely negligible. Thus, the solution for the 
perturbations is 

e{k,fi,r]o)= / dr/5(A:,/i,77)e^'^^(^-^°)-^^^^ (8.46) 
Jo 

Equation (8.46) looks simple, but of course all of the complication is hidden in 
the source function 5. Notice that S depends somewhat on the angle /i. If it did 
not depend on /i, we could immediately turn Eq. (8.46) into an equation for each 
of the ©/'s. For, we could multiply each side by the Legendre polynomial Vi{ii) and 
then integrate over all /x. By Eq. (4.99), the left side would give (—i)^9/ and the 
right would contain the integral 

/ 
' ^Vi{fi)e''^^^^-^o) ^ J_j^ [^(^ _ ^^)] (8.47) 
1 2 {~iy 

where ji is the spherical Bessel function. This approach looks so promising that we 
should pursue it to its end, again forgetting for the moment that S really does have 
some n dependence. The expression for 0/ would be 

rvo 
e/(fc,r;o) = (-1)^ / dr^S{k,r^)e-^^^^ji [k{r^ - r/o)]. (8.48) 

Jo 

What about the // dependence in 5? We can account for this by noting that S 
multiplies the exponential e^^^^'^~'^^^ in Eq. (8.46). Thus, everywhere we encounter 
a factor of // in 5 we can replace it with a time derivative: 

Let me demonstrate this explicitly with the —ikji^ term in S. The integral is 

r̂ o /-̂ o _ ^ r'no fno 
-ik / dr] ^^e^^^(^-^o)-^(^) = - / dry^e-^(^^-^e^^''(^-^°^ 

^0 Jo 

Jo ' 

dr] 

d 

dr] L 
^e-^(^) (8.50) 

where the last line follows by integration by parts. Note that the surface terms can 
be dropped: at ry = 0 they are damped by the e"^^^^ factor. The terms at r/ = r/o 
are not small, but they are irrelevant since they have no angular dependence. They 
alter the monopole, an alteration which we cannot detect. Thus, accounting for the 
integration by parts changes the substitution rule of Eq. (8.49) by a minus sign, 
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with the understanding that the derivative does not act on the oscillating part of 
the exponential, e^^^^'^~'^^\ The solution in Eq. (8.48) therefore becomes 

rm 
0z(fc, Tyo) = / dr]S{k, r])ji [k{r]o - rj)] 

Jo 
(8.51) 

with the source function now defined as 

S{k,v) $ - f(eo + ^n) 

'(*-¥)] - 4fc2 di]^ 
(8.52) 

In Eq. (8.51), I have also used the property of spherical Bessel functions: ji(x) = 

( - i ) ' i / ( - ^ ) -
At this stage, it is useful to introduce the visibility function 

g{r]) = -fe ^. (8.53) 

The visibility function has some interesting properties. The integral JĴ ° dr]g{r]) — 1, 
so we can think of it as a probability density. It is the probability that a photon 
last scattered at 77. In the standard recombination, since r is so large early on, 
this probability is essentially zero for 7/ earlier than the time of recombination. It 
also declines rapidly after recombination, because the prefactor —f, which is the 
scattering rate, is quite small. Figure 8.9 shows the visibility function for two values 
of the baryon density. 

The source function in Eq. (8.52) can now be expressed in terms of the visibility 
function. If we drop the polarization tensor 11 in the source since it is very small, 
then the source function becomes 

5(A:,7y):^^(ry)[eo(A:,77) + ^(A:,77)] 

^ d_ /ivh{k,rj)g{r]) 

drj \ k 

+ e" ^(/c,77)-$(A:,77) . (8.54) 

We can take our analytic solution one step further by performing the time integral 
in Eq. (8.51). The source term proportional to fb is best treated by integrating by 
parts. Then, 

Qiik.rjo) = / dr] g{rj) [Qoik^r]) + ^{k.rj)] ji [k{r]o - r])] 
Jo 

iv\,{k,r]) d 

- J o ' 
dr] g{rj) -^ji [Hm - r])] 
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Figure 8.9. The visibility function. Most electrons last scatter at around z ~ 1100 with little 
dependence on the baryon density. Note that the integral of g over conformal time is 1. Here 
/i = 0.5. 

7 + / dry e-^ ^(A:, 77) - 6(^, 77) ji [A:(7yo - ry)]. (8.55) 

There are two types of terms in Eq. (8.55). First, there are those wherein the 
integral is weighted by e"'^. These contribute as long as r < 1, that is, at all times 
after recombination. Note that these are also proportional to derivatives of the 
potentials. If the potentials are constant after recombination, these terms vanish. In 
many theories, as we saw in Chapter 7, this is precisely what happens: the universe 
is purely matter dominated after recombination and in such an environment, the 
potentials generally remain constant. The corrections due to changing potentials 
are therefore important to get things right quantitatively, but do not affect the 
qualitative structure of the anisotropy spectrum. Rather, the dominant terms in 
Eq. (8.55) are the second types of terms, the ones with integrals weighted by the 
visibility function. 

Since the visibility function is so sharply peaked, the integrals in the first two 
terms become very simple. To see why, consider Figure 8.10 which shows the three 
parts of the integrand of the first term (the monopole) in Eq. (8.55). Since the 
visibility function changes rapidly compared with the other two functions, we can 
evaluate those other functions at the peak of the visibiUty function, i.e., at 77 = ry*, 
and remove them from the integral. But then, the integral is simply J dr}g{r]) = 1. 
Thus, we are left with 
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Figure 8.10. The three components of the integrand in the monopole term of Eq. (8.55). The 
visibility function is sharply peaked, so it changes rapidly compared with the monopole Bo + ^ 
and the Bessel function ji(k[r] - 770])- Figure is for / = 100,/c = 0.013/i Mpc~^. 

e/(/c, 770) ĉ  [eo(/c, T],) -h ^(/c, 7/*)] ji [k{rjo - T],)] 

+ : 

rvo 

Jo • 
+ / drje ''\^{k,rj)-^k,r])\ ji[k{r]o - r])]. (8.56) 

Here I have used the spherical Bessel function identity of Eq. (C.18) to rewrite the 
Bessel function derivative in the velocity term and also the fact that ^b — — 3z6i at 
77*. On scales much smaller than the one shown in Figure 8.10, 60 + ^ changes more 
rapidly because of the rapid change in the damping scale around recombination. 
However, this effect can be incorporated by modifying the damping function from 

.-k^/kD{r).? I drjg{r])e -k^/koivf (8.57) 

Equation (8.56) is the basis for semianafytic calculations (Seljak, 1994; Hu and 
Sugiyama, 1995) of Ci spectra which agree with the exact (numerical) solutions to 
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within 10%. Prom Eq. (8.56), we see that, to solve for the anisotropies today, we 
must know the monopole (6o), dipole (0 i ) , and potential (^) at the time of recom-
bination. Further, there will be small but noticable corrections if the potentials are 
time dependent. These corrections, encoded in the last line of Eq. (8.56), are often 
called integrated Sachs-Wolfe (ISW) terms. 

The monopole term — the first in Eq. (8.56) — is precisely what we expected 
from the rough arguments of Section 8.1. In particular, the spherical Bessel function, 
JiikiTjo—V*)]^ determines how much anisotropy on an angular scale l~^ is contributed 
by a plane wave with wavenumber k. On very small angular scales. 

1 / 7 ' x / - l / 2 

lim^Mx) = j[j) . (8.58) 

That is, ji{x) is extremely small for large / when x < /. In our case, this means that 
0/(A:,ryo) is very close to zero for / > krjo. This makes sense physically. Returning 
to Figure 8.4, we see that very small angular scales will see little anisotropy from 
a perturbation with a large wavelength. The converse is also true: angular scales 
larger than l/{kr]o) get little contribution from such a perturbation. To sum up, 
a perturbation with wavenumber k contributes predominantly on angular scales of 
order / ~ krjQ. One last comment about the monopole term: the final anisotropy 
today depends on not just 0o, but rather ©o -h ^ , again something we anticipated 
since photons must climb out of their potential wells to reach us today. 

8.5.2 The Q's 

How is the observed anisotropy pattern today related to the rather abstract 
6/(fc,7yo)? To answer this question, we must first describe the way in which the 
temperature field is characterized today and then relate this characterization to 

Recall that in Eq. (4.34), we wrote the temperature field in the universe as 

T{x, p, n) = T{r,) [1 + e(f , p, 7?)]. (8.59) 

Although this field is defined at every point in space and time, we can observe 
it only here (at XQ) and now (at r/o).^ Our only handle on the anisotropies is 
their dependence on the direction of the incoming photons, p. So all the richness 
we observe comes from the changes in the temperature as the direction vector p 
changes. Observers typically makes maps, wherein the temperature is reported at a 
number of incoming directions, or "spots on the sky." These spots are labeled not 
by the PxiPy^Pz components of p, but rather by polar coordinates 9, (j). However, it 

^We do make small excursions from this point in space-time. For example, satellites are not 
located on Earth and anisotropy measurements have been made over the past 30 years. These are 
completely insignificant on scales over which the temperature is varying, which are of order the 
Hubble time (or distance). 
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is a simple matter to move back and forth between the 3D unit vector p and polar 
coordinates/ I'll stick with p in the ensuing derivation. 

We now expand the field in terms of spherical harmonics. That is, we write 

oo / 

e{x,p,r])^Y^ Y^ aim{x,r])Yim{p)- (8.60) 
1 = 1 rn= — l 

The subscripts /, m are conjugate to the real space unit vector p, just as the variable 
k is conjugate to the Fourier transform variable x. We are all familiar with Fourier 
transforms, so it is useful to think of the expansion in terms of spherical harmonics 
as a kind of generalized Fourier transform. Whereas the complete set of eigenfunc-
tions for the Fourier transform are e^ '̂̂ , here the complete set of eigenfunctions for 
expansion on the surface of a sphere are YimiP)- All of the information contained in 
the temperature field T is also contained in the space-time dependent amplitudes 
aim- As an example of this, consider an experiment which maps the full sky with an 
angular resolution of 7°. The full sky has An radians^ :^ 41,000 degrees^, so there 
are 840 pixels with area of (7°)^. Thus, such an experiment would have 840 inde-
pendent pieces of information. Were we to characterize this information with a/m's 
instead of temperatures in pixels, there would be some /max above which there is no 
information. One way to determine this /max is to set the total number of recover-
able aim^s as X /̂So'C^^ + l) = (/max + l)^ = 840. So the information could be equally 
well characterized by specifying all the aim's up to /max = 28. Incidentally, this is 
a fairly good caricature of the COBE experiment (Smoot et aL, 1992; Bennett et 
aL, 1996). They presented temperature data over many more pixels, but many of 
these pixels were overlapping. So, the independent information was contained in 
multipoles up to / ~ 30. Experiments currently under way or well along in the 
planning stage are capable of measuring the moments all the way up to / ~ 10^. 

We want to relate the observables, the a/m's, to the 6/ we have been dealing 
with. To do this, we can use the orthogonality property of the spherical harmonics. 
The Yim's are normalized via Eq. (C.ll) , 

/ 
(8.61) 

where Q. is the solid angle spanned by p. Therefore the expansion of O in terms 
of spherical harmonics, Eq. (8.60), can be inverted by multiplying both sides by 
yCm{p) and integrating: 

aim{S,v) = / -^e^^'-^^ JdnYr^{p)e{k,p,v). (8.62) 

Here I have written the right-hand side in terms of the Fourier transform {Q{k) 
instead of 0(x)), since that is the quantity for which we obtained solutions. 

7ri — Pz — COS ^, px = sin Q cos (/>, and py — sin Q sin (; 
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Figure 8.11. The distribution from which the aim's are drawn. The distribution has expecta-
tion equal to zero and a width of C^ . 

As with the density perturbations, we cannot make predictions about any par-
ticular aim, jtist about the distribution from which they are drawn, a distribution 
which traces its origin to the quantum fluctuations first laid down during inflation. 
Figure 8.11 illustrates this distribution. The mean value of all the a/^'s is zero, but 
they will have some nonzero variance. The variance of the a/^'s is called Q . Thus, 

(aim) = 0 {aimOl'^,) = 6ii'6mm'Cl. (8.63) 

It is very important to note that, for a given /, each aim has the same variance. 
For / — 100, say, ah 201 aioo,m's are drawn from the same distribution. When 
we measure these 201 coefficients, we are sampling the distribution. This much 
information will give us a good handle on the underlying variance of the distribution. 
On the other hand, if we measure the five components of the quadrupole (/ = 2), 
we do not get very much information about the underlying variance, €2- Thus, 
there is a fundamental uncertainty in the knowledge we may get about the Ci ^s. 
This uncertainty, which is most pronounced at low /, is called cosmic variance. 
Quantitatively, the uncertainty scales simply as the inverse of the square root of 
the number of possible samples, or 

AC/ 
Q 

cosmic variance 
21 + 1 

(8.64) 
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We can now obtain an expression for Ci in terms of Qi{k). First we square aim 
in Eq. (8.62) and take the expectation value of the distribution. For this we need 
(0(^,p)Q*(^',p')), where from now on we will keep the 77 dependence implicit. This 
expectation value is complicated because it depends on two separate phenomena: 
(i) the initial amplitude and phase of the perturbation is chosen during inflation 
from a Gaussian distribution and (ii) the evolution we have studied in this chapter 
turns this initial perturbation into anisotropics, i.e. produces the dependence on p. 
To simplify then, it makes sense to separate these two phenomena and write the 
photon distribution as (5 x (6/(5), where the dark matter overdensity 5 does not 
depend on any direction vector. The ratio @/5 is precisely what we have solved for 
in the last two chapters: given the initial amplitude of a mode, we have learned how 
to evolve forward in time. The ratio does not depend on the initial amplitude, so 
it can be removed from the averaging over the distribution. Therefore, 

{e{k,p)eik',p')) = {6ik)5*ik')) ^ ^ ^ ^ ( ^ 
o{k) d*{k^) 

= (2 . )V(«-P)Pw5t t^5M) , (8.e5) 

where the second equality uses the definition of the matter power spectrum P{k), 
but also contains a subtlety in the ratio Q/d. This ratio, which is determined solely 
by the evolution of both 5 and 0 , depends only on the magnitude of k and the dot 
product k ' p. Two modes with the same k and k • p evolve identically even though 
their initial amplitudes and phases are different. 

After squaring Eq. (8.62), we see that the anisotropy spectrum is 

Now we can expand Q{k/k - p') and Q{k,k • p') in spherical harmonics using the 
inverse of Eq. (4.99), @{k,k'p) = E/(-^)^(2/ + l)Vi(k • p)Qi{k). This leaves 

X jd^Vi\k'P)YCm{p) jdn'Vv'{k-p')Yirn{p'). (8.67) 

The two angular integrals here (Exercise 9) are identical. They are nonzero only 
if /' = / and I" = /, in which case they are equal to A'KYim{k)/{21 + 1) (or the 
complex conjugate). The angular part of the dPk integral then becomes an integral 
over lYimP, which is just equal to 1, leaving 

TT J o 
Ci = ~ dkk^ P{k) 

ei{k)f 
6{k) 

(8.68) 
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For a given /, then, the variance of aim^ Ci, is an integral over all Fourier modes of 
the variance of 6/(^). We can now use Eqs. (8.56) and (8.68) to plot the anisotropy 
spectrum today. 

8.6 THE ANISOTROPY SPECTRUM TODAY 

8.6.1 Sachs-Wolfe Effect 

Large-angle anisotropics are not affected by any microphysics: at the time of recom-
bination, the perturbations responsible for these anisotropics were on scales far 
larger than could be connected via causal processes. On these largest of scales, only 
the monopole contributes to the anisotropy; this is the first term in Eq. (8.56). So 
the large-angle anisotropy is determined by Go + ^ evaluated at recombination. 
The large-scale solution we found in Eq. (8.6) was that this combination is equal 
to ^(77*)/3. In most cosmological models, recombination occurs far enough after 
matter/radiation equality that we can approximate the potential back then to be 
equal to the potential today modulo the growth factor, so 

The last equality holds here because at very late times, there are no appreciable 
anisotropic stresses, and $ = — ̂ . 

We may use Eq. (7.7) to express the potential $ today in terms of the dark 
matter distribution, so that 

eo(..) + * ( . . ) ^ - ^ p | ^ « . (8.70) 

This gives us what we need: an expression for the sum of Go + ^ at recombination 
that we can plug into the monopole term in Eq. (8.56). To get the anisotropy 
spectrum today, we then integrate as in Eq. (8.68), leaving 

where the superscript denotes Sachs- Wolfe^ in honor of the first people to compute 
the large-angle anisotropy (Sachs and Wolfe, 1967). The power spectrum is given 
by Eq. (7.9) with the transfer function set to 1 (since we're considering very large 
scales). Therefore, 

The large-scale anisotropics in Eq. (8.72) can be computed analytically. First, 
we will use the fact that 77* <C r]o and define the dummy variable x = kr]o. Then 
the spectrum can be rewritten as 
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The integral over the spherical Bessel functions can be analytically expressed 
(Eq. (C.17) from Gradshteyn and Ryzhik, 6.574.2) in terms of gamma functions, 
leaving 

If the spectrum is Harrison-Zel'dovich-Peebles, n = 1, then the first ratio of the 
gamma functions r ( / ) / r ( /+2) is equal to [^(/+1)]~^ using Eq. (C.24). The remaining 
ratio of gamma functions r(2)/r^(3/2) = 4/7r using Eq. (C.25), so 

a constant. Indeed, this is the reason why workers in the field typically plot l{l^\)Ci'. 
at low /, where the Sachs-Wolfe approximation is a good one, we expect a plateau. 

Figure 8.12 shows the COBE measurements of the large-angular-scale 
anisotropics along with the Boltzmann solutions of three CDM models. Note that, 
even for n = 1, the true spectrum is not completely flat as suggested by Eq. (8.75). 
The dipole at recombination (neglected in Eq. (8.74)) contributes slightly. The 
integrated Sachs-Wolfe eff*ect also is not completely negligible, especially in the 
A model, wherein the potential starts to decay once the universe becomes A-
dominated at late times. For an n = 1 spectrum, the best fit values of 5H from 
COBE are 

5H = 1.9 X 10-^ Vim = 1 

SH = 4.6 X 10-^ ftm - 0.3 ; ^^A = 0.7. (8.76) 

Also shown in Figure 8.12 is a tilted model, one in which the primordial spec-
tral index n is not equal to 1. In such models, the anisotropy should scale as l^~^ 
compared with the Harrison-Zel'dovich-Peebles n = 1 spectrum. You can see this 
scaling from Eq. (8.74) or more directly from the integral in Eq. (8.73). The inte-
grand peaks at X ~ /, so very roughly every appearence of x there can be replaced 
by /. The generalization of the integrand from x~^ to x^~^ therefore leads to a 
change in the spectrum that scales as /^~^. As indicated in Figure 8.12, the COBE 
data have the greatest weight at / ~ 10, but cover a range of / spanning an order of 
magnitude. Extreme values of tilt are therefore ruled out by COBE. To get much 
better constraints on the tilt, though, measurements spanning a larger range of I 
are necessary. 

8.6.2 Small Scales 

The small-scale anisotropy spectrum depends not only on the monopole, but also 
on the dipole and the integrated Sachs-Wolfe effect. Figure 8.13 shows all these 
contributions to the spectrum. Let's consider each in turn. 
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Figure 8.12. Large-scale anisotropies. Hatched boxes show measurements by COBE satellite 
(Bennett et al, 1996). Curves show the spectra for standard CDM and ACDM (both with 
n = 1). The tilted model is identical to standard CDM, except n = 0.5. The late time 
integrated Sachs-Wolfe effect enhances anisotropy on the largest scales in ACDM. Note that 
here, and in subsequent Ci figures, the root mean square anisotropy is plotted, proportional to 
C/ . Ci is dimensionless so the units of /iK come from multiplying by the present background 
temperature, T = 2.73K. 

The monopole at recombination (©o + ^)(/c,7y*) free-streams to us today, cre-
ating anisotropies on angular scales / ~ fcr/o- This is what we expected back in 
Figure 8.4, showed to be true in Eq. (8.56), and can now see directly in the top 
panel of Figure 8.13. There are two interesting features of the quantitative aspect 
of the free-streaming process. First, note that the "zeroes" in the monopole spec-
trum, here at 400, 650, and 970, are smoothed out because many modes contribute 
to anisotropy on a given angular scale. If only the k — 400/7yo modes contributed 
to the anisotropy at / = 400, then C400 would really be zero. But many nonzero 
modes, with wavenumber greater than 400/r]o, contribute. These change the zero 
to a trough in the Ci spectrum. 

The second feature of free-streaming worth noticing is that our initial estimate 
tof the peak positions is not exactly right. Inhomogeneity on scale k does not show 
up as anisotropy precisely on angular scale / = kr]0' Rather, There is a notica-
ble shift in the top panel, suggesting that a given /c-mode contributes to slightly 
smaller / than we anticipated. This shift arises from the spherical Bessel function 
in Eq. (8.56). As indicated in Figure 8.14, the peak in the Bessel function comes 
not when / = krjo, but rather at slightly smaller values of /. In addition, our initial 
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Figure 8.13. Small-scale anisotropy. Top panel: The monopole at recombination 
(Go + ^)(/c = //?7o,?7*) contains most of the structure of the final anisotropy spectrum. 
When free-streamed via the integral in Eq. (8.56), the spectrum shifts slightly to lower /. 
Middle panel: Accounting for the dipole raises the anisotropy spectrum. Since the dipole 
is out of phase with the monopole, the troughs become less pronounced. Bottom panel: 
The integrated Sachs-Wolfe effect enhances the anisotropy on scales comparable to the hori-
zon. In this case, the potential changes near recombination since the universe is not purely 
matter dominated then. Thus the first peak gets most of the excess power. Throughout, 
h = 0.5,Qb = 0.06,f^m =- 1. 

estimate for the location of the peaks in fc-space, Eq. (8.25), is also shghtly high. For 
example, the expected position of the first peak, Trr/o/rs, for the model depicted in 
Figure 8.13 is a little over 280. The first peak in the monopole in A:-space, however, 
appears at krjo ~ 260. These two effects — fixed k projects to slightly smaller / and 
peaks on slightly larger scales than expected from Eq. (8.25)—serve to move the 
predicted positions of the peaks to lower /. A better approximation for the first 
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Figure 8.14. The spherical Bessel function, j /(100). Note that the peak occurs at / ~ 90, 
slightly snnaller than the argument. 

peak position is Ip ^ 0.757Trjo/rs. 
The dipole at recombination is smaller than the monopole and out of phase 

with it. The middle panel in Figure 8.13 shows that adding in the dipole raises the 
overall anisotropy level, but particularly fills in the troughs. Without the dipole (in 
this model) the ratio of the height of the first peak (at / ~ 200) to the height of 
the first trough (at / ~ 400) is about 2.5:1; the dipole lowers this ratio to 1.5:1. 
This is a direct manifestation of the dipole and monopole being out of phase with 
one another. That is, at the places where the monopole contributes least to the 
anisotropics, at its troughs, the dipole contributes the most. One other comment 
about the relation between the monopole and the dipole: they add incoherently. By 
incoherently, I mean that the cross term of 6/ from the monopole multiplied by 6/ 
from the dipole vanishes when integrating over all /c-modes to get the C/'s. This 
can be seen mathematically from the properties of the spherical Bessel function 
(Exercise 12). Incoherence implies that the dipole is not as important in the power 
spectrum as one might naively think. If the amplitude of the dipole is 30% of that 
of the monopole at recombination, the dipole's contribution to the Ci's is only 
10% (12+0.32 = 1.1). 

The integrated Sachs-Wolfe effect is also important if the potential changes 
after recombination. To see which scales are affected by the ISW effect, consider 
the integral in Eq. (8.56). Suppose the potential changes at time TJC, with all sub-
horizon scales {kr]c > 1) being affected. The Bessel function peaks at / ~ k{r]o — rjc)'<, 
so all angular scales I > {TJQ — r]c)/rjc are affected. The largest effect is typically at 
the horizon. 

The best, and most prevalent, example of the ISW effect is that due to residual 
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radiation at recombination. If the universe were purely matter dominated, there 
would be no such effect. But, the transition to pure matter domination is not 
abrupt, and even for Ogq ~ 10~^, an ISW effect occurs right after recombination. 
This early ISW effect is particularly important because it adds coherently with the 
monopole. To see this, integrate the last term in Eq. (8.56) by parts. Then, the 
dominant contribution comes from 77 ~ 77*, so the Bessel function can be evaluated 
there, leaving the trivial integral which gives 

Qiik, rjor^'y ^s^ = [^{k, 7/0) - ^(A:, 7/*) - ^(A:, 7/0) + ^(A:, 77*)] ji [k{vo - r/*)] • 
(8.77) 

This adds exactly in phase with the monopole (which is proportional to the same 
Bessel function) so even though the magnitude of the effect on 6/ is much smaller 
than is the dipole, the effect on the anisotropy spectrum is disproportionate. A 30% 
dipole leads to a 10% shift in the C/'s, while a 5% ISW effect leads to the same 
10% shift in the Q's . The bottom panel shows that the large scales, those with 
/ ~ Tjo/rj^, get a big boost from this early ISW effect. 

8.7 COSMOLOGICAL PARAMETERS 

The anisotropy spectrum depends on cosmological parameters. This fundamental 
realization initially caused great consternation ("We will never be able to measure 
any one parameter because there is too much degeneracy"). As more quantitative 
studies were carried out, the pendulum swung to the other side ("We will be able 
to disentangle the degeneracies and measure cosmological parameters to percent 
accuracy"). More recently, the community has settled into a state of cautious opti-
mism. Indeed, just a decade after the initial discovery of large scale anisotropics by 
COBE, there were a host of experiments which together seemed to pin down one 
parameter (the total energy density) by measuring the location of the first peak. 
Several of these had measured the subsequent two peaks, allowing an inference of 
the baryon density, the parameter which most affects the heights and locations of 
these peaks. 

We now have developed the theoretical tools needed to participate in the param-
eter determination discussion. In this section, we apply these tools to understand 
how the anisotropy spectrum varies as cosmological parameters vary. 

One very important decision that must be made is which parameters will be 
allowed to vary. I will consider eight parameters: 

• Curvature density, flk = ^ — ^m — ^ A 
• Normalization, Cio 
• Primordial tilt, n 
• Tensor modes, r (for a precise definition, see Exercise 18) 
• Reionization, parametrized by r back to recombination 
• Baryon density, Q^h'^ 
• Matter density, ^rnh^ 
• Cosmological constant energy density, QA 
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There are two aspects of this Hst worth stressing. The first is that obviously it 
does not include all possible cosmological parameters. Some favorites missing are a 
neutrino mass (I will set all masses to zero in the following), the equation of state for 
dark energy w (will be fixed at —1 corresponding to a cosmological constant), and 
tensor tilt UT (fixed at zero). The second important point is that I have deliberately 
chosen very specific combinations of these parameters, e.g., f^ /̂î , not Q^ and h 
separately. While there is good reason for this (e.g., the alternating peaks effect 
depends on f^^/i^), it also is a source of confusion. A common complaint is that, 
within the context of a flat universe (the first parameter, the curvature density, 
equal to zero), why should both the cosmological constant and the matter density 
be allowed to vary? Mustn't their sum equal 1? It is true that Vtm + ^ A must equal 
1 in a flat universe. But that does not preclude us from varying both Qmh'^ and 
r̂ A, since h can change while the sum of the two densities is 1. 

To harp on this point, consider two analysts. Analyst A works in the context of 
a flat universe and uses ftrnh^ and ft A as her two free parameters. Analyst B also 
assumes the universe is flat, but takes h and ft A as his two parameters. When A 
raises ft A , the matter density (f^^/i^) is kept fixed, so the epoch of equality is kept 
fixed. However, when analyst B raises his f̂ A, to keep the universe flat, he must 
lower Qrn- He is therefore also lowering the matter density (since h is kept fixed), 
thereby moving agq closer to today. That change in agq will lead to an enhanced 
ISW effect, and therefore a larger first peak. Analyst A, who had the foresight to 
separate out this effect by choosing ^rnh^ as one of her parameters, sees no such 
enhancement. And, indeed the enhancement is caused only indirectly by ft A' rather 
it is the direct result of a smaller flrnh^-

Let's now consider the effect of each parameter in turn. 

8.7.1 Curvature 

If the universe is not flat, then the simple picture of Figure 8.4 is no longer accu-
rate since the geodesies of massless particles are such that photons starting out 
parallel to each other slowly diverge. Consider the implication of this divergence 
for anisotropics. Suppose the identical pattern of inhomogeneities was in place at 
recombination in both a flat and open universe. As shown in Figure 8.15, the phys-
ical scale with maximal anisotropy (the first peak) gets projected onto a much 
smaller angular scale in an open universe. The peaks should therefore be shifted to 
higher /. As shown in Figure 8.16, this is precisely what happens. 

The magnitude of this effect is determined by the comoving angular diameter 
distance to the last scattering surface, in a flat universe simply equal to r]o — r]*^ and 
in a universe with curvature given by Eq. (2.46) out to z^. Figure 8.17 shows this 
distance as a function of the curvature density with all other parameters held fixed. 
The angular diameter distance scales as (1 — ftk)'^'"^^^ so that it is a factor of 1.7 
larger in an open f̂^ = 0.7 universe than in a flat universe. Notice from Figure 8.16 
that this is precisely the factor by which the first peak shifts from one model to 
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Figure 8.15. Photon trajectories in an open universe diverge. Perturbations at last scattering 
turn up on smaller scales in an open universe than they do in a flat universe. 

the other. Of all the parameters under consideration, curvature by far causes the 
largest shift in the location of the peaks. 

Figure 8.16 also shows data circa 2002. There is a clear rise up to a first peak 
at / ~ 200 and an equally clear fall past this first peak. When the data first started 
coming in (around 1998), a skeptic could plausibly claim that no one data set 
spanned the whole peak, and it is difficult to combine data sets. Within a year or 
two, though, this objection vanished as larger data sets such as TOCO (Miller et a/., 
1999), Boomerang (de Bernardis et a/., 2000), and Maxima (Hanany et aL, 2000) 
all contained enough information by themselves to rule out an open universe. The 
DASI detection (Halverson et a/., 2002), together with the reanalyzed Boomerang 
and Maxima data, cemented the case for a flat universe. 

Of course, a truly flat universe is only one point in parameter space, the point 
at which the sum of the energy densities exactly equals the critical density, and no 
data will ever rule out all values except for this one point. Rather, the data now 
suggest that the total density is equal to the critical density with an error of about 
5%. The classic open universe once favored by astronomers had 30% of the critical 
density, and so is ruled out with very high confidence. 

8.7.2 Degenerate Parameters 

Figure 8.18 shows the results of varying four parameters. Before considering each 
in turn, it is important to state the obvious. All of these parameters change the 
spectrum in very similar ways. The shape of the spectrum varies hardly at all; 
rather, these parameters simply move the spectrum up and down. 
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Figure 8.16. The anisotropy spectrum in flat versus open universe. Also shown are data from 
three small-scale experiments: DAS! (darkest; Halverson et al, 2002), Boomerang (medium; 
Netterfield et al, 2002), and Maxima (lightest; Lee et al, 2001). The pattern of peaks and 
troughs persists in the open universe but is shifted to smaller scales. The data clearly favor 
the flat case. Both curves have identical parameters n = l.^rnh^ = 0.15, Qbh^ = 0.02 with 
no reionization, tensors, or cosmological constant. Open curve has Qfc 
has the same parameters except Qk = 0. 

1 - ^^ = 0.7; flat 

Comoving Distance to LSS 

Figure 8.17. Comoving angular diameter distance back to the last scattering surface at 
z* ~ 1100 as a function of curvature. The distance is larger in an open universe than in 
a closed universe. 
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Figure 8.18. Changes in the anisotropy spectrum as Cio, T,r, and n vary. The base model 
(thick curve) is a flat universe with no reionization or tensors, n = 1, Qmh^ — 0.16, 
r^b/i^ = 0.021, and f^A = 0.7. The thin curves vary one parameter each. Reionization cor-
responds to letting the optical depth back to the last scattering surface equal 0.2 instead of 
zero; tilt has a primordial spectum with n = 0.8; r = 1 has an equal contribution of scalars 
and tensors to the quadrupole; and normalization has Cio 10% higher than the base model. 
The curve labeled tensors is the contribution to the anisotropy from tensors only. Only the 
r = 1 curve includes this contribution; all others assume no anisotropy from tensors. 

Normalization. The parameter Cio trivially moves the spectrum up or down. Note 
that, of the four parameters varied in Figure 8.18, it is the only one which can raise 
the amplitude of the spectrum. 
Tilt. We have already considered the large-angle effects of a tilted (n ^ 1) spectrum. 
If n < 1, then the small-scale anisotropics are smaller than in the n = 1 model. 
Figure 8.18 shows that, as smaller and smaller scales are probed, the effect becomes 
more pronounced. So of the four parameters considered here, tilt has the most 
distinctive shape — it is not a simple up-down shift — and perhaps will be most 
easily extracted. Quantitatively, the spectrum scales as 

/ Cijn) 

Ci{n = 1) ~ VWot 
(8.78) 
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where here /pivot — 10 since we are fixing Cio. Accounting for the fact that y/Q is 
plotted in Figure 8.18, we see from the point at / = 1000 that this scahng works 
extremely well. 
Reionization. The universe was almost certainly reionized at late times. We see 
this in the absorption spectra of high-redshift quasars, where no evidence is seen 
of a uniform background of neutral hydrogen until we go back as least as far as 
z ~ 6 (Becker et a/., 2001; Fan et a/., 2002). Reionization brings the CMB back in 
contact with electrons. If enough scattering takes place, that is, if the optical depth 
back to the last scattering surface is high enough, isotropy is restored; equivalently, 
primordial anisotropics are washed out. 

There are several ways to see the effect of reionization quantitatively. One is to 
imagine a photon travehng in our direction with temperature T[l + 9] , where T is 
the background temperature and 0 is the perturbation for which we have solved. 
If these photons hit a region with optical depth r, only a fraction e~^ will escape 
and continue on their way to us. In addition to these, we will also get a fraction 
1 — e~"̂  from the ionized region. All of these have the equilibrated temperature, T. 
So the temperature we see today is 

r [ l -h e ]e -^ + T (1 - e-^) = T [1 + ee"^] . (8.79) 

Subtracting from this the mean temperature T tells us that the fractional anisotropy 
will be 6 , the primordial one set up at 2; ~ 1100, multiplied by e~'^. Of course this 
argument can affect only those scales within the horizon at the time of reionization, 
so multipoles I larger than r̂ o/'̂ reion will be suppressed by e~'^; small / will be 
unaffected. This is seen in Figure 8.18, where the reionization curve falls on top of 
the base model on large scales but is uniformly suppressed on small scales. 
Tensors. We saw in Chapter 5 that once they enter the horizon, the amplitude 
of gravitational waves dies away. Therefore, gravity waves affect the anisotropy 
spectrum only on scales larger than the horizon at recombination. Typically, this 
translates into angular scales / < 100. Indeed the tensors curve in Figure 8.18 shows 
that tensors die out after / > 100. We can observe only the sum of anisotropics due 
to tensors and scalars. So if tensor perturbations were produced during inflation, 
and if the total (scalar plus tensor) anisotropy spectrum is fit to the large-scale 
(CORE) data, then the small-scale scalar amplitude is smaller than it would oth-
erwise be. Therefore, on scales / > 100 where only scalars remain, the anisotropy 
spectrum is identical to the base model in Figure 8.18, but with a lower amplitude. 

8.7.3 Distinct Imprints 

The final variations we will consider are changes in the baryon density ll^,/^^, the 
matter density ^m^^, and the cosmological constant. As can be seen from Figure 
8.19, these changes lead to richer variations in the anisotropy spectrum; as such 
they are somewhat harder to understand (but easier to extract from the data!) 
than the parameters in the previous subsection. 
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Figure 8.19. Changes in the anisotropy spectrum as baryon density, matter density, and cos-
mological constant vary. Same base model as Figure 8.18. 

Each of these parameters induces a small shift in the locations of the peaks and 
troughs in the spectrum. To understand these shifts, it is important to recall that 
since inhomogenities on scales k show up at / == kijo in a flat universe, the peaks 
in a flat universe will show up at Ip c^ /cp7/o — n7rrjo/rs{rj^) (Eq. (8.25), but also 
see the discussion on page 247 that argues that the actual value of Ip is ~ 25% 
lower). Figure 8.20 shows this ratio as a function of matter and baryon density. It 
is more sensitive to the matter density, so the peak spacing increases as the matter 
density goes down. But there is also a little sensitivity to the baryon density. With 
the densities fixed, introducing a cosmological constant does not change the sound 
horizon, but it does slightly affect rjo, so the peaks shift in that cases as well. 
Baryon density. In addition to the lateral shift in the spectrum due to the change 
in the sound horizon, changes in the baryon density affect the heights of the peaks 
as well. We have already touched on the ways in which the anisotropy spectrum 
depends on the baryon density. The foremost, clearly visible in Figure 8.19, is that 
odd peaks (first and third in the figure) are higher than the even peaks when 
the baryon density is large. This is a direct ramification of the lower frequency of 
oscillations due to the massive baryons. This change is virtually unique, making the 
baryon density one of the easiest parameters to extract from the CMB. Observations 
as of 2001 (e.g., Pryke et aL, 2001) pin down Q^/i^ = 0.022ib0.04, and this constraint 
will undoubtedly get tighter with data from the Map and Planck satellites. The 
second change due to U^h^ is that an increased baryon density reduces the diffusion 
length. Therefore, a larger baryon density means damping moves to smaller angular 
scales, so the anisotropy spectrum on scales / > 1000 is larger in a high-r^^/i^ model. 
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Figure 8.20. The inverse sound horizon at recombination. In a flat universe, the spacing 
between the acoustic peaks in the CMB is equal to nrjo/rsirj*). 

Cosmological constant. The cosmological constant is a late-time phenomenon. It was 
not around at recombination, and therefore could not have affected perturbations 
then. Therefore, the only possible effects of a cosmological constant are on free-
streaming and on the largest angular scales just entering the horizon at recent 
times. The change due to free-streaming is evident in Figure 8.19. The spectrum 
is shifted to smaller angular scales if there is no cosmological constant. You will 
show in Exercise 13 that this small shift can be readily explained by comparing 
the conformal times in a A universe and a matter-dominated universe. Figure 8.19 
also shows that the anisotropy spectrum is slightly lower on small scales in a A 
universe. This is a direct result of the large-angle normalization. In a A universe, 
there is a late-time ISW effect, which enhances the anisotropics on large angles. If 
we normalize on these scales, then the small-scale anisotropy gets correspondingly 
smaller. 
Matter density. If the matter density is low, the epoch of equality occurred closer to 
recombination, so that the radiation density must be accounted for in computing 
the inhomogeneities at recombination. In particular, the decaying potential due 
to the inability of the radiation to cluster provides a strong driving force for the 
oscillations. Therefore, @o{v*) is larger than in a purely matter-dominated universe. 
Further, after recombination, since the potential is not constant, the ISW effect also 
contributes significantly to the final anisotropy spectrum. Therefore, the small-scale 
anisotropics increase if the matter density is low. This effect too has apparently been 
detected, with measurements (Pryke et al.^ 2001) implying QrnhP = 0.16 ib 0.04. 
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SUGGESTED READING 

The large-scale Sachs-Wolfe effect was first predicted by Sachs and Wolfe (1967), 
just several years after the discovery of the CMB. Several groups initiated the 
study of anisotropics in the tightly coupled limit: Doroshkevich, Zel'dovich, and 
Sunyaev (1978), Atrio-Barandela and Doroshkevich (1994), and Jorgenson et al 
(1995). The approach was perfected by Seljak (1994) and Hu and Sugiyama (1995), 
the latter of which is the basis for the semianalytic treatment of this chapter. 
Again, CMBFAST described in Seljak and Zaldarriaga (1996) is a crucial tool for 
fast, accurate numerical work. Diffusion damping is sometimes called Silk damping 
because of the Silk (1968) paper recognizing its importance. Two other papers of 
interest are Zaldarriaga and Harari (1995) which discusses the effect of polarization 
on the damping scale (see Exercise 7) and Hu and White (1997a) which, among 
other things, gives fits to the damping scale valid for a wide range of parameters. 

The question of how the anisotropy spectrum depends on cosmological param-
eters has been explored in literally hundreds of papers over the past decade. I 
remember Dick Bond, one of the pioneers in the field, giving a talk in 1992 at 
a conference about the early COBE data waving his hands through an invisible 
multidimensional parameter space, explaining that our goal now was to navigate 
through this space. Among the most important realizations were the dependence 
on curvature (Kamionkowski, Spergel, and Sugiyama 1994), the degeneracy of the 
height of the first peak (Bond et ai, 1994), and breaking of this degeneracy by 
smaller scale information (Jungman et a/., 1995). More recently, Hu et al. (2000) is 
a good reference. 

I have given short shrift (or no shrift) to some important parameters. The effect 
of dark energy on the CMB has now been well studied: first by Coble, Dodelson, 
and Frieman (1997) and then more generally by Caldwell, Dave, and Steinhardt 
(1998). Massive neutrinos affect the anisotropy spectrum at the 5-10% level (Ma 
and Bertschinger, 1995 and Dodelson, Gates and Stebbins, 1996). The anisotropics 
due to tensors became a hot topic after the COBE discovery. For a semianalytic 
treatment and references to the dozens of papers relating the tensor anisotropy to 
parameters in the potential, see Turner, White and Lidsey (1993). Although the 
effect of reionization on the primary anisotropics generated before recombination 
is well understood, a hot topic now is secondary anisotropics, those generated after 
reionization. These will likely be probed by the next generation of experiments. 

3K: The Cosmic Microwave Background (Partridge) is a good introduction to 
some of the experimental issues I have neglected in this book. The COBE dis-
covery paper is Smoot et al. (1992) with the 4-year observations presented in 
Bennett et al. (1996). There were many good analyses papers written on the 
COBE data; I've relied on Bunn and White (1997), which is especially good for 
using COBE to normalize the matter power spectrum, and Tegmark (1997), from 
which the points in Figure 8.12 are taken. The two satellite experiments are Map 
(ht tp: / /map.gsfc .nasa .gov) and Planck ( h t t p : / / s c i . e s a . i n t / p l a n c k / ) . Map 
was launched in 2001, and Planck is scheduled to be launched in 2007. 
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EXERCISES 

Exercise 1. Most of this book is devoted to understanding adiabatic perturbations 
with the initial conditions derived in Chapter 6. Another class of perturbations are 
isocurvature perturbations with initial conditions 6o = ^ = ^ = 0. Show that 
these initial conditions imply that 

eo(ry*) + ^(7y*)-2^(ry*). (8.80) 

Exercise 2. The equation for a damped harmonic oscillator is 

mx-\-bx + kx = 0. (8.81) 

Find the solutions to this equation if k/m > {h/2m)'^. What is the frequency of 
oscillations? How does this differ from the undamped (̂  = 0) solution? What is the 
other effect of nonzero h besides the change in frequency? 

Exercise 3. Determine R{ri^) when Vti^h? — 0.01,0.02. Plot the sound speed as a 
function of the scale factor for these two values of f^ /̂î . 

Exercise 4. Show that the sound horizon can be expressed in terms of the confor-
mal time as 

where /Ceq is given in Eq. (7.39). 

Exercise 5. Obtain the WKB solution to Eq. (8.18). Write 

00 = Ae'^ (8.83) 

with A and B real. Show that the homogeneous part of Eq. (8.18) breaks up into 
two equations, coming from the real and imaginary part: 

Real : ~{Bf + ^ + ^ ^ + fe^c^ = 0 (8.84) 

A R 
Imaginary :2B- + B+ -B = 0. (8.85) 

A 1+R ^ ^ 

Find B using the real part and the fact that B changes much more rapidly than A. 
Then, use the imaginary equation to determine A. Show that the homogeneous solu-
tions obtained in this way differ from the simple oscillatory solutions of Eq. (8.21) 
by a factor of (1 + i?)!/'*. 
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Exercise 6. Obtain a semianalytic solution for GQ + ^ and 0 i at recombination 
by carrying out the integrals in Eqs. (8.24) and (8.26). To do this you will need 
expressions for the gravitational potentials. Hu and Sugiyama (1995) provided the 
following convenient fits: 

^k,y) = ^k,y) {[1 - T{k)]exp[^OAl{ky/ke^y-^]^T{k)} 

^{k,y) = ^{k,y) {[l-T{k)]exp[^0m7{ky/k,^)'']+T{k)} 

where y = a/fleq, T{k) is the BBKS transfer function and the large-scale potentials 
are 

3 fhq\ 2/ + 1 A 
*̂ '̂̂ ) = 4lTJ ^^-(^^ 

m 2 / ) = - ^ ( ^ ) ^ ( A T ( y ) + 0.657V2/(l + 2/)). (8.86) 

Finally the two functions Â2 and A^ are 

3y -{-4: y -\-l 3 3y -\-4 9 

A T = 1.16-^-^^^ ^ / . - ^ . (8.87) 
2/ + 1J 

Here ^is is the large-scale solution of Eq. (7.32). 

Exercise 7. Our treatment of diffusion damping neglected the effect of polariza-
tion. Go through the same expansion in f~^ that we carried out in Section 8.4 
this time accounting for polarization. Show that this changes the factor of 8/9 in 
Eq. (8.40) to 16/15. This beautiful result was obtained by Zaldarriaga and Harari 
(1996) when the first author was an undergraduate! 

Exercise 8. Assume that all electrons associated with hydrogen stay ionized and 
set R = 0. Evaluate the damping scale, ko, defined in Eq. (8.40). Show that in this 
hmit, the damping scale is given by Eq. (8.42), where 

foiy) = symTy - f (1+yyf+1 
5/2 

(l + l/y)' -l/y'/' (8.88) 

Exercise 9. Show that 

/ 
dnYimip)Vt{p • k) = ^j-^. (8.89) 
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Exercise 10. There is a different way to go from the inhomogeneous temperature 
field at recombination, 9o(:r, ry*) or ©o(^, '^*), to the anisotropy pattern today, a/^, 
than that given in the text. 
(a) Assume that the photons we see today from direction p come from the surface 
of last scattering: G(xo,p,r/o) = (Oo + ^)(x = X^P^l*) where XQ is our position. 
Fourier transform the right-hand side and expand the left in terms of spherical 
harmonics to get 

Im 

e''=-P>'*(e + *)(fc,r?.). (8.90) 

Now expand the exponential using Eq. (C.16) and then expand the resulting Leg-
endre polynomial using Eq. (C.12). Equate the coefficients of Yim{p) to get an 
expression for aim-
(b) Square the aim you got in (a) and take the expectation value to get an expres-
sion for Ci. You should recapture the expression in Eq. (8.68) with 0/ given by the 
first term in Eq. (8.56). 

Exercise 11. A simple way to estimate the COBE normalization of SH is to fix Cio-
From Figure 8.12, estimate CIQ. Use this and the Sachs-Wolfe formula, Eq. (8.75), 
to estimate 6H for a flat, matter-dominated universe. Compare with the number 
given in Eq. (8.76). 

Exercise 12. Show that the cross-terms from the monopole and dipole vanish when 
summing over all modes. The monpole is proportional to ji{kr]o) while the dipole 
is proportional to j[{kr]Q). Compute the three possible integrals 

noo /*oo noo 

/ dxjiji ; / dxjij'i ; / dxj[j[. 
Jo Jo Jo 

(8.91) 

Show that the integrals of the squares {jf and (j/)^) ^^^ much larger than the 
integral of the cross-term j / j [ . Do the integrals for / = 10 up to / = 50. 

Exercise 13. Determine the shift in the locations of the peaks and troughs in 
the CMB anisotropy spectrum if the universe is flat with a cosmological constant 
as opposed to flat and matter dominated. Keep the sound horizon fixed in this 
calculation by fixing ftrnh^ — 0.15. The peak positions then depend only on the 
distance to the last scattering surface, r/o — r]^. Consider two flat models: (i) f̂ A = 0 
(so that fljri = 1) and (ii) QA = 0.7 (so that ftm = 0.3). What value of h is 
needed in the two cases to keep Qrnh^ flxed? Determine r]Q — r/* in each case (in 
the the cosmological constant case, you will have to do the integral numerically). 
Compare your result with the fitting formula: 770 oc 1 -fln(Q^^^^) and with the shift 
in Figure 8.19. 

Exercise 14. Compute the conformal time today in a flat model with dark energy 
fide = 0.7 today with w = —0.5. Compare the expected shift in the anisotropy 
spectrum with the cosmological constant model of the previous problem. 
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Exercise 15. Determine the effects of reionization using the Boltzmann equation. 
Neglect the gravitational potentials, the velocity, and 60 in the Boltzmann equation 
for photons. Start with a spectrum 0/(?7) and evolve till today. Show that the 
moments are indeed suppressed by e"'^. 

Exercise 16. Assume that recombination took place instantaneously. Show that 
the solution for the Ith moment due to tensor perturbations (Eq. (4.116)) is 

1 rm 

find the contribution to the C/'s from Qf{k). That is, show that the analogue 
Exercise 17. Using the decomposition for tensor modes given in Eq. (4.115), 

of Eq. (8.68) for tensors is 

( / -1 ) / (Z+ !)(/ + 2 ) 
O/ ,• — / (IK K 'l,i I 

Jo 

+ 2— -^7^-—-+ ^̂ '̂̂  
2 

,(8.93) 
( 2 / - l ) ( 2 / + l) ( 2 / - l ) ( 2 / + 3) (2/ + l)(2/ + 3) 

where i denotes the two different components + and x. 

Exercise 18. Determine the spectrum of anisotropics due to gravity waves pro-
duced during inflation. 
(a) Combine the results of the previous two problems, your solution to Exer-
cise 5.12, and the primordial amplitude of gravity waves in Eq. (6.100) to find 
the large-angle C/'s due to inflation-produced gravity waves. 
(b) Tensor anisotropics are often parametrized by 

r ^ ^ (8.94) 

where C j is the variance of the quadrupole due to tensors and C^ is the same due 
to scalars.^ We already derived an expression for the scalar C2 in Eq. (8.75). Find 
C2 and compute r to first order in the slow roll parameter e. 
(c) The results of part (b) and Eq. (6.104) imply a consistency relation - a robust 
prediction of inflation - between the two observables nr and r. What is the consis-
tency relation? 

^Note that this convention is not universal; r is sometimes defined to the (more precisely 
constrained) ratio at I ~ 10. 
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The power spectra we have explored in the previous two chapters — -P(^) of the 
density field and C/ of the anisotropics — are the most obvious first tests of any 
cosmological model. The most direct way of measuring P{k) is to do a redshift 
survey, wherein the angular positions and the redshifts (which are a measure of 
radial distance) of galaxies are recorded. There are, however, a number of problems 
with redshift surveys and their interpretation. The first is the simple fact that taking 
redshifts is time consuming: it is much easier to get the angular positions of galaxies 
than it is to also measure redshifts. In the same time that a 10,000 galaxy redshift 
survey, say, could be completed, a million angular positions of galaxies could be 
obtained. With the much greater statistics, angular surveys often compensate for 
the lack of radial information. Indeed, some claim that the best information we 
have on large-scale clustering comes from angular surveys. Clearly, then, one skill 
we must acquire is the ability to make predictions about the angular correlation 
function w{9). In Section 9.1 we will see that the angular correlation function is an 
integral over the 3D power spectrum. 

Redshift surveys suffer from another, more profound problem than the fact 
that they are time consuming. While is true that the redshift gives a reasonable 
estimate of radial distance (by radial distance I simply mean distance from us), it is 
not true that this estimate is completely accurate. Recall that a galaxy's velocity is 
determined solely by the Hubble expansion (and hence redshift is a perfect indicator 
of distance) only if the galaxy is stationary on the comoving grid. Most galaxies have 
nonnegligible peculiar velocities; that is, they are moving on this grid. A galaxy's 
total velocity, which is measurable, is 

^̂  = 'î pec + ^^H (9-1) 

where the Hubble velocity ^H = xda/dt = X^H. Recall that x is the comoving 
distance between us and a distant galaxy, so its physical distance from us is ax-
In the absence of peculiar velocities, x • v/H is a perfect distance indicator. In 
the real world, though, where peculiar velocities do not vanish, even an accurate 
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measurement of a galaxy's recession velocity does not translate into an unambiguous 
measurement of its radial distance away from us. 

The ambiguity introduced by peculiar velocities offers an opportunity. In linear 
theory, peculiar velocities are determined by the surrounding density field, so we 
can correct for the distortions induced by working with redshifts. Indeed, we can go 
even further and use these distortions to learn about the growth of perturbations, 
for the precise way in which velocities are related to the density field is determined 
by the rate at which perturbations grow. Since this rate is determined in cosmology 
by Ctrn^ studying the distribution of galaxies in redshift space is one of the more 
promising ways to measure Qrn-

Finally, another way of gleaning information about the underlying mass den-
sity is by studying clusters of galaxies. Although strictly speaking, this topic falls 
in the realm of nonlinear evolution of the density field, and therefore beyond the 
boundary of this book, the Press-Schechter method of approximating cluster abun-
dances is only a very small step away from linear theory and has been shown to 
be quite accurate in its predictions. Further, the study of clusters is advancing 
at an extraordinarily rapid rate, since clusters can now be probed with many dif-
ferent astronomical techniques. Section 9.5 introduces the basic predictions of the 
Press-Schechter theory and the implications for cold dark matter models. 

9.1 ANGULAR CORRELATIONS 

Figure 9.1 shows the angular positions of over a milhon galaxies from the Automated 
Plate Measuring (APM) Survey. In an angular survey such as this, what statistic 
can be computed that can be compared with theory? The simplest statistic is 
the two-point function: in real space it is w{0) the angular correlation function. 
In Fourier space, the relevant function is the Fourier transform of w, P2{1), the 
two-dimensional power spectrum. In this section we compute both of these very 
important functions, relating them to the three-dimensional power spectrum. 

First let me introduce some notation. Figure 9.2 shows the geometry: a given 
galaxy is at comoving distance x{^) (Eq. (2.42)) away from us. The z-axis is 
typically chosen so that it points to the center of the distribution of galaxies. In 
the plane perpendicular to this axis, a galaxy's position is determined by the two-
dimensional vector 0 = (^1,^2)- Therefore, the three-dimensional position vector x 
has components 

x{x{z),e) = x{z)i0i,d2,l)- (9.2) 

The assumption that all galaxies are located near the z-axis clearly breaks down if 
the survey measures structure on very large angular scales. As an example the APM 
survey in Figure 9.1 covers roughly 50 by 100 square degrees. From this data, one 
can measure the correlation function accurately out to about 10° or 0.17 radians, 
safely smaller than unity. 

We measure all galaxies along the line of sight, effectively integrating over x{^)-
Therefore an overdensity at angular position 0 is 
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Figure 9.1. The distribution of galaxies in the ARM survey. Blacked-out regions were not 
observed during the survey. 

S2{0) = p^dxW{x)5(x{x,e)) (9.3) 

where the subscript 2 denotes the fact that S on the left is the angular — or two-
dimensional— overdensity, while S on the right is the full three-dimensional over-
density. (And I will stick with this convention: for example P2 is the 2D power 
spectrum while P denotes the 3D spectrum.) The upper Hmit on the x integral 
corresponds to z —> 00, equal to Xoo = 2///o in a fiat, matter-dominated universe. 
In practice, the magnitude-limited surveys that have yielded the most cosmological 
information to date have probed z < 0.5. The selection function W{x) encodes 
this information: it is the probability of observing a galaxy a comoving distance 
X from us. Galaxies at large distances are too faint to be included in a survey, 
whereas there are relatively few galaxies at very low redshift simply because the 
volume is small. Since it is a probability, the selection function is normalized so 

th^t J^^-dxWix) = 1. 
The 2D vector conjugate to 6 will be /, so that the Fourier transform of 62(0) is 

2(0 = 1^2 -no 6>e-̂ ;-̂ (̂ 2(6>). 

The two-dimensional power spectrum is defined just as was the 3D: 

< 52(05* (?) >= i2nf5\r- r)P2(0; 

(9.4) 

(9.5) 

here 6'^{) is the 2D Dirac delta function, not to be confused with the overdensities 
62(0). Integrating, we can therefore write the 2D power spectrum as 

p^^^^ = j i ^ I'^'^'{^^(^^^^iP)) 
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Us, today 

Figure 9.2. A distant galaxy is located at position x with respect to us at the origin today. 
This position can also be expressed in terms of x ( ^ ) . the comoving distance out to the redshift 
of the galaxy. The xi — X2 plane is perpendicular to a suitably chosen xa-axis. In this plane, 
a galaxy's position is given by the two-dimensional vector x^, so x ~ x (2) (^ i , ^2 ,1) . 

X 1''°° dxWix) p ^ dx!W{x:){5 (f(X, ^1) <5 (x'(x', e')) ) . (9.6) 

The integral over /' gives {2'K)'^ times a Dirac delta function in 9' and the brackets 
give the 3D correlation function, 

4(f - x') = (^(£)<5(f)) 

d^k -i (27r)3 
P{k)e' k-{x — 2 (9.7) 

The average here (...) is over all realizations of the density field. At very small 
distance, we expect galaxies to be clustered strongly as a result of gravity, so ^ 
is positive. As the distance gets larger, correlations die off and ^ gets smaller and 
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eventually goes negative. The second line follows since the correlation function is 
the Fourier transform of the power spectrum (Exercise 1). 

Performing the integral over 0' in Eq. (9.6) then leads to 

(9.8) 
The argument of the exponential at the end here is i[kixO\ + k2X^2 + ^3(x — x')]^ so 
the integral over angles 6 gives Dirac delta functions setting l\ — x^i and I2 = X^2-
We can use these delta functions to do the fci and /c2 parts of the d^k integration, 
remembering to divide by the derivative of the argument, in this case putting a 
factor of x^ î ^ the denominator. We are thus left with 

g*A:3[x-x']^ 

(9.9) 
Until now, we have been doing math; to complete the calculation of the power 

spectrum we need to introduce some physics. I claim that the only 3D Fourier modes 
that contribute to the integral are those with k^ very small, much smaller than l/x-
To see why, we first need to estimate /, the variable conjugate to 6. Roughly, /~^ is 
of order the angular scales probed by the survey^. Since we are working in the small 
angle approximation, l/x ~ l/(x^) ^ Vx- Now let's consider Figure 9.3. There 

Figure 9.3. Two plane-wave perturbations and their contributions to the 2D power spectrum. 
Left panel shows a perturbation with longitudinal wavenumber kz ^ x~^ (the z direction is 
vertical). Right panel shows a mode with k^ ~ X~^• Angular correlations due to the large k^ 
mode (left panel) are negligible since there are many cancellations along the line of sight. 

^In this sense, / is very similar to the degree of the Legendre polynomials introduced in Chapter 
8 to study anisotropics. In the same sense, P2(0 is very similar to C/; indeed in Exercise 5 you 
will show that they are identical on small scales. 
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we see that modes with longitudinal wavenumber k^ much greater than x~^ ^^ 
not give rise to angular correlations because of cancellations along the line of sight. 
Only modes with k^ smaller than x~^ l^^d to angular correlations. Therefore, the 
relevant transverse wavenumbers l/x are much larger than the relevant longitudinal 
wavenumbers, and we can safely set the argument of the 3D power spectrum to l/x 
(see Exercise 2 for a more systematic justification). With this approximation, the 
ks integral gives a Dirac delta function in x ~ x' so 

2̂(0= r^ dx^^Pil/x)- (9-10) 
Jo X̂  

This is an expression for the 2D power spectrum as an integral over the line of 
sight. We can change dummy variables from x -^ ^ = l/x to rewrite the integral as 

P^{1) = ^ dk P{k)W^{l/k). (9.11) 
I Jo 

The angular correlation function is the Fourier transform of the 2D power spec-
trum, so 

wie) = l-^e''-''P2{l). (9.12) 

Since P2 depends only on the magnitude of /, the angular part of the integration 
over / is JQ ̂  d(j) e^^^^^^^, which is proportional to Jo{l6), the Bessel function of order 
zero (Eq. (C.21)). Therefore, 

/•OO II 

w{e) = J —iP2{i)jo{W) 

/•OO 

= / dkk P{k)F{k,e), (9.13) 
Jo 

where the second line follows from changing the order of integration. Here the kernel 
for the angular correlation function is 

F(k,9) = ̂ J l-Jo{W)W^{l/k). (9.14) 

The kernel is plotted in Figure 9.4 for two surveys. Note that it is a function of 
kO (see Exercise 3). The kernel is constant at small kO and then begins damped 
oscillations. The contribution from small k though is suppressed because the integral 
in Eq. (9.13) is over the kernel weighted by kP{k), and the latter goes to zero as 
A: —> 0. Therefore, the modes that contribute most to w{6) are typically those with 
wavenumbers of order the first turnover in the kernel, kO ̂  0.2 h Mpc~^ degrees 
for APM and a factor of 3 smaller for the deeper Sloan Digital Sky Survey (SDSS). 
This means that the angular correlation function at 5° in APM is most sensitive 
to power at fc = 0.04/i Mpc"^ The wavenumbers contributing to w{9) in a deeper 
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Figure 9.4. The kernel relating the angular correlation function to the 3D power spectrum in 
two surveys. Kernel is negative when line is dashed, positive otherwise. APM Survey probes 
galaxies brighter than apparent magnitude m = 20, while the Sloan Digital Sky Survey (SDSS) 
will go much deeper, potentially sensitive to galaxies brighter than m = 23. 

angular survey are smaller. This makes sense: the same angle probes larger physical 
scales in a deeper survey. 

Figure 9.5 shows the measurements of the angular correlation function from the 
APM survey. The most important conclusion from the data is that standard Cold 
Dark Matter — with Q^ = 1 and /i = 0.5 — is a bad fit. To quote from the abstract 
of the Maddox et ai (1990) paper which measured the correlation function, "more 
large-scale clustering than predicted by popular versions of the Cold Dark Matter 
cosmogony is implied." Although sCDM has died many deaths since its inception 
in the early 1980s, the death from APM was perhaps its most celebrated. Despite 
long, hard work by many people trying to find systematic problems with this and 
other surveys, nothing significant has changed over the past decade to alter the 
conclusion that the standard Cold Dark Matter model of structure formation fails 
to predict accurately the observed pattern of large-scale clustering. Having said 
that, I want to emphasize that the situation is not quite as severe as you might 
imagine from a cursory examination of Figure 9.5. Consider the prediction from a 
ACDM model, also shown in Figure 9.5. Although the agreement is much better 
than with sCDM, there are clear discrepancies on both large and small scales. The 
small-scale discrepancies are completely illusory, though, because I have used the 
linear power spectrum to compute w{0). Nonlinearites become important on scales 
of order k ~ 0.2h Mpc~^ as we saw in Chapter 7 (Exercise 10). These scales 
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Figure 9.5. Angular correlation function in the APM survey and two theoretical models. Stan-
dard CDM (solid curve) is a bad fit to the data, while a model with a cosmological constant 
(here QA = 0.7) fits well. The apparent disagreements between the data and ACDM on small 
and large scales are illusory; see text. 

contribute to w{9) in APM when 0 is of order 1°. So to compare to the data fairly, 
we really need to account for nonlinearities; I have not done this, so we cannot take 
the small-angle discrepancy seriously. On large angles, people have begun to realize 
that the data have been over interpreted. The basic problem is that the points on 
large angles are highly correlated. So the slight discrepancy between the data and 
ACDM on large angles looks worse than it really is. 

The angular correlation function can be inverted to obtain the 3D power spec-
trum: the results from the APM Survey are shown in the top panel of Figure 9.6. 
We will discuss inversion techniques in Chapter 11, but you should be aware that 
the points in Figure 9.6 are the result of a long process (i.e., many papers), in the 
midst of which error bars were often vastly underestimated. Using only the results 
on large scales (where nonlinear effects are irrelevant and the relation between mass 
overdensity and galaxy overdensity is expected to be simple), Efstathiou and Moody 
(2001) placed constraints on CDM models, shown in the bottom panel of Figure 
9.6. We found in Chapter 7 that the CDM transfer function depends only on k/ke^' 
Since k^q scales as Q^h^ and since surveys measure the wavenumber k in units of 
/ iMpc~\ the combination Vlmh determines the shape of the power spectrum. For 
this reason, fits to large-scale structure data are often given in terms of the shape 
parameter F = ^mh (sometimes modified to account for baryons: see Exercise 8). 
Standard CDM with h = 0.5 and Q.rn — 1 corresponds to F — 0.5; if the index of 
the primordial spectrum is n = 1, then the bottom right panel of Figure 9.6 shows 
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Figure 9.6. Results from the ARM Su rvey (Efstathiou and Moody 2001). To'p "panel. The 3D 
power spectrum inferred from the angular correlation function. The curve is a CDM model 
with r ( ~ ^rah) = 0.2, normalized to fit the data. Bottom Panel. Constraints on CDM models 
from the power spectrum. Three parameters — the shape parameter F, the amplitude ag, and 
the index of the primordial power spectrum n — were varied. Contours delineate one-, two-, 
and three-sigma regions. Left panel shows constraints after integrating over n; right after 
integrating over the amplitude. Standard CDM has n — 1; F = 0.5; and (COBE-normalized) 

erg = 1.15. 
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that sCDM is ruled out at the 2-sigma level. ACDM has T ~ 0.2 and is indeed a 
better fit to the data if n is close to 1. 

9.2 PECULIAR VELOCITIES 

In linear theory, velocities are related in a simple way to nearby over densities. We 
first derive this relation in this section and then consider some of its ramifications. 
In particular, we will see that by measuring both the pecuHar velocity field and the 
density field, one can infer the present value of the matter density, Qrn-

In linear theory, we have already derived the equation which determines the 
velocity field. On scales well within the horizon, the continuity equation (4.103) 
reduces to 

6 + ikv = 0. (9.15) 

At late times, though, we have solved for the evolution of 5: we know that it scales 
as the growth factor Di, so 

"(^''^) = ^ ^ i^' kDi drj • ^ ' 

A function commonly employed to relate the velocity to the density is the dimen-
sionless linear growth rate. 

Since d/drj = o?Hd/da, the velocity is related to the density via 

,^k,a)^'-WlA_ (9.18) 
k 

The linear growth rate can be computed from Eq. (7.77). Most probes of the 
velocity field to date have been limited to relatively nearby objects, 2 < 0.1, so it 
is a reasonable approximation to evaluate / today and neglect its evolution. Figure 
9.7 shows the linear growth rate today as a function of the matter density. For small 
Vtrn there is less growth: mass collapsing into overdense regions has lower velocity 
than if there was a critical density of matter. This makes sense since an overdensity 
in a lower density universe has less mass and therefore exerts a weaker gravitational 
pull on infalling matter. Figure 9.7 shows that, for all practical purposes, the growth 
rate depends only on the matter density and not, say, on the cosmological constant. 
Also, the approximation 

/ = fi^' (9.19) 

is seen to work extremely well (see Exercise 7 for a slightly better fit to a flat 
universe). 

There are two important points about the relation between the density and the 
velocity in Eq. (9.18) that should be emphasized. First, we need to remember that 
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Figure 9.7. The linear growth rate as a function of matter density. There are three curves here, 
nearly indistinguishable. One (solid) is for an open universe with HA = 0; another (dot-dashed) 
for a flat universe with QA = 1 - Qm\ and the last (dashed) is Q^^. 

the velocity is of course a vector and v in Eq. (9.18) is the Fourier component of 
the velocity parallel to k. Explicitly, at low redshift we have 

v{k) = ifHoS{k) 
k^' 

(9.20) 

The second point about the relation between the velocity and the density is that 
it holds only in linear theory. This has turned out to be a big problem for those 
who have tried to extract information from velocity studies. Velocities are easiest 
to obtain on small scales, but easiest to compare with theory on large scales. 

9,3 DIRECT MEASUREMENTS OF PECULIAR VELOCITIES 

A number of surveys have directly measured peculiar velocities. Measuring radial 
velocities is relatively easy: one just looks for shifted features in the spectrum of 
the galaxy. The hard part is breaking the radial velocity into the part due to the 
Hubble expansion and the remainder, the peculiar velocity. Subtracting off the 
Hubble expansion requires independent (i.e., other than the redshift) knowledge of 
the galaxy's distance from us. How accurate must a distance indicator be to be 
useful? Very roughly, typical pecuhar velocities are of order 500 km sec~\ while 
the Hubble velocity is HQX = 100 km sec~^/i (x/Mpc) for a galaxy a distance x 
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away. So a galaxy 50 Mpc away has a Hubble velocity roughly 10 times as large as 
its peculiar velocity. To be useful, therefore, a distance indicator for such galaxies 
much have an accuracy of order 10%. Indeed this is roughly the best one can hope 
for, so 50 Mpc is roughly the farthest one can hope to go in a velocity survey. 

There are a number of ways of extracting cosmologically useful information from 
a velocity survey, but I will focus on just one of these: the two point function. With 
enough velocities, a survey can hope to measure the correlation function 

Cv{xi,X2) = {v{xi) -Xi V{X2) 'X2), (9.21) 

where the radial components v • x appear because these are all that can be mea-
sured using redshifts. Let us compute this correlation function using Hnear theory. 
We will see that it is an integral over the power spectrum, so—just like the angular 
correlation function of galaxies we considered in Section 9.1—the radial velocity 
correlation function is a probe of the power spectrum. The observational obsta-
cles involved in obtaining accurate peculiar velocities are daunting. However, the 
promise of measuring the matter power spectrum (the velocities are due to the mat-
ter, which may or may not be aligned with the galaxies) as opposed to the galaxy 
power spectrum sampled by w{9) is so alluring that it is hkely that peculiar velocity 
surveys will continue to play an important role in cosmology. 

To evaluate the velocity correlation function, we can Fourier transform the veloc-
ities appearing in Eq. (9.21) so that 

Using linear theory for v (9.20) and the fact that {S{k)5*{k')) = {27rf 6^{k-k')P{k) 
leads to 

U^uS^) = fH'o [ ^ P ( f c ) /rfO.e'^" ( - - - ' ^ ^ M : ^ . (9.23) 

One way to do the angular integral here is to write the occurrences of k in the 
integrand as 

%^ikx ^]_^^ks (9 24) 
i ox 

where 
x = f i - f 2 - (9.25) 

Then taking the derivatives outside leads to an angular integral over the exponen-
tial, which has no azimuthal dependence. The integral of e^^^^ over /i is is A'KJo{kx) 
(Eq. (C.15)). So we have 

iv{xi.X2) = -fHix,^d2,j J ^^^2^^(^)^^;a^-^o(fcx). (9-26) 

The first partial derivative here is 
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djo{kx) d{kx] 
dxi ar, 

Joi^^') k^jiikx) 
X 

(9.27) 

where the prime here is derivative with respect to the argument kx. The second 
derivative then gives 

I - I'^i^'^^'^i {S^J-X^XJ^ 
kx 

+ x,XjjQ{kx) (9.28) 

Then, the velocity correlation function is 

dk U^i.x^) = -fH^x,,X2,j p ^P{k) [{(5,, - a:^j:^yAM^^^i^f^^k:, 

Xl^^X2J\S^J - f z X j j ^ ^ , ! + Xi^^X2jX^Xj£,„^\ (9.29) 

The definitions here reflect the fact that the first term is sensitive to the compo-
nent of velocity perpendicular to the line connecting two galaxies, while the second 
probes the velocity parallel to this line. Finally let's define the angles 

cost/i = xi • X coscy2 = X2 ' X. (9.30) 

With the aid of Figure 9.8 we see that x\ • X2 is equal to cos(^i — ^2), so performing 
the sums over z, j leads to 

£,v{xi,X2) = sin^1 sin^2^1;,! + cos^i cos^2Cv,||- (9.31) 

Both components of ^y are integrals over the power spectrum. We can write 

dk 
\ = I -^ 27T^k 

P{k) 
k^jo{kx) 

-pHSf,{kx)/x 
-pHlkj'^{kx) 

(9.32) 

The weighted kernels are shown in Figure 9.9 and compared with the correlation 
function of the density. The key feature of Figure 9.9 is that, at fixed distance 
X, the density correlation function probes power on smaller scales than do the 
velocity correlation functions. Put another way, velocity surveys may be limited in 
how far out they go, but they pack an extra punch since they are sensitive to long 
wavelength modes. This is a direct result of the fact that v oc 8/k. The extra factor 
of \/k gives additional weight to large scales. 

Before going further and looking at some results from a velocity survey, I must 
digress to make note of an important feature in Figure 9.9. The density correlation 
function, as oppossed to the velocity correlation functions, gets its contribution at 
a fixed distance from many Fourier modes. The figure shows the contributions to 
^(50/i~^ Mpc). Naively, we would expect the main contribution to ^(50/i~^Mpc) 
to come from Fourier modes with /c ~ x~^ = 0.02/iMpc~ . Since overdensities 
are small, i.e., still in the hnear regime, on these scales, the naive expectation is 
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Figure 9.8. The vectors and angles of the the velocity correlation function, x is the difference 
vector; since the angle conriplementary to 9i \S7T — 6I, and since the three angles in the triangle 
must sum to TT, the angle between the two galaxies is 9i —62. 

that ^(50/i~^ Mpc) probes the linear power spectrum. Figure 9.9 shows that this 
expectation is incorrect. Modes with k as small as 0.02/iMpc~^ do contribute to 
the correlation function, but contributions extend out to A: ~ 0.3/i Mpc" ̂  and 
beyond. This means that even on scales you would think would be safely linear, 
the correlation function depends on the small-scale power. Ultimately we want to 
compare theory with observations, and we are most confident doing so for modes 
that are still linear. The correlation function mixes up hnear and nonlinear modes, 
so makes it difficult to compare theory with observations. For this reason, the power 
spectrum has gained preeminence as the statistic of choice for large-scale structure. 

Returning to the velocity correlations, let's consider Figure 9.10. It shows one 
attempt (Freudling et a/. 1999) to extract cosmological information from a velocity 
survey, using 1300 velocities in the all-sky SFI catalogue (Haynes et a/. 1999), which 
goes out to 70 h"^ Mpc. The power spectrum was parameterized by an amplitude 
A and the F parameter in the BBKS transfer function. For the analysis shown 
in Figure 9.10, the primordial spectral index was set to 1. The standard COBE-
normalized CDM model, with critical matter density and /i = 0.5, has an amplitude 
of A = 0.29^0 (Eq. (7.9)) and shape parameter F = 0.5, so the SFI survey rules 
out this model at many sigma. 
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Figure 9.9. Contribution to various correlation functions from wavenumber k. Note that the 
velocity correlation functions get nnost of their contribution from smaller k than does the 
ordinary density correlation function. 

9.4 REDSHIFT SPACE DISTORTIONS 

Redshift surveys supplement the angular information about galaxies with an esti-
mator for the radial position, the redshift. The simplest guess about the radial 
position of a galaxy with redshift z is that it Ues a distance 

Xs{z) 
z (9.33) 

away from us, where the subscript 5 denotes redshift space. Redshift space then 
corresponds to assigning Cartesian coordinates to a galaxy equal to 

-—- (sin 6 cos (̂ , sin 0 sin (/>, cos 0). 
^ 0 

(9.34) 

This assignment neglects several unpleasant realities. First, the comoving distance 
out to a galaxy at redshift z is equal to Z/HQ only at relatively low redshifts. A 
glance back at Figure 2.3 should convince you that this approximation is off by as 
much as 50% at 2: = 1. Fortunately, this first problem has not yet been much of a 
problem since most redshift surveys to date have probed z < 0.1. 

A second, more pernicious, problem with redshift space is that the estimate for 
the distance in Eq. (9.33) neglects peculiar velocities. Figure 9.11 illustrates the 
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Figure 9.10. Likelihood contours on the amplitude A of the power spectrum and the shape 
parameter F = Qmh from the SFI peculiar velocity survey. The amplitude is given in units 
of Ao = 2 X 10^{h~^ Mpc)^, and the contours indicate shifts in the likelihood function by 
successive factors of 1/e. The allowed region — delineated by banana-shaped contour in the 
center — is consistent with ACDM, but strongly disfavors standard CDM, which has F = 0.5 
and A = 0.29v4o. From Freudling et ai (1999). 

distortions that appear in redshift space. A slightly overdense region which is just 
beginning to collapse appears squashed in redshift space: the galaxies closest to 
us are moving toward the center of the overdense region and hence away from us, 
so they appear farther from us (and closer to the center of the overdense region) 
than they actually are. Similarly, galaxies on the "other side" of the perturbation 
are moving toward us, so they appear closer to us than they actually are. The 
overall effect is to induce an apparent quadrupole moment in an otherwise circular 
overdensity. 

As a region becomes more overdense, the nature of the redshift space distortion 
changes. The bottom part of Figure 9.11 shows that a more collapsed object gets 
distorted in a much different way. It is elongated along the line of sight. More quan-
titatively, its quadrupole moment has the opposite sign as does a linear overdensity. 
It is clear then that accounting for redshift space distortions will be a tricky busi-
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Linear: o 
Nonlinear 
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Observer 
Figure 9.11. Redshift space distortions. In each case, a contour of constant density (circular 
in real space) is distorted in redshift space so that it looks asymmetric. Arrows denote direction 
and magnitude of velocity. In the case of nonlinear collapse, the velocities are so large that a 
point on "our side" (the bottom) of the center is mapped onto a point on the opposite side 
(compare the position of the solid dot on the bottom left and right). 

ness, requiring careful treatment not only of linear over densities, but also of the 
much more complicated effects of nonlinearities. We will content ourselves with a 
quantitative treatment of Hnear distortions, since this applies on large scales and is 
the starting point for all further work. 

Suppose we measure the power spectrum in redshift space. How is this distorted 
power spectrum related to the underlying true spectrum in real space? Kaiser (1987) 
first solved this problem, working within the context of linear theory. The starting 
point is the realization that the number of galaxies in a particular region is the 
same, whether we use redshift-space or real-space coordinates. Therefore, 

ns{xs)d^Xs = n{x)d^x (9.35) 

where n is the density of galaxies at x in real space, and ris is the density 
in redshift space. The infinitesimal volume around a point in redshift space is 
d^Xs = dxsX^ sin 6d6d(j), while the volume around a point in real space is d^x = 
dxx'^ sin OdOdcj). The angular volume elements are identical, so 

ns{xs)^n{x)J (9.36) 
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where the Jacobian J is given by 

J 
d^x 

dh 

dx x^ 
dx„ X 2' 

(9.37) 

To compute the Jacobian, we use the fact that the observed redshift is the sum 
of two terms: 

z=:Hox-\-V'X. (9.38) 

The first term is the standard Hubble law, which says that redshift is proportional 
to distance; the second is the velocity along the line of sight. Recalling that redshift 
space corresponds to equating a galaxy's redshift with its distance from us, we see 
that, after dividing by HQ, this equation becomes 

Xg — X ~]~ 
V ' X 

The Jacobian can be now be read off as 

J= 1 + 
d \v • x^ 

dx Ho 

- 1 

1-f-
HQX 

(9.39) 

(9.40) 

Kaiser realized that the correction term due to the derivative of the velocity is 
much more important than the v • X/HQX term. The argument goes as follows. For 
a plane wave perturbation, the term with the derivative of the velocity is of order 
v'/HQ ~ kv/Ho, while the other correction is of order V/HQX. That is, the first 
correction term is larger than the second by a factor of order kx. Why do I say it's 
larger? That is, why is kx larger than unity? Kaiser's argument is that x is of order 
the size of the survey, while k is of order the Fourier modes we can hope to measure 
in the survey. Perturbations on the largest scale probed by the survey k ^ x~^ 
are very poorly determined, since there are only a handful of Fourier modes with 
wavelength of order the survey size. Modes with smaller wavelength are much easier 
to measure since there are many such modes, and we effectively average over all of 
them to get an estimate of the power spectrum. Therefore, we are really interested 
only in modes with kx ^ 1. Expanding the remaining denominator about v = 0, 
we see that 

J : : . 1 -
d V • X 

(9.41) 
dxl Ho i ^ 

The number densities in real and redshift space are n = n(l -f 5) and rig = 
n(l -f ^5), respectively, with n the average number density. In light of Eq. (9.36), 
the overdensity in redshift space is 

1 4- 5s - [1 H'-̂  V ' X 

Ho 
(9.42) 

Expanding to first order, we see that the overdensity in redshift space is actually a 
sum of the overdensity in real space and a correction due to peculiar velocity, 
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Ss{x) *«-i v{x) 

Ho 
(9.43) 

Now I want to introduce the distant observer approximation. The idea is that, in 
most cases of interest, the direction vector x is fixed, varying httle from galaxy 
to galaxy. To see this, go back to Figure 9.2: x is mostly radial, with only small 
components in the transverse direction (proportional to the 6i and ^2)- As long as 
the galaxies are relatively close to each other in this plane, we can approximate 
X ' V -^ z • V, where 2 is a radial vector pointing to the center of the galaxies of 
interest. 

In the distant observer approximation, we can compute the Fourier transform 
of the redshift space overdensity (here denoting the Fourier-transformed density by 
S to avoid confusion), 

Ss{k) / < , 3 X 

6{k) 

' « - ! ; 
v{x) 

Ho 

(9.44) 

the first equality following from our Fourier convention and Eq. (9.43) and the 
second from Eq. (9.20) for hnear velocities. The derivative with respect to the 
length X acts on the exponential, bringing down a factor oi ik' - x^ which we again 
set to ik' ' 2, so 

5,ik)=.5ik) + J ^ 6{k')[f[k'.zy]Jd ^^^^i{k'-k)x (9.45) 

The x integral gives a Dirac delta function, equating k' with k. Therefore, in the 
distant observer approximation, 

5s(k) = [i+f^il]m. (9.46) 

Here //k is defined to be i • fc, the cosine of the angle between the fine of sight 
and the wavevector k. Equation (9.46) quantifies what we should have anticipated 
about (linear) redshift space distortions. First of all, since / / i ^ > 0, the apparent 
overdensity in redshift space is larger than in real space. This is clear from Figure 
9.12. The central region of the galaxies is clearly more over dense in redshift space 
than in real space, the enhancement due to the illusion that infalling galaxies are 
located close to the center. The second feature of Eq. (9.46) worth noting is that the 
enhancement is for waves with wavevector parallel to the line of sight. A plane wave 
perturbation with k perpendicular to the fine of sight — one in which the density 
along the line of sight is constant — experiences no redshift space distortion. 

The power spectrum in redshift space depends not only on the magnitude of k 
but also on its direction, which we are parameterizing with /i. It follows immediately 
from Eq. (9.46) that 
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1»^» - . « . » ^ •r̂  

Figure 9.12. A hundred galaxies in real space squashed in redshift space due to linear velocities. 
The apparent overdensity in redshift space is much larger near the center than it is in real space. 
We, the observers, are sitting at the bottom of the page. 

Psik) = P{k)[l+fifil]\ (9.47) 

Here I have introduced the parameter /3, which you might think is simply equal to 
/ , the linear growth rate. There is an additional factor in /?, though, due to the fact 
that the mass overdensity S is not necessarily equal to the overdensity in galaxies, 
Sg. The velocity field samples the mass overdensity. So if we define the bias 

b = ^ (9.48) 
0 

then V (X S (X Sg/b. Therefore, the correction due to redshift space distortions in 
Eq. (9.47) is proportional to 

(5=L^l^, (9.49) 
6 b 

The redshift space distortion in the power spectrum, encoded in Eq. (9.47), is 
both good news and bad news. The good news is that by measuring the distortion 
in the redshift space power spectrum, we can hope to measure /?, a combination of 
the density and bias. A quantitative way to do this is to measure the ratio of the 
quadrupole to the monopole of the power spectrum: 

P?\k) _^SV-^V2{^i^.)Ps{k) 
(9.50) 

Recall that Vi is the Legendre polynomial of order /, while Pg is the redshift-space 
power spectrum. Since (Exercise 11) 

(1+/3KO' = l + l^n"' :Po(Mk) + 
\ ^ - > ' 

p2(Mk) +^/? 'p4(Mk), (9.51) 
6b 

the orthogonality of the Legendre polynomials (Eq. (C.2)) impHes that the ratio of 
the quadrupole to the monopole in linear theory is 

pP{k) _ ip + ip^ 
5(0)/ i + i/? + g/?'" 

(9.52) 

Figure 9.13 shows Hamilton's efforts to measure the quadrupole-to-monopole ratio 
in two different redshift surveys. In both cases, nonlinearities are very important 
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Figure 9.13. The quadrupole-to-monopole ratio for two redshift surveys (Hamilton, 1998). 
Left panel shows data from two redshift surveys which selected galaxies from the Infrared 
Astronomical Satellite (IRAS): QDOT (Lawrence et al., 1999) picked one out of six galaxies 
brighter than 0.6 Jansky and the 1.2Jy survey (Strauss et al, 1992) picked all galaxies above 
that brightness limit. Stromlo-APM survey (Loveday et al, 1996) in right panel contains 
redshifts for 1 in 20 galaxies seen in APM (Figure 9.1). 

and must be handled carefully. In the infrared-selected surveys depicted at left in 
the figure, Hamilton modeled the nonlinearities with a parameter measuring the 
small-scale velocity dispersion, a. Only on scales of order /c ~ 0.1 /i Mpc~^ does the 
ratio begin to asymptote to ~ 0.75, implying a value of /3 ~ 0.7. The right panel 
shows a survey of optically selected galaxies. For these, the ratio does not seem 
to asymptote at all (lower curve) unless nonlinear structures are removed by hand 
(upper curve). In that case, Hamilton finds a quadrupole-to-monopole ratio closer 
to 0.4, implying j3 = 0.3. Figure 9.14 gives a broader view of the spread in measures 
of (3 from redshift and pecuUar velocity surveys. 

That was the good news. The bad news is that, even if we were to give up 
hope of measuring /3 from redshift surveys, we still need to account for redshift 
space distortions if we want to measure the power spectrum. Blindly measuring the 
power spectrum by averaging over all directions /ik is actually a measure of 

Pi'\k) 'A^^>' P(k), (9.53) 

the equality holding only in linear theory. That is, P] overestimates the power 
spectrum by as much as a factor of 2. On even moderate scales, as suggested by 
Figure 9.13, nonhnear effects must be taken into account. The Peacock and Dodds 
compilation in Figure 7.11 uses a model of the small-scale velocities to do this. 
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Figure 9.14. Compilation of the likelihood of (3 from redshift and peculiar velocity surveys 
(Strauss and Willick, 1995). 

9.5 GALAXY CLUSTERS 

Until now, we have focused solely on the two-point function: the angular correla-
tion function, the velocity covariance, and the power spectrum. You might have 
wondered why little has been said about one-point functions, the number density 
of galaxies for example. To answer this question, first consider an extreme example. 
How many people are there in the universe? This clearly is an impossible question 
to answer with the tools we have developed. Putting aside the thorny question of 
the definition of a "person," we still would have to develop theories of star formation 
out of the gas in galaxies, then planet formation around stars, then the evolution 
of life via various biological processes. A prediction of the "person density" in the 
universe is beyond the scope of . . . this book, to say the least. 

In a similar, but less extreme, way, a prediction of the galaxy density of the uni-
verse from what we have learned about the distribution of matter in the universe 
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involves complicated issues we do not have the tools to address. What fraction of 
the matter has collapsed into nonlinear structures? How do these nonlinear struc-
tures evolve? Do galactic-size nonlinear structures merge? If so, how often? Upon 
collapse, how do stars form? How are stars distributed? In spiral patterns? Ellipti-
cal? One of the exciting developments of the 1990s was the evolution of a number 
of techniques to answer these questions. In addition to the brute-force approach 
of numerical simulations, several groups (e.g., Kauffman et a/., 1999; Somerville 
and Primack, 1999; Colberg et a/., 2000; Benson et a/., 2001; Cooray and Sheth, 
2002) developed semianalytic techniques which have been remarkably successful at 
predicting properties and abundances of different galaxy types. Although we will 
not study these techniques directly here, the one technique we will encounter — the 
Press-Schechter formalism — forms the basis for much of this work. 

Perhaps the fundamental difficulty encountered by one attempting to make pre-
dictions about the number density of galaxies is that the galactic scale has already 
gone nonhnear. Recall from Exercise 7.9 that scales smaller than ~ lO/i Mpc~^ 
have gone non-hnear. What scale in the unperturbed universe encloses the mass of 
a typical galaxy, M = lO^^M©? The density in a spherical region of radius R is 

M 
(9.54) 

Since p^ = f̂ mPcr, we can invert this to find 

/ Mh \ ^/^ 
R = 0.951 h-' Mpc ^ ^ . , ^ , , . (9.55) 

So a galaxy comes from matter within a radius of about 1 Mpc, corresponding to 
fluctuations on scales of order fc ~ 1 / iMpc~\ well into the nonlinear regime. 

This answers a question ("Why not try to predict the number density of galax-
ies?") but begs another: Are there objects, corresponding to scales closer to the 
linear regime, for which one might be able to make reUable predictions about abun-
dances? If we invert Eq. (9.55) to get the mass enclosed within a sphere of radius 

M = 1 . 1 6 x l 0 - l l . / . - M e ( ^ ^ - ^ ^ ) , (9.56) 

then we see that clusters of galaxies — with masses up co 10^^MQ — arise from 
perturbations on just the right scales. 

How, then, to predict the abundance of galaxy clusters? The basic insight 
comes from a paper by Press and Schechter (1974), and the resulting framework 
is called Press-Schechter theory. To understand their argument, consider the one-
dimensional density field in Figure 9.15. The average inhomogeneity is zero, of 
course. There are regions with relatively large excursions in both the positive and 
negative direction. Underdensities cannot get smaller than —1 (when the density 
is zero), but there are some regions in the figure with densities more than three 
times the average density. It is these rare regions of large overdensity that we are 
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interested in: they collapse, accumulate so much excess matter that local grav-
ity becomes more important than the Hubble flow. Particles in this region stop 
expanding away from each other and are trapped in the local gravitational field. 

'O 

0 

Position 
Figure 9.15. Inhomogeneities as a function of I D position. Dark curve is the same field 
smoothed on larger scales. Several small-scale fluctuations have collapsed, while the large scale 
density field does not have any overdensities greater than Sc, the critical value for collapse. 

The Press-Schechter theory predicts the fraction of the volume that has col-
lapsed, 

2 POO 

/eoll(M(i?),z) 
/ 

dS e (9.57) 
/27Ta{R,z) 

Here R is the radius over which the density field has been smoothed. This radius 
is used to compute a{R,z), the rms of the smoothed density field (Exercise 7.9). 
As you can see from Figure 9.15, the smoothing scale matters. Typically, inhomo-
geneities on large scales are smaller in magnitude than those on small scales, so 
small scales collapse first. As time evolves, overdensities grow (proportional to the 
growth function), so eventually some large-scale inhomogeneities will also collapse. 
The right-hand side of Eq. (9.57) counts all parts of the Gaussian distribution for 
which the overdensity is greater than some critical density 6^ There are several 
pieces of magic in this formula. First, it assumes that the distribution of inhomo-
geneities is Gaussian. This is impossible since 6, by definition, never gets smaller 
than —1. And indeed, it is possible to show that gravity skews an initially Gaussian 
distribution, producing more underdense regions and a nonnegligible tail of highly 
overdense regions. Second, the normalization is a bit of a cheat: one would naively 
not include the factor of 2. Finally, the rms a in the formula is the linear rms, specif-
ically ignoring nonlinear effects. On small scales, there is a huge difference between 
a calculated with the linear power spectrum and that with the true nonlinear spec-
trum. Press-Schechter tells us that the collapsed fraction can be obtained using the 
linear a. These peculiarities of the Press-Schechter formalism do not detract from 
its effectiveness. Numerical simulations (e.g.. White, Efstathiou and Frenk, 1993) 
have shown that it works extremely well. Further, a number of groups (Peacock and 
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Heavens, 1990; Bond et a/., 1991) have justified theoretically some of the aspects 
of the formula that initially appeared ad-hoc. 

To get the collapsed fraction into a form more comparable with observations, 
first differentiate fcow with respect to M and multiply by a small interval dM. This 
gives the fraction of the volume collapsed into objects with mass between M and 
M + dM. Multiply this by the average number density of such objects Pm/M to get 
the the number density of collapsed objects with mass between M and M -h dM, 

^ ^ M dM 
(9.58) 

The minus sign appears here since /coii is a decreasing function of the mass M. 
Carry out the derivative using the fact that dM/dR = 3M/R. Then, 

dn{M, z) 
dM TT 3 M V 

^_c_-6l/2a' Rda_ 
"alR 

(9.59) 

The term in brackets here, the logarithmic derivative, is close to 1 for most models 
of interest. The dominant factor in Eq. (9.59), at least for large masses, is the 
exponential. If cr on a given scale is small, then the number density of collapsed 
objects on that scale is exponentially suppressed. 

Until now, I have sidestepped the question of the numerical value of 5c, the criti-
cal overdensity above which objects collapse. There are two approaches to obtaining 
5c] fortunately, both appear to agree. The first is to rely on a simple model of col-
lapse, a model in which the overdensity is perfectly spherical. One can show that 
collapse occurs in such a model when 8 = 1.686 (for pm = per)- The other way is 
simply to treat (5c as a free parameter and calibrate it with numerical simulations 
(e.g., Eke, Cole and Frenk, 1996). The 5c obtained this way is close enough to the 
spherical value that typically one simply adopts 5c = 1.686. 

Measuring the cluster abundance, and therefore testing theories with Eq. (9.59), 
is a subtle business. One class of difficulties is identifying a cluster. Sophisticated 
algorthims have been developed to find clusters in a galaxy survey. The second set 
of difficulties revolves around determining the mass of the cluster. There are several 
methods of mass determination: 

• X-Ray Temperatures Hot ionized gas in a cluster emit radiation with a cutoff 
frequency which is determined by the temperature of the gas. This temperature 
can be related to the mass of the cluster under certain assumptions. 

• Sunyaev-Zeldovich Distortion Photons from the CMB pasing through clus-
ters get scattered by the hot gas. This scattering distorts the CMB spectrum 
as a function of frequency, inducing a decrement at low frequency and excess 
at high frequency (low-energy photons gain energy from the hot electrons). The 
shape of the distortion is fixed; the amphtude is another measure of the temper-
ature of the gas, which, again under certain assumptions, can be translated into 
a measurement of the mass. 
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• Weak Lensing Images of background galaxies are distorted by a foreground 
cluster. The larger the mass of the cluster, the larger the distortions. Weak lensing 
is therefore becoming a fabulous tool for measuring masses of clusters without 
using the temperature. 

At least in the first two techniques, the direct measurement is of the cluster 
temperature. So let's work through a relation between the mass and temperature 
of a cluster under a simple set of assumptions. Suppose a cluster has virialized 
so that its kinetic energy is equal to minus half its potential energy. Suppose also 
that the cluster is spherical with radius i?vir with potential (gravitational) energy 
is equal to -SGMVSi^^ir- Then, 

2 

3 GM^ 

10 i?vir ' 
(9.60) 

The overdensity of the cluster Ad = Pd/Pm then allows us to eliminate the radius, 
since 

M 

The temperature is equally apportioned among three directions, so the average 
velocity squared is v'^ = 3T/mp, where rup is the proton mass. The temperature 
can now be expressed in terms of the total mass of the system, 

5 
GMHoy 

2/3 

when Qrn = 1- Invert to get 

M - 8.2 X lO^^h-^Ma 
rp \ 3/2 

k^J 
178 

(9.62) 

(9.63) 

Here I have normalized Ad by its value in the spherical collapse model (with Pm = 
Per), although again simulations have verified the numerical value. 

Figure 9.16 shows the cluster density as a function of temperature for the stan-
dard CDM model with Qrn = 1- One of the most important points made immedi-
ately after the COBE detections of anisotropics in 1992 was that this plain-vanilla 
model predicts too many clusters. Indeed, the abundance of clusters today is often 
used as an excellent way of normalizing a power spectrum. A typical value for ag 
from cluster abundances (e.g., Wang and Steinhardt, 1998) is 

as = 0.5f2; .33-.35Qr, (9.64) 

with error estimates ranging from just a few percent up to 20%, the latter probably 
more accurately reflecting uncertainties in the mass determinations. 

Another exciting application of the Press-Schechter prediction for cluster abun-
dances is the evolution with redshift. The basic point stems from the exponential -
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Figure 9.16. The cluster density as a function of temperature. Data from Henry and Arnaud 
(1991). The two theoretical curves are the Press-Schechter estimates (Eq. (9.59)) of models 
with Qrn = l,h = 0.5, Qb = 05. The only difference between the two is the normalization. 

dependence in Eq. (9.59). At high redshift, (j{R,z) is necessarily smaller, but how 
much smaller depends on the underlying cosmology. The growth is fastest in a 
model with Qrn = 1 (see Figure 7.12), so for a fixed abundance today, one expects 
many fewer clusters in such a model. Figure 9.17 illustrates this effect. An Qrn = 1 
model predicts a factor of 700 fewer clusters with masses greater than 3.5 x 10^"^MQ 
at redshift 0.5 than at redshift zero. By contrast, ACDM predicts just a factor of 4 
decline. With the observational assault on clusters just getting off the ground, we 
can expect strong constraints on cosmology to emerge in the coming decade. 

S U G G E S T E D R E A D I N G 

The Large Scale Structure of the Universe (Peebles) has a good description and 
derivation of the angular correlation function, using Limber's (1953) original deriva-
tion. The derivation given in Section 9.1 is based on the Appendix of Kaiser's (1992) 
work on weak lensing. This derivation has the advantage of being physically intu-
itive and also generally applicable. It will allow us to easily compute the weak 
lensing correlation functions we encounter in Chapter 10. 

The data discussed in Section 9.1 come from the APM Survey (Maddox et 
a/., 1990). Other recent angular results of note include the Edinburgh/Durham 
Southern Galaxy Catalogue (EDSGC, Collins, Nichol, and Lumsden, 1992) and 
the Sloan Digital Sky Survey (York et a/., 2000), the first analysis of which is 
presented in Scranton et al. (2002). As I hinted in the text, analysis of these data 
sets has gotten progressively more sophisticated over time. Baugh and Efstathiou 
(1993) first inverted the APM angular correlation function and extracted the 3D 
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Figure 9.17. The number density of clusters with mass greater than M at different redshifts. 
Left panel: CDM model with Qm = l,h = 0.5,^6 = 0.05 but normalized to give the correct 
abundance at 2 = 0 {as = 0.5). Curves give the abundances in redshift increments of 6z = 0.1 
starting from z = 0 going out to 2 = 0.5. Right panel: ACDM model which fits CMB and 
other data (Qm = 0.35,/i = 0.7, Qbh"^ = 0.02). Note the relatively slow evolution of clusters 
with mass ~ 3 x 10^"^M© as compared with the critical density model. 

power spectrum, confirming that it was quite different firom the standard CDM 
power spectrum on large scales. Dodelson and Gaztanaga (2000) pointed out that 
the resultant errors on the power spectrum are correlated and that an accurate 
treatment would also account for the fact that the errors in w{6) are also correlated. 
Eisenstein and Zaldarriaga (2001) and then Efstathiou and Moody (2001) accounted 
for these correlations leading to the softened conclusions summarized in Figure 9.6. 
The Eisenstein and Zaldarriaga paper also contains a clear discussion of the relation 
between w{6) and the 2D power spectrum, or the C/'s. They observed that errors on 
the C;'s are much less correlated, which leads me to believe that C;'s will ultimtely 
replace w{6) as the statistic of choice for angular surveys. Indeed, Huterer, Knox, 
and Nichol (2001) have analyzed the EDSGC survey with Q's , and Tegmark et 
al (2002) obtained C/'s from early SDSS data. 

Cosmological Physics (Peacock) is a good resource for peculiar velocities and 
their effect on redshift surveys. Two important and informative review articles 
are Strauss and WiUick (1995) and Hamilton (1998), the former particularly good 
for experimental issues involved in determining peculiar velocities and the latter 
for analyzing galaxy surveys in the presence of redshift space distortions. Another 
leader in the field, Dekel (1997), has written a good review of the cosmological 
implications of the peculiar velocity field. 

The seminal work on redshift space distortions is by Kaiser (1987), who solved 
the problem working in Fourier space for linear distortions in the distant-observer, 
low redshift approximation. Hamilton (1992) found the analogue of this solution 
in real space. Recently, with large-area, relatively deep surveys coming on fine, the 
generalization for cosmological corrections (i.e., distance is not equal to CZ/HQ as 
z gets large) and all-sky analysis has been carried out by a number of authors. As 
examples of the work currently going on in the field, Szalay, Matsubara, and Landy 
(1998) generahzed Kaiser's work to large angles while Magira, Ying, and Suto (2000) 
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accounted for cosmological distortions and also nonlinearities and evolution. Pea-
cock and Dodds (1994) analyzed a variety of surveys, arguing that — accounting for 
redshift space distortions, nonlinearities, and bias properly — the power spectrum 
has been well measured. Undoubtedly, with the upcoming Sloan Digital Sky Survey, 
Two Degree Field, and others, more will be learned about the power spectrum in 
coming years. The semianalytic work referred to on Page 283 is based on the sem-
inal papers of White and Rees (1978) and White and Frenk (1991). Related, but 
separate form these semianalytic models, is the halo model (reviewed by Cooray 
and Sheth, 2002) which postulates that all the dark matter is in halos, thereby 
reducing the clustering problem to (i) the clustering of the halos and (ii) the distri-
bution of matter and galaxies within the halo. Good descriptions of what the halo 
model is and how it can be used to compare theories with redshift surveys can be 
found in White (2001); Seljak (2000); and Berlind and Weinberg (2001). 

The prediction of the cluster abundance is treated nicely in Cosmological Physics 
(Peacock) and Cosmological Inflation and Large Scale Structure (Liddle and Lyth). 
Structure Formation in the Universe (Padmanabhan) has a detailed section on 
the spherical collapse model, which is the source of the numbers 1.686 and 178 in 
Section 9.5. In addition to the papers cited in the text, some important cluster 
normahzation papers are Viana and Liddle (1996, 1999) and PierpaoH, Scott, and 
White (2001). 

EXERCISES 

Exercise 1. Suppose the correlation function is defined as 

i{r) = {S{x)6{x + r)). (9.65) 

By Fourier expanding each of the (5's and using Eq. (C.20), show that this definition 
implies that the correlation function is the Fourier transform of the power spectrum. 

Exercise 2. Expand the 3D power spectrum in the integral of Eq. (9.9) about 
ks = 0. The leading term is the one we considered. Show that the next term is of 
order (1//)^, compared with the leading term. 

Exercise 3. Rewrite the kernel in Eq. (9.14) as an integral over x- Show that F is 
a function of kO only. 

Exercise 4. Give an order-of-magnitude estimate for the kernel of the angular 
correlation function. 
(a) Consider a shell in Fourier space with radius k and width dk. What fraction of 
the volume of this shell has |A:3| < x~^? 
(b) Argue that only Fourier modes with 1̂ 31 < x~^ contribute to the angular 
correlation function with a weight A^(/c) = k^P{k)/27T'^. Combine this argument 
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with the fraction computed in part (a) to estimate the kernel relating w{9) to P{k). 
Compare this estimate with Eq. (9.13). 

Exercise 5. Decompose the angular correlation function into a sum over spherical 
harmonics, 

w{9) = Y '^Lllci^^^'^'Vi (cos^), (9.66) 
Z_-^ 47J-

where the superscript ^^^^^^ distinguishes these C/'s from the ones characterizing 
anisotropics in the CMB, and Vi here are the Legendre polynomials. Express CJ^^^^^^ 
as an integral over the 3D power spectrum. Show that on small scales Cf^^^^^^ = 
P2{1), where P2 is the 2D power spectrum introduced in Section 9.1. 

Exercise 6. In Section 9.1 we implicitly neglected the evolution of the power spec-
trum. That is, we assumed that P{k) remains constant with time. Allow P{k) to 
scale as (1 + z)^. What is /? for linear modes in a flat, matter-dominated universe? 
Rewrite the kernel in terms of an integral over z, accounting for this evolution. 

Exercise 7. Compute (numerically) the Unear growth rate / today in an open 
universe and compare with the approximation fi^^. What is the fractional error 
between the approximation and the exact result? Now assume that the universe is 
flat, with Qrn -h JIA = 1. Again compare the exact Hnear growth rate with fi^^. 
Show that 

f = ^"m' + ^ { l + ^ ) (9.67) 

is a better approximation, with no worse than 4% accuracy for Qrn > 0.025. 

Exercise 8. Using CMBFAST, compute the transfer function for standard CDM 
{nrn = l;h = 0.5) with Qb = 0.01,0.05, and 0.1. Show that the BBKS transfer 
function is still a reasonable fit as long as 

r = Qrnh-^ Qmhe-^^'. (9.68) 

Exercise 9. Using CMBFAST or the BBKS transfer function, compute COBE-
normalized as for ACDM with h = 0.7, Qj^ = 0.7, Qrn = 0.26, and Qi, = 0.04. 
Locate the model on the bottom left panel of Figure 9.6. What does this imply 
about the relation between as (of the mass, which you have just computed) and 
{^8)g (of the galaxies, which APM is sensitive to)? 

Exercise 10. Assume that the universe is flat with matter and a cosmological 
constant. Expand the comoving distance out to a galaxy at redshift z (neglecting 
pecuHar velocities) about z = 0. The first-order term in the expansion should 
give back the redshift space answer. What is the second-order term, the leading 
correction to redshift space? Express your answer in terms of Qrn • 
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Exercise 11. Derive (9.51), using the fact that p4(x) = 35xV8 - 15xV4 + 
3/8. Show that the definition of the moments in Eq. (9.50) — Ps \k) = (2/ + 
l)/_i(<^Mk/2)PKMk)^s(fc,/ik) —means that 

Ps{k,fi,,) = J2^i{^i^)P^'\k). (9.69) 

Exercise 12. In the text we showed how redshift space distortions affect the power 
spectrum. Show how the redshift space distortions affect the correlation function. 
Assume hnear theory. You will probably need to consult Hamilton (1992), which 
transforms Kaiser's result to the correlation function in a single (dense) paragraph. 
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WEAK LENSING AND POLARIZATION 

The traditional methods of measuring clustering — angular and redshift surveys — 
are powerful probes of the power spectrum but share a common deficiency. They are 
measures of the distribution of galaxies, not the distribution of mass. Theories of the 
early universe can make very accurate predictions about the latter, but not about 
the former. A very exciting new technology which probes the mass — not the light — 
distribution is introduced in this chapter. We will see that the inhomogeneities of 
the matter induce distortions in the observed shapes of distant galaxies due to 
gravitational lensing. Further, the statistics of these distortions are directly related 
to the matter power spectrum. 

The anisotropics in the CMB are subject to none of the uncertainties or ambi-
guities which plague the density field. 

• We know exactly where the CMB comes from (the surface of last scattering) so 
there is no analogue of peculiar velocity distortions. 

• There is nothing like the mass vs light problem which afflicts the interpretation 
of galaxy surveys. 

• In addition, the mass distribution has gone nonlinear, so a simple comparison 
of the linear power spectrum derived in Chapter 7 with the data is dangerous. 
Anisotropics in the CMB are still at the part-in-a-hundred-thousand level, so 
nonlinearities are for the most part irrelevant. 

The C/'s then are easy to interpret and extract information from. Nonetheless, 
here too we can go beyond what we have already done. Until now we have focused 
on anisotropics in the temperature field. Compton scattering before decoupling 
also induced polarization anisotropics. Polarization opens up a new dimension in 
the study of the CMB. At the very least, it doubles the amount of information 
contained in the CMB. As we will see in this chapter, the promise of polarization 
goes well beyond this doubling. Gravity waves — tensor perturbations — produce a 
particular pattern of polarization that cannot be mimicked by scalar perturbations. 
Therefore, polarization offers a unique way of searching for gravity waves produced 
during inflation. 

292 
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Gravitational lensing and polarization belong in the same chapter primarily 
because the mathematics describing them is so similar. Both effects can be quanti-
fied with a two-by-two symmetric matrix. In lensing, this matrix is the distortion 
tensor encoding information about image distortion. The polarization tensor has 
a longer history with more famous components Q and U. It is identical mathe-
matically, though. So, the technologies used to study both of these effects are very 
similar. 

10.1 GRAVITATIONAL DISTORTION OF IMAGES 

The cosmological gravitational field distorts the paths traveled by light from dis-
tant sources to us. This fundamental fact carries with it an enormous amount of 
cosmological promise. Most important is the idea that light paths respond to mass. 
If we can measure distortions, then, we might be able to infer something about the 
distribution of mass in the universe. The importance of this inference cannot be 
overstated: most of what we think we know about this distribution comes from our 
observations of the galaxy distribution. We hope that, on large scales at least, the 
two — the mass and the galaxy distribution — are not too different. If we observe 
the mass distribution directly via distortion of light rays, though, then we need not 
rely on this hope. We can then directly compare observations with theoretical pre-
dictions. For cosmology, therefore, we expect the most important aspect of light ray 
distortion to be weak lensing^ wherein the shapes of distant galaxies are distorted 
(slightly) by intervening foreground mass overdensities. We begin with an overview 
of image distortion along with a brief discussion of some other applications. 

The idea that gravitational fields might distort distant images is as old as general 
relativity. Indeed, even before Einstein finalized general relativity, he understood the 
importance of measuring this distortion. Early notebooks of his contain calculations 
of the magnification of images and of the possibility of a double image of a single 
source (Renn, Sauer, and Stachel, 1997). And it was detection of gravitational 
distortion that led to the acceptance of general relativity. In 1919, Eddington led a 
voyage to the Southern Hemisphere to observe the deflection of starlight during a 
solar echpse. The magnitude of this effect (Dyson, Eddington, and Davidson, 1920) 
was in good agreement with Einstein's new theory. 

One of the most spectacular manifestations of gravity bending light paths is 
strong gravitational lensing. In 1979, Walsh, Carswell, and Weymann observed a 
multiply imaged quasar, thereby confirming Einstein's early speculations. Light 
rays leaving the quasar in different directions are focused on the same point (us) 
by an intervening galaxy. Since then, dozens of multiply imaged quasars have been 
observed, and we are on the verge of discovering many hundred more in the near 
future. Exactly what fraction of quasars is lensed is a question that may depend on 
the background cosmology. In particular, it has been argued that there should be 
more multiply imaged quasars in a universe with a cosmological constant than in 
one without (see Exercise 1 and Kochanek, 1996). 
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There are other examples of gravitational lensing that have an impact on cos-
mology. Light rays that take different routes to the same endpoint typically arrive 
at that endpoint at different times. Therefore, two light rays emitted from the same 
source at the same time which we detect from different directions due to lensing typ-
ically arrive at different times. We can measure this time delay by studying sources 
with variable emission. The delay turns out generally to depend on the Hubble 
constant, so astronomers have made very accurate measures of HQ looking for time 
delays (e.g., Kundic et al.^ 1997). Another example is microlensing, wherein a lens 
moves into the line connecting a source to us. When it does, the image is magnified, 
so that we observe a characteristic variabihty in the distant source. Microlensing 
has been used in recent years to find massive compact halo objects (MACHOs) in 
our galaxy (Alcock et a/., 1993). It now appears that MACHOs do not make up 
all, or even most, of the dark matter in our galaxy. Nonetheless, exactly what and 
where they are is still a mystery of cosmic significance. 

Figure 10.1. Foreground galaxies in the cluster Abel! 2218 distort the images of background 
galaxies. Elliptical arcs surround the central region of the cluster at right. 

Yet another spectacular manifestation of gravitational lensing is shown in Figure 
10.1. The large cluster in the foreground, Abell 2218, distorts the shapes of the 
background galaxies. This leads to a distinctive pattern of elliptical arcs surrounding 
the central region of the cluster. Why do the background galaxies appear stretched 
out elliptically in Figure 10.1? Consider a circular galaxy sitting behind a large 
mass density with an observer out of the page as in Figure 10.2a. Since the light 
rays are distorted, we do not expect to see a circular image. Rather, light rays 
coming from the "bottom" of this source — the ones that pass closer to the central 
mass region — are bent more than those that do not come as close to the mass. The 
light rays are bent such that objects at the bottom appear to be farther away from 
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Figure 10.2. (a) Circular galaxy, the source, sits behind a foreground mass distribution rep-
resented by points at bottom. The observer is out of the page so that the foreground mass is 
between the observer and the source, (b) Light rays from source are deflected as they pass by 
mass distribution. Rays traveling closest to mass get deflected the most, (c) Resulting image 
is an arc. 

the mass. (This is the only subtle part of the argument: rays are bent toward the 
mass distribution, so that as you extrapolate backward, the source appears farther 
away. See Figure 10.4.) Images will therefore be distorted as in Figure 10.2b. The 
net effect, therefore, is to turn a circular galaxy into the arc shown in panel c. 

A very active field of research uses background galaxies to try to infer the mass 
distribution of clusters (e.g., Clowe et a/., 1998). Most times, the images are not 
as dramatic as those shown in Figure 10.1. The lack of drama is offset by the huge 
numbers of background galaxies. By adding up many small distortions, observers 
have succeeded in obtaining mass estimates for a number of clusters. This idea 
of statistically averaging small distortions is the hallmark of weak lensing. The 
mass estimates are important information for cosmologists: several cosmological 
constraints are based on cluster masses and abundances (e.g.. Section 9.5, Carlberg 
et a/., 1997; Bahcall et a/., 2000). 

We will be interested in weak lensing not by a single identifiable lens such as a 
cluster, but rather by the generic large-scale structure in the universe. Inferring the 
distribution of the dark matter — i.e., pointing to a spot on the sky and identifying 
it as an overdense region — is not necessarily the goal. Rather, we should be satisfied 
if we can measure some simple statistics, for example the correlation function or 
its Fourier transform, the power spectrum. Indeed, these are the quantities we, as 
cosmologists, are most interested in anyway. We don't care where the overdense 
and underdense regions are; we simply want to compare theory with observations. 
So our main goal here is to relate the observations (which have already begun) of 
distortions of galaxy images to the underlying mass power spectrum. 
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(a) (b) (c) 

Figure 10.3. Different lensing patterns. Panels (a) and (b) could be produced by a mass 
distribution (a) above or below the distorted images and (b) in between or on either side of 
the images. But the alignment in panel (c) could not be produced by lensing. 

One final note concerning the correlations of distortions expected from gravi-
tational lensing. We might expect to find the images of two (circular) galaxies to 
be distorted so that they look Uke Figure 10.3a if, for example, there is a large 
overdensity above or beneath this galaxy pair. We might also expect images similar 
to those in Figure 10.3b if an overdensity exists between them or to either side. 
However, lensing cannot produce the alignment sketched in panel (c). This fact, 
which we will shortly prove, is often used as a check against systematic problems 
afl[licting an observation. 

10.2 G E O D E S I C S A N D S H E A R 

We want to solve for the path of a light ray as it leaves a distant source and 
travels through the inhomogeneous universe. Figure 10.4 shows the geometry and 
notation, which will be similar to that set up in our discussion of the angular 
correlation function. The position of the photon at any time is given by x, with the 
xs component equal to the radial distance x and the transverse components equal 
to x^' The intensity we observe from a source is 

lohsiO) = ItrueiOs); (10.1) 

a source whose image appears at 0 is actually at 0s-
To solve for the path of a light ray, we need to use the machinery of general 

relativity. Recall that in Chapter 4, we used the time component of the geodesic 
equation to find dp/dt, the rate of change of the magnitude of the momentum. Here 
we are interested in deflections, so we will need the spatial component, 

in particular, we will need the transverse part. Let's first consider the left side of 
this equation. We can express the derivatives with respect to affine parameter A in 
terms of derivatives with respect to x using the fact that 

dx dx dt 
dX dt dX 
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A Image at x^ 
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Figure 10.4. A light ray leaving a distance source is distorted as it passes by an intervening 
overdense region. At all times, the position of the light ray can be characterized by a 2D vector 
specifying its angular distance from the center of the lens. The ray starts with angular vector 
ds, but appears to us to be coming from d. 

-1 
p ( l - ^ ) . (10.3) 

The first part of this equality {dx/dt = — 1/a) follows from Eq. (2.42), while the 
second part comes from Eq. (4.14). The transverse part of x^ is equal to x ^ \ so the 
left-hand side of the geodesic equation is 

dh 

dX^ dx 

p d 

a dx (x.) (10.4) 

Here I have dropped the (small) gravitational potential because it multiplies the 
(small) angle 0^. We can reduce further by remembering that (at zero order) the 
momentum p times a remains constant, so removing pa outside the derivative leads 
to 

d^x' 

~d>? = p 
d_ 

dx i sM (10.5) 

Now let's consider the right side of the geodesic equation. Again, changing the 
derivatives with respect to A to those with respect to x leads to 
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^•^^ dX dX -\a) ^^^'^'^^ dx dx' ^ ' 

There are three types of terms in the sum over a and P: those with a = /? = 0, 
those with one index spatial and the other temporal, and finally those in which 
both a and /3 are spatial. We have already derived the relevant Christoffel symbols, 
given in Eq. (5.7). Let's work through the terms one by one: 

• When a = P = 0, we have 

r ^ o ( ^ ) = * . = - * , i (10-7) 

where the second equality holds since in the late universe there are no anisotropic 
stresses so ^ = — ̂ . 

• When one of the indices is spatial, FL is nonzero only when i = j . Therefore, 
the spatial index j must be transverse with x^ = x̂ -̂  • Since 0^ is small, we can 
drop the potential in the Christoffel symbol leading to 

with of course an identical term coming from F^Q-
• When both indices are spatial, the Christoffel symbol is proportional to the 

(small) gravitational potential. When multiplied by the small transverse dis-
tance, these terms will be negligible, so we need consider only the term 
T'jj^{dx^ /dx){dx^/dx) in which j = k = 3 along the radial direction. In that 
case x^ = Xi the derivative is trivial, and we have 

^ k ^ ^ = -^.i- (10-9) 
dx^ dx'' 

dx dx 

Collecting these terms leads to the geodesic equation for transverse motion 

d 

dx ^1(^^01 = I h+«^|[-^'] dx 
(10.10) 

The derivative on the left acting on a ^ exactly cancels the term proportional to 
aH on the right, so our final equation for the transverse displacement is 

| ^ ( x ^ ' ) = 2 $ . , . (10.11) 

This geodesic equation tells us that in a uniform potential, the angular direction 
{x^^y remains constant, whereas a changing potential perturbs it. The sign is cor-
rect: An overdensity centered at x = y = 0 has $ > 0 there, and therefore the 
derivative of $ with respect to x ($,^ with i = 1) is negative for x > 0. As such, 
the force on a light ray passing the overdensity on the positive x-axis is negative, 
i.e., inward toward the overdensity, as we expect. 
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Equation (10.11) can be integrated to find the image angle as a function of the 
source angle. Integrating once gives 

— [xO') = 2 / dx'^,i (x(xO) + constant; 

we'll fix the constant momentarily. Integrating again leads to 

Jo Jo 
dx^,i {x{x)) + constant 

(10.12) 

(10.13) 

since 9'^{x) ^ ^55 the value of 6 at the source. We now see that the constant is equal 
to 0^—the observed angle — since the angle retains its initial value if there is no 
perturbation. The integral in the x'^X^' plane is restricted to the shaded region in 
Figure 10.5 so we can change orders of integration with the x'^ integral ranging 

X < X ^^m 

Figure 10.5. Range of integration in the double integral of Eq. (10.13). The shaded region 
can be expressed as 0 < x ' ' < X,0 < x ' < x" o'' as x' < x" < Xi^ < X < X- The latter is 
more convenient here, since the x" integral is then trivial. 

from x' to X- The x" integral is then trivial (since ^i depends only on x') so 

e\ = o^^2j\x'^A^{x'))(i-^y (10.14) 

To describe the shift in the angle experienced by a light ray, it is conventional 
to define the 2 x 2 symmetric transformation matrix, 

A = ^ 
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^-^-^^ -^^ y (10.15) 
-72 1 - /̂  + 71 / 

The parameter n is called the convergence; it describes how an image is magnified. 
Although this magnification has many important ramifications (e.g., microlensing 
and multiple images) it is not what is important for the distortions studied in weak 
lensing. Rather, these distortions are governed by the two components of the shear^ 

All - A22 
71 = ^— 

72 = -A12. (10.16) 

Equation (10.15) says that the components of shear involve derivatives of 
Eq. (10.14) with respect to angle 6,^ The only dependence on 6 is in the argument 
of the potential, where x{x') = x'O (for the transverse components). Therefore, the 
derivative with respect to 9^ can be written as a derivative with respect to x^ (in 
our notation j) times x'- Therefore, 

^ .̂ - ^v - ( ""_;J^ _~l%^ )=^[ dx'^,, (f (XO) X' (1 - f ) • (10-17) 

So 7i and 72 are well-defined functions of the potential. The next section shows 
how they infiuence the shapes of galaxy images. 

10.3 ELLIPTICITY AS AN ESTIMATOR OF SHEAR 

We expect lensing to turn circular images into elliptical ones. To describe this effect, 
then, we need to come up with quantitative measures of ellipticity, and then see how 
these are related to the components of shear defined above. The simplest measure 
of ellipticity starts with the definition of the quadrupole moments of an image. 
Imagine centering an image at the 0^ — Oy origin such that it has no dipole moment 
ii^x) = (Oy) = 0 where angular brackets are averages over the intensity). Then the 
quadrupole moments are defined as 

q,j = j dHu,{e)e^ej. (lo.is) 

A circular image has qxx = Qyy and Qxy = 0. Therefore, two good measures of 
ellipticity are 

Qxx Qyy 
^1 = 7 

Qxx I Qyy 

^The derivative is formally with respect to the observed angle 0, while the right-hand side 
of Eq. (10.14) depends on the potential at the true position of the light ray. In principle, then, 
the derivatives which go into the definition of Aij are quite complicated. In practice, though, 
deflections are sufficiently small that we can ignore the distinction between the final angle 6 and 
the actual angle everywhere along the trajectory. Therefore, on the right-hand side of Eq. (10.14) 
we evaluate the potential along the undistorted path parameterized by 9. 
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£2 = _jE^y__ (10.19) 
Qxx + Qyy 

Figure 10.6 shows different orientations of elliptical images and the associated 

e, > 0 €2 = 0 e, < 0 €2 = 0 

y ̂  

/ \ 
^1 = 0 ^8 > 0 €, = 0 €3 < 0 

Figure 10.6. Definition of ellipticities ei and ei. Circular images have both ellipticities equal 
to zero. 

values of the e\ and 62. With these definitions, we can make more precise the 
statement at the end of Section 10.1 about correlations of ellipticities. Panel (a) in 
Figure 10.3 has two galaxies at d\ and 2̂̂  each with e\ positive; in panel (b) both 
galaxies have t\ negative. In both possible cases, then, the product ei(^1)61(^2) is 
positive if the x-axis is chosen along the direction connecting the two galaxies. The 
impossible case is depicted in panel (c) wherein the product is negative. Therefore, 
we do not expect lensing to produce 61(^1)61(^2) < 0. 

How are the elhpticities defined in Eq. (10.19) related to the shear defined in 
Eq. (10.16)? Let's assume that the source is spherical and compute the ellipticity 
of the image. Focusing on ei, we have 

where I have used the equality of Eq. (10.1). The integrals here are over the observed 
angles 6, while the integrands depend in part on the angle from which the photon 

3' started at the source, 63- For small angles, these are related via 9i = {A~ )ij9s_ 
To do the integrals, then, change dummy variables in the integral to 63, and write 
all occurences of ^̂  as {A~^6s)i' This leads to 
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^^ _ Eij [{A-'U{A-%, - {A-\M-')yj] Id'0shrue{0s)0s^0sj 

E^j [{A-'UiA-')., + {A-%^{A-%j] f d^esItrne{0s)OsieSj ' 

Now the integral over the (true) circular image vanishes unless i = j and so is 
proportional to 6ij. The proportionality constant is irrelevant since it appears in 
both the numerator and denominator, so 

( ^ )xi\^ Jxi ~~ [^ )yi[^ )yi 
^1 

( ^ jxiy-^ Jxi H~ ( ^ j y n ^ Jyi 

(^xx ) ~ {^yy ) 

\^xx ) 4" \^yy ) ~\~ ^ \-^xy ) 

It is easy to compute the inverse of the 2 x 2 matrix A\ 

(1 - AC)2 - 72 - ^2 \̂  72 1 - K - 71 

SO we see that the ellipticity ei can be expressed in terms of the shear as 

( l - K + 7 i ) 2 - ( l - « - 7 i ) ' 

(10.22) 

(10.23) 

ei 
( l - K + 7i)2 + ( l - K - 7 i ) 2 + 27 | 

471 (1 -« ) 
(10.24) 

2 ( l - « ) 2 + 2 7 ? + 27f 

If all the distortions are small, then 

61^271 , (10.25) 

the desired result. A similar equality holds for 62. By measuring ellipticities of 
distant galaxies, therefore, we can get an estimate of the shear field, a field which 
depends manifestly on the underlying gravitational potential via Eq. (10.17). 

10.4 WEAK LENSING POWER SPECTRUM 

We can now compute the simplest statistics of the shear field, which can be esti-
mated by measuring background galaxy ellipticities. Let's remove the identity from 
the transformation matrix A, 

^,j = A,,-8,j. (10.26) 

In the absence of inhomogeneities, the apparent angle 9 is equal to the source angle 
^5, so A = / . Therefore, by removing the identity matrix from A, we have extracted 
the part describing the distortion of the light ray path due to inhomogeneities. As 
such, we will refer to '0 as the distortion tensor. The last term in (10.17) is -0̂ ^ for 
a background galaxy (or galaxies) at distance x{z) from us. In general, a survey 
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contains a distribution of redshifts. Let's call this distribution W{x)i j^^t as we did 
when studying angular correlations in Chapter 9. Again, let's normalize W so that 
f dxW{x) = 1. Then, the distortion tensor is 

ipij ! £ ^ dxWix) £ dx'^,^J (f (xO) X ( l - ^ ) • (10-27) 

We can simplify here by changing orders of integration (almost exactly as depicted 
in Figure 10.5). Then 

rXoo 

i^ijie)= dx^,iji^ix))9ix) (10.28) 
Jo 

where I have dropped the prime and defined 

9ix) ^ 2x p dx' (l - ^ ) W{x'). (10.29) 

On average, each of the components of the distortion tensor is zero: {i^ij) = 0. 
To make our money, therefore, we need to do just what we did for the CMB and 
galaxy distributions, compute the two-point function, either the angular correlation 
functions of the different components of tpij or their Fourier transforms, the power 
spectra. To compute these two-point functions, we will be able to essentially copy 
the results from Section 9.1 as long as we are careful to account for the indices on 

To compute the power spectrum of the distortion tensor, Pfjj^iil), let's recall the 
steps we took when we analyzed the angular correlation function of galaxies (see 
Table 10.1). 

• The distortion tensor in Eq. (10.28) is a function of the 2D vector 0 since the 
argument of the potential is x :^ x(^i5 ^2,1)- As in the case of the galaxy density 
field, we can Fourier transform ipij so that it depends on the 2D vector conjugate 
to (9, L 

• In the case of the angular galaxy overdensity, we expressed the 2D overdensity 
as an integral over the 3D overdensity with some weighting function (Eq. (9.3)). 
Here the situation is identical: g in Eq. (10.29) plays the role of the selection 
function W there while the 3D field here is not the overdensity J, but rather ^^ij. 

• Next we found that — in the small-angle limit — the 2D power spectrum is given 
by an integral over the 3D power spectrum, Eq. (9.10). Here, too, the 2D power 
spectrum of ipij can be expressed as an integral over the 3D power spectrum of 
the gravitational potential $. The only slightly tricky part is computing the 3D 
power spectrum of ^^ij. The Fourier transform of ^^ij is —kikj^ with a variance 

kikjk[k'^{^{k)^*{k')) = {27Tfhkjkikm6\k - k')P^{k). (10.30) 

So the 3D power spectrum we need — the one associated with the Fourier trans-
form of ^^ij - is kikjkikmP^{k). 
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Table 10.1. Simi arity between Agular Correlations of Galaxies and Weak Lensing. 

1 2D observation 
1 Weighting function 
3D field 
3D power spectrum 

2D power spectrum 

Angular galaxy distribution 

S2{e) 
W{x) 
6 
{dS*) ~ P(fc) 

^2(0 

Weak lensing | 
—f 1 

Distortion tensor ipij{0) \ 
9{X) 
^,u 
i^M^*lm) ~ hkjkkmP^ik) 

^ijlmy-) \ 

I will keep things in terms of P^, but if you are more comfortable with the density 
power spectrum, you can see from Eq. (7.7) that you need only multiply P$ by 
9^^F^(1 + zf/{Ak^). Applying Eq. (9.10) then leads to 

{^l^^Jmlm{n) = i27:Y5\l 

with the 2D power spectrum 

^)Pt,lm{l) 

ijlm (0 
Jo 

dx 
g'^ix) kijkU 

•P^{i/x)-

(10.31) 

(10.32) 

Equation (10.32) is an expression for the power spectrum of the different com-
ponents of the distortion tensor. We can turn these into power spectra for the 
convergence K and two different components of shear by using Eq. (10.16). Let's 
work this out for one of the shear components explicitly; the other two are rele-
gated to a problem. Since 71 = (1/̂ 22 — V^ii)/2, the power spectrum of 71 is 1/4 
times P2222 + A i i i ~ 2P2211- If w^ decompose the 2D vector / into a radial part / 
and an angle (/>/, then li = /cos0/ and I2 = /sin0/, so 

r 
Jo 

dx^^P^{l/x) 7̂1 {l,(t>i) = (sm 0/ + cos^ (/>/ - 2 sin^ (pi cos^ (pi) 
\ "^ JO A 

(10.33) 
Since sin^ (pi -hcos^ 0/ + 2 cos^ (pi sin^ (pi = I, the term in parentheses here is equal to 
1 — 4 sin^ (pi cos^ (pi = 1 — sm^{2(pi) or cos^(20f). You will show in Exercise 6 that the 
expression in square brackets is equal to the power spectrum of the convergence, 

14 fX^ _ ^2(^) 
•P^{i/x)-

Therefore, the power spectrum of 71 is 

P^,il,<l)i) = cos^{24>i) P^il). 

(10.34) 

(10.35) 

You will show in Exercise 6 that the power spectrum of 72 is also proportional to 
P., 

P^SAi) = ^^ri\2<t>i)P,{l). (10.36) 

Thus, the power spectra of the two components of shear depend not only on the 
magnitude of I but also on its direction. Figure 10.7 shows the convergence power 
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Figure 10.7. The power spectrum of the convergence for two CDM models (Hu and Tegmark, 
1999). The models are indistinguishable using CMB data alone, so future weak lensing data 
(depicted by the error boxes) add invaluable information. The projected error boxes assume a 
3° survey down to 25th magnitude. 

spectrum for two models. Note that, unhke the CMB or even the matter power 
spectrum, it is essentially featureless. 

The power spectra of both shear components are proportional to P,^, with a 
prefactor depending on the angle between / and a fixed x-axis. You might expect 
then that a hnear combination of the two components depends only on P,^(/) with 
no dependence on the angle 0/. This is correct. Even more interesting, though, is 
the possibility that a different linear combination would have a vanishing power 
spectrum. This also turns out to be correct, and extremely useful. Such a mode 
has no expected cosmological signal, so any nonzero value is a measure of some 
systematic effect. By focusing on this "zero" mode, one can identify and eliminate 
contaminating effects in an experiment. I want to spend some time on this decom-
position into two modes — one with signal and one without — not only because of 
its importance in this case of weak lensing, but also because an exact analogy exists 
in the case of polarization of the CMB, which we will take up in the next sections. 
To get ahead of myself, in the case of polarization, the "zero" mode is zero only for 
scalar perturbations, whereas tensor perturbations do contribute to it. Therefore, 
we will see in Section 10.9 that this decomposition is a powerful tool with which to 
detect primordial gravity waves. 

Consider then the following two linear combinations of the shear: 
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E{1) = cos(20/)7i(r) + sin(20O72(O 

Bit) = -sin(2(/)/)7i(r) +008(20072(0. (10.37) 

The power spectrum of each of these modes is easily obtainable in terms of the 
spectra of 71 and 72. First the E-mode: 

PE = cos'^{2(t)i)P^, -\- sm'^{2(t)i)Py^ + 2sin(2(/)/) cos(20/)P. (10.38) 

This expression involves the power spectrum corresponding to (7172), which is equal 
to cos(2(/)/)sin(2(/)/) times the ubiquitous convergence power spectrum. Therefore, 
PE is proportional to P« with proportionality constant cos^(2(/)/) + sin (20/) + 
2cos2(20/)sin^(20/) = (cos2(20/) + sin2(20/))2 = 1, or 

PE - PK, (10.39) 

independent of the angle 0/. The calculation for the B-mode is similar: 

PB = sm^{2(Pi)P^^ +cos2(20/)P^, - 2sin(20/) cos(20OPy,^2 

= 0. (10.40) 

You can also check that the cross power spectrum {EB) vanishes. 
The field of weak lensing due to large-scale structure is its infancy. The year 

2000 saw the first detections by four independent groups (Van Waerbecke et al, 
2000; Bacon, Refregier, and Ellis, 2000; Wittman et a/., 2000; Kaiser, Wilson, and 
Luppino, 2000). They presented the shear correlation function, one example of 
which is shown in Figure 10.10. We can easily translate the power spectra derived 
above into angular correlation functions that can be compared with data. 

Let's focus on the angular correlation function of 71, the Fourier transform of 

-(̂ ^̂  = /lF^'''-^^(^^')[ii (10.41) 

The variable 0; we are integrating over is the angle between the 2D vector I and 
an arbitrary external x-axis. If we do the angular integral over (pi, then — as you 
can see from Figure 10.8 — the argument of the exponential is quite complicated: 
il9cos{<pi — 4>). Instead, let's integrate over the angle between / and 0, call it 4>'. 
Then, 

,.-, f°° di i^ n dx^p^ii/x) r> 
Jo 

(27r)2 4 7o - X 

The cosine squared in the integrand is equal to 

cos(20') cos(20) - sin(20')sin(20) 

•kf pilQ c o s <; [cos(2(0' + ^))]2. 

(10.42) 

n2 
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Figure 10.8. Angles made by ^ and / with respect to an external fixed x-y coordinate system. 
The angle between 6 and / is (/)̂  

= 008^(20') cos2(20) - sin(40O sin(40)/2 + ^m^(2(t)') sin2(20). (10.43) 

Thus there are three terms to be integrated over. To do the integral over cos^(2(/)'), 
first rewrite it as (H-cos(4(/)'))/2; then recall that the integral of cos(n0')e*^^°^'^ is 
equal to 2m'^Jn[z) (Eq. (C.21)). Therefore, the integral of cos^(2(/>') gives a factor 
of TT times Jo{W) + 34,(16). Using exactly the same arguments, you can see that the 
integral of sir?{2(f)') gives TT times Jo{lO) — J4{16). Less obvious is the fact that the 
integral of sin(40') vanishes (change integration variable to (/)'' = cf)' — n and argue 
that the integrand is antisymmetric). Therefore, 

1 Z*̂  /"^^ fix) P^iilx) 

x{cos2(20) \JQ{19) + J4(/6l)] +sin2(2(A) \Jo{l6) - Ji{W)] } . (10.44) 

There are many angles floating around, so let me reiterate that 0 = [6 cos (p, 6 sin </>); 
that is, (j) is the angle that 6 makes with the x-axis. By changing the / integral into 
one over 3D wavenumber k = l/x, we can rewrite this angular correlation function 
in terms of kernels, 

/•OO 

w^^0) ^ dk k^P^ik) [F+(/c(9)cos2(2(/)) + F_(/cl9)sin2(20)] . (10.45) 

Note that here I have assumed that the potential remains constant with time, an 
assumption which breaks down at late times because of nonlinearities or non-matter 
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domination. The kernels are integrals over radial distance x modulated by the Bessel 
functions, 

F^ike) = ^ j dxg\x) [UkxO) ± HkxO)]. (10.46) 

Figure 10.9 shows these two kernels for background galaxies at redshift 2; = 0.9. 
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k0(h Mpc"̂  degrees) 

Figure 10.9. The kernels for the shear correlation function assuming all background galaxies 
are at z = 0.9. Dashed region corresponds to negative kernel. If the x-axis is chosen along the 
line connecting pairs of galaxies, then the + kernel is for (7171) and the — for (7272)- Note 
that the former is always positive. 

If we choose the x-axis to be along the line connecting pairs of galaxies, then 
we are evaluating the correlation function at ^ = (^,0), that is, with 0 = 0. In 
that case. Figure 10.9 shows that w^^ is always positive, a result we anticipated 
pictorially in Section 10.1. The correlation function for 72, on the other hand, is 
identical to that in Eq. (10.45) except that F± are interchanged. Therefore, w^^ 
can, and indeed does, go negative, usually on large angular scales. The final point 
to take away from the kernels in Figures 10.9 is the rough sense that the shear on 
a scale of a tenth of degree probes the power spectrum at A: ~ 1 /i Mpc~^ since this 
is where the kernel breaks. 

Consider then Figure 10.10, which shows results from a survey of three "blank" 
(i.e., no known clusters of galaxies present) fields over a period of several years. 
There is a clear detection of ellipticity, presumably due to cosmic shear. The root 
mean square amplitude of the shear is the square root of the typical numbers on 
the 2/-axis, around 0.01. Thus, shear due to large-scale structure has been detected 
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Figure 10.10. Measurement of the shear correlation functions using 145,000 background 
galaxies (Wittman et al, 2000). Also shown are a variety of CDM models; topmost in top 
panel is standard CDM, ruled out here at many sigma. Note that w^^ = (eiei) remains positive 
on all angular scales. See color Plate 10.10. 
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with an amplitudeof order 10~^ on angular scales ranging from 1' out to about 
1°. Observations planned in the coming years will go far beyond these preliminary 
results; from these observations we will learn much about the mass distribution of 
the universe. 

10.5 POLARIZATION: THE QUADRUPOLE AND THE Q/U 
DECOMPOSITION 

The radiation in the CMB is expected to be polarized because of Compton scat-
tering at the time of decoupling. A polarization pattern shares a number of math-
ematical features with the shear induced by gravitational lensing that we have 
just studied. In addition to these mathematical similarities, they also share sim-
ilar experimental histories. Whereas anisotropics in the temperature of the CMB 
and inhomogeneities in the density field were discovered back in the 20th century, 
weak lensing by large scale structure and polarization of the CMB have just been 
detected. They are true 21st century phenomena. Therefore, they are both fields 
rich for study: We are just beginning our observations of them, and they both 
promise to deliver much cosmological information. 

Light travehng in the x-direction corresponds to electric and magnetic fields 
oscillating in the y-z plane, i.e., transverse to the direction of propagation. If the 
intensity along the two transverse directions is equal, then the light is unpolarized. 
Until now, when we have considered the CMB, we have been implicitly studying 
this case. Now we must account for the possibility that the intensities in the two 
transverse directions are unequal: that the radiation is polarized. 

At first glance, Compton scattering is a perfect mechanism for producing polar-
ized radiation. It allows all transverse radiation to pass through unimpeded, while 
completely stopping any radiation parallel to the outgoing direction. To see this, 
consider Figure 10.11 which shows a ray incident from the -\-x direction. This (unpo-
larized) ray has equal intensity in the y and z directions. It scatters off" an electron at 
the origin and gets deflected into the -\-z direction.^ Since the outgoing direction is 
along the 2;-axis, none of the (incoming) intensity along the z-axis gets transmitted. 
By contrast, all of the intensity along the 7/-axis (which is perpendicular to both 
the incoming and outgoing directions) is transmitted. The net result is outgoing 
polarization in the y direction. 

Obviously, we cannot content ourselves with studying one incoming ray; we 
must generalize to radiation incident on an electron from all directions. When we 
do so, we begin to realize that producing polarization will not be quite as easy as 
it appears from Figure 10.11. Consider first Figure 10.12, which shows a caricature 
of a much more relevant case: isotropic radiation incident on the electron from all 
directions. I say "caricature" because I have shown incoming rays from only two 
directions, the -t-x- and +^-directions. The intensity of the outgoing ray along the 

^Of course radiation gets scattered into all directions with varying probability. Here we consider 
just one outgoing direction for simplicity. In the next section we account for this probability. 
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Figure 10.11. Unpolarized radiation moving toward the origin along the x-axis is scattered 
by an electron into the + i direction. Only the y component of the radiation remains after 
scattering. Since there was no incoming x polarization, the outgoing radiation is polarized in 
the y direction. (This and the next three figures are adapted from Hu and White, 1997b). 

X-axis comes from the radiation incident from the y direction, while the outgoing 
^/-intensity comes from the radiation incident from the x-axis. Since the radiation 
from both directions has equal intensity (isotropic radiation), though, the outgoing 
wave is has equal intensity along the x- and y-axes: it is unpolarized. 

Can anisotropic radiation produce polarization? The simplest example of 
anisotropy is a dipole pattern, a caricature of which is shown in Figure 10.13. 
Now the outgoing intensity along the x-axis comes from the ±y-incident radiation, 
which has the average temperature. The outgoing intensity along the y-axis is also 
neither hot nor cold because it comes from a cold spot (the —x-direction) and a hot 
spot (the +x-direction). The dipole pattern leads therefore only to cancellations 
and unpolarized outgoing radiation. 

To produce polarized radiation, the incoming radiation must have a nonzero 
quadrupole. Figure 10.14 illustrates the polarization produced by an incoming 
quadrupole. The hotter (colder) radiation incident from the x- {y-) direction pro-
duces higher (lower) intensity along the y- (x-) axis for the outgoing wave. There-
fore, the intensity of the outgoing wave is greater along the y-axis than along the 
X-axis: the outgoing radiation is polarized. 

The fact that Compton scattering produces polarization only when the incident 
field has a quadrupole moment has important ramifications for cosmology. We need 
Compton scattering to produce the polarization, so we need to focus on the epoch 
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Figure 10.12. Incoming isotropic radiation produces no polarization. Here, since the incoming 
amplitudes from the x- and y-directions are equal, the outgoing intensities along both of these 
directions are equal, leading to unpolarized radiation. 

before electrons and photons have completely decoupled from each other. However, 
in this epoch electrons and photons are tightly coupled, which we have seen leads 
to a very small quadrupole. Therefore, we expect polarization from the standard 
decoupling epoch to be smaller than the anisotropics. Late reionization enhances 
the polarization at large scales, but does not modify the qualitative conclusion that 
the polarization signal is expected to be small. 

Figure 10.14 depicts polarization in the x-y plane, preferentially in the y-
direction. Alternatively, had the incoming rays been rotated by 45° in the x-y 
plane, the outgoing polarization would have been along the axis 45° from the x-
and y-dixes. Polarization therefore can be depicted as a headless vector, with a 
length corresponding to its magnitude and the orientation of the line describing 
the axis along which the intensity is greatest. In the 2D plane perpendicular to the 
direction of propagation, we therefore decompose the intensity into 

T + Q 
U 

U 
T-Q 

(10.47) 

The diagonal elements T are the temperature we studied in Chapter 8 (with a 
uniform part and a perturbation ©); the two new variables Q and U describe 
polarization. The pattern in Figure 10.14 has Q < 0 and U = 0. Note that these 
definitions of Q and U are identical to the definitions of shear and ellipticity in 
Section 10.2. Especially relevant is Figure 10.6 where we simply replace ei with Q 
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Figure 10.13. Incoming dipole radiation also produces no polarization. (See also color 
Plate 10.13.) Heavy (thin) lines denote hot (cold) spots. Here the incoming radiation is 
hotter than average (average is medium thickness) from the H-x-direction, and colder than 
average from the —x-direction. The two rays from the ±x-directions therefore produce the 
average intensity for the outgoing ray along the ^-direction. The outgoing intensity along the 
x-direction is produced by the ray incident from the ±^-directions. Since these have the aver-
age intensity, the outgoing intensity is also the average along the x-direction. The net result 
is outgoing unpolarized light. 

and e2 with U. A final note: students of electricity and magnetism will no doubt 
recognize T, Q, and U as three of the four Stokes parameters used to describe 
polarization. The fourth, V, is nonzero only if polarization is circularly polarized, a 
phenomenon we do not expect in the early universe, so I have implicitly set F = 0 
here. 

10.6 POLARIZATION FROM A SINGLE PLANE WAVE 

The pictures of the previous subsection are important to gain a qualitative under-
standing of how Compton scattering produces polarization, but they are inefficient 
tools with which to study the phenomenon quantitatively. The proper tool is the 
Boltzmann equation. We could proceed now by simply writing down the Boltzmann 
equation for the Q and U polarization states. In doing so, however, we would lose 
some of the intuition just gained, so I will take an intermediate tack. We will gen-
eralize the discussion of the previous section by summing o\ er all incident rays, not 
just a handful. This will enable us to make the connection with the distribution B 
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Tt 
Figure 10.14. Incoming quadrupole radiation produces outgoing polarized light. See also 
color Plate 10.14.) The outgoing radiation has greater intensity along the ^/-axis than in the 
x-direction. This is a direct result of the hotter radiation incident from the x-direction. 

we have used until now to characterize the photons. 
We first need to define the polarization axes in the most general case when 

the incoming photon arrives from direction f\!. When that direction was x, as in 
the previous section, it was clear that polarization was defined as the difference in 
the intensity along the two perpendicular directions, y and z. In the general case, 
depicted in Figure 10.15, the direction of the incoming photon is depicted by n', 
and we must integrate over all incoming directions. The two axes perpendicular 
to this direction are most conveniently taken to be & and 0', the standard unit 
vectors perpendicular to the position vector. These are called e'̂  and ^2- We still 
are interested in the polarization of outgoing photons in the z-direction, so we can 
choose the two outgoing polarization axes as 6i = x and 62 — y. In short, the 
incoming polarization vectors are 6̂ , the outgoing are 6̂ . 

The idea that Compton scattering allows the fields transverse to the outgoing 
direction to pass through unimpeded, while stopping those parallel to the outgoing 
direction, can be encapsulated by saying that the cross-section for outgoing photons 
polarized in the ê  direction is proportional to 

2 

Ek^^(^)-s(^')r (10.48) 
j = i 

The Q polarization is the difference between this cross-section for i — \ and i = 2, 
i.e., the difference between the field strength in x- and y-directions: 
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Figure 10.15. Incoming photon from direction n Compton scatters off an electron at the 
origin producing outgoing photon in direction h — z. The plane perpendicular to the incoming 
direction is spanned by the two polarization vectors, ei = d' and €2 = 0^ The outgoing photon 
is in the z direction, so the polarization vectors are e\ =• x and 62 = y. 

(10.49) 
j=i j=i j=i 

Integrating over all incoming h' directions leads to 

Q{z) = AJdnn'f{n') E ( 1̂  • S ( ^ ' ) l ' - 1̂  • S ( ^ O r ] . (10.50) 

Here A is a normalization constant which will not concern us for now, and f{n') is 
the intensity of the radiation incoming from the n'-direction, and we integrate over 
all such directions. Note that / depends only on n', but not on 6 :̂ this corresponds 
to the assumption that the incident radiation is unpolarized. 

To take the dot products in Eq. (10.50), we will find it useful to express e'^ 
and 62 in terms of their Cartesian coordinates. Since they are equal to 6' and (f)', 
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respectively, we have 

e\ {6\ (/)') = (cos e' cos (t)\ cos 9' sin 0', - sin 9') 

e'^{9',(t)') = (-sin(?^^cos(/>^0). (10.51) 

Now, the dot products become trivial, and we find 

Q{z) = A I dnn'f{n')\cos'^ 9' cos^ </>' + sin^ 0' - cos^ 9' sin^ (j)' - cos^ cj)'] 

I Idnn'f{n')sm^9'QOs2(t)'. (10.52) = -A 

You might recognize the combination of angles here as being propotional to the sum 
of the spherical harmonics y2,2 + ^2,-2 (Eq. (C.IO)). Since the spherical harmonics 
are orthogonal, the integral will pick out the I = 2,m — ±2 components of the 
distribution / . That is, nonzero Q will be produced only if the incident radiation has 
a quadrupole moment. This verifies the argument-by-pictures given in the previous 
subsection. It is straightforward to derive the corresponding expression for the U-
component of polarization (Exercise 10), 

U{z) = -A f dQn'f{n')sin^9'sm{2(t)'). (10.53) 

The combination of sines here is proportional to ^2,2 —^2,-2- Again, only an incident 
quadrupole produces U polarization. 

We can now relate the outgoing Q and U to the moments of the incident unpo-
larized distribution. We'll do this in four steps, in increasing generality. 

• First, we'll consider the polariztion induced by a wavevector k in the :r-direction. 
• Next, we allow k to lie anywhere in the x-z plane. 
• Then, we consider the most general possible wavevector. 
• The first three steps will give us Q and U of the outgoing radiation along the 

z-axis. We need to generahze this to arbitrary outgoing directions. 

The reason that we need to move so slowly is that the photon distribution, / (n ' ) , 
takes its cue from the direction of the wavevector. Recall that, in Chapter 4, we 
wrote the photon distribution as the sum of a zero-order piece — the uniform Planck 
distribution — and a perturbation, characterized by 0(/c, /i) (e.g., Eq. (4.35)). There 
/i was the dot product of the wave vector k and the direction of propagation. Here we 
have labeled the direction of propagation of the incident photon as n', so /x = ^ • n'. 
Thus, f{n') in Eq. (10.52) will be an expansion in Legendre polynomials with 
argument k - n\ This argument is not equal to the cosine of 9\ since 9^ is the angle 
between the external 2:-axis and n'. Relating /i to 9' and (/)' therefore is not trivial, 
and we will proceed slowly. 
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Let's first consider the wave vector k to lie in the x-direction. Then, 

II = k ' n' = In'] 

= sin 6/'cos 0'. (10.54) 

Recall that we decomposed the perturbation 0 into a sum over Legendre polyno-
mials, so 

-> -5e2{k)P2 (sin(9'COS00 , (10.55) 

where the last line follows by substituting our expression for /i (Eq. (10.54)) and 
considering only the relevant quadrupole part of the sum. 

A plane wave with wavevector k pointing in the x-direction therefore has 

Q{z,k\\x) = bAQ2{k) / de'sme' / c/0'7^2 (sin(9'cos0')sin^ <?'cos20'. 
Jo Jo , , 

(10.56) 
Recall that 'P2(/^) = (3/i^ - l ) /2 . The - 1 / 2 part of this gives no contribution to 
the integral since the 0' integral over cos(20') vanishes. Therefore, we are left with 

Q{z, k\\x)= ^^A@2{k) r ^^, ^.^5 ^, j " ^^, ^^^2 ^/ ^^g 20'. (10.57) 
2 Jo Jo 

The (j)' integral is 7r/2, while the 6' integral — easily done by defining //' = cos^' — is 
16/15. So 

Q( i ,^ | | x ) -47rA02( /c ) . (10.58) 

We've now made part of the connection between polarization — represented by Q 
here — and the formalism of anisotropics — described by 9 in general and 02 specif-
ically for the quadrupole. This expression though applies only in the very simple 
case that the wavevector points along the x-axis, perpendicular to the line of sight. 

Let's generalize this expression to wavevectors pointing in an arbitrary direction 
in the x-z plane: k = {sinOk.O.cosOk). In this case, the factor of {k • n')^ coming 
from V2 is sin^ 0k sin^ 6' cos^ 0' H- cos^ 9k cos^ 6\ The first term is identical to the 
^ II X case just derived, multiplied by sin^ 9k- The second term introduces no new 
0' dependence; since the integral over cos(20') vanishes, it does not contribute. 
Therefore 

Q(z, k ±y)= 47r^sin2 9kQ2{k). (10.59) 

In Exercise 10 you will show that there is no [/-polarization from this type (fc in 
the x-z plane): the polarization is all Q. 

For any single plane wave, we can always rotate our coordinate system around 
the 2:-axis to ensure that the plane wave lies in the x-z plane, so that Eq. (10.59) 
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applies. When we come to consider the real universe, however, with its super-
position of many plane-wave perturbations, we won't have this luxury. Instead, 
we will need to account for the most general wavevector with orientation k — 
(sin0fcCOS(/)fc,sin^/j.sin0/c,cos^/c). For this more general perturbation, you can go 
through (Exercise 9) exactly the same types of calculations as went into Eq. (10.59) 
to show that 

Q{z,k) = AnAsin^ 9kCos{2(j)k)Q2{k) 

U{z,k) = AnAsm^ eksm(2(t)k)@2{k). (10.60) 

We must make one final generalization. Until now, we have focused solely on the 
outgoing radiation along the z-axis. Of course, not all outgoing rays will be along 
the z-axis. (This is what we are looking for: diff'erence in polarization as a function 
of angle.) To account for arbitrary directions, we need to allow the polar angle 
Ok in Eq. (10.60) to be the angle between the observation direction n and k. So 
cos 9k —^ n-k^ and of course sin^ 9k becomes 1 — (n • A:)̂ . Therefore, for observations 
near the z-axis, the outgoing polarization induced by incoming unpolarized incident 
radiation is 

Q{n, k) = ATTA \ l - (n'k\ ] COS(20A:)02(A:) 

[/(n, k) = ATTA \I- (h'k) ] sm{2(t)k)@2{k)- (10.61) 

These expressions are valid only for directions h near the 2;-axis. This restriction is 
due to the dependence on the azimuthal angle, (pk- Far from the 2:-axis, cos(20;i;) 
and sin(20/e) give way to much more complicated expressions depending on both h 
and k. Near the z-axis, though, the relatively simple sine and cosine describe the 
dependence on azimuthal angle. Thus, we will work in the small angle limit, where 
all observation directions are close to one another, clustered around the z-axis. 

Equations (10.61) allow us to draw polarization patterns around the z-axis for 
arbitrary k modes. Consider the four patterns in Figure 10.16. In each case, the 
z-axis is out of the page in the center of the panel. For k in the x-y plane {9k = 90°), 
Eq. (10.61) says that the strength of the polarization as a function of hx and fiy 
varies as 

l-(n-kf = 1- {fixk + hyky)'^. (10.62) 

That is, deviations from the maximum at n ;̂ = n^ = 0 are small, quadratic in 
hx-ffiy. The orientation of the polarization in these cases can be either Q (top left 
panel, (t)k = 0) or f/ (bottom left panel, (pk = 45°). For k out of the x-y plane, 
we begin to observe changes in the polarization strength. The two right panels in 
Figure 10.16 illustrate these changes. Again there can be either Q or U polarization. 
The most important feature of these patterns is that the polarization strength 
is always changing in the direction parallel or perpendicular to the sense of the 
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Figure 10.16. Polarization patterns near the z-axis arising from four plane wave perturbations 
with different k. E.g., upper left arises from k along the x-axis {6k — 90°,(/)fc = 0). For k in 
the x-y plane (two left panels with Q^ — 90°), polarization is at a maximum at i , so little 
variation is seen. Arrows in right panel show direction in which polarization strength increases. 
This direction (or the direction perpendicular to it along which polarization remains constant) 
is aligned with the polarization pattern. This alignment is the hallmark of an £^-mode. 

polarization. In the top right panel, polarization is aligned with the x-axis, and this 
is the direction in which the polarization strength is changing. In the bottom right 
panel, polarization is aligned along x + ^, and the change is along the perpendicular 
direction x — y. We will soon decompose polarization into E and B modes, just as 
we did the shear pattern in weak lensing. The patterns observed here are all pure 
E. Indeed, scalar perturbations generate only E modes. 

We can also begin to understand the E/B decomposition. The polarization 
generated by scalar perturbations, the E mode, varies in strength in the same 
direction as its orientation. This conjures images of an electric field. An electric 
field from a point source, E — qr/r'^, varies in strength as one moves away from 
the point source. The electric field is pointed in the same direction: radially away 
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from the source. As one moves in the direction of the field, the strength of the 
field decreases. In Section 10.9, we will encounter the B mode, and see that—just 
like a magnetic field — the B mode of polarization varies in strength in a different 
direction from that in which it is pointing. 

10.7 BOLTZMANN SOLUTION 

To make quantitative predictions for the polarization expected in the CMB, we must 
go beyond the treatment of the previous section. There, we sat a single electron at 
the origin and considered the polarization emerging from incoming radiation with 
a given distribution. The real problem has lots of electrons coupled to an evolving 
photon distribution. For this, we need the Boltzmann equation. We wrote down 
the relevant equations in Chapter 4, although it will take a little bit of work to 
relate the variable we used there, 0 p , to Q and U introduced above. The relevant 
equations ((4.101) and (4.102)) from Chapter 4 are 

0p + ik/iQp -ep + i ( i - p 2 ( / x ) ) n (10.63) 

n = e2-f ep2 + epo (io.64) 

where /J. = k -h^ and 0po and ©P2 are the monopole and quadrupole, respectively, 
of the polarization field. 

We are left with the question of the relationship between 9 p and Q, f/. Gp is 
the strength of the polarization, while Q and U together describe both the strength 
and the orientation. In Chapter 4, we implicitly chose k to to he in the x-z plane 
in Chapter 4. In that case, we have just seen that the polarization is all Q, so 

Q{z,k) = ep{z,k) 

U{z,k) = 0 k±y. (10.65) 

More generally, for arbitrary k, at least for directions h close to £, we have 

Q{k,h) = QpCk'n)cos{2(l)k) 

U{k, h) = @p{k ' ft) sin(2(/>fc). (10.66) 

Equation (10.66) is a crucial connection between the polarization pattern 
Q(n), U{n) we are interested in and 6p(/ i = k - h) for which we have Boltzmann 
equations. Now all we need to do is solve the Boltzmann equations for 9 p , and 
then use Eq. (10.66) to construct power spectra for Q and U. We attack the first 
task in this section and the second in the next. 

First, though, to solidify this connection between Gp and Q,U, it is instructive 
to rederive the result of the previous section for an incoming unpolarized wave 
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using the Boltzmann equation. We found there (Eq. (10.59)) that the outgoing 
polarization (for k in the x-z plane) was proportional to (1 — /i^)62 where fi is the 
cosine of the angle between k and z. Can we get this from the Boltzmann equation? 
In the absence of any prior polarization, Eq. (10.63) reduces to 

Op = - f ' - ^ ^ U 
2 

= ^ ( l - / * ' ) 0 2 . (10.67) 

Integrating over r/, we find that the polarization induced by Compton scattering 
from incident unpolarized radiation is 

e p = y ( l - M ' ) 0 2 , (10.68) 

i.e. the optical depth times the quadrupole modulated by the geometric factor 
1 — /x ,̂ in agreement with the less formal derivation advanced above. We also see 
that the strength of the polarization generated is proportional to the optical depth, 
r , the integral along the line of sight of the free electron density times the Thomson 
cross-section. 

Now let's solve the Boltzmann equation for the polarization. In analogy to 
Eq. (8.46), the formal solution to Eq. (10.63) for Op is 

rvo 
@p^n,k)= / d77e^^-^(^-^°)-^(^^5p(A:,/x,77), 

Jo 
(10.69) 

where the source term is 

5p(fc,M,^) = - ^ T ( l - / i 2 ) n . (10.70) 

Remember that the visibility function is defined as —fe~'^, so 

e p ( n , k) = - ( l - /i2) / dr/e^^-(^-^o)^(^)n(fc, ry). (10.71) 

A reasonable approximation is to assume that we can evaluate the integrand — 
except for the rapidly changing visibility function — at the time of decoupling (for 
standard recombination). Then, since the visibility function integrates to unity, 

ep{%k) ^ ffllZZll (1 _ ^2) ^^k•n{v.-Vo)^ (10.72) 

Neglecting r/* compared with rjo and rewriting the factors of /x as derivatives leads 
to 
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To get the moments ©p/, we must multiply Eq. (10.73) by Vi{fi) and integrate 
over all // as in Eq. (4.99). This gives (Eq. (C.15)) 

e„(.) = S ( ^ ( i + ̂ )„(^*)^ (10.74) 

The sum of the spherical Bessel function and its second derivative can be rewritten 
using the spherical Bessel equation (C.13) as 

Ji+Ji = — r — + Ti—^Ji + /. ^2^^ (10.75) 

Of the three terms on the right, the last one dominates on small scales. To see this, 
remember that the spherical Bessel function peaks roughly at kr]o ^ I. Physically, 
this means that anisotropy on an angular scale / is determined by perturbations 
with wavelength k~^ ^ Vo/^- For our order-of-magnitude estimate, this means that 
we can take kr]Q to be of order / in the three terms on the right-hand side. The first 
is then of order /~^, the second of order /~^, and the last of order P/{krjo)'^ ^ 1: 
the last term dominates. Therefore, 

3U{k,rj,) l^ 
e p K f e ) ^ ^ T " ^ * ^ . : , , J / ( ^ r y o ) . (10.76) 

In the tight coupling limit, we can express 11 in terms of the quadrupole, which 
in turn is related to the dipole. As you can show in Exercise 12, 11 = 502/2. 
Therefore, the polarization moments today are 

15e2(A:,ry*) /̂  • / . x n^77^ 
Qpi{k) ^ J^^.Jii^Vo). (10-77) 

We can go one step further by noting that — in the tightly coupled limit — the 
quadrupole is proportional to the dipole (Eq. (8.34)). Therefore, 

Equation (10.78) is a final expression for the polarization moments today assum-
ing the tightly coupled limit. Three features are worthy of note. First, and most 
important, the polarization spectrum is seen to be smaller than the anisotropy 
spectrum by a factor of order k/f at the time of decoupling. We will quantify this 
in the next section, but we now understand that it is a direct result of the twin 
facts that polarization is generated by a quadrupole moment and the quadrupole 
is suppressed in the early universe due to Compton scattering. Second, we expect 
there to be oscillations in the polarization power spectrum because Qpi a ©i, 
which undergoes acoustic oscillations. More quantitatively, we expect the polar-
ization oscillations, just like the dipole, to be out of phase with the monopole. 
The peaks and troughs in the temperature anisotropy spectrum, arising primarily 
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from oscillations in the monopole, should then be out of phase with the peaks and 
troughs in the polarization power spectrum. Finally, there is no analogue here to the 
integrated Sachs-Wolfe effect which impacts the temperature anisotropy spectrum. 
Polarization cannot be induced by photons moving through changing gravitational 
potentials. Therefore, the polarization spectrum today is in some senses a more 
pristine view of the early universe, uncontaminated by later developments. 

10.8 POLARIZATION POWER SPECTRA 

Equation (10.78) is an expression for the polarization moments from a single plane 
wave. In the real universe, we have not just one plane wave, but a superposition of 
many waves, all with differing amplitudes Qp{k,h). The angular power spectrum 
from a superposition of plane waves follows from the identical calculation on the 
temperature anisotropics (Eq. (8.68)): 

Cp^i = - / dkk^ \Qpi{k)f . (10.79) 

For quite a while, cosmologists computed this power spectrum without reference to 
Q or L̂ . In 1997, a flurry of papers appeared which derived the power spectra for 
Q and U. These exploited Eq. (10.66) or large-angle generalizations of it. 

Based on our solution for the power spectra of the different components of shear 
in Section 10.4, we have a sense of what to expect for the power spectra of Q and 
U. Consider first Figure 10.17. In the small angle limit, Q for example is a function 
of the 2D vector 0, the projection of h onto the plane perpendicular to the z axis. 
Thus, we can Fourier transform Q just as we Fourier transformed the shear fields 
above; its transform will depend on /, the vector conjugate to 0. Based on our 
experience with weak lensing, we expect the power spectrum of Q to depend not 
only on the magnitude of / but also on its orientation. Looking back at Eq. (10.66), 
we will not be surprised to find that this power spectrum, CQQ{1) is proportional 
to Cp^i. The proportionality constant is cos^(2(/)/), where (/̂ / is the angle / makes 
with the X-axis. Thus, the factor of cos(2(/)fc) in Eq. (10.66) becomes cos(20/) when 
we sum over all k. Similarly, the power spectrum of U is sin^(2(^/)Cp,/. 

Let's derive this connection between the power spectra of Q and U and that of 
Op explicitly. We can write the Q polarization as a sum over all plane waves: 

QiO) = J 7 ^ e > p ( ^ , k) cos(2</.fe) (10.80) 

The modulating factor e*̂ "̂  is set to 1 here, since we observe from only one position, 
and we are calling that position x = 0. To deal with the cos(20fc) factor, first note 
that it is equal to cos^ (pk — sin^ 0^, or in terms of the Cartesian components of k: 

^ ° « ( 2 0 . ) - § ^ . (10.81) 
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Figure 10.17. Different vectors in polarization. We observe radiation with incoming direction 
n, also parameterized by 2D angle 9. Wavevector k has an azimuthal angle (j)k-

Since Qp has the exponential factor e *̂ -̂ ô (e.g. Eq. (10.69)), and since fix — Ox 
and hy = Oy, we can rewrite these Cartesian coordinates as derivatives with respect 
to the 6. For example, k^ -^ [—iT]Q]~^d/d9x. The full cos{24'k) factor therefore can 
be written solely as derivatives with respect to 9: 

cos(2(/.fc) = DQ{e) 
d^ d^ 
del + del 

d^ ^2 

del del 
(10.82) 

This expression looks formidable, but it is extremely useful for summing up many 
different fc-modes. We can replace Eq. (10.80) with 

Q{e) = DQ0) I d^k 
(27r)3 

DQ{e)ep{e). 

Qp{e,k) 

(10.83) 

Both Q{6) and Op{e) can be written in terms of their Fourier transforms, so 
that Eq. (10.83) becomes 

f dH 
J {2nf 

e^'-'Qil) = DQ < '̂/iS-' ^e PI- (10.84) 
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Now DQ, which is so very comphcated in ^-space, becomes very simple, for we 
know exactly what it looks like when it acts on the exponential e^ '̂̂ . In that case, 
it simply becomes cos(2(/)f), where 0/ is the angle that the 2D vector / makes with 
the X-axis. Therefore, the Fourier transform of Q{6) is 

Q{l) = Qpicos{2(t)i). (10.85) 

An identical argument says that U{1) — Qpi sin(20/). Therefore, the power spectra 
of Q and U are 

CQQ{r) = Cp,icos\2cPi) 

Cuu{i) = Cp,ism\2(t>i). (10.86) 

Recall that in the case of weak lensing, we noticed that one could take linear 
combinations of 71 and 72 such that the power spectrum of one of the linear com-
binations vanishes (Eq. (10.40)), while the other is equal to the convergence power 
spectrum (Eq. (10.39)). Here we can do exactly the same thing. If we define 

E{r) = Q{1) cos(20O + ^ ( 0 sin(20O 

B{1) = -Q{V) sm{2(f)i) + UiV) cos(20O (10-87) 

then 
CBB{i)=0. (10.88) 

In the small-scale limit, the power in the £'-mode is precisely equal to Cp: 

\imCEE{i) = Cp^i. (10.89) 

Figure 10.18 shows the resultant power spectrum, both the exact numerical result 
and the approximation of Eq. (10.78) integated over all modes as dictated by 
Eq. (10.79). Also shown is the spectrum of temperature anisotropics from Chap-
ter 8. As expected it is higher in amplitude, since polarization is suppressed in 
the tightly coupled limit. Also as anticipated, the oscillations in the polarization 
spectrum are out of phase with those in the temperature spectrum. In 2002, the 
DASI experiment announced the first detection of polarization, a detection shown 
in Figure 10.18. This is akin to the first detection of shear by large scale structure, 
the beginning of our journey down promising new paths in cosmology. 

The spectrum in Figure 10.18 is shown only on small scales; on larger scales, 
the treatment of this section needs to be modified (Kamionkowski, Kosowsky, and 
Stebbins, 1997a; Seljak and Zaldarriaga, 1997). The resultant spectrum has no sur-
prises: it falls off" very rapidly on large scales. Since the polarization is proportional 
to the dipole, which vanishes for large-scale modes, we could have anticipated this 
result as well. Although I won't go into the technical details of this large-angle 
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Figure 10.18. Power spectra of temperature and E-mode polarization for the standard CDM 
model. Thick curves show exact results; thin curve is the tight coupling approximation of 
Eq. (10.78). Only scalar perturbations have been assumed, so there is no power in the B-mode. 
Straight line at 10/iK is an upper limit from Hedman et aL, 2002, while the hatched boxes are 
the first detection by the DAS! experiment (Kovac et aL, 2002). 

result, the basic idea is that instead of expanding polarization in terms of Legen-
dre polynomials, or ordinary spherical harmonics, one must use tensor spherical 
harmonics. 

One final comment: we have been implicitly assuming until now that the per-
turbations of interest are scalar. We inserted this assumption early on by writing 
the plane-wave perturbation as Eq. (10.55). If the perturbations were tensor, the 
decomposition would have included an azimuthal dependence; recall Eq. (4.115). 

10.9 DETECTING GRAVITY WAVES 

There is a fundamental difference between the scalar perturbations we have consid-
ered in the previous sections and tensor perturbations. A scalar plane-wave pertur-
bation has one direction associated with it: the direction of the wavevector k. Once 
this direction is specified, all photon moments depend only on the angle between 
the incoming photon and the wavevector. Once this angle is specified, there is an 
azimuthal symmetry about the k direction. This rotational symmetry is the reason 
that only the E mode is produced by scalar perturbations. There are two directions 
in a polarization field: (i) the direction in which the polarization strength is chang-
ing and (ii) the orientation of the polarization. For scalar perturbations, we saw in 
Figure 10.16 that these directions must be aligned (or perpendicular to each other). 
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Intuitively, each direction looks to the only vector it knows — k — for guidance, and 
they each arrive at the same end. This alignment is the salient characteristic of the 
E mode. 

The photon distribution from tensor perturbations is not rotationally symmetric 
about the ^-direction. Gravity waves are pulsations in the metric; these induce an 
azimuthal dependence to the photon distribution. Recall from Eq. (4.115) that the 
resultant distribution varies as sin(2(/)) or cos(20), where 0 is the azimuthal angle 
about the ^-axis. This dependence on 0 means that there is an additional direction 
to choose from when the polarization field gets induced. We might expect then that 
the orientation of the polarization will not necessarily be aligned with the direction 
of changing polarization strength. That is, we might expect that gravity waves will 
produce ^-mode polarization. This is exactly what we will show in this section. 

Before working through the algebra, we need to pause to understand the impor-
tance of the B-mode generated by tensor perturbations. Let's start with the diffi-
culty of detecting tensors through the £'-mode. Both scalars and tensors contribute 
to the E'-mode, so the only way to disentangle them is to take advantage of dif-
ferences in their spectra as a function of /. We saw in the case of temperature 
anisotropics that this is a tricky game, though, for other parameters can change 
spectra in ways similar to tensors. So even if we had perfect knowledge of the 
CE,I spectrum (no noise), we would still not necessarily know whether tensors were 
present. The B-mode is different. There is no contamination from scalar perturba-
tions, so if we observe a B-mode in polarization, we know that it comes from gravity 
waves. In principle, this realization has unlimited power: no matter how small the 
tensor signal from inflation (no matter how small iJ/mpi), we can ultimately detect 
this signal by searching for a B-mode. In practice, there are contaminants due to 
nonlinearities, but these are quite small. Estimates (Knox and Song, 2002; Kesden, 
Cooray, and Kamionkowski, 2002) suggest that the lowest obtainable limit on r, 
the tensor-to-scalar ratio, is of order 10~^. 

Let's compute the polarization pattern from a single plane wave generated by 
tensor perturbations. This problem is identical to that treated in Section 10.6. 
To find the outgoing polarization near the z-axis, we need to integrate over the 
incoming photon distribution. As in Eqs. (10.52) and (10.53), we want 

(^)oc-jdn'e^{Q')sin'e'^'°'^^'^' 

oc 

sin(20') 

where I have inserted the photon distribution due to tensor perturbations, 6 ^ ; 
recognized the combination of sin̂ ^ 6' and the azimuthal dependence as y2,2 =1=^2,-2; 
and neglected the absolute normahzation of the polarization. 

To complete the calculation, we need to find the angular dependence of Q^. This 
is a bit more difficult than one might expect. Although we know that this angular 
dependence is sin^ ^'cos(2(/)') (for /i_ )̂ or s\r? 9' sm{2(j)') (hx) for k lying along the 
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z-axis, we need the dependence for a general wavevector k. One way of finding this 
dependence is to rotate the coordinate system so that a unit vector pointing in the 
f-direction gets rotated so that it points in the fc-direction. The relevant rotation 
matrix is 

/ cos 6k cos 0fc — sin (pk sin 6^ cos (pk \ 
R= I cos^fcsin0fc cos(/)fc sin ^^ sin 0^ I . (10.91) 

y — sin^fc 0 cos^/c J 

You should verify that R really does take z —^ k and work through a simple deriva-
tion of R (Exercise 13). We want to know what R does to 6 ^ . To be concrete, 
let's focus on h^, so that G"̂  oc sin^ 6' sin(20'). First, we can reexpress this angular 
dependence in terms of the unit vector h' describing the direction of the incident 
photon: 

sin^ e' sin(20') = 2 sin^ 9' sin (j)' cos (})' 

- 2n^n;. (10.92) 

Now let's rotate the coordinate system so that the z-axis points in the direction of 
k. The anisotropics due to the /ix-mode used to be proportional to n'^fi'y. In the 
new coordinate system, they become 

Q^ (x{R^fi')^{R^n')y (10.93) 

where * denotes transpose. 
Now we work through the matrix multiplication and find 

0 oc (cos Ok cos (pk sin 6' cos (p' -h cos Ok sin (pk sin 0' sin (p' — sin Ok cos 0') 

X (—sin0'sin(pk cos0' -h cos(pk sin0'sin(f)') 

= sin 0' sin(0' - (pk) (cos Ok sin 0' cos{(j)' - (pk) - sin Ok cos 0') 

= - cos Ok sin^ 0' sin [2{(p' -(pk)]- sin 0' cos 0' sin Ok sin(0' - (pk). (10.94) 

This last combination can be reexpressed in terms of spherical harmonics: it is a 
linear combination of ^2,±2,^2,±i, and y2,o- That is, the anisotropy pattern about 
the wavevector k due to gravity waves (the h^ mode) has a ^2,2 - ^2,-2 dependence 
when k is along the z-axis. When k is general, this dependence gets mixed up among 
all the l2,m's. We are interested in the polarization pattern generated by Q-^; from 
Eq. (10.90) and the orthogonality property of the spherical harmonics, this means 
we are interested only in the l2,±2 components of 0-^. We can now extract these 
from Eq. (10.94). The last term on the right has a factor of sin(0' — (pk), so it is 
proportional to l2,±i, and we can neglect it. The first term is 

(10.95) 
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To find Q and [/, we dot this into l2,2 ± ^2,-2, so that the integral in Eq. (10.90) 
leads to 

(i!)««j-'''(;»St)')^ (10.6) 
If we move small angles away from the z-direction, then the azimuthal dependence 
does not change, and cos^^ -^ n • A:, so that 

(«»)).ej..j(;5<;«). ,10.97, 

The polarization pattern described by Eq. (10.97) has a nonzero B-mode. To 
see this, first consider the definition of B in Eq. (10.87). This definition is in Fourier 
space, but we remember that using the operator DQ^U-, we can replace / with k, the 
wavevector. Therefore, for k in the x-z plane (0^ = 0), the 5-mode corresponds to 
only U polarization. Indeed this is precisely what Eq. (10.97) says is produced by 
the /ix mode of gravity waves. So the anisotropics due to gravity waves do produce 
the B-mode of polarization. 

^ Figure 10.19 shows the polarization patterns due to a single plane wave h^ oc 
^ik-x f-Qj. £Q^J. (lifPerent wavevectors k. For example, the top left panel considers 
k lying along the x-axis. In that case, since (pk = 0^ Eq. (10.97) says that the 
polarization is all U and that the strength scales as 

n'k = ha:. (10.98) 

The strength of the polarization therefore increases as one moves away from the 
y-axis. The important feature of this pattern, which characterizes the B-mode, is 
that the strength of the polarization varies in the x-direction, while the orientation 
is in the x ±y direction. These two directions (varying strength and polarization 
orientation) are not aligned or perpendicular to each other. The other panels show 
the same feature. 

Figure 10.20 shows the anisotropy spectrum in a standard CDM model with an 
equal amount of tensors and scalars. The T and E spectra are similar to the tensor-
less case depicted in Figure 10.18. With tensors, the B spectrum is now nonzero, 
albeit small. Studies suggest that polarization searches will help significantly in the 
quest to detect small r. 

SUGGESTED READING 

Gravitational lensing is described in exquisite detail in Gravitational Lenses (Schnei-
der, Ehlers, and Falco). An excellent, comprehensive review of weak lensing is in 
Bartelmann and Schneider (2001). Electromagnetic polarization is a textbook sub-
ject, covered in, for example. Classical Electrodynamics (Jackson) and Radiative 
Processes in Astrophysics (Rybicki and Lightman). Initial papers on gravitational 
lensing by large scale structure include Blandford et al. (1991), Miralda-Escude 
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Figure 10.19. Polarization patterns from a single plane wave hx{k) in a plane perpendicular 
to the 2;-axis ( i out of the paper). Patterns from four different k are shown. Arrows depict 
direction of increasing polarization strength. This direction is not aligned with the orientation 
of the polarization. 

(1991), and Kaiser (1992). Recent theoretical work connecting lensing observa-
tions to cosmological parameters includes Jain and Seljak (1997); Bernardeau, 
van Waerbecke, and Mellier (1997); and Hu and Tegmark (1999). The onset of 
the new millenium saw the first detections of lensing by large scale structure 
in van Waerbecke et al. (2000); Wittman et al. (2000); Bacon, Refrgier, and 
Ellis (2000); Kaiser, Wilson and Luppino (2000); and Maoh et al (2001). Active 
work continues. The future will undoubtedly bring observations of weak lensing 
on large fields. Two proposal for such observations are the SuperNova Accel-
eration Probe (SNAP; h t t p : / / s n a p . l b l . g o v ) , which presently plans to devote 
~ 20% of its time to weak lensing, and the Large Scale Synaptic Telescope (LSST; 
http://www.dmtelescope.org). 

Polarization of the CMB was studied in the seminal papers of the 1980s by 
Bond and Efstathiou (1984) and Polnarev (1985). Kosowsky's thesis (1996) is 
a lucid Boltzmann-esque discussion of this work. The first papers to recognize 
the importance of the E/B decomposition were Stebbins (1996); Seljak (1997); 
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Figure 10.20. Anisotropy spectrum from a standard CDM model with equal amounts of scalar 
and tensor perturbations {r — 1). The T and E spectra come from both scalars and tensors, 
whereas the B-mode is due solely to tensors. 

Kamionkowski, Kosowsky, and Stebbins (1997a,b), and Zaldarriaga and Seljak 
(1997). I've followed the treatment of Seljak who worked in the small angle limit 
because the algebra is simpler. The review article of Hu and White (1997b) is per-
haps the most accessible introduction into the recent literature on polarization of 
the CMB, but it is a difficult subject. Even this lucid review with its illuminating 
pictures requires a lot of effort to understand. 

DASI (Kovac et a/., 2002) detected polarization at the 5-sigma level. Previous 
stringent upper limits, which are still valuable on large scales, were obtained by 
Hedman et al (2000) and Keating et al (2001). 

EXERCISES 

Exercise 1. The probability that there will be a galaxy massive enough to act as 
a lens between a quasar at redshift z and us is roughly proportional to the volume 
between us. Compute 

V{z) = f d^x. (10.99) 
Jx<x{z) 

The integral is trivial, but the dependence on z is not. Numerically compute V{z) 
in a flat universe with cosmological constant. Plot V{z) vs (^A for 2: = 2,3,4. If the 
galaxy density does not depend on cosmology, then the expected number of lenses 
scales simply as this volume. For 2; = 3, what is the ratio of lenses expected in a 
flat universe with f̂ A = 0-7 as compared with a flat, matter-dominated universe? 
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Be warned that Keeton (2002), among others, has made a strong case that the 
expected lensing frequency does not vary this dramatically with cosmology because 
of differences in the galaxy densities in the different models. 

Exercise 2. Compute the magnification of an image in terms of the convergence 
K. and shear 71 and 72. Show that, in the Hmit of weak fields, the magnification /x 
is related to the convergence via 

fic^l-^2K. (10.100) 

Exercise 3. It is often useful to write observable properties of lenses — such as 
deflection angles and shear — in terms of a projected potential (j). 
(a) Using Eq. (10.14), determine the 0 such that Og = 9 -{- S/cj) where V is the 
gradient with respect to the 2D angular variable 0. 
(b) Express the transformation matrix defined in Eq. (10.15) in terms of the pro-
jected potential. 

Exercise 4. When the lens is at a fixed redshift (e.g., a single galaxy or a cluster as 
opposed to large-scale structure in general) ZL corresponding to comoving distance 
XL from us, show that the projected potential (p from the previous problem reduces 

to _ r , . 
cl)(e;zL)=^G——— (fR^{R)ln\R-XLO\. (10.101) 

XSXL J I I 

Here xs is the comoving distance out to the source; R is the radius in the plane 
perpendicular to the line of sight; and S (^ ) is the projected surface density in this 
plane. 

Exercise 5. Compute the observed component of ellipticity €2 from an intrinsically 
circular source; express it in terms of the components of the transformation matrix, 
K,7i, and, most importantly, 72. 

Exercise 6. (a) Show that the power spectrum of the convergence is given by 
Eq. (10.35). Show that the power spectrum of 72 is given by Eq. (10.36). 
(b) Using CMBFAST or the BBKS transfer function, compute numerically P^ for 
standard CDM with Qrn = ^,h = 0.5,n = 1. Assume all background galaxies are 
at redshift 2: = 1. At what / do you expect your result— based on the Hnear power 
spectrum — to lose validity due to nonlinear effects? 

Exercise 7. Equation (10.34) gives the power spectrum of the convergence in the 
small angle hmit (/ ::^ 1). The more general expression is (Stebbins, 1996, the extra 
factor of (27r)'̂  here due to differing power spectrum conventions) 

^ k^lf{kx)P^{k) (10.102) 
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when all background galaxies are at comoving distance x ^^^ 

Ii{x)^ [ ^{l-y)j,(xy). (10.103) 
Jo y 

(a) Verify, either analytically or numerically, that in the small-angle limit 
Eq. (10.102) reduces to the expression for PK,{1) in Eq. (10.34). 
(b) Redo the calculation of the convergence power spectrum for the sCDM model 
of Exercise 6, this time using the general expression in Eq. (10.102). 

Exercise 8. In the text, we computed the angular correlations of galaxies (Chap-
ter 9) and the weak lensing correlation function (this chapter). One can also com-
pute the cross-correlation, which measures how correlated the galaxies are with 
the mass. One way to measure this is to separate a galaxy sample into foreground 
and background galaxies and measure the cross-correlation between the two sam-
ples. Since they are separated by such large distances, the only possible correlation 
arises because the background galaxies have been magnified by the foreground mass. 
This problem allows you to work out the background/foreground correlation func-
tion (e.g., Moessner and Jain, 1998). Incidentally, this cross-correlation function 
can also be measured by the QSO/galaxy correlation function. Suppose the 2D 
overdensity of foreground galaxies is due solely to intrinsic inhomogenities, so that 
it is given by Eq. (9.3). Assume that the 2D overdensity of background galaxies 
arises only from magnification. That is, galaxies that should not be included in the 
survey because they are intrinsically fainter than the magnitude limit are magnified 
and so appear brighter, thereby making the cut. If the magnification is /i, then the 
number of background galaxies in an angular patch is 

nb = nb^^-^'-\ (10.104) 

Here n^ is the average number of background galaxies, and s is defined as 
d\ogN{m)/dm where N(rn) is the number of galaxies at the magnitude limit m. 
For the present problem, don't worry about where this relation comes from (see 
Broadhurst, Taylor, and Peacock, 1995, for an explanation). 
(a) Express (5̂ , the background overdensity, in terms of n and s using Eq. (10.100). 
(b) Find an expression for the convergence K{6) in terms of the mass overdensity. 
First express it in terms of the relevant components of transformation matrix A of 
Eq. (10.17), but then eliminate the potential there in favor of the density field 6. 
(c) Using these two expressions — Eq. (9.3) and your answer in (b)—for the fore-
ground and background overdensities, compute the angular cross-correlation hino,-
tion Wbg{e) = {5b{6)8g{{))). 

Exercise 9. As the wavevector k moves out of the x-z plane, show that the Q-
polarization (for outgoing radiation in the z-direction) changes as cos(2(/)/c). To do 
this, first compute k - n'^ and then integrate 7̂ 2 (^ • '^0 ^^^^ solid angle, with the 
weighting factor sin^ ^'cos(20') derived in Eq. (10.52). 
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Exercise 10. This problem focuses on the [/-component of polarization. 
(a) We showed that the Q-component of polarization from unpolarized incident 
radiation is given by Eq. (10.52), which stems from Eq. (10.50). The Q-component 
thus depends on the difference between |6i -xp and \ei-y\'^. For the [/-component, x 
and y must be replaced by unit vectors rotated 45°, i.e., {x + y)l\/2 and {x — y)/y/2. 
With this replacement, derive Eq. (10.53). 
(b) Show that a plane-wave perturbation with wavevector k lying in the x-z plane 
does not produce any [/-polarization in the outgoing ^-direction. 
(c) For the most general orientation of the wavevector, k — (sin 6 cos 0, sin 6 sin 0, cos 6), 
show that [/-polarization is given by Eq. (10.60). 

Exercise 11. Draw the polarization patterns near the z-axis arising from a plane-
wave scalar perturbation with (a) 9k = 7r/8, (j)k = TT/S; (b) Ok = 37r/4, 0^ = 7r/4; 
(c) Ok = 37r/4,0fc = 0; and (d) Ok — 37r/2,0fc = 0. In each case, show that the 
sense of polarization is aligned with (or perpendicular to) the direction in which 
the polarization strength is changing. 

Exercise 12. In the tight coupling limit, find an expression for 11 = 62 -h Bp2 + 
epo. 
(a) When f is very large, the terms multiplying it on the right hand side of 
Eq. (10.63) must cancel. Write down this equahty for 0p(/x) in terms of the 
moments, ©2,©P2 5 and Gpo-
(b) Expand Qp(^\i) in terms of Legendre polynomials, keeping only the monopole 
and the quadupole. Then equate the coefficients of VQ and 7̂ 2-
(c) This leads to two equations for three unknowns. Show that solving for the two 
polarization moments in terms of the temperature quadrupole gives 0po = 502/4 
and Op2 = 62/4. 
(d) Use the results of (c) to determine 11 in terms of 02. 

Exercise 13. This problem concerns the rotation matrix R given in Eq. (10.91). 
(a) Act with R on the unit vector (0,0,1) and show that it gets transformed into 
k. 
(b) Derive R. One way to do this is to first rotate the x-y-z frame about the z-axis 
by an angle (\)'. Then, rotate about the y-axis by an angle —0'. The product of these 
two rotations is R. 

Exercise 14. In the text we considered polarization patterns from a single plane-
wave perturbation due to gravity waves. There are actually two such orientations. 
We considered only /ix- In this problem, consider polarization from /14.. In a frame 
in which k is along the z-axis the anisotropics have a sin^ ^cos(2(/)) dependence. 
(a) Find the dependence of 0-^ on angle in the more general frame in which k does 
not lie along the z-axis. 
(b) Determine Q and U from this incoming distribution. 



bxercises 335 

(c) Plot the anisotropy pattern near the outgoing z-direction for the four sets of 
6k^(t>k shown in Figure 10.19. 

Exercise 15. Find expressions for the cross-correlation spectra between the tem-
perature anisotropy and polarization anisotropy CTQ{1) and CTU{1) in terms of 0/ 
and Op/. Assume scalar perturbations only. Express CTE.I in terms of these. 



11 
ANALYSIS 

Increasingly, theorists and even busy experimentalists are turning their attention 
to the fundamental question of how best to analyze a set of data. The main reason 
for this focus is that the quahty and quantity of data have improved dramatically 
over the past decade. There is every reason to believe that this trend will continue. 
Anisotropics in the temperature of the CMB have been measured by dozens of 
experiments already. The satellites MAP and Planck will take these measurements 
to the next stage, but there is no reason to think this will be the last stage. There 
are still polarization and very small scale anisotropics to be measured. The power 
spectrum of matter is probed in a variety of ways; activity here, too, shows no 
sign of letting up. After the completion of the Sloan Digital Sky Survey and 2DF, 
the two largest redshift surveys to date, surveyors have begun planning large weak 
lensing missions and even deeper galaxy surveys. These larger data sets create new 
challenges in analysis. 

A wonderful/disturbing example of these challenges was given recently by Julian 
Borrill. He used scaling arguments to show that a brute-force algorithm for making 
a map from the raw data of the Boomerang CMB anisotropy experiment would 
take 12 years to run on current computers! Already, data sets are far too large for 
brute-force calculations. And things are rapidly getting more dire. Since typically 
the number of arithmetic operations scales as the number of pixels cubed, and since 
MAP and Planck will have of order 10 to 100 times more data than Boomerang, 
the situation cries out for creative solutions. 

Another reason for the recent focus on analysis is one I hope to convey in 
this chapter: analysis is exciting. The techniques that have been proposed to deal 
with the complexity of forthcoming data sets are beautiful. The elegance of these 
techniques is of course enhanced by their importance. But the elegance is there; for 
this reason alone, it is well worth working through some of these recent advances. 

336 
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11.1 THE LIKELIHOOD FUNCTION 

The basic building block of contemporary analysis is the hkelihood function. This is 
defined as the probabihty that a given experiment would get the data it did given a 
theory. This seemingly simple definition is exceedingly powerful. Once we have the 
hkelihood function, with a caveat or two, we can determine the parameters of the 
theory (best estimate is the place in parameter space where the hkelihood function 
is largest) along with errors (determined by the width of the likelihood function). 
We start with a simple example and move on to the likelihood function for the 
CMB and then a galaxy survey. 

11.1.1 Simple Example 

Suppose you want to weigh somebody. Since you are a scientist, you know that, 
in addition to the measurement, you should also report an uncertainty. So you set 
up 100 different scales and record the person's weight on each of these different 
scales. Given these 100 numbers, what value should you report for the weight and 
the uncertainty in the weight? We all know the answer to this question, so let's 
introduce the formalism of the likelihood function in this simple context. 

The likehhood function is the probability of getting the hundred numbers given 
a theory. Our theory will be that each measurement is the sum of a constant signal 
(the person's weight) w and noise, with the noise drawn from a Gaussian distribu-
tion with mean zero and variance a^. Thus our "theory" has two free parameters, 
w and a^,- If only one data point d was taken, the probability of getting d given 
the theory would be 

P[d\w,a^] = C{d;w,a^) = ̂ L=exp{-^'^~^^ ]. (11.1) 
y/27Tai L ^(^w J 

Here and throughout, P[x|?/] denotes the probability of x given y. Equation (11.1) 
simply restates the assumptions that d — w is equal to noise and that the noise is 
drawn from a Gaussian distribution with standard deviation a^j- In the hmit that 
a^ becomes very small, this function becomes sharply peaked dit d = w. Since we 
are making N^ = 100 independent measurements, the likelihood function is the 
product of all the individual likehhood functions. That is. 

Notice that, although the data are distributed as a Gaussian, the hkehhood function 
is not Gaussian in all the theoretical parameters (it is in w but is not in auj). 

We are interested in the value of the theoretical parameters w and (j,^. Thus, 
we don't want P[{(i^}|u?, cr̂ ,̂], which is the likelihood function we have computed. 
Rather, we want P[w,a^,\{dj}]. To obtain the latter from the former we can use a 
simple relation from elementary probability theory, 

P[BnA] ^P[B\A]P[A] 
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= P[A\B]P[B]. (11.3) 

In this context A = {di} and B = {w,a^a}, so the equahty between the two Hnes 
of Eq. (11.3) means that 

P[^.cr^\{d^}] = pj^^ . (11.4) 

The denominator can be rewritten by reaHzing that when we integrate the prob-
abihty P[w,au}\d] over all values of the parameters w.a-w, we must get 1. So the 
denominator is equal to the integral of the numerator over if;,cr^. As a result, the 
denominator does not depend on the parameters w and a-^j, so it does not affect 
the place in parameter space where the likelihood function peaks or the width of 
the Hkelihood function. For the most part, then, we are free to ignore it. 

To get the probability we want we need the likelihood function — the first term 
in the numerator — and also the prior probabiHty P[w,ayj]. If we possess prior 
information about these quantities, we might use this information here. If we want to 
be conservative, and assume nothing, we put in a uniform prior for the parameters. 
Then, 

P[w,a^\{d,}]ocC, (11.5) 

the proportionality constant being independent of the parameters and therefore 
of Httle interest. Many people find this idea of using prior information disturbing. 
Indeed, even the conservative choice of a uniform prior is not as innocent as it 
sounds. If we had taken the parameter to be a^ instead of cr̂ ^ and we had assumed 
a prior uniform in a^ (i.e., that equal intervals of cr̂  are equally hkely), we would 
get a different answer for the final probability (try it!). Nonetheless, the dependence 
on the prior is a problem only in cases where the data are not very discriminatory. If 
the data do have discriminatory power, then the Hkehhood function P [{di}\w,au}] 
will be sharply peaked and any reasonable prior will not affect the final results. 

We can now find best-fit values for our parameters w and a^- Simply find the 
place in parameter space where the likehhood function is largest. In this simple 
example, we can proceed analytically by differentiating C with respect to each of 
the parameters. First consider the derivative with respect to w. 

dw a2(27ra'2)Mn/2 j^ 2al J 

For this derivative to be zero, we set the prefactor 

Y,idr-w) = 0 (11.7) 
i=l 

or equivalently, the likelihood is a maximum when 

w = w= TT-X^^M (11-
K. ^^, 
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the expected answer. Similarly, we can find what the most probable value of a'^ is 
by computing 

dC 
= C 

'2al + 2ai 
(11.9) 

and setting it equal to zero. Solving for the variance cr̂ ,, we find a most probable 
value of 

(11.10) 

again the expected result. 
We have found the best-fit values of our theoretical parameters. What is the 

error in these best-fit values? The error is just proportional to the width of the 
likelihood function. A simple way to approximate the width is to assume that C is 
Gaussian in the parameters, or equivalently that In C is quadratic in the parameters. 
We know in general that the variance of a Gaussian distribution is twice the inverse 
of the coeflacient of the quadratic term, so we can simply identify the variance (the 
square of the error) by computing this coefficient. Let's work this out explicitly for 
w: 

In C{w) = In C{iD)-{-
Id^lnC 

2 dw^ 
{w — w)'^ 

lnC{w) — ir^{w — w)'^. 
2ai 

(11.11) 

1 /2 
Thus the width of the likelihood function at its maximum is a,,, /N^\ This is the 
one-sigma error in our determination of w. This too is famihar: as more measure-
ments are taken, the noise gets beaten down by a factor of 1 over the square root 
of the number of independent measurements. It is important to reiterate that the 
uncertainty on our estimate of the weight is not equal to a^;. 

Two numbers then sum up all N^^ measurements: our best guess for the person's 
weight — in this case w given by Eq. (11.8) — and the error on this estimate, here 

1 /2 
equal to cr^/Nm • Therefore, we can compress all 100 measurements into just two 
by rewriting the likelihood function as 

£ = 
1 

\/27rC7v 

where the variance due to noise is now 

exp I 2CN J 
(11.12) 

(11.13) 

This form of the Hkehhood has precisely the same maximum and width as does the 
form with all A^̂  data points. Thus it has compressed all the information in the 
likelihood function into two numbers, w and C]\;. 
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Moving away from the weight metaphor, we can apply the above to the CMB. 
Instead of a true weight, the signal s is the true CMB temperature at a given point 
on the sky. The many measurements of the signal correspond to many measurements 
of the temperature at that point. The signal at that spot is a constant, and the 
data are the sum of the constant signal plus noise (atmospheric, instrumental, or 
both). The compression of all the different measurements into one data point with 
an associated error as in Eq. (11.12) is called map-making. We will take this up in 
more detail in Section 11.5. Now, though, we must move beyond the likelihood of 
Eq. (11.12). For we know that no theory predicts a value for the temperature at a 
particular position on the sky; i.e., no theory predicts s. Rather all theories predict 
a distribution of temperatures, from which 5 at a given pixel is drawn. We must 
now incorporate this distribution into the likelihood function. 

11.1.2 CMB Likelihood 

Let's convert the notation of the previous subsection to the CMB. The true tem-
perature anisotropy in a given spot on the sky s replaces w^ while the data point 
w (really the average of many measurements) becomes the estimated value of this 
temperature anisotropy, call it A.^ The variance of this estimator Cyv, which rep-
resents the spread of the measurements, is also given. How can this set of data 
(A, Cj\[) he compared with theory? The simplest theories, such as inflation, predict 
that the signal in a given spot on the sky is drawn from a Gaussian distribution. 
So rhe probability that the sky temperature falls in a range between s and s-\-ds is 

P{s)ds = . ^ exp I - ^ ;> ds. (11.14) 
y2^FCF^' '^l2Cs ]• 

Here Cs is the variance expected due to the signal alone, independent of any noise. 
This variance is directly related to the C/'s in a manner we will explore in Sec-
tion 11.2. 

In order to get the likelihood function, we have to convolve the probability 
distribution of Eq. (11.14) with the likehhood function of Eq. (11.12). Schematically 

P[A\Cs] = '£P[A\s]P[s\Cs]. (11.15) 
S 

More concretely, the likelihood function is an integral over all possible values of the 
true anisotropy: 

C= f _ i ^ e x p ( z £ ! \ _ L ^ e x p j - ^ t ' ^ O - a i i e ) 
7_oo%/2iC^ l 2 C s / V2^^ ^ \ 2CN } ^ ' 

The argument of the exponential here is quadratic in s so it is straightforward to 
carry out the integration over s. Let us rewrite the argument of the exponential as 

'In Section 11.5 we explore ways to go from the raw data, the timestream, to the pixelized 
map represented by A. For now, we assume that this step has already been taken. 
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A2 

2CN 

C 

2CSCN 
s -

CsA' 
C 2CCjv 

A 2 

2CN 
(11.17) 

where the full covariance matrix is defined as 

C = CS + CN. (11.18) 

Changing variables in the integral over s to x = s — Cs^/C leads to 

This is our final expression for the hkelihood function for a one pixel experiment. 
This form is exactly what one expects: the measured temperature should be dis-
tributed hke a Gaussian with a variance given by the sum of the variances due to 
noise and signal. 

We can easily generalize Eq. (11.19) to the more realistic case with a measure-
ment of Np pixels. Then the hkehhood function is 

^ - . . _ ^ ; v _ / . : . _ . ^ ^ w . e x p j - l A C - ^ (11.20) (27r)^p/2(detC)i/2 

where now A is the data vector consisting of all Np measurements and C is the 
full covariance matrix. In general, the noise covariance matrix can often be close to 
diagonal, but the theoretical covariance matrix is not diagonal. Thus, the hard com-
putational part of evaluating the Hkelihood function is taking the determinant and 
the inverse of the Np x Np matrix C The passage from one theoretical parameter 
{Cs) to a full matrix of parameters creates complications besides the computa-
tional. If there was only parameter, observers could quote results in the form of 
one number. Now that all correlations need to be included, one needs to allow for 
many different theoretical parameters, in principle all Np{Np -\- l ) /2 elements of 
the (symmetric) covariance matrix Cs- In practice of course this is not done. First 
of all, the covariance in all theories depends on the angular distance between two 
points, so elements of the matrix corresponding to two sets of points separated by 
the same distance are identical. Equivalently, a given theory is associated with a 
full set of Q's; as we will see shortly, these can be used to construct all the elements 
of Cs. The second simplification is that most experiments have not been sensitive 
to individual C/'s but rather to the average power over a range of /, i.e., in a given 
band. So, analysts typically fit for bandpowers, a fitting which requires even fewer 
parameters to be determined. 

As mentioned the matrix C = Cs + C^ is typically not diagonal. However, we 
can get some nice insight into the likehhood function by considering the special case 
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when C is diagonal and proportional to the identity matrix (all diagonal elements 
the same). In that case, 

We can easily find the value of Cs which maximizes the likelihood function in this 
case. Differentiating with respect to Cs leads to 

= £ X 
dCs 

-{N,/2) ^ 1 ErjiA? (11.22) 
(CS + CN) 2 (CS + CN)^ 

If we set this to zero, we find that the hkehhood function is maximized at 

1 '̂̂  

Thus a useful rule of thumb for estimating the signal in a CMB experiment is to 
calculate the variance of the data points (the first term on the right in Eq. (11.23)) 
and compare it with the average noise per pixel (the second term on the right). 
If the data has larger variance than the noise, the theoretical signal is simply the 
difference between the two. 

We can also calculate the error on this determination of Cs- As we saw in 
Section 11.1.1, the error is related to the second derivative of the log of the likelihood 
function: 

In this case, it is easy to calculate the derivative. Differentiating Eq. (11.22) once 
more leads to 

d'lnC ^ (iVp/2) _ E t - iA ,^ 

At the peak of the Hkehhood we can replace the ^^J ' l Af by Np[Cs + CN], SO 

<TCs = J-^{Cs + Cr,). (11.26) 

Equation (11.26) is a simplified version of a very handy, useful formula which can 
be used to assess how accurately a given experiment will determine parameters. 
This simpHfied version gives the errors on our one theoretical parameter, Cs- The 
more general formula gives the corresponding errors when the free parameters are 
the C/'s themselves. In that case. 

The only change moving from Eq. (11.26) to Eq. (11.27) is that the number of pixels 
- or equivalently the number of independent measurements - has been replaced by 
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(2/ + l ) / s , where /^ is the fraction of the sky covered. This makes perfect sense, for 
in the full sky limit, one can measure at best 2/4-1 a/m's; that is, one can sample 
the distribution characterized by Ci only 2/ + 1 times. In fact, this is a fundamental 
Umit on the accuracy with which we can measure the C/'s. Even if there is no noise 
[Cjsi = 0), there remains a fundamental uncertainty in the theoretical parameters 
(either Cs or Ci) due to the fact that we only have one sky on which to take 
measurements. This limit, which we have already encountered in Chapter 8, is 
called sample variance, or in the limit of an all-sky survey cosmic variance. 

11.1.3 Galaxy Surveys 

At first, one might think that analysis of galaxy surveys would be completely differ-
ent from CMB analysis. There are a number of differences. The galaxy distribution 
is fundamentally 3D, while the CMB anisotropics are a function of angular position 
only. Also, CMB experiments measure a continuous field, the temperature field, 
a function of position. Galaxy surveys count discrete objects (galaxies). A survey 
is simply a list of positions of these objects. Another difference is that the CMB 
temperatures are drawn from a Gaussian distribution, whereas the galaxies suppos-
edly trace the underlying mass distribution, which — at least on small scales — has 
already "gone nonlinear." Nonlinearities inevitably produce non-Gaussianity, even 
if the primordial distribution is Gaussian. 

Despite these, and other, differences, analysts have in recent years come to 
realize that many of the same techniques can be applied to data from both the 
CMB and galaxy surveys. To solidify the CMB-galaxy survey connection, we need 
to formalize the concept of a pixel. In the case of the CMB, the notion of a pixel is 
so natural that I didn't even bother to define it above. For galaxy surveys, following 
the treatment of Tegmark et al. (1998), we can define the data in pixel i as 

/ 
Ai = / d'^x ipi{x) 

n{x) — n{x) 

n{x) 
(11.28) 

Here n{x) is the galaxy density at x and n is the expected number of galaxies at 
X, i.e., the number there would be if the distribution was uniform. The weighting 
function V̂ i, which determines the pixelization, will be discussed shortly, but first 
let's understand operationally how to determine n and ft from a survey. A simple 
way is to divide the volume into small sub-volumes, each of which is much smaller 
than the total survey, but large enough to contain many (e.g., greater than 10) 
galaxies. The density of a given sub-volume is then the number of galaxies in it 
divided by its volume. For a uniform survey, the average density ft would just be 
the total number of galaxies divided by the total volume.^ 

There are two popular choices for V̂ ,̂ choices which determine the pixelization. 
First is "counts-in-cells," wherein 

^ A caveat: if the pixels as defined by t/'i are overlapping, more care must be taken in computing 
n for then the same galaxy could appear in more than one pixel. 
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^ciC/- \ _ r n{x) if X is in the zth sub-volume Q-. 2g\ 
10 otherwise 

In this case, the sub-volumes themselves are the pixels, and A^ is the over(under)-
density in the zth sub-volume. Another useful pixeHzation scheme is a set of Fourier 
pixels, which emerge from choosing 

/Fourier/-*\ _ ^̂  ^^ J 1 ^ inside the survey volume , ^^. 
* V \0 X outside survey volume 

Here V is the volume of the survey. In this case, the pixels are not spatial, but rather 
live in the Fourier domain. Still, even in this case, A^ is the fractional overdensity 
in the pixel. 

No matter which pixelization is chosen, one cannot hope to write down a sim-
ple expression for the likeUhood function, the probability of getting a set of {Aj} 
given a theory. The theory of galaxy formation is simply too complicated. Indeed, 
even if one assumes that the galaxy density perfectly traces the mass overdensity, 
the complications from gravity alone make the hkelihood function non-Gaussian. 
Nonetheless, progress can still be made by noting that the expectation value of A^ 
is zero by construction, with a covariance matrix^ 

(A,A*) = iCs)ij + (CNh (11.31) 

exactly like the CMB case. We will discuss the signal covariance matrix in detail in 
Section 11.2. The noise covariance matrix is actually easier than the corresponding 
CMB matrix, which depends on the atmosphere, pointing, instrumental noise, scan 
strategy, and other experimental details. In a galaxy survey, even if there was no 
signal, the expected value of the square of the density, (n^(x)), would still differ 
from n^ simply because there are only a finite number of galaxies in a given sub-
volume. Thus, even in the absence of any intrinsic clustering of the galaxies (A^Aj) 
would be nonzero because of Poisson noise. You can show in Exercise 3 that the 
covariance matrix due to Poisson noise is 

J ri{x) 

Armed with this noise covariance matrix and the signal covariance matrix we 
explore next, galaxy survey analysts can use many of the same techniques as the 
CMB analysts. 

11.2 SIGNAL COVARIANCE MATRIX 

Until now, we have sidestepped the question of how the expected variance in a given 
experiment is related to the underlying power spectrum. That is, we have learned 
that the predictions of a given theory are a set of C/'s and P{k). If we want to 
relate theory to experiment — and we do! — we need to know how to turn this set 
of predictions into a covariance matrix Cs. 

"^The angular brackets here denote an average over the distribution from which Ai is drawn. 
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11.2,1 CMB Window Functions 

For simplicity, let us first consider the diagonal element of the covariance matrix: 

Cs,ii = (siSi) (no sum over i) (11.33) 

where the average (...) is over many realizations of the theoretical distribution and 
the subscript i labels the pixel. The temperature difference reported in each pixel 
can be expressed as 

Si= I dhQ{n)B^{n) (11.34) 

where Bi is the beam pattern at the zth pixel and 0 is the underlying tempera-
ture. As an example, the beam pattern from the MSAM experiment is shown in 
Figure 11.1. It is typical of the patterns produced by many CMB experiments: the 
difference of the temperature in two (or more) regions of the sky, and in each region 
the temperature is sampled by a beam which is roughly Gaussian. 

^ - " ^ • 

.̂  -'^^^ 

Figure 11.1. The beam pattern for the MSAM experiment (see Wilson et al, 2000, for a 
summary). The anisotropy reported at a given pixel is roughly the difference between the 
temperature at ±0.5 degrees from the center of the pixel. The beamwidth is also on the order 
of half a degree. 

To find Cs we square Eq. (11.34) after expressing the temperature field as an 
expansion over spherical harmonics as in Eq. (8.60): 

^ = j dh j dh'Bi{h)B,{h')Y,YUh)Y,yvrn'{n'){airnal^,). (11.35) 
Im I'm' 
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Using Eq. (8.63), we find that the sums over Um' collapse to give 

^ = fdh fdh'Bi{h)B.{h')Y,CiY^Y,^{h)Y;^{h'). (11.36) 

But Zm yim{h)Yil^{h') = {21 + l)Pi{h • n')/47r,so 

where the window function is defined as 

Wi^ii = [dfi Idh'B^[n)B^[rl')Pl[n^n'). (11.38) 

Until now, we have been thinking of n, n' as three-dimensional unit vectors. 
If n' and n are sufficiently close to each other, though, we can use the flat space 
approximation. The three-dimensional unit vectors can be safely approximated as 
two-dimensional vectors x, x' in the transverse directions. The distance between x 
and x' (measured in radians) is then equal to the angle between n and fi'. In this 
Umit, the argument of the Legendre polynomial in Eq. (11.38) becomes 

n-n - c o s ( l x - x ' l ) . (11.39) 

The diagonal window function is therefore 

Wi^ii = Id^x jd^x'Bi{x)B^{x')Pi(cos{\x - x'\)\ (11.40) 

A useful property of Legendre polynomials is that they become equal to the zero-
order Bessel function in the limit of large / (the small-angle Umit we are working 
under here). So, 

P z ( c o s ( | f - x ' | ) ) -^ J o ( / | f - f ' | ) 

'^^ Jo 

27r 
l\x — x'\ cos ^ 0 e - ^ / | x - x | c o s 0 ^ (11.41) 

where the last line is an integral representation of the Bessel function (Eq. (C.21)). 
We can simplify further by promoting / to a 2D vector with direction chosen so that 
the angle between / and x — x' is equal to (/>. Then, the argument of the exponential 
simpHfies to —il • {x — x'). This form is so useful because the x integral for example 
is now 

' d^xB^{x)e-'^-^ = S,(/), (11.42) 
/ • 

where B^ is the Fourier transform of the beam pattern. The x' integral is the 
complex conjugate of this, so the window function simplifies to 

r27r , 2 

•'' ~ 27r I 
^ I M = 7^ d<i> B.{1) (11.43) 

Thus calculating the window function reduces to a two-step process: 
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• Calculate the 2D Fourier transform of the beam pattern. 
• Find the angular average of the square of this transform. 

The window function is a function of the experiment only and indeed contains 
information about the beam size and chopping angle of the experiment. However, 
it is not the whole story. A complete evaluation of the likelihood function entails 
calculating all of the elements of the covariance matrix Cs- A given off-diagonal 
element of the matrix is given by Eqs. (11.37) and (11.38), with one of the indices 
i changed to j . The matrix is symmetric, so it is characterized by Np{Np -f l ) /2 
elements where Np is the number of pixels. Thus, for an A^p-pixel experiment there 
are really Np{Np+ l)/2 window functions! 

11.2.2 Examples of CMB Window Functions 

Gaussian Beam. Let us take a break from formalism and calculate a simple (diago-
nal) window function. Consider a Gaussian beam; this is a good approximation to 
many CMB experiments. The beam pattern for the zth pixel is 

1 / {x — x-i)'^' 
a « = 2 ^ - - ( - ^ ^ ^ ) - '"•") 

We may choose Xi to be zero for the window function computation. The Fourier 
transform of the beam is also a Gaussian, 

-l'a'/2 (11.45) 

In this simple case, B does not depend on the direction of /, so there is no need 
to take the angular average. The window function is then simply the square of the 
Fourier transform, 

Wu, = e-''''\ (11.46) 

The window function falls off sharply at large /. Large / corresponds to small angular 
scales. Structure on scales smaller than the beam size is inevitably washed away 
and undetectable. Figure 11.2 illustrates the series of steps, from beam function to 
Fourier transform to window function. 

There are two subtleties associated with the Gaussian window function. First, 
one must avoid the temptation to set a equal to the number which is often quoted 
in papers, the full width half maximum (FWHJM) . The latter is twice the value 
of X for which B{x) drops to half of its maximum. So a = FWHM/(^8 In(2)) = 
0.4245 FWHM. The second subtlety has to do with normalization. It is crucial to 
determine how observers have normahzed their output. The prefactor in Eq. (11.44) 
ensures that if the temperature field was uniform, the reported temperture would 
be equal to the underlying one. In this simple case, the choice is obvious; in general 
factors of 2 can easily be lost. 
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One Degrfifl Gaussian Beam 

Beam Pott«rn FourlflK Tronsform 

100 200 300 iOO 

Figure 11.2. A one-degree Gaussian beam is shown in the upper left panel and its Fourier 
transform, also a Gaussian, in the upper right. The resulting window function is shown in the 
bottom panel. 

Differencing a Gaussian Beam. As another straightforward example, let us consider 
an experiment which takes the difference between the temperatures at two adjacent 
points on the sky. For simpUcity, let us first assume that the Gaussian beam is 
infinitely small, so it can be approximated as a Dirac delta function. Then, 

B{x, y) = S{y) [S{x - XQ) - S{x + XQ)] , (11.47) 

where the chopping angle, or the distance between the plus and minus position, is 
2xo. The Fourier transform of this is straightforward: 

B{1) — 2zsin(/2.xo). (11.48) 

The window function is the angular average over all / directions. Choosing the angle 
between / and the x— axis to be </>, we have 

4 /-̂ ^ 
W'l = 7—- / d^ sin [/xocos0] 

1 y^^TT 

= — / c?0 f l — COS [2/xo cos 0] j 
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2(1-P , [cos (2xo) ] ) , (11.49) 

where the last hne follows from Eq. (11.41). 
Until now, we have neglected the finite width of the beam. However, this turns 

out to be very simple to rectify. A realistic beam will be the convolution of the chop 
described by Eq. (11.47) with a finite beam size: 

B{x,y) = -^^ / dx'dy'exp < - {x - x'Y 4- {y 
2CT2 

^ 1 

X(5(y ' ) [^ (x ' -xo) -5(x ' + xo)]. (11.50) 

Recall, though, that the Fourier transform of the convolution of two functions is 
simply equal to the product of the two Fourier transforms. The angular averaging 
over this product is unaffected since the Gaussian has no angular dependence. 
Therefore, the final window function is 

Wi = e-'"^" (1 - P, [cos(2xo)]) . (11.51) 

This window function is shown in Figs. 11.3 and 11.4 along with the beam pattern 

One Dflgrflfl 9flom; Thrafl Oflgrafl Throw 

BeaiTi Pottarn Fouriar Tronfform 

500 

Figure 11.3. Differencing a Gaussian beam. Upper left panel shows the beam pattern and the 
upper right its Fourier transform. The circle in the upper right corresponds to / — 50. The 
bottom panel shows the window function. 
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One D«grafi Qflom; Cne Oflgr«fl Throw 

Beom Pottarn Fourlar Troniform 

300 

Figure 11.4. Same as Figure 11.3 except the chopping angle is now much smaller. Note the 
lack of support at large scales due to the reduced chopping angle. This can also be seen in the 
Fourier transform which vanishes near the center of the circle. 

for two different chopping angles. Note that for / much smaller than I/XQ, the 
Fourier transform vanishes. So, unlike the undifferenced beam, there is no support 
for small /. That is, chopping removes information about structure on large scales. 
As the chopping angle gets larger, more and more information is obtained about 
large scales. 

11.2.3 W i n d o w Funct ions for Galaxy Surveys 

We now consider the signal covariance matrix for galaxy surveys. By setting the 
term in square brackets in Eq. (11.28) to S{x), we see that the signal covariance 
matrix is equal to 

{Cs)ij = {AiAj)\ = Id^x d V xl;^{x)i;j{x')i{x-x'). (11.52) 
I no noise J 

The correlation function ^ appears here because it is equal to the expectation value 
of the product of two overdensities, Eq. (9.7). Since ^ is the Fourier transform of 
the power spectrum, we see that the signal covariance matrix for a galaxy survey is 

iCsh = I d'x d'x' I ^ d^k d^k' ^ ' ^ " ^ ^ ( ^ ) ^ . ( f ' ) p ( J f c " ) g i l f c + fc"]x--i[fc' + fc"l.x' 

)3 (27r)3 (27r)3 
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j^P{k)Mk)r,{k). (11.53) 

The second equality follows simply after integrating over x and x' to get 3D Dirac 
delta functions and using these to perform the integrals over k' and k^\ It is con-
venient to define the window function as the angular part of this integral 

Wi^ik) ~ j ^i>i{k)r,{k) (11.54) 

so that 
P dk \k'P{k) 

27r2 
W,,{k). (11.55) 

Notice that the window function for galaxy surveys has the identical form as that 
for CMB experiments. In both cases, it is the angular average of the square of 
the Fourier transform of the weighting function (either B or ip). Also, you should 
recognize the quantity in square brackets in Eq. (11.55) as A'^{k), the contribution 
to the variance per In(fc). Let's turn to some examples of window functions of galaxy 
surveys. 
Volume-Limited Survey. Consider a survey which observes all galaxies within a 
radius R from us. If we use Fourier pixeUzation (Eq. (11.30)), then the Fourier 
transform of the weighting function is 

-I 
J\x\<R 

Mk) = I ^ e -^^V^ ' - ^ (11.56) 
/ | x | < P ^ 

We will shortly carry out this integral, square, and then average over all angles to 
get the diagonal window function of Eq. (11.54). First, though, let's ask what we 
expect qualitatively. Equation (11.56) is the Fourier transform of the survey volume 
as a function oik — ki. The survey volume is a sphere of radius R. In general, when 
a function is confined to a region x < R, the Fourier transform is confined to 
k < 1/R. Here then, ip will be nonzero only when \k — ki\ is less than 1/JR. The 
window function therefore should peak at k = ki and have a width of order 1/R. 

More quantitatively, the integral in Eq. (11.56) is 

[-|fc - ki\Rcos (\k - ki\R\ + sin (|it - ki\R)\ (11.57) 

V\k - k, 

47r 

- N 3 
(\k-k,\) 

The diagonal window function is the angular average of the square of this. Defining 
y ~\k — ki\R, this angular average is 

Wu{k) = 
(47ri?3)2 /•! ^^ f"^" d4> {siny-ycosyf r dfi r" d^ 

7 - 1 Y Jo 2^ V^ 7_i 2 Jo 21T 2/6 
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8 ^ 
V2 / — (sm y-ycos y) 

J-I y 
(11.58) 

where /i is the cosine of the angle between k and ki. Integrating over y instead of 
fx leads to 

9 /•('̂ +'=')«rfy 
W,,{k) = 

g nK + K,jt 

y 
jfiy) (11.59) 

since the volume of the survey V — ATTR-^/S. This window function is shown in 
Figure 11.5 for several different values of kiR. Notice that modes with wavelength 
much smaller than the size of the survey kiR:^ 1 do indeed have window functions 
sharply peaked at fc == hi, with a width of order 1/R. The largest wavelength 
modes, however, pick up contributions from all scales (e.g., the kiR = 3 curve in 
Figure 11.5). Not surprisingly, surveys do not do a good job measuring the power 
on wavelengths comparable to their sizes. 

c 0 1 
0 

c 0.01 
a 

Ex. 

o 0.001 
C 

^ 0.0001 

__ 

= ^ l _ J 

Volume Limited Survey 

10 ^^^.^^ 

1 1 1 1 i^ l 1 1 • \ 1 1 1 I 1 

-J 

l_L-J 

0 0.5 1 
k/k, 

1.5 

Figure 11.5. The window function for a volume-limited survey. Narrow window functions 
enable one to determine the power spectrum at the wavenumber of interest more accurately. 
Modes with wavelengths comparable to the size of the survey (e.g., here kiR = 3) have broad 
window functions. 

The height of the window function is also important, for it determines the ampli-
tude of the signal covariance matrix. When considering modes with wavelengths k~^ 
much smaller than R, you will show in Exercise 7 that 

(Cs) 
V • 

(11.60) 
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It is instructive to compare this to the corresponding element of the noise matrix, 
as given in Eq. (11.32). For the diagonal elements, \ipi\^ in the integrand is 1/F^ 
as long as x is in the survey volume. Thus, 

(C/v)„ = r ^ , (11.61) 
nV 

equal to the inverse of the total number of galaxies in the survey. The ratio of the 
diagonal elements of the signal and noise covariance matrices is therefore 

(C. N) 

Harking back to Eq. (11.27), we identify this ratio as the ratio of cosmic variance 
to Poisson noise. A rough estimate is that n ~ l/i'^Mpc"^, so cosmic variance 
dominates as long as the power spectrum is larger than 1 /i~'^ Ivlpc"̂ . Looking back 
to Figure 7.11, we see that on large scales, this is always satisfied. On small scales, 
eventually the power spectrum does drop beneath l/i~^Mpc'^, the hnear power 
spectrum of standard CDM at /c ~ 10/iMpc~^ On very small scales, therefore, 
Poisson noise becomes important. 
Pencil-Beam Survey. Now consider a survey which is very deep, but also very nar-
row, with the general shape of a pencil (Figure 11.6). The Fourier transform of the 

()S2ZnE:Si2lI3)|2R 
L 

Figure 11.6. A pencil-beam survey with depth L much larger than the typical size of the 
narrow dimensions, R. The 2-axis in the text is taken to be aligned with the long dimension. 

weighting function in this case is 

^^(^) = I -^e'^^'-'y^Q{z + L/2)9(L/2 - z)e{R^ - x^ - y^) (11.63) 

where 0 is a step function, equal to 1 if its argument is positive and zero otherwise. 
It is easiest to carry out this integral in cylindrical coordinates, wherein x^-f y^ = r^. 
If we define q = ki — k, then 

1 rL/2 rR r27r 

M^) = -TTTT / dze'"^'" / drr / d(9e^^^^"°^^ (11.64) 
TTR'^L 7_^/2 Jo Jo 

The azimuthal integral can be done using Eq. (C.17), the integral over z using 
Eq. (C.15), so that 

M^) = ^Jo[qzL/2) J drrJo{qrr). (11.65) 
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Finally the integral over r is RJi[qrR)/qr, which you can see by differentiating 
the integral with respect to qrR and then using Eq. (C.22). Therefore, the Fourier 
transform of the weighting function is 

^̂ (̂ ) = T\jo{qzL/2)MqrR). (11.66) 

Equation (11.66) indicates that the Fourier transform of the weighting function 
is anisotropic. Indeed, even before deriving the various flavors of Bessel functions, we 
should have expected this Fourier transform to be compact along the qz direction 
and broad in the transverse plane, i.e., shaped like a disk. This flows from our 
intuition that the Fourier transform of a function localized within a radius R should 
be localized within a region \/R. Indeed, in the z direction, jo{qzL/2) falls oflFonce 
qz gets larger than 2/L. The same holds for Ji{qrR): it becomes small for qr > 1/R. 
The ringing associated with these Bessel functions is a manifestation of the fact that 
the Fourier transform of a top-hat function oscillates for large wavenumbers (e.g., 
Exercise 6). 

To get the window function for a pencil-beam survey, we need to average 
Eq. (11.66) over all directions k. This average will differ for different ki. Let's 
choose ki to point in the i-direction as one concrete example. The averaging will 
pick up contributions only when q = ki — k has z-component smaller than L~^ and 
transverse component smaller than R~^. Since the transverse component of ki is 
zero in this example, many k will contribute, as long as their transverse component 
is smaller than R~^. Therefore, we expect the window function to get contributions 
from many wavenumbers, not to be sharply peaked around |^i|. A similar argument 
holds for other directions ki. Figure 11.7 shows the window function for a pencil-
beam survey. As expected, it is broader than that for a symmetric, volume-limited 
survey: a given scale ki picks up contributions from smaller scales k > ki. 

11.2.4 Summary 

We have determined the signal covariance matrix for CMB experiments which mea-
sure a filtered version of the temperature in a given set of pixels and for galaxy 
surveys which measure the overdensity in a given set of pixels. Not surprisingly, 
the fundamental relation between the covariance matrix and and the underlying 
power spectrum is very similar in both cases: the connection is provided by a 
window function determined by the experimental/observational specifications. It 
is interesting to point out that we have encountered natural window functions in 
Chapters 9 and 10. The angular correlation function of Section 9.1 is simply the 
signal covariance matrix of measurements of the 2D galaxy distribution. Recall from 
Eq. (9.13) that this too is an integral of the 3D power spectrum convolved with a 
window function (we called it a kernel back then). The same is true for the pecuHar 
velocity (Eq. (9.29)) and the shear field that can be measured with weak lensing 
(Eq. (10.32)). In all of those cases, the window function is determined partly by the 
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Figure 11.7. The window function for a pencil-beam survey with length 10 times larger than 
width. These window functions are for kr pointing in the 2-direction, along the long dimension 
of the survey. 

observational strategy (e.g., how deep one goes), but also by the intrinsic nature 
of the measurement itself. For example, the 2D galaxy distribution intrinsically is 
a projection of the 3D distribution. So it is seductive to think of CMB anisotropy 
experiments and 3D galaxy surveys as more pristine measurements of the power 
spectrum. Analysts are hard to seduce, though. They recognize that, mathemati-
cally, the different sets of measurements can all be analyzed in the same fashion. 
So the hkehhood function can be used on virtually all cosmological observations. It 
is a very powerful tool. 

It is also simple. Were it not for the size of modern cosmological data sets, we 
would be done. At least in the Gaussian case (CIMB or even galaxy surveys on 
large scales), the likeUhood function is given by Eq. (11.20). The data points are 
simply the pixelized temperatures or overdensities, while the covariance matrix is 
the sum of the noise and signal covariances. The noise covariance matrix is usually 
estimated from the data itself, while the signal covariance matrix is computed 
by convolving the theory (i.e., the Cj's or the power spectrum) with the window 
function. In principle, then, one could compute this likelihood function at many 
points in parameter space, find its maximum (this constitutes the set of best-fit 
parameters), and the contour delineating the region in which, say, 95% of the volume 



356 ANALYSIS 

lies. This contour would then be the 95% confidence region of the parameters. 
Many experiments of the previous decade, especially CMB experiments, have been 
analyzed in this brute-force fashion. Times are changing, though, and the brute-
force approach has already become impractical. 

11.3 ESTIMATING THE LIKELIHOOD FUNCTION 

To illustrate the need for new techniques of likelihood computation, let us consider 
a concrete example: the data set from the Boomerang anisotropy experiment (Net-
terfield et ai, 2001). There are 57,000 pixels on the sky covered in this set. The the-
ory and noise covariance matrices are both nondiagonal and both 57,000 x 57,000 
dimensional matrices. Inverting these beasts with present computers is possible, 
although slow."* If we needed to invert only once, this might be acceptable. But, 
we need to evaluate the likelihood function at many points in parameter space to 
find its maximum and the region at which it falls to, say, 5% of its maximum. This 
would be barely manageable if the parameter space was one-dimensional. A one-
dimensional fit, though, would lose most of the information contained in the map. 
The data are actually sensitive to the power on many different scales. Therefore, 
the parameter space — the amplitude of the power on these many different scales — 
is multidimensional, ''multi-'' here of order 20. The likelihood function should in 
principle be computed about 10 times in each dimension, for a total of 10^^ com-
putations. Since each inversion takes several hours, this is not feasible. All of these 
estimates are for the Boomerang experiment. The MAP satellite will have 10 times 
as many pixels and be sensitive to a wider range of scales. Planck will be more sen-
sitive still. Thus, we need new techniques, shortcuts, for evaluating the hkelihood 
function and finding its maximum and its width. 

11.3.1 Karhunen-Loeve Techniques 

The first technique was discovered many years ago and reinvented by a number of 
people over the past few years to deal with both CMB data (Bunn, 1995; Bond, 
1995) and with data from galaxy surveys (Vogeley and Szalay, 1996). It is a method 
for speeding up the computation of the likehhood function. The fundamental idea 
is simple: any experiment, no matter how good, will have many modes which are 
useless, fundamentally contaminated by noise.^ If it was obvious which modes were 
most noisy, then we could greatly simplify the likelihood calculation by not using 
those modes. If only 10% of the modes carried useful information — and this figure is 
roughly what is found in many present-day experiments — then the data set would 
be reduced by a factor of 10. The covariance matrices would now be (A^/10) x (A^/10) 
and the inversion (which scales as Â *̂ ) would speed up by a factor of 1000. It is a 
nice, simple idea. The only problem is finding the modes which are useful. 

^Note that the problems outhned here assume that we are handed the map of 57,000 pixels. 
Mapmaking is actually the most difficult computational part of the analysis! 

"*A mode here is defined as a linear combination of the data points. 
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If the signal and noise covariance matrices were diagonal, then it would be 
simple to ascertain which modes had high signal-to-noise. The pixels with diagonal 
elements Cs > Cj\[ would have signal-to-noise greater than 1; the others would be 
low-signal modes. The problem is to identify the low modes in the more realistic case 
where the covariance matrices are not diagonal. This is precisely what Karhunen-
Loeve does. To illustrate the technique, let us first write it down formally and then 
work out a simple example exphcitly. 

We assume there are Np da ta points, Ai. Each da ta point is presumed to be the 
sum of both signal Si and noise n^. Each of these are assumed to be uncorrelated 
(the noise knows nothing about the signal and vice versa). Thus the full covariance 
matrix is 

(A ,A , ) = C,j = Cs,rj -f Cyv,^,. (11.67) 

The Karhunen-Loeve method takes advantage of the fact tha t instead of computing 
the likelihood function using A^ and its covariance matr ix C, we could instead use 
rotated da ta 

A[ = R^jAj (11.68) 

where R is a, real matrix. The covariance matr ix associated with A ' will be 

Cl^ = {iRA),{RA)j) 

= Ru'R,yC,~y (11.69) 

In matr ix notation this is simply 

C - RCR^ (11.70) 

where R^ is the transpose of R. 
The Karhunen-Loeve method consists of three such rotations. 

1. i?i : Diagonalize Cj^ 

2. i?2 : Set C'^=I 
3. Rs : Diagonalize Cg 

The first step is always possible since Cj\[ is a real, symmetric matrix. Once 
Cjv has been diagonalized, it is trivial to perform step 2: simply choose R2 to be 
diagonal with elements equal to 1 over the square root of the diagonal elements 
tha t emerge from step 1. Finally, step 3 is straightforward since again Cs is a real 
symmetric matrix. Let 's evaluate the new theory and noise covariance matrices. 
The theory matr ix is 

C's = R^R2RiCsR{R2Rl- (11-71) 

Note that , since R2 is diagonal it is equal to its transpose. The matrix C'g is a 
diagonal matrix. Now consider C'^. After step 2, it was simply the identity matrix. 
So we need consider only the effect of step 3. In fact, since i?3 is unitary, it has 
no effect {R^IRj = I). Thus, C ^ is still equal to the identity matrix. This has 
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profound implications. It means that the elements of (the diagonal matrix) C'g are 
a measure of the signal-to-noise squared of the modes! The data points 

A; = iR3R2Ri)uAj (11.72) 

then have diagonal covariance matrix 

(A^A;) = { J + ^̂ "̂ 1=^. (11.73) 

These modes can be ordered according to their signal-to-noise values. Modes with 
large C^ can be kept; those with Cg significantly smaller than 1 can be eliminated 
from the analysis. 

Let us work through a simple example to see how Karhunen-Loeve picks out 
the highest signal-to-noise modes. The example is a simple two-pixel experiment 
with diagonal noise: 

C . = ( ; « ; , ) . (11.74) 

The signal covariance matrix does have correlations between the two pixels so 

Cs = <T3'(j ^) (11.75) 

where ag is the expected rms in the pixel and — 1 < £ < 1 measures how correlated 
the signal is between the two pixels. Steps 1 and 2 of the Karhunen-Loeve method 
are particularly simple since Ĉ v is diagonal. Thus, 

Ri=I ; R2 = —L (11.76) 
O'n 

To complete step 3, we need to diagonalize 

/?2i?iCsi?fi?2 = ^ ( j ly (11-77) 

To diagonalize the matrix in Eq. (11.77), we must solve 

a1 f cosO sin6>\ / I e \ / cos6> -sin6>\ _ / C ^ ii 0 
-sin6> cos<9 )\e \ ] \ sin<9 cos<9 ) ~ \ 0 C. 

(11.78) 

for the rotation angle 6. Carrying out the multiplication on the left side leads to 

a [ A + 6sin(2l9) 6cos(2l9) \_(C'su ^ 
al V ecos(2(9) 1 - esin(2i9)y ~ V 0 C^22 

Equality in the off-diagonal elements holds if ̂  = 7r/4, so the new theory covariance 
matrix is 
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The rotation matrix which diagonaUzed the theory matrix is the first one on the 
left in Eq. (11.78) with 9 = 7r/4, so 

The new modes are A' = R3R2A; explicitly, they are 

(A1+A2) 
A; = 

V2a„ 

( - ^ ^ („ .82) 

The new modes (Eq. (11.82)) and their covariance matrix (Eq. (11.80)) are easy 
to understand if we consider the special cases of 6 = 0 and 6 = - f l . I fe = 0 the two 
modes have the same signal-to-noise, Oslon- If the expected signal is large, these 
modes both carry information; if not, the noise swamps the signal. In either case, 
each mode — the sum and the difference — is equally (un)important. If 6 = +1 then 
the theory predicts the same signal in each pixel. In that case, the difference mode 
(A2) is worthless, since only noise contributes to it. We see this from the fact that 
(^5)22 goes to zero as € —̂  1. Its signal-to-noise is zero. The other mode — the sum 
of the two pixels — has signal-to-noise of \/2as/(Jn since the two measurements beat 
down the noise by a factor of \ /2. This would of course have emerged from the full 
2 x 2 likelihood analysis. But, using both modes in the analysis is a waste of time, 
a waste which is detected and obliterated by the Karhunen-Loeve method. 

Bunn (1995) and Bond (1995) independently analyzed the COBE data by look-
ing at Karhunen-Loeve modes. Figure 11.8 shows several such modes: clearly the 
ones with the highest signal-to-noise are the large-scale modes, indicating that 
COBE was sensitive to large-angle anisotropy. The smallest signal-to-noise modes 
are the small-scale modes which COBE did not have the resolution to measure. 

Vogeley and Szalay (1996) first apphed this technique to galaxy surveys. In this 
context, the Karhunen-Loeve method has another useful feature. Recall from Sec-
tion 11.2.3 that on large scales, the signal covariance matrix is larger than Poisson 
noise, while on small scales the reverse is true. When we order the modes, then, 
large-scale modes will have the largest ratio of signal-to-noise. Thus the Karhunen-
Loeve basis will preferentially pick out large-scale modes. This is extremely use-
ful because we are often most interested in eliminating small-scale modes — which 
are aflflicted by nonlinearities and bias — from an analysis. The Karhunen-Loeve 
method does this automatically! An example is shown in Figure 11.9. For example, 
the first eigenmode roughly weights pixels only on the basis of their distance from 
us. It essentially takes the difference between the number of galaxies close to us and 
the number at moderate distances. The second mode takes a different component 
of the dipole, the difference between the number of galaxies on the left and the 
number on the right. Modes with lower weight take successively higher moments of 
the galaxy distribution. 
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Mode 1 Mode 10 

Mode 40 Mode 400 

Figure 11.8. Modes of the COBE anisotropy experiment (from Bunn, 1995) ordered according 
to their signal-to-noise. The mode with the largest signal-to-noise (upper left) is sensitive 
predominantly to the quadrupole, while the mode with the smallest signal (bottom right) is 
sensitive to much smaller scale structure. 

There are several drawbacks to the Karhunen-Loeve method. First, we need 
to assume a Cs to begin with, in order to identify the modes that are worthless. 
Although this might seem like a big problem — the modes that are thrown out 
for one choice of Cs could conceivably be important for another — people who have 
studied the issue assure us that it is not. They claim that the choice of the important 
modes is relatively insensitive to the input, assumed Cs- Another drawback is 
computational. Once the important modes are chosen, C'g needs to be recalculated 
at many points in parameter space. In most of parameter space it will not be 
diagonal at all (it is only diagonal at the special point, the Cs that was chosen 
ELS the input spectrum initially). Thus at every point in parameter space, we still 
need to invert nondiagonal covariance matrices. This drawback is of course partially 
offset by the fact that — by virtue of the much smaller size of the matrices — the 
computation is now much faster. Nonetheless in many instances this is not enough 
to make the full computation managable. We must find still other ways of reducing 
the computational burden. 

Before turning to one such way, let me mention one more use of the Karhunen-
Loeve method. It is an extremely useful consistency check. This is perhaps best 
illustrated with an example. The Python experiment (Coble et a/., 1999) measured 
anisotropy over a large (for that time) area, with very low signal-to-noise. In prin-
ciple, this is a good idea because the large area beats down cosmic variance. In 
practice, though, it presents challenges because it is difficult to check the consis-
tency of the data. One typically wants to break up the data into several subsets and 
make sure that each subset sees the same signal. With Python, this was very diffi-
cult because noise dominated each subset. One way to check for consistency then 
is to work with Karhunen-Loeve modes. In this basis, each data point d'^ should be 
drawn from a Gaussian distribution with variance equal tol^C'g ^^. The histogram 
of d[/{l + C'g-^)^^'^ should then look Gaussian. Figure 11.10 shows this histogram 
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10 12 

Figure 11.9. The 12 modes with highest signal-to-noise for the CFA2 survey (from Vogeley 
and Szalay, 1996). Modes pick out the large-scale structure of the galaxy distribution. In each 
case, we are at the bottom of the slice, and the top region is farthest from us. 

using a preliminary noise matrix. There were 650 measurements, but about 70 of 
these were eUminated for reasons that needn't concern us, so ignore the central 
spike at d = 0. If the remaining 580 data points were distributed as a Gaussian we 
would expect about two of them (0.3%) to have absolute value greater than 3, and 
none of them to have absolute value greater than 4. In fact, Figure 11.10 shows that 
nine modes are more than 4-sigma away from zero. The distribution is definitely 
not Gaussian with this noise model. 

This analysis led the Python team to question the model they had constructed 
for the noise covariance. (Adjacent points were more correlated than they had 
allowed for.) Redoing the analysis with a new noise matrix led to the results in 
Figure 11.11. This technique for testing data quality has been used in a number of 
other venues, often identifying signs of trouble. 
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o 

Figure 11.10. Histogram of data from one modulation of the Python CMB anisotropy mea-
surement with a preliminary noise matrix. The data are in Karhunen-Loeve basis in which the 
covariance matrix is diagonal, so C~^^^d should be distributed as a Gaussian with variance 
equal to unity. The central spike should be ignored as 70 of the modes have been set to zero. 
The best fit Gaussian is the solid line. The counts are lower than the best-fit Gaussian in the 
central region, but above it in the tails. 

11.3.2 Optimal Quadratic Estimator 

One simple way of speeding up the likelihood calculation is to employ one of many 
successful root-finding algorithms. We are searching for the place where the likeli-
hood function is a maximum, so we want to find 

dX 
0 (11.83) 

A=:A 

where for simplicity I've assumed that the Hkelihood function depends on only one 
parameter A (we'll generalize this shortly) and A is its value at the maximum of the 
HkeHhood. 

An efficient way to find the root is to consider the derivative of the likelihood 
function evaluated at some trial point A = A^°\ Expand this derivative around Â ^̂  
in a Taylor expansion: 

£ , ( A ) = £ , ( A ( « ) ) + £ , , ( A ( ^ ) ) ( A - A ( ^ ) ) + . . . (11.84) 

where I have introduced the notation of writing partial derivatives as subscripted 
commas: 
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Figure 11.11. Same as Figure 11.10, but this time with an improved noise matrix. Note that 
there are no data points with absolute value greater than 3C^^^. The counts are consistent 
with a Gaussian distribution. 

Cx = 
dC 

Cxx = dXdX' 
(11.85) 

Since C is maximized at A, its derivative vanishes there; hence the right-hand side 
of Eq. (11.84) must also vanish. Setting it to zero leads to a simple expression for 

A ~ AW - (11.86) 
^ ,AA(AW) 

where the ~ sign acknowledges that we have neglected higher order terms in the 
Taylor expansion in Eq. (11.84). 

The solution in Eq. (11.86) assumes that the likelihood function is a quadratic 
function of the parameter A. In fact, it is nothing of the sort: even in the simplest 
cases the hkehhood function is not a quadratic function. For example, far from its 
maximum, C typically becomes exponentially small. A much better approximation 
therefore is that £ is a Gaussian function, so that ln(£) is quadratic in A. We can 
repeat the derivation above since the place where C is maximized is also the place 
where In £ is a maximum. The estimator for A is now 

A = A(0) 
(ln£).A(AW) 

(ln£),AA(AW)-
(11.87) 

Figure 11.12 illustrates the first iteration of this algorithm, called the Newton-
Raphson method. 
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Figure 11.12. A sample likelihood function and its derivatives. The root finding alogrithm 
starts from the point A^̂ ^ (open circle) and moves to A (open square) which is quite close to 
the true maximum of the likelihood, A (filled square). The Newton-Raphson technique does 
this by evaluating the first and second derivatives of ln(L) at the trial point A^°\ The method 
would not work as well if the derivatives of L were used, because L is not even approximately 
quadratic away from A. 

To find an estimate for the best-fit value of A, we need to calculate the derivatives 
in Eq. (11.87). In the case of the CMB, C is given exphcitly by Eq. (11.20). Thus 
we need to differentiate the log of Eq. (11.20): 

(in/:),A = 
dX 

- i l n ( d e t C ) - ^ A C - ^ A (11.88) 

The covariance matrix here C depends on the theoretical parameter, A. We can use 
the identity Indet(C) = Trln(C) and the fact that C~^^ = -C'^C^xC'^ to get 

(ln/:),A = ^AC-'C^xC-'A - iTV[C-iC,A]. (11.89) 

Here, the trace of C ^C A is the sum of (C ^)ijdCji/dX over all pixels i and j . 
Getting the second derivative requires more of the same types of steps. We find 

(ln£),AA - -AC-'C^xC-'C,xC-'A + ^Tr[C-'C,xC-'C^, 

+ i {AC-'C^xxC-'A - TV[C-iC AA]) • (11.90) 
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Equation (11.90) gives the second derivative of ln£ with respect to the parameter 
A. By definition, this is minus the curvature of the Hkehhood function: 

The curvature is particularly important when evaluated at the maximum of the 
hkelihood function, for there it measures how rapidly the likelihood falls away from 
the maximum (since the first derivative vanishes). If the curvature is small, then 
the likelihood changes slowly and the data are not very constraining: the resulting 
uncertainities on the parameter will be large. Conversely, large curvature translates 
into small uncertainties.^ 

We could take the ratio of Eqs. (11.89) and (11.90) to get an estimate for the 
maximum of the hkehhood. This is not what is usually done. Rather, one typically 
sets AA -^ (AA) = C in the second derivative. Upon doing this, the last line of 
Eq. (11.90) vanishes, and we are left with 

A = A(0) + ^ - ; A C - ' C . . C - ^ A - T V [ C - ^ C . . l ^^^^^^ 

where F is defined as 

= ^Tr[C A C - I Q A C - ' ] . (11.93) 

That is, F is the average of the curvature over many realizations of signal and noise, 
both of which in this case are assumed to be drawn from Gaussian distributions. 
Here C and its derivatives are evaluated at the input point, C(A^°^). 

There are several important features about Eq. (11.92), our estimator for the 
value of A which maximizes the hkelihood function. As the title of this subsection 
promised, it is a quadratic estimator: it is of the general form AA"^ -f B. The only 
hard part was determining the coefficients which lead to the best algorithm for 
finding the root. In the spirit of the Newton-Raphson method, Eq. (11.92) is best 
used iteratively. One assumes an input spectrum, uses it to determine a new input 
parameter (A in Eq. (11.92)), then uses the new input parameter to find a new 
best-fit value, and so on until the process converges. In practice, analysts have 
found that very few iterations are needed until convergence. Nonetheless, we must 
be somewhat wary of quadratic estimators. It is possible that they will lead us to 
local maxima in parameter space. Finally, the foregoing discussion assumes there 

^The correspondence between the curvature matrix and parameter uncertainties is often more 
quantitative than this. See Numerical Recipes (Press et al., 1992), Chapter 15, for a detailed 
discussion. The bottom Hne, though, is that, in many cases, the inverse of the curvature matrix 
is a very good approximation to the error matrix on the parameters. E.g., in the one parameter 
case we are presently considering, the 1-cr, 68% confidence level on A is approximately equal to 
the inverse square root of the curvature matrix. 
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is only one free parameter, but Eqs. (11.92) and (11.93) are easily generalizable to 
the more relevant case when many parameters are allowed to vary. If we have many 
parameters A^ = Ai, A2,..., then the quadratic estimator for each is 

A A(0) 4- p - i A C - ^ C ^ C - ^ A - T V [ C - ^ C ^ ] 

where the Fisher matrix is defined as 

(11.94) 

" ^ - ^ aA«9A/ 

= iTV[C aC-^C ^C- i ] . (11.95) 

Putting aside the details which led to Eq. (11.94), we can appreciate that the 
result is remarkable. We can now hope to find the values of the parameters which 
maximize the hkelihood function without blindly covering the whole parameter 
space. A very small number of matrix manipulations suffice to determine these best-
fit values. This is a huge advantage, too good to pass up considering the alternative. 

We still need to find a way to evaluate the errors on the parameters. Had 
we evaluated C everywhere, we could easily identify the region in parameter space 
ruled out at, say, the 95% level. How do we identify such regions using the quadratic 
estimator? To answer this question we need to remove ourselves from the derivation 
above and simply notice that Eq. (11.94) is an estimator for the true best-fit values 
of the parameters. If we think of it in this way — rather than as the result of a root-
finding algorithm — we can study its distribution. Since the distributions for both 
signal and noise are known (they are assumed Gaussian with covariance matrices 
Cs and C^^ respectively), we can calculate the estimator's expectation value and 
variance. 

First, let's consider its expectation value: 

( X j = ,<o, + ^ - ^ • ( A C ' ' C . , C - A ) - T , | C - C . , | (11.96) 

Here the covariance matrix, its derivatives, and the Fisher matrix have all been 
evaluated at the trial point Â^ = Aa . The expectation value (AA) on the other 
hand is equal to the true covariance matrix, C(Aa). We can expand C(Aa) about 
x(o). 

C{K) -C + C , , (A„- - A|^°') . (11.97) 

Therefore the expectation value of the quadratic estimator is 

5f.-;{Tv[c-, 
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+TV \y C^ /3O Ky Q ' ( V - A i ° ? ) - T V [ C - i C ^ ] l . (11.98) 

The first term in brackets cancels the third. The remaining trace is twice the Fisher 
matrix, so upon multiplying by F ~ \ we are left with 

{Xa) = K> (11.99) 

So the quadratic estimator we have been considering is unbiased: the expectation 
values of the set of A^ are equal to the true parameters Xa, no matter what set of 
parameters are assumed at the outset. 

We are also interested in the variance of the estimator: 

((Ac - ~Xa){X0 - X0)) - (F-1)^^ . (11.100) 

This equality, which I will leave as an exercise, holds if we are truly at the maximum 
of the likelihood function and if the data points really are distributed as a Gaussian. 
If these conditions hold, then the expected errors on the parameters are equal to 
the square root of the diagonal elements of F~^. This is a magic hmit, for there 
is a theorem, the Cramer-Rao inequality, that states that no method can measure 
the parameters with errors smaller than this (e.g., Kendall and Stuart, 1969). This 
makes sense since the errors from a full likelihood computation could not possibly 
be smaller than the width of the likelihood. This width in turn is determined by the 
curvature, and the Fisher matrix is simply the ensemble average of the curvature. 
Equation (11.100) tells us that on average, the quadratic estimator of Eq. (11.94) 
will reach this optimal Hmit. 

Given any point in parameter space, we can calculate the associated Fisher 
matrix. Thus a simple way to assign error bars to the parameters determined via 
the quadratic estimator is to use the Fisher matrix evaluated at that point in 
parameter space. Bond, Jaffe, and Knox (1998), among others, have shown that 
this prescription works well: i.e., it agrees with a more complete tracing out of the 
Hkelihood contours. 

Equation (11.100) is useful for other reasons as well. As is apparent from 
Eq. (11.95), the Fisher matrix — and hence the expected errors on any set of param-
eters— can be evaluated without any data. It will serve us well in Section 11.4.3 
when we set out to determine how well upcoming experiments will be able to deter-
mine parameters. 

We have derived the quadratic estimator in a way which might lead you to 
believe that it is restricted to the CMB. Namely, our derivation assumed that the 
Hkelihood function is Gaussian, true for the CMB but not for galaxy surveys. Even 
without the assumption of a Gaussian likelihood function, though, the quadratic 
estimator of Eq. (11.94) can be applied to galaxy surveys. Like any quadratic esti-
mator, it has a mean and a variance. We have just seen that, for Gaussian dis-
tributions, it has the lowest variance possible. On large scales, where the galaxy 
distribution is Gaussian, therefore, it is extremely relevant. Even on smaH scales, 
where nonlinearities add to the variance, it is often competitive with other, more 
traditional estimators. 
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11.4 THE FISHER MATRIX: LIMITS AND APPLICATIONS 

The Fisher matrix plays a key role in describing the ability of a given experiment to 
constrain parameters. It is difficult to gain much insight, though, from the definition 
in Eq. (11.95). Fortunately, in the case of full sky coverage, the Fisher matrix can 
be computed analytically. This analytic computation can then be extended — via 
a plausibility argument — to the more realistic case of partial sky coverage. This 
calculation is presented next for both the CMB and galaxy surveys. The most 
popular use of the Fisher matrix is as a tool for forecasting. How well do we expect a 
given experiment (even a hypothetical one) to determine cosmological parameters? 
The Fisher matrix is ideally suited for this task, and we will see some startling 
expectations from upcoming experiments. 

11.4.1 CMB 

The trace in Eq. (11.95) is a sum of the diagonal elements of the matrix 
[C^aC~^C^l3C~^]ij where i,j index the pixels used in the map. There are two deci-
sions that need to be made before the Fisher matrix can be computed. First, what 
pixelization scheme should we use, and second what parameters A^ are we interested 
in? For a full-sky CMB experiment, we choose as our parameters the C/'s them-
selves. That is, we take each individual Q as a free parameter and ask how well an 
experiment can determine it. To avoid confusion (both the covariance matrix and 
the C;'s are Cs) , let's call each parameter A/ instead of C/, at least while working 
through the algebra. This answers the second question. The best way to deal with 
the first question — how to pixelize — in the case of the CMB is to use the a^m's. 
That is, instead of using the pixelized temperatures G(n), use 

aim= I d^YCrn{n)Q{n) (11.101) 

as the data values. Each pixel then is labeled by I and m, so a given row (or column) 
in the covariance matrix corresponds to a fixed valued of / and m. Explicitly, since 
we start with the quadrupole, 

/C'/=2,m=-2;r=2,m' = -2 C'2,_2;2,-l ••• C'2,_2;2,2 C'2,_2;3,-3 ••• \ 
C'2,_i;2,-2 C'2,_l;2,-1 . . . C'2,-i;2,2 C'2,-l;3,-3 •.• 

C - : 
^3,-3;2,-2 ^3,-3;2,-l ••• ^3.-3;2,2 C'3_3;3^_3 

V / 
(11.102) 

As usual the covariance matrix is the sum of the signal and noise covariance 
matrices. From Eq. (8.63), the signal covariance matrix would be 5/r^mm'A/ (remem-
ber that we're using A/ instead of Ci) if the window function were unity. Let's assume 
that the experiment measures the anisotropy with a beam size a. Then the signal 
covariance matrix must be multiplied by e~' ^ . The noise covariance matrix is a 
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little trickier. You will show in Exercise 11 that, in the case of uncorrelated, uniform 
noise, it is 6ii'6mm'W~^. Here w is the weight defined as 

= [{m<^l]~' (11.103) 

where AQ is the size in radians of the real space pixels and a^ is the noise per pixel. 
Putting these two together, we have 

Clni-l'm' — ^ll'^n A/e -I'a' - 1 (11.104) 

With these simple assumptions, we can take the inverse of the covariance matrix 
C and also find its derivative with respect to the parameters, the A/'s. The inverse 
of the covariance matrix is 

V HmA'm' *' " A/e -I (7 

+ w (11.105) 

while the derivative of the covariance matrix with respect to the parameter A^ is 

Clm-l'm',oc^ ^W^mni'^lae' "" • (11 .106) 

We can now construct the Fisher matrix; the only diflacult task will be keeping 
track of indices. Very explicitly, 

^ (^ ^ X . - ^ ' ^ ' ^ f ^VV'^m'm" \ f e e r ^-l"^CT^\ 
= -^ [Oll'dmm'Olae 1 I _^,2^2 TY I [Ol"l"'Om"m"'^l" a'^ j 

A/e-^"'^" +i t ; - i 
(11.107) 

with the impUcit sum over lVl"l"''mm'Tn"m"'. Consider first the Kronecker deltas 
with subscripts m,m',Tn", and m'". There are four of these; summing over all the 
subscripts besides m contracts these four to 

/ ^ ^rnm'^m'm" ^m" m"'^m'" m ^n (11.108) 

m'mm" 

Then, summing over all m leads to a factor of 2/ 4- 1. The remaining sums over / 
and its cousins leads to a simple factor of S^a'- Therefore in the all-sky limit, the 
Fisher matrix for a CMB experiment is 

Fw = 
21 + 1 

Swe -2l'a' Cie -I'a' (11.109) 

where I have gone back to Ci here since the covariance matrix does not appear. 



370 ANALYSIS 

In an all-sky survey, therefore, the Fisher matrix for the C/'s is diagonal. There 
are no correlations between adjacent C/'s. The errors on a given Ci expected from 
an all-sky experiment can be read off from Eq. (11.109). The errors are equal to 
T F ^ , so 

5Ci = 
2/ + 1 

Ci+w-'e''^' (11.110) 

As anticipated in Eq. (11.26), there are thus two sources of error: (i) cosmic variance, 
proportional to the signal itself C/ and (ii) noise — atmospheric or instrumental — 
as encoded in the weight w and the smoothing determined by the beam width a. 
The factor of 2/ -f 1 in the denominator also traces back to Eq. (11.26); it is the 
number of independent samples used to estimate a given C/. 

No experiment will ever cover the entire sky, since the CMB cannot be observed 
in the plane of our galaxy. Even MAP and Planck, two satellites designed to map 
CMB anisotropy from space, will therefore cover a fraction of the sky /sky < 1-
Recalling that the factor of 2/ + 1 in the denominator of Eq. (11.26) counts the 
number of samples, we could guess that this factor must be multipled by /sky. This 
leads to 

SCi 
(2/ + l)/sky L 

Ci+w-'e^'-' (11.111) 

This formula enables one to project the errors obtainable for any given experiment. 
The three characteristics of the experiment which determine the error on C/ are the 
sky coverage; the weight; and the beam width. 

11.4.2 Galaxy Surveys 

The analogue of the all-sky CMB experiment is a volume-limited galaxy survey as 
the volume gets arbitrarily large. This limit applies to all modes with wavelengths 
k~^ much smaller than the typical size of the survey. We have already computed 
the signal and noise covariance matrices in this hmit, Eqs. (11.60) and (11.61), so 
the covariance matrix for Fourier pixels is 

C,,j^ = ^f[p{k,)+'^). (11.112) 

To compute the Fisher matrix, we will need the inverse of this and its derivative 
with respect to whatever parameters we choose. The inverse is simple, 

CzL = - M l ^ . (11.113) 
"'•'^^ P{ki) + \ 

For our parameters, we will choose the amplitude of the power spectrum in a set of 
narrow /c-bins, each with width Ak. The power in the bin with k^ < k < kc^ -\- Ak 
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will be denoted P^. The derivative of the covariance matrix with respect to P^ is 
therefore 

Crj^a ̂  -^p^ = fd,^ (11.114) 

with 
d,^^[^ ^« < l̂ l̂ < ^a + AA: (11.115) 

10 otherwise 
The Fisher matrix is now 

— -Sjidir, — r^i'i'dj'f^i ^- r- (11.116) 
2 '' '"P(fc,) + i ^ ' ' " P{ki) + ^ ^ ' 

The sums over j,j,i' are straightforward, leaving 

As long as the /c-bins do not overlap, ki cannot be in two different bins so the 
product diocdia' requires a = a'. The sum then is over all vectors ki in a spherical 
shell with radius /c^ and width Afc. This sum is 47r/c^AA:F. Therefore, the Fisher 
matrix is diagonal, with elements 

The error on the power spectrum in this limit is the inverse square root. 

This is identical in form to the errors on the C/'s. The denominator in the prefactor 
counts the number of modes in a given estimate; the first term is cosmic variance; 
and the la^t is the noise, in this case Poisson noise. 

11.4.3 Forecasting 

One of the great promises of upcoming cosmological experiments is that they will 
determine many of the presently unknown cosmological parameters. How does one 
predict the expected uncertainties in cosmological parameters from future experi-
ments? The answer is surprisingly simple. Let's consider a CMB experiment as an 
example. Start with the following: 

• A set of C/'s that are assumed to describe the true universe 



372 ANALYSIS 

• The uncertainty on C/ from a given experiment, 5Ci, assumed to be given by 
Eq. (11.111) 

• The set of cosmological parameters, {Aa}, for which we want to forecast errors 

The observed C/'s in this universe will be close to the true C/'s; indeed, if we 
form 

^'({^«}) = E ^ ^ ^ ^ ^ 7 ^ r y ^ , (11.120) 

then we expect this x^ ^^ reach a minimum at the point in parameter space where 
Aa = Aa, the actual values of the parameters. Of course, we do not now know 
what those values are, but even without that information, we can ask how quickly 
X^ ( {-^a}) changes as A^ moves away from Xc,. If it increases rapidly, then the errors 
on the parameters will be very small; if the x^ changes little, then there will be 
large errors on the parameters. 

To quantify this, we can expand x^ about its minimum at Ac,. Let's first do 
this in the case of one parameter; the generalization to many parameters will be 
straightforward. In the one-parameter case. 

x'(A) = x ' ( A ) + ^ ( A - A ) 2 . (11.121) 

The hnear term in Eq. (11.121) vanishes since x^ is a minimum at A. The coefficient 
of the quadratic term is 

19V J" 
2 dX^ 

(11.122) 

The curvature here, T, measures how rapidly the x^ changes away from its min-
imum. As such, the error on A is simply 1 / \ / !F . SO all we need to do in order to 
determine the expected errors on a parameter is calculate T. Note that T is the 
curvature of the likelihood function only if the likelihood function is equal to e~^ /^, 
that is, if the errors on the C/'s are Gaussian distributed. In fact, they are not, so 
T as given by Eq. (11.122) is not really the curvature, —d'^XnC/dX^. Nonetheless, 
the distribution is close enough to Gaussian that the error estimates that arise are 
expected to be quite accurate. 

The second derivative of x^ contains two terms: 

(11.123) 

The second term in the sum over / is traditionally neglected. The idea (as elucidated 
in Numerical Recipes) is that the difference Ci — C^^^ will sometimes be negative, 
sometimes positive. On average, there will be much cancellation, so the first term 
will dominate. Thus, the general practice is to take 

((5C;)2 dX dX 
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Equivalently, you can think of the dropping of the second term as taking an average 
over the whole distribution, thereby replacing the curvature matrix with the Fisher 
matrix (although again keeping in mind that this is not the true curvature or Fisher 
matrix since the C '̂s are not distributed as Gaussians). The generalization of this 
to many parameters is simply 

Faf3 = Y^ 
1 dCi dCi 

(11.125) 

In order to predict how accurately parameters will be known, then, we simply need 
to know the experiment's specifications (to determine SCi) and the derivatives of 
the C/'s around their (assumed) true values. 

01 

2V(F->)n 

Figure 11.13. Error ellipse in a 2D parameter space. If no prior information is known about 
A2, then the error on Ai is y ^ ( F ~ ^ ) i i . If, however, A2 is fixed, the error on A i , ( F n ) " ^ / ^ is 
smaller. 

Assuming a Gaussian distribution, the one-sigma uncertainty on a one parame-
ter fit is l/y/F. How about if more than one parameter is allowed to vary? Figure 
11.13 illustrates the situation in a two-dimensional setting. If the parameter A2 is 
assumed known, then the error on Ai is still l/y/Tu- However, if A2 is allowed to 
vary, the error on Ai is now \ / (F~^) i i . It is instructive to prove this explicitly by 
noting that we are assuming that the joint probability for the two parameters is 



374 ANALYSIS 

P(Ai,A2) oc exp 
1 2"^'^*^"^^ J 

(11.126) 

where I have assumed that the distribution peaks at Aj = 0 for simpHcity. Allowing 
A2 to vary is equivalent to integrating this probability distribution over all possible 
values of A2. This is referred to as marginalizing over A2. Then, 

P(Ai) = y"dA2P(Ai,A2) 

/ Aj .F11F22 — F12F21 

I 2 ^ F22 
OC e x p < (11.127) 

where the second line comes from carrying out the A2 integration explicitly. The 
term in parentheses in the exponential—[F11F22 — ^^12^211/^22 — is simply equal 
to l / (F~^) i i . So the one-sigma error is indeed given by y/{F~^)u. 
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Figure 11.14. Expected 95% uncertainty on the inflationary parameters n and r from MAP 
and Planck (from Dodelson, Kinney, and Kolb, 1997). (See color Plate 11.14.) Three other 
parameters (normalization, Q,B, and h) have been marginalized over. Every inflationary model 
gives a unique prediction somewhere in this plane; many such predictions are plotted. 

Figure 11.14 shows the expected uncertainties from MAP and Planck for two 
inflationary parameters, those which determine the primordial spectrum. Note that 
I have fixed the "true" model to be one in which the spectral index n = 0.9 and the 
tensor-to-scalar ratio r = 0.7. Different fiducial models often lead to quite different 
error bars. The elHpse in Figure 11.14 has been drawn after marginalizing over 
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Table 11.1. Marginalized Errors for ACDM for various experiments. 

h 

^'m 

OA 
\n{nbh'^) 
rui, (eV) 

Yp 
n 
r 
r 

Map 

0.22 
0.24 
0.19 

0.060 
0.58 

0.020 
0.048 
0.18 
0.022 

Planck 

0.13 
0.14 
0.11 

0.010 
0.26 

0.013 
0.008 
0.012 
0.004 

Map+SDSS 

0.029 
0.036 
0.042 
0.050 
0.33 

0.020 
0.040 
0.16 
0.021 

Planck+SDSS 

0.022 
0.027 
0.024 
0.010 
0.21 

0.013 
0.008 
0.012 
0.004 

three other cosmological parameters: normaUzation, baryon density, and Hubble 
constant. To do this, one starts with the five-dimensional Fisher matrix, inverts, 
and then considers only the 2 x 2 part of the inverse. This 2 x 2 part defines the 
elhpses drawn in the figure. 

Also plotted in Figure 11.14 are the predictions from a wide variety of inflation-
ary models. The figure argues persuasively that we will indeed be able to distinguish 
among different inflationary models with upcoming CMB experiments. This is a 
remarkable finding: we will learn about physics at 10^^ GeV or higher using CMB 
data. If more parameters are allowed to vary, then the errors on any one parameter 
naturally get larger. However, this can be offset by using other observations, most 
notably those from large-scale structure. Table 11.1 presents the marginahzed errors 
on a number of parameters expected from the MAP, Planck, and Sloan Digital Sky 
Survey experiments (Eisenstein, Hu, and Tegmark, 1999). Here the errors include 
the measurement of polarization in MAP and more importantly Planck. 

11.5 MAPMAKING AND INVERSION 

Until now, we have discussed ways of analyzing a ma'p^ a collection of pixels with 
data A and noise covariance matrix C^, How does one make such a map? How do 
we go from the timestream of data to a pixelized set of spatial A's? Most work on 
this issue has focused on the temperature maps in the CMB, so I'll use this as an 
example. We will see that mapmaking is essentially an inversion problem. So the 
mapmaking techniques discussed here are applicable to a broad range of problems 
in physics and astronomy. 

Let's first state the problem. An experiment amounts to a timestream of data, 
dt. Each number in the timestream corresponds to data taken at a given point on 
the sky. The data are assumed to be composed of signal plus noise: 

dt = PtiSi H-7/(. (11.128) 
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Here subscript t denotes a given element in the timestream; i denotes spatial pixel; 
P is the pointing matrix; s is the underlying temporally constant, but spatially 
varying signal; and rj is the temporal noise. The pointing matrix encodes information 
about where the receiver is pointing. That is, it associates with each temporal 
measurement t a given pixel i. It is an Nt x Np matrix where Nt is the number of 
temporal measurements and Np is the number of spatial pixels. The pointing matrix 
has a special form: every row has only one nonzero entry equal to 1, corresponding 
to the pixel on the sky being observed at the time denoted by the row. Each column, 
however, typically has many nonzero entries corresponding to all the times a given 
spot has been observed. The noise r] is assumed to be Gaussian with a covariance 
matrix A .̂ There are techniques to determine Â  directly from the data, but to 
simplify the discussion, we will assume that Â  is known. 

What is the best way to make a map from this timestream? One forms a x^, 

tt'ij 

and minimizes with respect to the signal s. Indeed, if the noise is Gaussian, then the 
Hkehhood function is proportional to e~^ /^ and minimizing the x^ is equivalent to 
maximizing C Taking the derivative with respect to Si leads to 

^ -2j2PuKt'idt'-Pt'jSj)- (11.130) 
tt'j 

Set the derivative equal to zero: 

Y.PtiNu'Pt'jS, =Y,PuN-}d,.. (11.131) 
tt'j tt'j 

The terms multiplying Sj on the left are an Np x Np matrix, 

{C~N').,^T.P^^^u>Pt'r (11-132) 
tt' 

Multiply both sides by the inverse of this (C^v itself) to find that the x^ is minimized 
when s is equal to 

i^i^CN,ijPuKvdt'. (11.133) 

In matrix notation, 
A = CNP^N-^d (11.134) 

where ^ denotes transpose. The noise matrix of this map is equal to 

CN = {P'^N-^Py\ (11.135) 

a fact which you can verify by taking (AA). 
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A simple limit of Eq. (11.134) emerges when the timestream noise is diagonal 
and uniform (this is mireahstic). In that case, the elements of Cj^ become 

CN.rj-^N\VPlPtA (11.136) 

where now Â  is simply a number, the diagonal element of the timestream noise. 
Recall that for a given t^ Pa is nonzero for only one pixel i. So the product P^Ptj 
vanishes unless i = j and the receiver at time t was pointing at pixel i. Thus the sum 
over t counts the number of times the receiver sampled pixel z; call this number TT̂ . 
In this artificial case of uniform, uncorrelated noise, therefore, the noise covariance 
matrix for the map is diagonal with elements A /̂TTJ. This makes sense: as a given 

—1/2 
pixel is sampled more times, the standard deviation goes down as TT• . The map 
now becomes 

Ar^-TPltdf (11-137) 

That is, one simply averages all the data points corresponding to the given pixel 
(exactly like Eq. (11.8)). 

Figure 11.15 shows a more reahstic implementation of Eq. (11.134), from the 
long-duration balloon flight of Boomerang (Netterfield et a/., 2001), launched on 
December 29, 1998. The map covers a region a region of about 700 square degrees 
with 7-arcminute pixels. Therefore, the map required Np ^ 50,000, while the 
timestream contained of order 2 x 10^ data points. Some tricks were needed to 
avoid direct inversion and multiplication of the large matrices P and A .̂ Nonethe-
less, the basis for the Boomerang map, indeed for all CMB maps, is Eq. (11.134). 

The raw data from which the map is made need not be the timestream. Instead, 
the raw data could consist of a series of modulations, e.g., the diff̂ erence between 
the temperature at two points. Reconstructing a map from a set of modulations 
sounds hke a much different problem than doing the same from the timestream. In 
fact, it is mathematically identical: the data d is the sum of a signal and noise. The 
signal can be thought of as a matrix acting on the underlying temperature field. 
This matrix does not have the exact form as the pointing matrix (i.e., only one 
nonzero element in each row), but it is a matrix nonetheless, and all the operations 
in Eqs. (11.134) and (11.135) can be carried out. There is a big advantage in using 
a map constructed in this fashion as opposed to the modulated data themselves. 
Ultimately, the main use of the data will be to estimate parameters in a Hkelihood 
analysis. As we have seen, one must construct the signal covariance matrix in order 
to carry out such an analysis. The signal covariance matrix for a map is extremely 
simple — the window function is simply Pi{cos9ij)—whereas that for modulated 
data is quite difficult to obtain (recall Section 11.2). 

Equation (11.134) and the corresponding noise matrix in Eq. (11.135) are even 
more general than this. They apply to any problem in which the data are a sum of 
some processed signal and noise, i.e., to an extraordinarily wide range of problems 
in physics and astronomy. Consider just two examples. First, the angular correlation 



378 ANALYSIS 

'if.4 -D2 a a I}, a a * 
nn^m t*>K nwa 

3Q 

-Ai> 

2;̂  

- BO < 

30 -15 60 7i-3 9 0 M)f> 120 ^;55 

Figure 11.15. A map of the CMB temperature from observations by Boomerang (Netterfield 
et aL, 2001), a long-duration balloon flight at the South Pole. (See also color Plate 11.15.) 
Hot and cold spots have amplitudes as large as 500/iK. Circles shows quasars identified in these 
radio observations. The large elliptical region delineates data analyzed to obtain bandpowers. 
The rectangular region is an earlier data set. 

function is a sum of the 3D power spectrum processed by a kernel plus noise. One 
can apply Eq. (11.134) directly to obtain the 3D power spectrum, simply replacing 
the pointing matrix with the kernel. In the next section, we will see another example, 
the extraction of the CMB signal from data contaminated by foregrounds. 

11.6 SYSTEMATICS 

A systematic error is one which remains even after averaging over many data sam-
ples. Systematic errors are the most worrisome aspect of most cosmological obser-
vations. Knowing this, observers typically take many precautions against them, 
submitting raw data to a wide variety of consistency checks. Many of these tests 
are the result of common sense and intuition. Nothing much formal can be said 
about them. Here I want to focus on several . . . systematic ways of dealing with 
such effects. 

11.6.1 Foregrounds 

One of the biggest obstacles to observing the anisotropics in the CMB are fore-
grounds, other sources of radiation which also emit at microwave frequencies. The 
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list of foregrounds is long and includes anything in space that might come between 
us and the radiation left over from the Big Bang. There is dust, synchrotron radia-
tion, and free-free or bremsstrahlung emission, all emanating from our galaxy (but 
extending to regions of the sky far from the galactic plane). There are also extra-
galactic sources of radiation, point sources and clusters of galaxies. All of these have 
the potential to contaminate an experiment searching only for a cosmic signal. The 
magnitude of this problem is hinted at in the nomenclature. Usually in science, 
a possible source of systematic error is called a background. In CMB physics, we 
cannot call these things backgrounds: the "B" in CMB precludes that possibility. 
We must acknowledge that the cosmic signal is coming from farther away than any 
possible contaminant and we must deal with the real possibility that the cosmic 
signal will be smaller than some of these contaminants. 

The problem of foregrounds has in the past few years been demonstrated to 
be manageable. There are a number of reasons for this good fortune (it is good 
fortune: if we were living deeper in the galaxy foreground ampUtudes would be 
considerably larger). First observers have been very successful at finding the coolest 
portions of the sky and using only these regions. Second, foreground amplitudes 
have proven to be smaller than the cosmic signal in a fairly wide part of frequency 
space. Figure 11.16 shows the intensity of several galactic foregrounds and the CMB. 
The amplitudes of each of these components varies across the sky, but the relative 
amplitudes shown in Figure 11.16 are fairly typical. At very high frequencies, dust 
dominates, and at very low frequencies synchrotron and bremsstrahlung become 
important. But, in the range from 30 to 200 GHz, the CMB anisotropics often have 
the largest intensities. 

The final reason foregrounds can be managed — and the one I want to focus 
on here — can also be gleaned from Figure 11.16. The spectral shapes of the fore-
grounds are all different, different from one another and from the blackbody shape 
of the CMB anisotropy. This raises the possibility that detections at different fre-
quencies can be used to extract the CMB signal from the foregrounds. As analysts, 
we must find the optimal way to perform this extraction. Given measurements 
at several different frequencies, what is the best algorithm for finding the cosmic 
signal? How effective do we expect this extraction to be? 

First we need to set up some notation. Instead of intensity (or brightness) B, 
which has units of ergs cm~^ sec~^ Hz~^ , it is convenient to introduce the bright-
ness temperature or antenna temperature, defined as 

-^ant = 
B 

2iA 

= 2Tnyf, (11.138) 

which has dimensions of kelvins (recall that we are working in units with kg = h = 
c = 1). The frequency v is related to the momentum we used in earlier chapters via 
p = 2'KU and / is the familiar phase space density. 
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Figure 11.16. Spectral shapes of the dominant galactic foregrounds and the CMB blackbody 
tennperature anisotropy. 

For the CMB we know that / is given by Eq. (4.35), so the antenna temperature 
IS 

^cmb 

+ e-
x^e^ 

where 

T e- - 1 (e- - 1) 

P 2'KU 

(11.139) 

(11.140) 
~ T T ' 

The first term in Eq. (11.139) is the monopole, which does not interest us. The sec-
ond contains information about the shape of the spectrum of the CMB anisotropics. 
It is useful then to neglect the first term and write 

rrcmb(j \ 
ant V ŷ _ OiU/cmb 

T = eŵ "'̂  (27ri//r) (11.141) 

where W^ will be the shape vector for different components. That for the CMB is 
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2 X 

^cmb ^ ^ ^ (11.142) 

(e- - \f 
Every component can be written in this fashion: the product of an amphtude (in 
this case 0 ) , which is frequency independent, and the shape vector, which carries no 
information about the amphtude. For a blackbody distribution hke the CMB, the 
amphtude has a name: © is called the thermodynamic temperature. Note that the 
CMB shape vector goes to 1 in the hmit of small frequencies, the Rayleigh-Jeans 
hmit. At high frequencies, it falls off exponentially. 

I have called W a shape vector implying that it has a number of components. 
These components are the different frequency channels at which a given experiment 
takes data. We will label these with a subscript c while allowing for many possible 
foreground components: 

W^^W^ C - l , . . . , i V e h ; a = 0,...,iVforegrounds. (11.143) 

Here the CMB component is associated with index a = 0. Thus, the data from a 
given experiment in a given pixel (we focus on only one spatial pixel) on the sky 
is in the form of a set of antenna temperatures, dc. at all the different frequency 
channels. Our model is that this data set is the sum of the contributions from the 
CMB, foregrounds, and Gaussian noise: 

regrounds 

4 = ^ W^Q'^+ric. (11.144) 
Q = 0 

We assume that we know the covariance matrix of the noise Â  and all the spectral 
shapes^ W^. The question is, how do we best determine the CMB anisotropy? 

This problem has the exact same form as does the general inversion problem of 
Section 11.5. We want to obtain estimates of the amplitude 9* .̂ We can immediately 
write down the minimum variance estimator for 0 " : 

A" = {CN).pW^N:2dd (11.145) 

with covariance matrix 

(^i^')./3 = W:{N-'UW!. (11-146) 

Let's work out a simple example to bring these formulae, which are so ubiquitous, 
to life. 

^This assumption is true for the CMB, and very nearly true for synchrotron and bremsstrahlung 
which have shapes which are fairly constant over the sky. The assumption is worst for dust. A 
number of groups have explored the consequences of incorrect assumptions about the shapes or 
allowed for some freedom in the shapes. 
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Consider an experiment taking measurements at two frequencies, both in the 
Rayleigh-Jeans regime. The shape vector for the CMB then has two components, 
both equal to 1: 

W^ = {l,l), (11.147) 

Let's also assume that the noise is uncorrelated from one frequency channel to the 
next and is uniform with diagonal element, cr .̂ First let's consider the case of zero 
foregrounds. In that case, the covariance matrix is just a single number, the inverse 
of 

wN-w^i, Di'̂ o'" i/°o(; 
_2_ 

(11.148) 

The inverse square root of this is the noise, an/y/2. The two channels reduce the 
noise by a factor of the square root of 2 (if there were three channels in our exam-
ple, the factor would be \ / 3 , etc.). The mimimum variance estimator is given by 
Eq. (11.145), 

(11.149) 

2 ' ' ^ V 0 l/Kj \d2 

di + ^2 

We simply average the two data points. 
Now suppose there is one foreground to worry about, say synchrotron emission, 

with shape vector 
W^ = (1,1/2). (11.150) 

Typically, the intensity of synchrotron emission scales as i/~^ (see, e.g., Rybicki and 
Lightman, 1979), so its antenna temperature falls off as z/~^. Thus a shape vector 
(1,1/2) follows from observing at, e.g., ui = 20 GHz and 1̂2 = 25 GHz. 

Now the covariance matrix Cyv is a two by two matrix. Then Eq. (11.146) 
becomes 

Already at this stage, we can glean some important information about the exper-
iment. Recall from the discussion in Section 11.4 that the inverses of the diagonal 
elements of C^^ are the unmarginalized variances, the errors if all other parameters 
are known. In this case, there is one parameter besides the amphtude of the CMB, 
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the amplitude of the foreground. If we assume that is known, then the error on the 
CMB temperature will be the inverse square root of the oo component of the matrix 
in Eq. (11.151). This is an/ \ /2 , in agreement with the calculation above. To find 
the errors if we know nothing about the foreground ampUtudes, take the inverse of 
this to find the covariance matrix, 

The 00 component of this gives the marginalized variance, 5cr^. The ratio of the 
marginalized error to the unmarginalized error is a measure of how severely the 
unknown foregrounds degrade our ability to determine the CMB temperature. It is 
called the foreground degradation factor, or simply the FDF. In this case, the FDF 
is equal to \/IO. 

In this example, we can now determine the minimum variance estimator for the 
CMB temperature. Following Eq. (11.145), we write 

A«=.,̂ (V4,-3/.)(; ,y(>/;5 , ; , ) (2 

= -di-\-2d2. (11.153) 

This should be no surprise. The best estimator for the CMB temperature is com-
pletely insensitive to the ampUtude of the foreground component. For, if the fore-
ground really does have shape vector (1,1/2), the linear combination —di + 2^2 
from the foreground is equal to zero. 

In real life, one must find the minimum variance estimators at many different 
spatial pixels. The formula of Eq. (11.145) remains identical in this more general 
case: one simply adds an index for spatial pixel. It is often most convenient to work 
with the a/m's instead of the temperature as a function of angular coordinates. 
Then, the minimum variance estimator for aim often weights the different frequency 
channels differently depending upon how the noise in each channels scales with /. 
An example is shown in Figure 11.17, based on the five frequencies of the MAP 
experiment. The figure shows how the best estimator for aim weighs the five different 
frequencies in the absence of foregrounds. At low /, all the channels have similar 
noise, so the best estimator is just the average of the five. The beam size is frequency 
dependent, however, largest at the lowest frequencies. Therefore, at high /, the 
lowest channels have no signal. Only the highest frequency channel can be used. 
Indeed, one sees that the minimum variance estimator gradually drops a channel 
at a time as / gets larger. 

Often prior information on the foregrounds exists, in the form of an estimate of 
the power spectrum of each foreground component, i.e., its Ci. This prior informa-
tion can be incorporated into the minimum variance estimate; see, e.g.. Exercise 15. 
Figure 11.18 shows the results of accounting for foregrounds in the MAP experi-
ment. The difference between the weighting scheme in this figure and that in Figure 



384 ANALYSIS 

Figure 11.17. The minimum variance linear combination of the frequency channels of MAP 
in the absence of foregrounds (from Tegmark et ai, 2000). The noise at low / is identical in 
all channels, so the minimum variance estimator weights them equally. At high /, the highest 
frequency channel has the lowest noise, so the best estimator uses only that channel. 

11.17 is striking, especially at low /. No longer does one weight all the different chan-
nels identically. Rather, a complicated set of weights must be used to project out 
the foreground contamination. 

Note that foregrounds do indeed fit the definition of a systematic effect. If one 
neglected synchrotron emission in the previous example, the naive estimate of the 
CMB temperature {di -f ^2) would be wrong no matter how small the noise. You 
might argue that, over the whole sky, the average "wrongness" would cancel out, 
since there are an equal number of hot and cold spots of foregrounds. The power 
spectrum, though, the key quantity of interest, would be contaminated: it would be 
the sum of Cp^^ and Cf̂ "^ ,̂ again even if there was no noise. 

11.6.2 Mode Subtraction 

A common problem in cosmological observations is that a particular mode is con-
taminated by some external source. An example might be a region of space very 
close to our galaxy, where foregrounds are particularly important. In a galaxy sur-
vey, it might be a dusty region. Dust tends to absorb high-frequency Hght, and so 
redden an object's image. This leads to less flux in blue bands, often pushing a 
galaxy outside the flux limits of a survey. This push can be crucial, because typ-
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Figure 11.18. The minimum variance linear combination of the frequency channels of MAP 
in the presence of foregrounds (from Tegmark et ai, 2000). Compare with Figure 11.17 to 
see that, especially at low /, foreground contamination dictates a more complicated linear 
combination of the channels. 

ically most of a survey's galaxies lie close to the flux limits. Yet another example 
is a CMB experiment which has no sensitivity to the average temperature over a 
given set of pixels because of atmospheric contamination. Another is a galaxy sur-
vey in which a given stripe is contaminated because a CCD went bad at the time 
of observation. And there are many more examples. 

One way of dealing with such contamination is to subtract it off. This is com-
monly done in galaxy surveys by applying the reddening correction due to dust 
from an external dust map (the best one at present is by Schlegel, Finkbeiner, and 
Davis, 1998). 

There is another way of dealing with mode contamination, one which is rapidly 
growing in importance, as precision cosmology becomes a reality. This technique 
is based on the twin observations that (i) often there is quite a bit of uncertainty 
in the amplitude of the contamination and (ii) a given experiment often measures 
many, many modes. Since the second fact is true, we can often do without the 
offending mode entirely without losing too much information. Since the first fact 
is true, we often should do without the offending mode, for it may lead us to an 
incorrect place in parameter space. 

How can we eliminate a contaminated mode from an experiment? Let's start 
with the case where the contaminated mode is a single spatial pixel. In that case, 
one simple way to ensure that the pixel carries no weight in the likelihood analysis 
is to add to the covariance matrix a huge number in the diagonal element corre-
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sponding to the offending pixel. Then, no matter the value observed in this pixel, 
the likelihood function will not be affected. This simple idea — adding large noise 
to a contaminated mode — can be extended to more comphcated modes, those not 
localized to one spatial pixel. 

As an example, consider a two-pixel CMB experiment, in which the atmosphere 
contributes identically to both pixels. Thus, the average temperature of the CMB 
cannot be determined. The contaminant is assumed to be 100% correlated in the 
two pixels, so we add to the noise covariance matrix 

Cco„ = K f } \Y (11.154) 

where K is a very large number. Suppose the noise — in the absence of this con-
straint— is uniform and uncorrelated. Then the new noise covariance matrix is 

2 I I 0\ . fl 1 
C^iv=<(^0 l j + « ( ^ ; [j- (11-155) 

In the likelihood function, we add the noise covariance matrix to the signal 
covariance matrix. Again, for simplicity assume that the pixels are far enough away 
from each other so that the signal is uncorrelated. Then, the likelihood function 
depends on the full covariance matrix 

In particular, the likelihood function depends on the determinant and inverse of 
this matrix (recall Eq. (11.20)). In the limit that K is very large, the determinant 
becomes 2/c(cr̂  + cr̂ ) and the inverse is 

Therefore, in this limit, the likelihood function becomes, 

1 

27rV2K(a2+a2) M-'-i^y <"-' 
That is, apart from an irrelevant normalization constant, the likelihood function 
is a Gaussian in Ai — A2 (the difference between the observed temperatures in 
the two pixels) with variance equal to a^ + cr̂ . Thus adding the constraint matrix 
of Eq. (11.154) is our way of telling the hkelihood function to ignore the average 
temperature. 

In this simple example, we could have written down Eq. (11.158) from the outset, 
but with more complicated modes, the constraint formalism is extremely powerful. 
What is the generalization of Eq. (11.154) for an arbitrary contamination? Suppose 
the contaminated mode is of the form m^ where index i labels the pixels. Thus, in 
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the average example, m^ would be equal to (1,1). One adds to the noise covariance 
matrix the outer product of this vector times a large number K\ 

{Ccon)ij = i^rniruj. (11.159) 

This is precisely what we did above for the average, but this expression is now 
completely general and allows for elimination of any contaminated mode. These 
matrices, often called constraint matrices, have been used extensively in recent 
CMB analyses, most notably in the interferometric experiment, DASI. 
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SUGGESTED READING 

I am not a professional statistician and this chapter no doubt glosses over some 
important concepts in statistics. Nonetheless, I beheve this chapter does do jus-
tice to the recent flurry of activity in cosmological analysis. Readers interested in 
more general statistics treatments might consult The Advanced Theory of Statistics 
(Kendall and Stuart). An essential reference is Numerical Recipes (Press et al.) for 
all numerical work, and Chapter 15 especially for some of the analysis issues dis-
cussed here. A couple of nice early papers on the CMB are Readhead et al. (1989) 
and Bond et al. (1991). The former takes the hkelihood function further than we did 
here. For example, it deals with frequentist tests and defines such terms as signifi-
cance and power, which are extremely important in statistics. The Bond et al. paper 
is a concise introduction to Bayesian analysis of a CMB experiment. Among the 
ideas explained clearly there are CMB window functions; the likelihood function; 
dealing with an unknown average; and, to top it oflP, the idea that CMB experiments 
will probe the baryon density. 

The discussion in Section 11.1.3 is based on a similar treatment in Tegmark 
et al. (1998), which cemented the connection between CMB analyses and galaxy 
surveys. It also deals with pixelization schemes other than just the two in Sec-
tion 11.1.3. Window functions for the CMB are discussed in many places. A nice 
recent treatment is given by Souradeep and Ratra (2001). 

Karhunen and Loeve decompositions were introduced to the cosmology commu-
nity by Bunn (1995) and Bond (1995), who used them to analyze COBE, and by 
Vogeley and Szalay (1996) in the context of galaxy surveys. The optimal quadratic 
estimator was introduced by Tegmark (1997) and Bond, Jaflte, and Knox (1998), 
the latter using the Newton-Raphson motivation I stressed in the text. The former 
focused on the minimum variance aspect, which you can prove in Exercise 10. Ear-
lier, Feldman, Kaiser, and Peacock (1994) had computed an optimal estimator for 
galaxy surveys which turns out to be the small-scale limit of the optimal quadratic 
estimator. The Fisher matrix was introduced by Fisher (1935). Knox (1995) com-
puted the Fisher matrix in the all-sky CMB case, Tegmark et al (1998) for galaxy 
surveys. Jungman et al. (1996) used the Fisher matrix (although they didn't call it 
that) to give the first forecast of parameter determination. There have been many 
follow-up papers improving and tweaking various parts of the forecast. Some of the 
improvements are discussed by Eisenstein, Hu, and Tegmark (1999). The curvature 
matrix and the covariance matrix of errors on parameters are covered in detail in 
Numerical Recipes. 

Mapmaking and indeed many of the issues in CMB analysis are reviewed by 
Bond et al. (1999). Foregrounds have been discussed by many authors. The text 
borrows most heavily from Dodelson (1997) and Tegmark et al. (2000). Other works 
of note include Tegmark and Efstathiou (1996) and Bouchet and Gispert (1999). 
Mode subtraction along the fines discussed in Section 11.6.2 was introduced by 
Bond, Jaff'e, and Knox (1998). A nice example of its use is in Halverson et al. 
(2002). 
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EXERCISES 

Exercise 1. In the simple example of Section 11.1.1, show that a prior uniform in 
cr̂  gives a final probability distribution in Gn different from the one in Eq. (11.5). 

Exercise 2. In the simple example of Section 11.1.1, we found the error on the 
signal s. What is the error on the other theoretical parameter of the model dn? 

Exercise 3. Derive the expression for the covariance matrix due to Poisson sam-
pling, Eq. (11.32). 
(a) Divide the survey region into small sub-volumes. Assume that the number of 
galaxies in a given sub-volume is drawn from a Poisson distribution with mean ft 
(assume n is constant in all sub-volumes for simplicity), 

P{n) = ^^^ ; . (11.160) 

Determine the expectation values (n) and (n^) for this distribution, 
(b) Rewrite Eq. (11.28) as 

Ai = vy^yzixg) ^ ( ^ a ) — '^ (11.161) 

where a indexes each sub-volume of size v. Using the results of (a), and assuming 
that there is no intrinsic clustering, determine (AiAj). Show that it is given by 
Eq. (11.32). You'll have to change the sums back into integrals. 

Exercise 4. Determine the noise covariance matrix in a galaxy survey using counts-
in-cells. Assume the cells are spherical with radius R, and find {C]^)ij as a function 
of the separation between two cell centers; call it rij. Assume that the survey is 
volume limited, that is, that n is constant everywhere within a volume V. 

Exercise 5. Do a full likelihood analysis of the University of California at Santa 
Barbara's 1990-1 CMB experiment carried out at the South Pole (Gaier et a/., 
1992). 
(a) Determine the window function. The chopping angle was 2.1° and the beam 
width (FWHM) 1.35°. The anisotropy was measured at nine positions, each sepa-
rated by 2.1° on the sky. Neglect off-diagonal elements. 
(b) Fit a flat band power (i.e., take C = l{l -{- l)C//27r constant) to the following 
data: 
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Position 5T{fiK) cr„(/iK) 
1 -30.5 25.9 
2 -3.2 26.5 
3 29.2 26.1 
4 -10.8 26.3 
5 -8.7 28.8 
6 23.1 26.4 
7 4.7 26.5 
8 -24.7 26.6 
9 20.3 25.8 

Assume that the noise and the signal are both uncorrelated from pixel to pixel. 
(c) The likelihood function you obtain should peak at band power equal to zero. 
Find the 95% CL upper limit on the band power, defined by the point for which 

rCu poo 

/ dCC{C) = 0.95 / dCC{C). (11.162) 
Jo Jo 

This upper limit was reported around the same time as the COBE detection of 
anisotropies. Compare the two results. 

Exercise 6. Find the Fourier transform of the top-hat function f{x) = &{x + 
R)Q{R — x) where 0 is the step function, equal to 1 when its argument is positive 
and zero otherwise. 

Exercise 7. Find the diagonal elements of the covariance matrix Cs for a volume 
limited survey for modes ki > R~^. Show that they are given by Eq. (11.60). 

Exercise 8. Compute the off-diagonal window function for the two types of galaxy 
surveys mentioned in Section 11.2.3, a volume-limited survey and a pencil-beam 
survey. Take both k^ and kj parallel to the z-axis (which in the pencil beam survey 
is aligned with the long distance L). Plot the window function at fc = fcj as a 
function of kj. At the point ki = kj, you should recapture the corresponding points 
in Figures 11.5 and 11.7. 

Exercise 9. Prove Eq. (11.100). Assume there is only one parameter A and that 
the likelihood function is Gaussian in the overdensities A. Further assume that you 
have iterated enough times so that the input parameter Â ^̂  is equal to the true 
value A. 

Exercise 10. Derive the optimal quadratic estimator of Eq. (11.92) by minimiz-
ing the variance of a general quadratic estimator subject to the constraint that 
its expectation value is unbiased. Hint: Use a Lagrange multipher to enforce the 
constraint. 

Exercise 11. Consider an all-sky CMB experiment with spatial pixels of area Afi. 
Assume that the experiment measures the temperature in each pixel with Gaussian 
noise a^. The noise is thus assumed to be uniform (the same everywhere on the 
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sky) and uncorrelated (from one pixel to the next). Determine the noise covariance 
matrix for aim- If the pixel size is cut in half (for the same experiment), each pixel 
will get less observing time by a factor of 2. The noise will then go up for each 
pixel by a factor of \/2. Show that these two changes (smaller pixels; more noise 
per pixel) leave the noise covariance matrix for aim unchanged. 

Exercise 12. Estimate the expected errors on C/ for the following experiments: (i) 
COBE, (ii) Boomerang, and (iii) MAP, and (iv) Planck. 

Exercise 13. The full-sky limits for the Fisher matrix derived in Section 11.4 can 
be used to find the optimal quadratic estimator. The results should not surprise 
you. 
(a) Given a set of aim from a full-sky CMB experiment with uniform weight w, 
find the optimal quadratic estimator for Ci. 
(b) Given a set of pixelized Fourier overdensities from a 3D galaxy survey, find the 
optimal quadratic estimator for P{k). 
(c) From your answers to (a) and (b), discuss qualitatively the effectiveness of the 
optimal quadratic estimator. When do you expect it to perform differently from 
the naive quadratic estimator, Y,m l^fmP/(2/ + 1) for Ci and ^ ^ |(5^p/(47rA:̂ AA:) 
for P{k) (where Afc is the width of the fc-bin)? 

Exercise 14. Show that the noise covariance matrix of a map using the estimator 
in Eq. (11.134) is CN, as given in Eq. (11.135) 

Exercise 15. Suppose one had prior information about a foreground, in the form 
of an assumed power spectrum, C[*, where a labels the foreground component. 
(a) Find the miminum variance estimator for the temperature and the associated 
covariance matrix. 
(b) Consider the example of Section 11.6.1 with two frequencies in the Rayleigh-
Jeans regime and one foreground with shape vector W^ = (1,1/2). What is the 
best estimator of the CMB temperature if the foreground has assumed mean equal 
to zero and variance equal to that of the noise (cr^)? What is the new error on the 
determination of the CMB temperature? Compare both of these to the case treated 
in the text when no information about the foreground amplitude was assumed. 
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SOLUTIONS TO SELECTED PROBLEMS 

The problems at the end of each chapter have a broad range of difficulty. Some 
are simply repeating calculations in the text in a slightly different context; others 
are fairly elementary applications of basic formulae; while some are quite diffi-
cult, culled from recent papers. Here are some selected solutions. The solutions are 
heavily weighted to the first several chapters, especially Chapter 2, because it is 
important to be comfortable with the background cosmology before proceeding to 
tackle perturbations. 

CHAPTER 1 

Exercise 1 The ratio 

where subscript 0 means evaluate today, where it is assumed to be 0.7. Again, by 
assumption, the universe is forever radiation dominated (clearly not true today, but 
a good approximation early on), so H/HQ = a~^. The temperature also scales as 
a'\ so H/Ho = (T/To)2 with TQ = 2.7K = 2.3 x lO"* eV. So, 

P^ =0.7 C^X. (A.2) 
3FV(87rG') ' \T 

At the Planck scale, TQ/T = 2.3 x 10-'*/1.22 x 10^ ,̂ so 

This is the so-called fine-tuning problem: for the cosmological constant to be impor-
tant today, it had to have been fine-tuned to an absurdly small value at early times. 
It's a deep problem. 

392 
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Exercise 2 We need to do the integral 

da 
to 

_ J_ r^ da 
Ho io « 

f j . + i ^ 
-1/2 

(A.4) 

for r̂ A = 0.7 and 0. The latter case can be done analytically: 

f ' d a ^ 3 / 2 ^ 1 (A.5) 
Jo (^ 3 

So to — 2/3Ho = 0.67 x 10^^h~^ yrs. When ft^ is not zero, the integral needs to be 
done numerically. I find 

r^ da 
Jo « 

' r. 0.3 
0 . 7 - h ^ r 

-1/2 

= 0.96. (A.6) 

So for fixed Hubble constant, a cosmological constant universe is older than a 
matter-dominated one, older by a factor of 0.96/0.67 = 1.43. For h = 0.7, a cos-
mological constant universe has an age of 14 billion years, in accord with other 
observations of the age of the universe. 

Exercise 4 An inverse wavelength is i^/c, so replacing u everywhere in Eq. (1.8) 
by c/A leads to 

r^l![^ \ fA7) 
A3 exp{27r;ic/AJbBr}-l' ^ ' ^ 

This is energy per Hz; we want energy per cm~^, so we need to multiply by c, 
leaving 

AT^UC^ 1 

A3 exp {27^110/XUBT] - 1 * 

Plugging in numbers leads to 

'i/A = ^ 7 - „ . _ , „ _ . , , , , . -^, . • (A.8) 

/ . , , ^ 1.2 X 1 0 - « g s e c - c m - s r - ( ^ ) = ^^^,,^^,,^ ^ ,• (A.9) 

A quick check verifies that this agrees with Figure 1.10. 
To find the peak, differentiate / with respect to 1/A and set equal to zero. This 

leaves 
1 {2nhc/ksT) 
31-exp{-2nhc/XkBT}' ^ ' ^ 

So 1/Apeak is 3/.53cm~^. The exact coefficient, accounting for the exponential is 
2.82, so 1/Apeak = 5.3cm~^, exactly where it occurs in Figure 1.10. 

CHAPTER 2 

Exercise 1 
(a) To get from kelvin to eV, use ks = eV/(11605X). So 2.725K -> /CB2.725K = 

(2.725/11605) eV. Or 2.348 x lO"'^ eV. 
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(b) Since TQ = 2.348 x 10"^ eV, 

p = t ^ = 2.000 X 10-^^eV^ 
15 

(A.ll) 

To get this in g cm~^, first divide by (hc)^ = (1.973 x 10"^eVcm)^ to get 
0.2604eV cm~^. Then to change from eV to grams, remember that the mass of 
the proton is either 1.673 x 10-24 g or 0.9383 x 10^ eV, so 1 eV = 1.783 x 10"^^ g. 
Therefore, p^ = 4.643 x 10"^^ g cm"^. 

(c) We have parametrized HQ = 100/ikm sec"^ Mpc"^, or using the fact that 
one Mpc is equal to 3.1 x 10^^ km, HQ = 3.23 h x 10"^^ sec-^ To get this into inverse 
cm, divide by the speed of hght, c = 3 x 10^^ cm sec ~^; then HQ — l.lh X 10"^^ 
cm. Or HQ^ 9.3/1-1 ^ ;LQ27 ^^ 

(d) To get the Planck mass (1.2 x 10^^ eV) into kelvins, multiply hy k^^ = 
11605K/eV; then mpi = 1.4 x lO'̂ ^ K. To get it into inverse cm, divide by tie — 
1.97 X 10"^ eV cm to get mpi = 6.1 x lO'̂ ^ cm"^. To get this is units of time, 
multiply by the speed of light to get mpi = 6.1 x 10̂ ^̂  x 3 x 10^^ cm sec"^ 
mpi = 1.8 X 10^^ sec-^ 

Exercise 7 
Start with 

or 

^Oa 

111/ (A.12) 

where /i, u range from 0 tO 2, 0 being the time index, 1 corresponding to 0, and 2 
to (j). Since the metric is diagonal, g^^ is nonzero only when a = 0 in which case it 

1. So IS 

ro„ = z i 
dx^ dx^ 

dgu 

dt 
(A.13) 

All of these terms vanish: the first two since ^oo is a constant, and the last because 
none of the metric elements depend on x^ = t. So F^^ = 0 for all /i, ly. 

Next consider 
g 

• fiiy (9x^ 9x^ ax° 
dg^ liu (A.14) 

Again since the metric is diagonal, and g^^ — 1/r^, this reduces to 

1 
2 ^ 

dge^i dgeu dg^ny 

dx"" dx^ de 
(A.15) 

Only the ^̂ ^̂^ component depends on one of our variables, so only it is nonzero 
when differentiated. Therefore, the first two terms vanish and the last is nonzero 
only when /2 — u = (f)^ in which case it is 

1 
2 ^ 

, a s i n ^ ^ 
de 

= — sin^cos^. (A.16) 

Finally, when the upper index is 0, we have 
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y4> — 

sm 
(A.17) 

The last term vanishes since none of the metric elements depend on 0; the first two 
are nonzero only if one of the indices //, i/ is equal to (f) and the other is ^, so 

The geodesic equation is 

cosO 

^2 /i 

with 

p/i = 

Let's apply this to the fi = 6 component. The left-hand side is 

cPe _ d d t - _ 2i-

(A.18) 

(A.19) 

(A.20) 

(A.21) 

since E = dt/dX is constant. The Christoffel symbol on the right-hand side T^^ is 
nonzero only when a = /3 = 0 in which case it is — sin ^ cos ^. So, 

( 9 - s i n (9 cos l9 (0)2 = 0. (A.22) 

For the second equation, consider the 0 component of the geodesic equation, 

(A.23) 
dX^ - ^ - ^ ^ ^ • 

Again the left-hand side is simply E^c/). The right-hand side gets nonzero contribu-
tions when a = 6,f5 = (p or Sin identical term when a = (I),f3 = 0. Therefore, 

^ cos 0 - • 
» + 2-T-- /90 = O. 

smt^ 

Incidentally this is equivalent to 

dt 
Usin^o) = 0 

and the conserved quanti ty in parentheses is the angular momentum. 
The Ricci scalar is 

7Z = g^^R^iy = —Roo H — 2 ^ ^ ^ ~̂  
r^ sin 9 

:Rd 

(A.24) 

(A.25) 

(A.26) 

The time-time component vanishes since all T's with t ime components are zero. We 
need to compute the two spatial components. First, consider 
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Ree = 
dr-^e ar° + r^.r'^,, - r^aer" pe^ Oa- (A.27) 
dx^ dO 

The first and third terms vanish since the Christoffel symbol with two lower ^'s 
vanishes. For the same reason, the index a in the second term must be equal to </), 
and both (3 and a in the last term must equal 0: 

2 

Ree = 
9(cos^/sin^) cos 6 

sinO 

Carrying out the derivative then gives 

cos^ 0 
Ree = 1 

sm^e 

cos 9 

s'mO 
1. 

The other spatial component is 

R(i ^^(34)^ (ha 

(A.28) 

(A.29) 

(A.30) 

The Christoffel symbol in the first term is nonzero only if a = ^, while the one in 
the second term is always zero. In the third term P must be equal to 0 to make the 
second Christoffel symbol be nonzero, and then a = 0. In the last term /3 can be 6 
and a = (j) OT vice versa, so 

Rd or' 
do 

• r%^r ^(/)j- (f)(f) 

The middle two terms cancel leaving 

9(sin^cos^) 
R66 — ~~ 

oe 
-h sin 6 cos 9 

cos 9 
sin^ 

Carrying out the derivative gives 

R^^ = - cos^ 9 + sin^ 9 + cos^ 9 = sin^ 9. 

Summing up, we get 

The Ricci scalar is therefore a measure of the curvature of the space. 
Exercise 9 Accumulating the various F's leads to 

dX^ 
a dt dx^ 
a dX dX 

Change to differentiation with respect to rj using the facts that dt/dX 
drj/dX — E/a. Then the geodesic equation becomes 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

E and 

a a dr] 
(A.36) Ed^ (Edx^ 

a dr] \a drj 

Since E/a oc a~-^, when the derivative on the left acts on E/a, the resulting term 
(proportional to dx^/drj) exactly cancels the term on the right, leaving the result 
ofEq. (2.99). 
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Exercise 10 The age integral is 

t{a)= r - ^ y (A.37) 
Jo a'H{a') 

Since we are assuming only matter and radiation, we can take 

1 a H{a) = Ho VPTP^ =\H + -i (̂ -̂ S) 

where the 1/a^ term is from matter with density equal to the critical density. When 
the density in matter is equal to critical, Qr = ^eq = 4.15 x 10~^h~^. Therefore, 
the age integral is 

da'a^ 

Integrate by parts to get 

^0 Jo v/a 

Hot = 2ay/a + aeq - 2 / da'y/a/~Ta^. (A.40) 
Jo 

Carrying out the last integral leads to 

Hot - 2a^a + a,^ " 3 {['' + ""^^l^^' ~ ""^^' l ' ^^'^^^ 

At very early times, such as when the temperature was 0.1 MeV, a is much smaller 
than ago, so 

t -^ ^ „ , ; a < aeq. (A.42) 
Z/ioV^eq 

This limit is easiest to see directly in the integral of Eq. (A.39), but you can also 
get it by Taylor expanding Eq. (A.41). When the temperature is 0.1 MeV, the scale 
factor is 2.35 x 10~^eV/0.1 MeV =^ 2.35 x 10"^, the temperature today divided by 
0.1 MeV. Plugging in numbers leads to 

t (0.1 MeV) = 4.28 x 10"^^ x 9.78 x 10^ yr = 130 sec. (A.43) 

At T = 1/4 eV, a == 9.4 X 10"^, significantly larger than aeq == 8.5 x 10'^ with 
h = 0.7, so Hot -^ (2/3)a^/^ So, 

t (1/4 eV) = 270,000 yr. (A.44) 

Exercise 12 The angle subtended is the physical distance divided by the angu-
lar diameter distance 

5kpc(l + z)^ (A.45) 

In a flat, matter-dominated universe, x is given by Eq. (2.43). When z — 0.1 (1), 
the term in brackets in Eq. (2.43) is equal to 0.0465 (0.293). The comoving distance 
out to z is, therefore, 
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/ 280/1-1 Mpc 2 = 0.1 

division 
arcsec) leads to 

\ 1760/1-1 Mpc z = 1 

Carrying out the division and converting radians to arcsec (1 radian equals 2.06x 10^ 

e=\^'^^" 2^0.1 (A.47) 

In a universe with il^ = 0.7, Qrn == 0.3, x must be computed numerically. At z = 1, 
I find X to be larger than in the flat, matter-dominated case by a factor of 1.3, 
so the angular size will be smaller by this factor, down to 0.9/i". At z = 0.1 the 
difference in comoving distances is only 5%, so the angular size goes down to 3.8/i'' 
in the cosmological constant case. 

Exercise 13 Rewriting Eq. (1.8) in terms of momentum p — hv/c — 2T:TIV/C 

and recognizing the denominator there as 1 / / leads to 

, , - , * ^ , (A..S) 

with % = c — 1. So the energy density is the integral of this over all frequencies, 
with a factor of 47r to count photons from all directions (i.e., ly is per steradian): 

p^ = A7r duly. (A.49) 
Jo 

This can be converted into an integral over momentum, with du = dp/{27r): 
/•OC 

p^ = 2 / dpiy. (A.50) 

Exercise 15 We want to compute p = —TQ. Setting ^ = u = 0 leads to 

r% = -9^j^-^^^^{-Aet[g,A)-"'P'U. (A.51) 

The matrix g^y is diagonal, so the determinant is simply the product of the diagonal 
elements, —a^. By definition, p^ — g^^PiPj = a'''^SijPiPj. So pi = pip — Pi/a with 
Pi a unit vector pointing in the direction of the momentum. Therefore, d^P — a^d^p 
and the factors of a precisely cancel those coming from the determinant. We're left 
with 

The four vector P^ squared is equal to — m^, the mass of the particle, so goo{P^)^ = 
—m^ — gijP^P^ = —m^ - p^. Since ^oo = - 1 , P^ = VP^ + ^ ^ ' ^̂  accord with 
Eq. (2.59). 

Exercise 17 The energy density of a massless boson is gn'^T^/30, while that 
of a fermion is 7/8 times this. So, 

27r̂  
45 

(A.53) 
Li^^bosons i=fermions 

accounting for the possibility that different species have different temperatures. 
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CHAPTER 3 

Exercise 1 The number density of a species with degeneracy ^ = 2 is 

For the distributions we will consider, the phase space density / depends only on the 
magnitude of the momentum, so the angular part of the integral can be performed 
leading to the a factor of 47r; therefore, 

n=^ dpp^fip). (A.55) 
^ Jo 

First let's consider the high m/T limit. In this case, the limit of the Boltzmann 
distribution is exp[-(m + p^ /2m)/ r ] . I claim, though, that this is precisely the 
limit of both the Fermi-Dirac and Bose-Einstein distributions: 

e-"/^ (A.56) 
e^/^ ± 1 

since £ ~ m 3> T so that the exponential in the denominator dwarfs the 1. There-
fore the low-temperature limit of all three distributions is 

p-m/T /-oo 
^low T ^ ^ _ ^ / ^ p p 2 g - p V 2 m T ( ^ . 5 7 ) 

^ Jo 

To do the integral, define a dimensionless parameter x = p/V2mT. In terms of the 
variable dpp^ = [2mT]^^'^dxx^, so 

^low T _ e - ^ [ 2 m T ] ^ / 2 / dx x ' e - ^ . (A.58) 
^ Jo 

But the integral is equal to v ^ / 2 , so we have 

^low T ^ 2 6 - ™ / ^ ("^^ 
3/2 

(A.59) 

The high-temperature Boltzmann limit is 

„Hi T, Boltz ^ _L / rfp p 2 g - p / r (A .60) 

^ Jo 

Defining the dummy variable x = p/T leads to 

^Hi T, Boltz = A^T^ / dx x^e-\ 
TT^ Jo 

The X integral is equal to 2. So, 

(A.61) 
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'3 
^Hi T, Boltz ^ ? ^ (A.62) 

TT 

The Bose-Einstein and Fermi-Dirac integrals similarly are 

„Hi T, BE/FD =.Tl r ^ ^ . (A.63) 
^ Jo '" ' 

The integrals can be written in terms of the Riemann zeta function, via Eq. (C.27). 
So the integral in Eq. (A.63) with the minus sign — the Bose-Einstein distribu-
tion— is C(3)r(3) = 2C(3). The integral with the plus sign — the Fermi-Dirac dis-
tribution—is 3C(3)r(3)/4 = 3C(3)/2, so 

Hi T _ C(3)T^ f 2 Bose-Einstein 
^ ~ 7r2 \ 3 / 2 Fermi-Dirac ' 

By the way, ^(3) — 1.202, so there are more bosons than fermions for the same 
temperature, and these bracket the Boltzman amount. All of course are proportional 
toT^ . 

Exercise 6 The photon number density is 411 cm"'^, while the baryon number 
density is n^ = Pb/^p = Pcr^b/^p- Plugging in numbers gives 

^ 1.879/i2 X 10-29gcm-3 ^ ,^ . ^ ,2 3 ^^ n.^ 
rib = ^b , ^^^ ,^ 24 = 1-12 X lO-'^^bh^ c m - ^ A.64) 

1.673 X 10~^^g 
So rjb, the ratio of the baryon to the photon number density, is indeed given by 
Eq. (3.11). 

Exercise 11 To find this ratio, we compute the entropy density {V -\- p)/T at 
the two times. In both cases, only relativistic particles contribute to the entropy 
density significantly so that Eq. (A.53) holds. At high temperatures, the following 
particles contribute to the energy density: quarks (̂ * = 5 x 3 x 2 for the five 
least massive types — up, down, strange, charm, bottom — each with three colors 
and two spin states); anti-quarks {g^ = 30 again); leptons (̂ * = 6 x 2 for the six 
types — e, Ve,!^-, ^^, T, Ur —each with two spin states); anti-leptons (̂ * = 12 again); 
photons (2); and gluons (̂ f* = 8 x 2 for eight possible colors each with two spin 
states). This totals up to 

^, = 2 + 16 + ^ (30 + 30 + 12 + 12) = 91.5. (A.65) 
8 

The sixth quark, the top quark, does not contribute because it is too heavy to 
be around at these temperatures rrit ~ 175 GeV. Today entropy comes only from 
photons and neutrinos. The former contribute 2 to ^*; the latter contribute (7/8) x 
3 x 2 x (4/11)'^/'^ = 1.36, so today g^ = 3.36. Since the product sa^ remains constant, 
we have 

[9*(<^Tf]L . _ =[9*{^Tf]\- (A.66) 
T=10 Gev To 

Therefore, 

I T = 1 0 Gev ^ ± ^ ^ _£_ tp^ a^\ 

{a^Tof 91.5 27' ^ ' ^ 
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CHAPTER 4 

Exercise 1 First integrate Eq. (4.6) over all momentum. This gives 

1 + ̂  = 0, (A.68) 

the df /dp term vanishing after integrating by parts and noticing that / = 0 at 
p — ±oo (there are no particles with infinite momentum). This is the continuity 
equation. To get the Euler equation, first multiply by p/m and then integrate over 
all momentum. This gives 

2^+« r|P4,M„ = 0 (A.69) 
ut ox J_^ ZTT m^ m 

where the last term follows from an integration by parts. The integral over p'^ yields 
two terms, one a bulk velocity term, v^, and the second a pressure term, P. Using 
the continuity equation reduces this to 

dv 1 dP kx ^ ,, „ ^ . 

ox n ox m 

Exercise 4 From Eq. (3.3), the electron distribution function peaks at zero 
momentum, with a maximum value of e^^~"^^ /̂- .̂ To relate the chemical potential 
to the density, recall that n = e^^^n^^\ so in the low-temperature limit (Eq. (3.6)): 

e''^='^(^X'\'-^'^. (A.71) 
2 \meTJ 

So the maximum value of fe is (ne/2)(27r/meT)3/2. Divide Eq. (3.44) by the Thom-
son cross-section to get rig = 1.12 x lO^^r^^/i^cm"^ today including both ionized 
and captured electrons. Taking the electron temperature to be equal to the photon 
temperature today gives 27r/meT = 2.04 x 10~^^cm^. Putting back in the factors 
of a leads to 

/MAX ^ 10-21^^/,2^-3/2 (A.72) 

This expression holds only up to T < mg, corresponding to a ~ 4.6 x 10~^°. So, as 
long as the temperature is well below the electron mass, fe is very small. 

Exercise 7 The difference between the amplitude we used in the derivation in 
Section 4.3 and the more accurate one given in the problem is 27r(jTmg[3cos(p • 
p') — 1]. The combination is square brackets is twice the second Legendre polyno-
mial. Rewrite using the addition formula of spherical harmonics; then the diff'erence 
becomes 

o _ 2 

2naTml- Yl ^2rn{p)Y^^m{v)- (A.73) 
m=-2 

This is the quantity we need to insert into the multiple integral in Eq. (4.49) in 
place of M^. When we do this, only the m = 0 term will contribute since all other 
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^2m(pO have an azimuthal dependence which integrates to zero. Therefore, the new 
colHsion term due to anisotropic Compton scattering is 

. 2 . _ r ^3y 
,c|/(fll = ̂ P , w / ^ W « 

x { * - p ' ) + (p--r)-tf^^^~2} {/(P')-/(P}}. (Â 74) 

where I have used the fact that ^20 = — \/5'P2/\/47r. The only term which survives 
the angular integral is the one proportional to S{p — p')f{f), leaving 

5C[m] = - ^ P 2 ( / i ) rdp'p'5{p-p')p' 
2p Jo 

7-1 2 
p2(/x)e(/i). (A.75) 

The angular integral gives —62. Then integrating over the Dirac J-function yields 

5C\f{p)] = + p ^ ^ p 2 ( M ) e 2 . (A.76) 

This adds a factor of —7^202/2 inside the square brackets of Eq. (4.54) and explains 
the corresponding factor in Eq. (4.100). 

CHAPTER 5 

Exercise 4 In Fourier space, 

Ujkihk - Ski/3)G^ji = -k^e^jk(kkkj - kjkk/3)G^ 

= -2k^ l^e^jkkf^kG^ = 0 (A.77) 

since eijk is antisymmetric under interchange of j and k while kjkk is symmetric. 
The combination is also traceless since dij{kikj — <5̂ j/3) = 0. 

Exercise 7 (a) By definition, 

r}/e -̂  - ^ [gi'j^k -f 9i'k.j - 9jkA'] • (A.78) 

All derivatives here are spatial, and the only spatially varying part of the metric is 
the first-order piece H. Therefore, we can again use the zero-order g^^ = 6ii>/a^^ 
leaving Eq. (5.43). 

(b) The product F^ Pf̂  vanishes when both indices a and f3 are zero (because 
FQ- = 0) and when both indices are spatial (because then each Christoffel symbol 
is first order). Therefore, this product is 

p a p/5 pO -pk _> pA: pO 
^ (3j^ ict — ^ kj^ iO ^ ^ OjJ- ik 
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rLrfo + ( i - j ) - (A.79) 

But 

^ {Hf g,j + a^n^J,o• (A.80) 

We must remember to add back in the same set of terms with i and j interchanged. 
This just introduces a factor of 2, so 

F ^ / f , = 2 {Hf g,, + 2a^W,, ,o . (A.81) 

CHAPTER 6 

Exercise 5 There are 411 photons per cm~^ today; the Hubble volume is 
(47r/3)[3000/i-^Mpc]^ == 3.3 x lO^'*/I'^cm^. So the total number of photons is 
1.4 X 10^^/i"^. This number remains roughly constant throughout the matter and 
radiation eras since the number density scales as T^, the physical volume as a^, and 
the temperature as a~^. So another problem of the classical cosmology is: Why is 
the entropy of the universe so large? 

Inflation solves this problem. At first the solution seems obvious: inflation makes 
the scale factor grow exponentially fast, thereby increasing the product aT and 
hence the entropy. In fact, the solution is not quite that simple because during 
inflation, the exponential expansion is adiabatic: the temperature still falls as a~^. 
So near the end of inflation the temperature has dropped rapidly enough so that if 
the entropy was initially of order unity, it remained of order unity. 

The production of entropy actually takes place at the end of inflation during the 
reheating process. Even though the temperature at the end of inflation is extremely 
small, the energy density (which is almost completely in the scalar field) is not. 
When the energy in the scalar field transforms into radiation, the temperature 
of the radiation shoots up from its very low value of T to p^/^ > T. Thus, the 
reheating process is responsible for the large entropy we see today. Another way to 
say this is to point out that inflation is a very ordered state: the universe supercools 
while the field is trapped in a false vacuum. The transition to the true vacuum is a 
transition to the very disordered state of equilibrium. 

Exercise 11 (a) With this substitution, the equation becomes 

d'^v 2dv A 2 _ A V fA82) 
dr]'^ T] drj \ V^ J 

Defining x = /cry, we see that v satisfies the spherical Bessel equation of order 1 
(Eq. (C.13)). 
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(b) The two general solutions are ji{x) and yi{x). The general solution is there-
fore Aji -f Byi. Writing these out explicitly leads to 

, . sin X — X cos X _ cos x -h x sm x 
V = r]v = rj [ A B ^ 

-V-fe^^^ [~iA -Akr]-B + iBkrj] 

+e-^^^ [iA -Akr]~B- iBkr]] ) . (A.83) 

When kr] is very large and negative, we want v -^ e~^^^/V2k, so the coefficient 
of e+*^^ in this limit, proportional to -A + iB, must vanish. Thus, A = iB. The 
coefficient of e~^^^ is 

1 
2/c2ry 

-A 
-2Akr] 

This must equal {2k)~^^'^, so A ~ -{k/2)^^'^. Therefore the correct solution is 

- 1 

(A.84) 

2kkr] 
(e-'^'^li-kr]]) (A.85) 

in agreement with Eq. (6.57). 

Exercise 13 The two components of Einstein's equations are 

/c^^ + 3aH Uf + aH^) = AnGa^ST^ 

ik^{^ + aH^) = -inGaST^. {AM) 

Here I have simply copied the results from Chapter 5, replacing $ with - ^ . Multiply 
the second of these by ZiaHki/k'^, and then add the two equations to get 

kH-= inGa^ 
0 ^Hk,ST^ 

(A.87) 

On large scales, the left-hand side is negligible, so the terms in brackets on the right 
must sum to zero, giving Eq. (6.85). 

CHAPTER 7 

Exercise 4 
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(c) To do the integral, introduce a new dummy variable x = \/l + y. Then 
Eq. (7.31) becomes 

$ = 
3 $ ( 0 ) y r T ^ f^^^ ^ (x2 - 1)2(3x2 + 1) TTy f dx- (A.88) 

Now integrate by parts using the fact that the integral of 1/x^ is equal to —1/x. 
The surface term is proportional to the numerator and so vanishes at the lower 
limit, when x = 1. Therefore, 

$ 
3$(0 )^/^T^ 

2 y3 

3$(o) yrr^ 1 
2 y3 

+ / dx(l8a;^-20x2 + 2) 
y'(4 + 3y) 

t/2(4 + 3;/) .18 s 20 3 vT+^ 
y r r ^ + ( 5 0 ; - ^rr +2x j | i (Ai 

Evaluating the terms in parentheses at the upper and lower limits leads to 
Eq. (7.32). 

Exercise 9 
i2 

ol = { fd^x6{x)Wn{ 

(fk . 
(27r)^ 

5{k)W},{k) 

) 

) (A.90) 

where ' denotes Fourier transform, and I have used the fact that since Wii{x) is 
real, Wnik) = W^{—k). Also I have evaluated SR at the origin; and the angular 
brackets denote the average, now over all realizations of 5{k). Squaring and using 
the fact that 

{5{k)5{k')) = {2Trf 6^{k + k')P[k) (A.91) 

leads to 

^-:^P{k)\wR{k)\ . (A.92) 

It remains only to compute the Fourier transform of the top-hat window function, 

WR{k)= f d^xWR{x)e-'^-^ 

2n 
[ dxx"^ f dfie''"''^ (A.93) 

Note that I have normalized the window function so that the integral over it is 
unity; hence the factor of VR = inR^/i. Carrying out the remaining angular and 
radial integrals leads to 

WR{k) = 
kR^ f 

Jo 

dxx s\n{kx) 
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By way of solving Exercise 10, note that 

^ '-kR cos{kR) + sin(A:i?)]. (A.94) 

^\k) = ^k'P{k), (A.95) 

CHAPTER 8 

Exercise 2 Assume a solution of the form x = e'^^^. The damping equation then 
becomes a quadratic equation for u: 

^2 _ ! ^^ _ A ^ Q (A.96) 
m m 

Solving with k/m > 7^ = {b/2m)^ leads to 

uj = i'y±LJi. (A.97) 

The frequency is now uji = [k/m — 7^]^^^, smaller than in the undamped case. The 
amplitude is also damped by e~^'^. 

Exercise 9 Use the addition theorem of spherical harmonics (C.12) to write 

Vi'ii • k) = ^ ^y;„ , (^)y , ,„ , ( fc ) . (A.98) 
m' 

Then the angular integral becomes an integral over the product of two spherical 
harmonics, which — because of orthogonality — is equal to 1 if /' = / and m^ = m 
and zero otherwise. This leads directly to the desired reult. 

Exercise 12 I get the result show in Figure A.l. The integral of the cross-term 
is significantly smaller than that of either of the squares, so there is no interefence 
between the monopole and dipole. 

Exercise 17 The generalization of Eq. (8.67) to tensors gives 

^^ = E(-0''+'"(2/' + i){2i" + i)j^^ej;{k)ef,r{k)iimv{k)iL,,{k) (A.99) 

where I have defined 

^Iml {k) = ^ J d n r , { k . ^)Ylmm [Y22m + l 2 - 2 ( ^ ) ] . (A.lOO) 

The factor of [STT/IS]^/^[122 + ^2-2] is the combination sin^ 6cos{2(j)) which appears 
in Eq. (4.115), so this expression is valid only for the + mode. However, the x mode 
gives exactly the same result. 

The integral //^// is not trivial. By rewriting the Legendre polynomial as 
[An/{21' + l)]^/^y//o/i^ , we can turn //// into an integral over the product of three 
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Figure A . l . The integrals of products of spherical Bessel functions. 

spherical harmonics. Such integrals are intensively studied in quantum mechan-
ics and can be expressed in terms of the Wigner 3-j symbols. By the way, my 
favorite reference for these things — especially useful for this integral — is Quan-
tum Mechanics (Landau and Lifshitz), like all the other texts in their Course of 
Theoretical Physics a wonderful investment. The integral is then 

I 127r2 1 
(A.lOl) 

which vanishes unless m = 2 or m — —2. When m takes on one of these two values, 
the matrix element is 

(/2|y22 + l 2 - 2 | / ' 0 ) = / - ^ 
/ 2 V 
0 0 0 

5(2r + l)(2/ + l)1 ̂ /Y / 2 V 
47r V - 2 2 0 

(A.102) 
The first 3-j symbol here, the one with the bottom row all zero, vanishes unless the 
sum of the elements in the top row / + /' + 2 is even. And of course V cannot differ 
from / by more than 2 since the combination of F22 ^ro leads to angular momenta 
ranging from /' — 2 to T + 2. So the only time the matrix element is nonzero is when 
/' = / — 2, /, / + 2. Using Table 9 in Section 106 of Quantum Mechanics leads to the 
final result: 

'•ImV \ / 2 / - h l i~^ (5^,2 + (5m,-2) [C-2^/^/-2 + Co(5r,/ + C25/',/+2] (A.103) 

where here 5m,2 (and all other (5's) is the Kronecker delta, equal to 1 if m = 2 and 
zero otherwise. The coefficients are 
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C - 2 

Co = 

C2 

4 ( 2 / - 3 ) ( 2 / - l ) ( 2 / + l ) 

4 ( 2 / - l ) ( 2 / + l ) (2/H-3) 

4 (2/ + l )(2/ + 3)(2/ + 5) ' 
(A.104) 

The result in Eq. (8.93) then follows. 
Exerc i se 18 
(a) On large scales, we can take the matter-dominated solution for /i, so 

0/ 
-1 P ° d 

drj 

3 j i ( M 

krj 
p l / 2 (A.105) 

1/2 

Here I have used the fact tha t the initial amplitude of the gravity waves is P^^ 
with the time dependence given in the square brackets. Plug this into Eq. (8.93) to 
get 

cr Aw 

Ji-2{k[rto -rj\) 

/ dk k^Ph{k) 
Jo 

/ d{kv) 
Jo 

J 2 ( M 

krj 

Ji{k[rio-v]) , i/+2(A:[ryo - r/]) 1 
+ ( 2 / - l ) ( 2 / - h l ) ( 2 / - l ) ( 2 / - f 3) (2/ + l )(2/ + 3)J 

,(A.106) 

where I have set the lower limit on the time integral to zero since ry* <^ TJQ. Also, 
I have used the identity {ji/xY — —J2/X. The factor of 2 out in front comes from 
the sum over the + and x components. Using Eq. (6.100) for Ph (in the slow-roll 
approximation e = 0 and u — 3/2) and defining new integration variables y = kr/o 
and X = krj leads to 

CT = 36 ^ ) \ l - m i - ^ l ) { l 
m p i 

ji-2{y-x) 

•2) 
Jo y \Jo 

J2{x) 

+ 2 
ji{y-x) 

-f 
ji^2{y-x) 

L ( 2 / - l ) ( 2 / + l ) ( 2 / - l ) ( 2 / + 3) (2/ + l ) (2/ + 3)J 
.(A.107) 

Here Hi^f denotes the Hubble rate during inflation, or more precisely the Hubble 
rate when the modes in question crossed the horizon (when krj = —I early on). 
This expression does well on the low multipoles. To get even bet ter results stick in 
the transfer function of Eq. (5.88). 

(b ) For the / = 2 mode, the double integral in Eq. (A.107) is equal to 2.139 x 
1 0 - ^ so C j = 0.185(iJ/mpi)2. The scalar C2 is equal to nSjj/U. Using Eq. (6.100) 
for 6H leads to 

r = 13.86e. (A.108) 
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(c) Combining with Eq. (6.104), we expect 

r = -6.93nT. (A.109) 

For many models, the inflationary parameter 5 = — e, so 

n-l = -nT. (A.llO) 

CHAPTER 9 

Exercise 2 Expand the power spectrum about k^ = 0: 

P (^^kl + (HoK/xr^ = P{HOK/X) + ^ ^ 1 ^ 3 = 0 ^ 1 + . . . . (A.l l l ) 

For a smooth power spectrum dP/dk is of order P/k, so the coefficient of /cf is 
of order P/k'^. For us, k = HQK/X, SO this coefficient is of order Px^/[HotiY. We 
can write /cf as —H^d'^/dx^ acting on the exponential of Eq. (9.9). Assuming the 
selection function is relatively smooth, this is of order H^/x^- So the first correction 
to the leading term is of order \/H?, which is small as long as the angular scales 
probed are not too large. 

Exercise 3 Define the dummy variable x = H^K/k. Then 

H.j ̂ j,{k0x/Ho)W'ix), (A.112) 

an expression which clearly depends only on the combination kO. 
Exercise 5 To express C/"^''*"' in terms of w, multiply both sides of Eq. (9.66) 

by Vi' (cos 9) and integrate over /x = cos 9. This gives 

'''L ^mat te r ^ ^n dcOS OVI {cOS 0)w{6). (A.113) 

Express w as an integral over the 2D power spectrum as in the first line of Eq. (9.13). 
Then, 

Q m a t t e r ^ / dl' l'P2{l') j dcOS 0Vl{cOS e)Jo{l'6). (A .114) 

Note the difference in P's: the first P2 here is the 2D power spectrum, the second Vi 
is the Legendre polynomial. In the limit that V is large, the Bessel function becomes 

Jo{l'0)^Vi'{cose). (A.115) 

Therefore, the integral over 6 vanishes unless / = /', in which case it is equal to 
2/(2/ H- 1). The integral over /' is identical to a sum over V at large /' since dV ^ I. 
The factor of 2/(2/ +1) in the denominator cancels the factor of /' in the numerator, 
leaving the desired equality between the 2D power spectrum and C/^^^^r 
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CHAPTER 10 

Exercise 2 The total intensity received at the detector is the angular integral of 
^obs(^) over 6. The total intensity emitted is the angular integral of /true (^5) over 
9s' The magnification /i is the ratio of the two: 

J d^OsItrue{(^S) 

Change variables in the denominator to 6, leading to a factor of det(74) where A 
is defined in Eq. (10.15). Recall now that /true(^5) = ^obs(^), so except for the 
determinant, the numerator and denominator cancel. This leaves 

^ ^ d < I ) = ( l - « ) 2 - ( ^ 2 + ̂ 2)- (A-117) 

If all the perturbations are small, then the magnification depends only on K: 

/i::::̂  1 + 2K. (A.118) 

Exercise 3 (a) Reading off from Eq. (10.14), we see immediately that 

""' dx^^^^^^ixO.x). (A.119) 
XsX 

where I have let x ~^ Xs '^^ Eq. (10.14) and replaced the dummy variable x' 
there with x- The only subtlety here is the extra factor of x i^ the denominator. 
This comes from changing the derivative with respect to position (the comma in 
Eq. (10.14)) to an angular derivative. 

Exercise 4 Recall that, in the Newtonian limit, the gravitational potential can 
be written in terms of the mass density: 

^x) = -G f-^Kr^Pix')- (A.120) 
J \x-x'\ 

We will do this integral in cyhndrical coordinates, so that x' — {R.x')- Thus, 

•i 

XSXL 
fd'R fdx'p{R,x') r I ^^ = = (^-121) 

•̂  -̂  "̂° \/{R-XLor + {x-xr 
where I have set x = XL in the slowly varying factors out front. The innermost 
integral can be done analytically: it is equal to 

2 In \x+^{R-XLOy+x^ 
I lo 

where I have set the upper limit to infinity because there is no contribution to the 
relevant part of the projected potential from large x. In fact, the only part which 
depends on 6 (and hence is relevant when derivatives are taken) comes from the 
lower hmit: —2 In | ^ — XL^I- The integral over x' then becomes the surface density 
leaving the desired result. 
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CHAPTER 11 

Exercise 4 The noise matrix is 

{CN)ij = \ j d'xMS)M^) (A.122) 

in this case of constant n. Let's consider first the diagonal elements of the matrix. 
For these, both ijji and ipj require x to be within a radius R of the center of the ith 
cell, so 

{CN), n dPx= — - — (A.123) 
Jx<R ^ 

(no sum over i intended). For cells separated by more than 2R, the integral vanishes 
since x cannot be within a distance R of both cell centers. For distances less than 
2R there is some overlap and the integral becomes 

n I d^xQ (R-\x-r^= 2nn / dxx'^ / dfiO (R - y/x^ + r^ - 2xrfi] 

(A.124) 
where f is the difference between the positions of the two cell centers and O is the 
step function equal to 1 if its argument is positive and zero otherwise. The /x integral 
therefore goes runs from (x^ + r^ — R^)/2xr up to 1. If this lower limit is greater 
than 1, then the ji integral vanishes; otherwise it is unity. The only contribution 
then comes when the lower limit is less than 1, which happens when x lies between 
r ± R. The integral is therefore 

/ dxx^ 1 - ^ ^ t l fL = - / dxx \2xr - {x^ + r^ - R^)] . (A.125) 

Jr-R L 2xr J 2r J^_j^ ^ 

The X integral here is then tedious but completely straightforward since the inte-

grand is simply powers of x. I find that 

Exercise 7 We need to compute the integral of Eq. (11.55). Since the window 
function is sharply peaked for small scale modes, we can set k everywhere to ki. 
Then inserting our explicit expression for the window function in a volume-limited 
survey (Eq. (11.59)), we are left with 

47r^fi^ Jo J\k-k,\R y 

The best way to do the integrals here is to switch orders of integration. Consider the 
Figure A.2, which shows the region of integration. The region below the horizontal 
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Figure A.2. Region of integration for the double integral in Eq. (A.128). The region below 
the horizontal line constitutes the first term, above the second term. 

line corresponds to y < kiR and ki — y/R < k < ki+ y/R- In the region above k is 
bounded by y/R ± ki. Therefore, 

poo p{k-\-ki)R 1 pkiR 1 rk^-\-y/R /-cx) i pki+y/R 

dk ^ f,{y) = / ^ jUv) / dk+ ^ jl{y) / dk 
Jo J\k-ki\R y Jo y Jk^-y/R JkiR 2/ Jy/R-k^ 

R 

rk^R 

Jo ^ 
dy jl[y) + 2k, 

r dy .2, . 
Jk^R y 

(A.128) 

In the Hmit k^R ^ 1, the first term here is much larger than the second (since 
3i{y) go^s as l/y"^ for large y). In the first integral, we may replace the upper 
limit by infinity, again since kiR is large. The resulting integral is (Eq. (C.17)) 
7rr(3/2)/4r(5/2) = 7r/6. Multiplying this by 2/R and then by ^/^'K'^R^ leads to a 
factor of l/V. 

Exercise 9 We want to compute the variance 

; (A-A) ' ) = 
_ i A C - i C A C - i A - T r [ C - i C A ] 
AA (A.129) 

where the estimator A is given by Eq. (11.92), and I have assumed that A(°̂  = A, 
i.e., we are at the true maximum of the hkelihood function. Upon squaring there 
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are terms with no A; those with two A's; and those with four. The ones with two 
A's can be simply evaluated by using 

(A,A,> ^ C, (A.130) 

where the indices label the pixels. Since the distribution is assumed Gaussian, the 
expectation value of four A's is 

(A^AjA/cA/) = CijCki + CikCji + CiiCjk' 

Putting in these expectation values leads to 

(A.131) 

<(^-^r>=¥{ C-^CxC-^ ^A^ 
Jij 

C-^CxC-^ 
ki 

{CijCki + CikCji + CiiCjk) 

-{Tr[C-'C,x]y (A.132) 

The CijCki terms lead to (Tr[C ^C,A])^, cancelling the similar term on the last 
line, so 

( ( A - A ) ' ) AA C-^CxC-^ C-^CxC-^ 
ki 

(QkCji^CuCjk)^ (A.133) 

Both terms here contribute identically (giving one factor of 2). The matrix multi-
plication simplifies since all matrices are symmetric. For example, 

C-^CxC-^ C-^C A C - ^ J ^QkCji = TV [ C - ^ C , A C - ^ C , A ] (A.134) 

and we recognize the right-hand side as 2FAA (another factor of 2). Therefore, 

2 
( ( A - A ) )^F-,\ (A.135) 

It is important to keep in mind that this equality holds only if the overdensities are 
distributed as Gaussians and if we truly have reached the point in parameter space 
which is the true maximum. 

Exercise 15 (a) Use a likelihood approach. The likelihood function for the 
parameters, here the amplitudes of the different components O'^, is proportional to 
e->^'/2 with 

^foregrounds 

x^ = {d- w@) N-^ {d - we) + Yl {^'"f/c'"' (A.136) 
a=l 

The first term is identical to that generated by Eq. (11.144). The second accounts 
for the prior, that O^ has mean zero and variance C". Maximizing the likelihood 
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corresponds to minimizing the x^, with respect to the parameters 9 . Since the 
X^ is quadratic, the minimization leads to a hnear equation for A^, the minimum 
variance estimator of 9^ : 

A = {WN~^W + C-^y^ WN-^d. (A.137) 

The new covariance matrix is the first term on the right, 

CN = [WN-^W + C-^y^. (A.138) 

Here the matrix C is diagonal with QO element equal to zero, and the other diagonal 
elements equal to the assumed power spectra of the foregrounds. 

(b) If there is only one foreground with shape vector W^ = (l^ V^), and if this 
foreground has assumed power equal to the noise, then the new inverse covariance 
matrix goes from that in Eq. (11.151) to the same matrix with 1/cr^ added to the 
11 component. Thus, 

'^ al V3/2 9/4 y-
Note that the oo component of this is unchanged, as it must be since it is the inverse 
covariance if all foregrounds are known. The inverse of this gives the new covariance 
matrix. 

Immediately, we see that the noise in the presence of foregrounds is Gji. This is a 
factor of \/5 smaller than if we had no prior knowledge of the foreground amplitude. 
It is only a factor of \/2 larger than the case without foregrounds; thus the new 
FDF in this case is A/2. The minimum variance estimator is 

. . .Mw4,-3/2 , ( ; j , ) ( \lol 0 \fd. 
0 l/aij \d2 

di + 2^2 (A.141) 



APPENDIX B 

NUMBERS 

Numbers in parentheses denote one standard deviation uncertainties in last dig-
its (e.g., the Rydberg eo = 13.60569172 ± 5.3 x 10""^eV). The vast majority of 
these numbers, at least the physical constants, come from the Particle Data Group 
(Groom et aL, 2001). 

B.l PHYSICAL CONSTANTS 

Fine structure constant 

Rydberg 

Thomson cross-section 

Neutron lifetime 

Speed of Hght 

Fermi constant 

eo 

(JT 

c — 

GF 

1/137.03599976(50) 

13.60569172(53) eV 

87ra2nV3m2c2 

0.665245854(15) x 10-^4 cm^ 

885.7(0.8) sec 

2.99792458 x lO^^cmsec-^ 

1.16639(1) x 10-^GeV-^(;ic)3 

415 
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Newton's constant G — 

Reduced Planck's constant Ti = 

Boltzmann constant ks = 

Electron mass rrie — 

Neutron mass 

Proton mass 

Planck mass mpi — 

Neutron-proton mass difference Q = 

rrir, 

TTlr, 

6.673(10) X 10-^cm'^g-^sec"-^ 

6.58211889(26) x 10"^^ eV sec 

1.973269602(77) x 10"^ eV cm/c 

8.617342(15) x 10-^],eVK~^ 

0.510998902(21) MeV/c2 

939.565330(38) MeV/c^ 

1.67262158(13) x lO'^^g 

938.271998(38) MeV/c^ 

1.221 X 10^^ GeV/c2 

1.094 X 10"^^ Mo 

1.2933 MeV/c2 

B.2 COSMOLOGICAL CONSTANTS 

Cosmic microwave background p^ 

energy density 

Critical density p^v 

2.47xio-^/i-2(r/ro)Vcr 

1.879 K^ X lO-^^gcm"^ 

2.775 /i^ X 10̂ ^ MoMpc"^ 

;.098/i2 ^ 10-11 eVV(M^ 
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Massive neutrino density 

Massless neutrino density 

(A^ generations) 

Scale factor at equality 

Wavenumber at equality 

Hubble constant 

Solar mass 

Parsec 

Cosmic microwave background 

temperature today 

n^h^ 

n^h^ 

^eq 

Ho 

M« 

pc = 

To 

(m^/94eV) 

1.68 X 10-5(Ar/3) 

4.15 X 10-5(l^m/i2)-i 

0.073 Q^/i^Mpc-^ 

100/ikmsec"^Mpc"^ 

2.133/1 X 10-42 GeY/h 

1.023/1 X 10-1° year-1 

1.989 X 10^3 g 

1.116 X 1 0 " GeV/c2 

3.0856 X 10^^ cm 

2.725(2) K 

2.348 X lO-^'eV/fcs 



APPENDIX C 

SPECIAL FUNCTIONS 

Here is a very brief summary of special functions, focusing primarily on properties 
relevant to the calcuations in the text. For a more complete treatment, see, e.g., 
Handbook of Mathematical Functions (Abramowitz and Stegun). 

C.l LEGENDRE POLYNOMIALS 

The Legendre polynomial 7^/(/i) is an /th-order polynomial of /i. For - 1 < /x < 1, 
Vi has / zeroes in this interval. Some special values are 

S/î  - 1 
7^O(M) = I ; Pi(/i) = /i ; 7^2(/i) = ^ ^ . (C.l) 

The property observed in these first few, that Vi is an even function of /i for I even 
and an odd function for / odd, holds for all /. They are orthogonal so that 

^ ^d^lVl{^i)v,i^l) = Slr^j^. (c.2) 

To generate the higher order ones starting from the low ones, one can use the 
recurrence relation 

/ 

{I + i)P,+i(/x) = (2/ + l)^ln{^i) - iPi-iii^). (C.3) 

This relation is useful for expressing the Boltzmann equations in terms of moments. 

C.2 SPHERICAL HARMONICS 

Spherical harmonics are eigenfunctions of the angular part of the Laplacian, 

1 d / d\ 1 d' 
smt^-— -h sin Ode V de sin^ 

Yim{e^(l)) = ~l{l + l)Ylm{0,<t>). (C.4) 

In the text, we decomposed the CMB temperature into spherical harmonics 
(Eq. (8.60)); this decomposition is the analogue of a Fourier decomposition in flat 

418 
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space. The CMB temperature is defined on the sphere, i.e., is a function of ^,(/), 
while the 3D galaxy density, for example, is a function of all three spatial coordi-
nates so is expanded in Fourier coefficients. Some special values are 

^OO(^,0)-
An 

47r 

n ,± i (^ ,0 ) = T n / ^ s i n ( ^ ) e ± ^ ^ 

>^2O(̂ ,0) 
167r 

( l-3cos2(9) 

'15 
>2,±i(6>,0) = ±n/—-COS l9 sin (9e=̂ ^̂  

15 l 2 , ± 2 ( ^ , 0 ) - - \ / ^ s i n 2 ^ e ± 2 ^ ^ 

These functions are orthogonal, with normaUzation 

mm'' 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(CIO) 

(C.ll) 

Another useful expression is the Legendre polynomial in terms of a sum of products 
of the spherical harmonics: 

47r 
^'^^•^'^ = 2yTi ^ yimix)Y;^{£')- (C.12) 

m= — l 

C.3 SPHERICAL BESSEL FUNCTIONS 

Spherical Bessel functions are crucial in the study of the CMB and large-scale 
structure in part because they project the inhomogeneities at last scattering onto 
the sky today. They satisfy the differential equation 

dx'^ X dx 
1 

/(/ + 1) 
31 = 0. 

The lowest several are 

ioW = 
sin(x) 

JiW = sm X — X cos X 

(C.13) 

(C.14) 
X X^ 

The key integral relating Legendre polynomials to spherical Bessel functions is 
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lj'^dnPi{n)e'^^^^^^. (C.15) 

The inverted version of this leads to a useful expansion for Fourier basis functions: 

oo 

^k-x ^ Y^ ./(2/ + l)ji{kx)Pi{k . x). (C.16) 

Another important integral for the Sachs-Wolfe effect is 

Another important relation which eliminates derivatives is 

f=n-^-'-^j. (C.18) 
ax X 

C.4 FOURIER TRANSFORMS 

Our Fourier convention is 

m = l e"̂ -̂  f{k) 
(27r)3 

m = J d^xe'^'-^ fix). (C.19) 

The power spectrum is then the Fourier transform of the correlation function, with 

{Sik)S{k')) = {27Tf6^{k - k')P{k). (C.20) 

C.5 MISCELLANEOUS 

We just need a couple of relations involving ordinary Bessel functions, 

Jn{x) = — f dee"^"^^cosine) (C.21) 
TT Jo 

and 

— [xMx)] = xJoix). (C.22) 

The r function for integers is simply related to factorials: 

r ( n + l) = n!. (C.23) 

More generally 
r(.T + 1) = xTix) (C.24) 
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even if x is not an integer. The Sachs-Wolfe integral (Eq. (C.17)) for a Harrison-
Zel'dovich-Peebles spectrum (n = 1) depends on 

r(3/2) = ^ . (C.25) 

The Riemann zeta function is useful for evaluating integrals in statistical 
mechanics. In particular, 

-I poo ^s-l 1 roo ^s-l 

C(s) = - i - / dx- = r-T^;rT / dx-—-. (C.26) 
^^ ' r{s)Jo e--l (1 - 2 i - - ) r (s ) 7o e- + l 

Some low integer Riemann zeta functions are 

C(2) = y ; C(3) = 1.202 ; C(4) = ^ . (C.27) 
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SYMBOLS 

Symbol 

a(2) 

P 
^ a0 
7l,2 

r 
\St 
testi 
A^(fc) 

' S 

r 
\5"{k-k') 

\s4> 
\sTlf 
\Sij 

\SH 

1 ̂  
1 ^ 

ei,2 
eo 

r 
U* 
heq 
lib 
1 ^prim 

U/̂ ^ 

Explanation 

Derivative with respect to time (before Chapter 4) 
or conformal time (afterwards) 

Recombination rate of hydrogen 
Ionization rate of hydrogen 
Christoffel symbol 
Two components of shear 
Parameter determining the power spectrum 
Baryon over density 
Estimated anisotropy in pixel i 
Dimensionless power on scale k 
Dark matter over density 
Slow-roll parameter (Chapter 6 only) 

Dirac delta function in D dimensions 
Perturbation to the scalar field driving inflation 
Perturbation to energy-momentum tensor 
Kronecker delta = 0(z ^ j) or l(z = j) 
Amplitude of primordial perturbations at horizon 
Slow-roll parameter 
Polarization unit vector 
Two components of ellipticity 
Ionization energy of hydrogen, 13.6 eV 
Conformal time 
Conformal time at recombination 
Conformal time at matter-radiation equality 
Baryon-to-entropy ratio 
Conformal time at the end of inflation 
Minkowski metric 

First page listed 1 

71 
71 
30 

300 
205 
106 
340 
185 
104 
155 

16 
152 
163 
27 
171 
155 
97 

301 
70 
34 
218 
213 
62 
149 
26 

422 
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Symbol 

e 
e. 
e p 
Or 

e'^' 
n 
A 

M 
C(r) 

^^e 
pb 

per 

Pde 

Pdm 

Pm 

Pi 

\pu 

Pr 
(JT 

Wij]) 
f 

Tn 

r 
1 ^ p 

L(o) 
\x{z) 

Xoo 

K 
U*j 
Û z 

^fc 

^ 2 j 

1 a 
1 a* 
1 ^eq 

G l̂ate 
B 

^ D 

C 

r /^matter 

Explanation 

Perturbation to photon distribution 
Legendre moment of photon perturbation 
Polarization perturbation 
Perturbation to radiation = p^0 + p^J\f 
Photon perturbation due to tensor perturbations 
Convergence 
Cosmological constant 
Cosine of the angle between k and p 
3D correlation function 
Generators of coordinate transformations 
Baryon energy density 
Critical energy density 
Dark energy density 
Dark matter energy density 
Matter energy density 
Energy density of photons 
Energy density of neutrinos 
Energy density of all radiation 
Thomson cross-section 
Optical depth of photons back to conformal time 77 
Scattering rate 
Neutron lifetime 
Scalar perturbation to metric 
Primordial value of $ set during inflation 
Zero-order value of the field driving inflation 
Comoving distance out to redshift z 
Comoving distance to redshift infinity 
Scalar perturbation to metric 
2 x 2 distortion tensor 
Energy density in ith species over per 
Ratio of curvature density to critical density 
2 x 2 transformation matrix 
Scale factor of the universe 
Scale factor at recombination 
Scale factor at matter-radiation equality 
Scale factor after which perturbations evolve as Di 
5-mode of polarization or weak lensing 
Binding energy of deuterium 
Full covariance matrix 
Band power 
Angular power spectrum for matter 

First page listed 1 

' 93 
110 
111 
135 
116 
300 
10 

101 
264 
133 
41 
3 
50 
123 
38 
40 
46 
38 
72 
101 
101 
67 
87 
183 
152 
34 
263 
87 
302 
10 
35 

300 
2 

186 
51 
183 
306 
65 
341 
389 
290 
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Symbol | 

Cs 1 
CN 

Cs 
Di 
dA 
di 
E 

Faff 

r 
/ d m 

\fe 
f"^ 
9iv) 

la* 
9tiv 

\9i 
\G 

Gfj,u 

\h 
\'h 
\hx,h+ 

In 
\H 
\HO 

\k 
rCi "~~ 1^ 

h 

K\ 
1 p 

\c 
\M 
me 
rrin 
rriy 

mpi 
mp 
iVp 

^ b 

1 ndm 
(0) 

Explanation 

Sound speed 
Covariance matrix due to the noise 
Covariance matrix due to the signal 
Growth function 
Angular diameter distance 
Luminosity distance 
jE'-mode of polarization or weak lensing 
Fisher matrix 
Curvature matrix 
Distribution function, often referring to photons 
Distribution function of dark matter 
Distribution function of electrons 
Zero-order distribution function of photons 
Visibility function 
Effective relativistic degrees of freedom 
Metric 
Number of spin states of species i 
Newton's constant 
Einstein tensor 
Parameter for Hubble constant 
Variable tracing tensor perturbations 
Tensor perturbations to metric 
3D matrix describing tensor perturbations 
Hubble rate of expansion 
Hubble rate today 
Wavenumber 
Wavevector 
Wavenumber crossing horizon at agq 
Wavenumber of nonlinearity 
Location of acoustic peaks 
Likelihood function 
Particle physics amplitude for a process 
Electron mass 
Neutron mass 
Neutrino mass 
Planck mass 
Proton mass 
Number of pixels in an experiment 
Baryon number density 
Dark matter number density 

Zero-order dark matter number density 

First page listed | 

~ 82 1 
339 
340 
183 
35 
36 

306 
366 
365 
38 
102 
95 
93 
236 
67 
25 
38 
3 

32 
5 

158 
116 
126 
3 
3 

101 
101 
194 
185 
229 
337 
59 
70 
64 
46 
53 
64 
341 
62 
103 

104 
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Symbol 

- ^ 

Af 
Vi 

V 
pa 

p 
p{k) 

P.p{k) 

P' -Pi 
Q 

Q 
r 

rs 

^fJbU 

n 
\R 
s 

\t 
^ ant 
T 
T 

\u 
v\, = tob 

\v — kv 

^ H 

^pec 
W 

\w{e) 

ke 
^n 

-^n,EQ 

kp 
r 
\yH 

I E Q 

1 ^ 
z^ 

1 '̂ eq 

Explanation 

Equilibrium number density 

Per turbat ion to neutrino distribution function 

Legendre polynomial of order / 
Pressure 

4D comoving energy-momentum vector 

Proper momentum 

Power spectrum of mat te r 

Gravitational potential power spectrum 
Unit direction vector 

Pro ton-neut ron mass difference 
Stokes parameter 

Tensor/scalar ratio 

Sound horizon 

Ricci tensor 

Ricci scalar — g^^R^iy 

Baryon-to-photon ratio, Zpiy/Ap^ 

Entropy density 

Age of the universe 

Antenna temperature 

Zero-order photon temperature 

Stress-energy tensor 
Stokes parameter 

Velocity of baryons 

Velocity of dark mat te r 

Velocity due to Hubble expansion 
Peculiar velocity 

Pressure to energy-density ratio 
Angular correlation function 

Free electron fraction 

Neutron abundance 

Equilibrium neutron abundance 
Mass fraction of ^He 

Scale factor normalized to 1 at Oeq 
y when mode crosses horizon 

Equilibrium abundance of dark mat te r particles 
Redshift 

Redshift at recombination 

Redshift at mat ter - radia t ion equality 

First page listed | 

61 

111 

112 

37 

31 

56 

16 

167 

90 

65 
312 

248 

228 
32 

32 

82 

40 
2 

379 
4 

32 

312 

96 

103 
261 

261 

50 

266 
70 

66 

66 

69 

190 
202 
74 

7 

51 

51 
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radiation, 4, 38 

Energy-momentum tensor, 32, 37-40, 121 
energy density, 152 
homogeneous part, 152 
pressure, 152 

Entropy density, 40 
Euler equation, 37 
Expanding universe, 1-7 

See also Smooth expanding universe 
Expansion rate, 4-5 

False vacuum, 152-154 
Fermi-Dirac distributions, 38-39 
Feynman rules, 97 
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First-order perturbation equation, 94-95, 
104 

Fisher matrix, 366 
CMB, 368-370 
forecasting, 371-375 
galaxy surveys, 370-371 

Flat universe, 2, 4 
age of, 5 
evidence for, 249-251 

Flux, measuring, 35-36 
Forecasting, 371-375 
Foreground degradation factor (FDF), 383 
Foregrounds, 378-384 
Fourier transform, 15, 100-101, 262-263, 

420 
Free electron fraction, 70-71 
Free streaming, 234-239 
Freeze-out, 74-75 
Friedmann equation, 3, 33 
Friedmann-Robertson-Walker (FRW) 

metric, 24, 26, 30, 89 

Galaxy clusters, 282-287 
Galaxy power spectrum, 272 
Galaxy surveys, 43, 261-263 

Fisher matrix, 370-371 
likelihood function, 343-344 
window functions, 350-354 

Gauges, 88 
invariant variables, 134, 162, 169-170 
transforming from one to another, 

132-135 
Gaussian beam, 347-350 
Gaussianity, 161 
General relativity, 23 

Einstein equations, 32-33 
geodesic equation, 28-31 
metric, 24-27 

Geodesic equation, 28-31 
shear and, 296-300 

Geometry, 2 
Grand Unified Theories, 145 
Gravitational distortion of images, 293-296 
Gravitational instability, 180-182 
Gravity, metrics and, 25 
Gravity waves, 130-131 

detecting, 326-329 
production, 155-162 

Green's function, 198, 227 
Growth function, 171-172, 183, 205-207 

Harmonic oscillator 
Boltzmann equation for, 85-87 
quantizing, 156-157 

Harmonics, spherical, 418-419 

Harrison-Zel'dovich-Peebles spectrum, 171, 
185, 244-245, 421 

Heisenberg's principle, 38 
Higgs field, 152 
Horizon crossing 

large scales, 192-194 
small scales, 195-199 

Hubble constant, 8 
Hubble diagram, 7-9 
Hubble rate, defined, 3, 5 
Hubble radius, 123 

comoving, 146-150 

Indices, 27 
Inflation, theory of, 18, 144 

negative pressure, 151 
origin of term, 147 
scalar field and, 145 
scalar field implementation, 151-155 
solution to horizon problem, 146-150 

Inhomogeneities 
to anisotropics, 234-242 
beyond cold dark matter, 207-211 
cosmic variance, 239-242 
evolution equations, 185-189 
free streaming, 234-239 
gravitational instability, 180-182 
growth function, 205-207 
horizon crossing, 192-199 
large scales, 189-194 
numerical results and fits, 203-205 
small scales, 194-203 
stages of evolution, 182-185 
sub-horizon evolution, 199-203 
super-horizon solution, 189-192 
transfer function, 183, 203-205 

Inhomogeneities, probes of 
angular correlations, 261-270 
galaxy clusters, 282-287 
peculiar velocities, 261-262, 270-271 
peculiar velocities, direct measurements 

of, 271-275 
redshift space distortions, 275-282 

Initial conditions 
comoving horizon, 143-144 
determining causes, 142-144 
Einstein-Boltzmann equations, 139-142 
gravity wave production, 155-162 
infiation, 144-155 
scalar perturbations, 162-170 

Integrated Sachs-Wolfe (ISW), 238, 
244-248 

Invariant distance, 24 
Isocurvature perturbations, 142 
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Jacobian, 278 

Karhunen-Loeve method, 356-362 
Kernel, of the angular correlation function, 

266 
Kinetic equilibrium, 60 
Kronecker delta, 27 

Lambda Cold Dark Matter (ACDM), 185 
Large-scale anisotropics, 223-224, 242-245 
Large scales, inhomogeneities, 189-194 
Legendre polynomials, 110, 225, 234-235, 

265, 280, 346, 418 
Light element abundances, 9-10, 68-70 
Lightest supersymmetric partner (LSP), 

77-78 
Likelihood function 

CMB, 340-343 
curvature of, 365 
galaxy surveys, 343-344 
simple example, 337-340 

Likelihood function, estimating the 
Karhunen-Loeve method, 356-362 
quadratic estimator, 362-367 

Linear growth rate dimensionless, 270 
Luminosity distance, 9, 36-37 

Mapmaking and inversion, 375-378 
Marginalizing, 374-375 
Mass 

determination for clusters, 285-286 
gravitational distortion of images, 

293-296 
Massive compact halo objects (MACHOs), 

294 
Massless particle, geodesic equation and, 31 
Mass-to-light ratios, 42 
Matrices, writing of, 27 
Matter density, 42-44, 255 
Matter power spectrum, 272 
Matter-radiation equality, 50-51 
Maxwell-Boltzmann distribution, 87 
Meszaros equation, 201-203 
Metric, 24-27, 87, 151 
Microlensing, 294 
Minkowski space-time, 25-26 
Mode subtraction/contamination, 384-387 
MSAM experiment, beam pattern for, 345 

Negative pressure, 151 
Neumann function, 196 
Neutrinos, 44-47, 62 

transfer function and massive, 209-210 
Neutron abundance, 65-68 
Newton-Raphson method, 363-365 

Newton's constant, 3, 6, 32 
Newton's equation, for oscillator motion, 86 
Newton's law, generalization of, 28 
Nonrelativistic Compton scattering, 96 
Nonrelativistic matter, 3 

energy density of, 4, 42-44 
Nonrelativistic particles, 62 
Normalization, anisotropy spectrum, 251 
Nuclear statistical equilibrium (NSE), 62 

One-point function, 282 
Open universe, 2, 249-251 
Overdots, use of, 30, 100 

Pauli blocking, 59, 95 
Peculiar velocities, 261-262, 270-271 

direct measurements of, 271-275 
Pencil beam survey, 353-354 
Phase space elements, number of, 38 
Photons, 40-41, 62 

See also Anisotropics 
Boltzmann equation for, 100-101 
collisionless Boltzmann equation for, 

87-95 
decoupling of, 72 
effects of Compton scattering, 95-100 

Physical constants, 415-416 
Physical distance, 34 
Plane wave, polarization from a single, 

313-320 
Poisson's equation, 184 
Polar coordinates, 24, 28 
Polarization 

Boltzmann equation, 320-323 
power spectra, 323-326 
quadrupole and the Q/U decomposition, 

310-313 
from a single plane wave, 313-320 

Positive curvature, 2 
Positrons, 62 
Power spectrum, 16, 159, 183-185 

matter versus galaxy, 272 
polarization, 323-326 
weak lensing, 302-310 

Press-Schechter formalism, 283-287 
Projection operator, 123, 131 
Proper time, 25 
Python experiment, 360-362 

Quadratic estimator, 362-367 
Quadrupole moments, 300 

Q/U decomposition, 310-313 
Quintessence, 47 

Radiation, 2 
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Rayleigh-Jeans limit, 381-382 
Recombination, 70-73 
Reddening correction, 385 
Redshift space distortions, 275-282 
Redshift surveys, problems with, 261 
Redshift z, 7-9 
Reionization, 253 
Relativistic particles 

decoupled, 62 
in equilibrium, 62 

Relativity, theory of, 1 
Riccati equation, 75 
Ricci scalar, 32-33, 117 

finding, 120 
Ricci tensor, 32, 117 

for scalar perturbations, 119-120 
for tensor perturbations, 127-129 

Riemann zeta function, 421 

Sachs-Wolfe (SW) effect, 242-245, 421 
integrated (ISW), 238, 244-248 

Saha equation, 62, 71 
Scalar field, inflation and, 145, 151-155 
Scalar perturbations, 88 

Christoffel symbols for, 118-119 
decomposition theorem, 131-132 
gauges, 132-135 
inflation, 162-170 
Ricci tensor for, 119-120 
around smooth background, 162-164 
spatially flat slicing, 132, 162, 169-170 
super-horizon, 164-168 

Scale factor 
defined, 2 
evolution of, with cosmic time, 2-4 
rates as a function of, 6-7 

Scale-free spectrum, 171 
Scale-invariant spectrum, 171 
Semianalytic techniques, 283 
Shear 

ellipticity as an estimator of, 300-302 
geodesic equation and, 296-300 

Signal covariance matrix, 344 
CMB window functions, 345-350 
galaxy survey window functions, 350-354 
summary, 354-356 

Sloan Digital Sky Survey (SDSS), 14, 43, 
266, 336 

Slow roU models, 154-155, 172 
Small scale anisotropics, 245-248 
Small scale inhomogeneities, 194-203 
Smooth expanding universe 

cosmic inventory, 40-51 
distances, 33-37 
evolution of energy, 37-40 

general relativity, 23-33 
Sound horizon, 228 
Space-time dimensions, 25-26 
Spatially flat slicing, 132, 162, 169-170 
Species-dependent equilibrium number 

density, 61 
Spherical Bessel functions, 419-420 
Spherical harmonics, 239-240, 418-419 
Standard candle, 8-9, 48 
Standard Cold Dark Matter (sCDM), 185, 

197, 267 
Standard Model, going beyond the, 14-19 
Steady State universe. Big Bang versus, 14 
Stimulated emission, 95 
Sub-horizon evolution, 199-203 
Sunyaev-Zeldovich distortion, 285 
Super-horizon perturbations, 164-168 
Super-horizon solution, 189-192, 223 
Supersymmetry, 77 
Symbols, list of, 422-425 
Synchronous gauge, 88, 132 
Systematic errors 

foregrounds, 378-384 
mode subtraction, 384-387 

Temperature, 4 
antenna, 379 
thermodynamic, 381 

Tensor modes, 253 
Tensor perturbations, 88, 124 

Christoffel symbols for, 125-126 
decomposition theorem, 131-132 
Einstein equations for, 129-131 
gauges, 132-135 
inflation, 157-162 
quantizing the harmonic oscillator, 

158-162 
Ricci tensor for, 127-129 

Thermodynamic temperature, 381 
Tightly coupled limit of Boltzmann 

equations, 224-227 
Tightly coupled solutions, 227-230 
Tilt, primordial, 252 
Tracelessness, 125 
Transfer function, 183, 203-205, 268 

baryons and, 208-209 
cosmological constant and, 210-211 
massive neutrinos and, 209-210 

Transformation matrix, 28-29 
Two Degree Field Galaxy Redshift Survey, 

14, 43-44, 336 
Two-point function, 16, 272, 303 

Underdensity, 219 
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Variable cosmological constant, 47 
Variable Lambda, 47 
Vector perturbations, 88, 125 
Vectors, 24 
Velocity correlation function, 272-273 
Visibility function, 72, 233, 236-237 
Volume limited survey, 351-353 

Weak lensing, 286 
ellipticity as an estimator of shear, 

300-302 
gravitational distortion of images, 

293-296 
power spectrum, 302-310 

Weakly interacting massive particle 
(WIMP), 73-74 

Window functions 
CMB, 345-350 
galcLxy survey, 350-354 

WKB approximation, 227 

X-ray temperatures, 285 

Zero-order distribution function, 89, 103 
Zero-order equation, 93-94 



ABOUT THE AUTHOR 

Scott Dodelson is Head of the Theoretical Astrophysics Group at Fermilab and Associate 
Professor in the Department of Astronomy and Astrophysics at the University of Chicago. 
He received his Ph.D. from Columbia University and was a research fellow at Harvard 
before coming to Fermilab and Chicago. He is the author of more than seventy papers on 
cosmology, most of which focused on the cosmic microwave background and the large 
scale structure of the universe. Dodelson is a theoretical cosmologist, but has worked with 
several experiments, including the Sloan Digital Sky Survey and the Python and MSAM 
anisotropy experiments. 



This Page Intentionally Left Blank



Plate 1.12. Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF) (Colless 
et al, 2001). By the end of the survey, redshifts for 250,000 galaxies will have been obtained. As 
shown here, they probe structure in the universe out to z = 0.3, corresponding to distances up to 1000 
/i-i Mpc away from us (we are located at the center). 
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Plate 1.14. Anisotropics in the CMB predicted by the theory of inflation compared with observa-
tions. j\:-axis is multipole moment (e.g., 1 = 1 is the dipole, 1 = 2 the quadrupole) so that large angu-
lar scales correspond to low 1; j-axis is the root mean square anisotropy (the square root of the two-
point function) as a function of scale. The characteristic signature of inflation is the series of peaks 
and troughs, a signature which has been verified by experiment. 
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Plate 10.10. Measurement of the shear correlation functions using 145,000 background galaxies 
(Wittman et al, 2000). Also shown are a variety of CDM models; topmost in top panel is standard 
CDM, ruled out here at many sigma. Note that w ,̂ = <eiei> remains positive on all angular scales. 
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Plate 10.13. Incoming dipole radiation also produces no polarization. Heavy (thin) lines denote hot 
(cold) spots. Here the incoming radiation is hotter than average (average is medium thickness) from 
the +Jc-direction, and colder than average from the -Jc-direction. The two rays from the ±x-directions 
therefore produce the average intensity for the outgoing ray along the y-direction. The outgoing 
intensity along the x-direction is produced by the ray incident from the ±j-directions. Since these 
have the average intensity, the outgoing intensity is also the average along the x-direction. The net 
result is outgoing unpolarized Hght. 

Plate 10.14. Incoming quadrupole radiation produces outgoing polarized light. The outgoing radia-
tion has greater intensity along the y-axis than in the Jc-direction. This is a direct result of the hotter 
radiation incident from the Jc-direction. 
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Plate 11.14. Expected 95% uncertainty on the inflationary parameters n and r from MAP and 
Planck (from Dodelson, Kinney, and Kolb, 1997). Three other parameters (normalization, Qg, and 
h) have been marginalized over. Every inflationary model gives a unique prediction somewhere in 
this plane; many such predictions are plotted. 
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-55|^^^m^^B 

- 6 0 
; 1 

H 

"5 

f 

1-

n 

30 45 60 75 90 
RA [Dcg] 

105 120 135 

Plate 11.15. A map of the CMB temperature from observations by Boomerang (Netterfield et al, 
2001), a long-duration balloon flight at the South Pole. Hot and cold spots have amplitudes as large 
as 500//K. Circles shows quasars identified in these radio observations. The large elliptical region 
delineates data analyzed to obtain bandpowers. The rectangular region is an earlier data set. 
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