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Abstract

We study a Schrödinger equation modeling the dynamics of an electron in a
crystal in the asymptotic regimeof smallwave-length comparable to the characteris-
tic scale of the crystal. Using Floquet Bloch decomposition, we obtain a description
of the limit of time averaged energy densities.Wemake a rather general assumption
assuming that the initial data are uniformly bounded in a high order Sobolev spaces
and that the crossings between Bloch modes are at worst conical. We show that
despite the singularity they create, conical crossing do not trap the energy and do
not prevent dispersion. We also investigate the interactions between modes that can
occurred when there are some degenerate crossings between Bloch bands.
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1. Introduction

1.1. Description of the problem

We consider the dynamics of an electron in a crystal in the regime of small
wave-length comparable to the characteristic scale of the crystal. After a suit-
able rescaling (see for instance [52]), such an analysis leads to an ε-dependent
Schrödinger equation where ε is a small parameter ε � 1

{
i∂tψε(t, x)+ 1

2
�xψ

ε(t, x)− 1

ε2
Vper

( x

ε

)
ψε(t, x)− Vext(t, x)ψε(t, x) = 0,

ψε|t=0 = ψε
0 .

(1.1)

The potential Vper is supposed to be smooth, real-valued andZd -periodic; it models
the interactions due to the crystalline structure. The external potentialVext , takes into
accounts the impurities;we assume that t �→ Vext(t, ·) is a boundedmap fromR into
the set of smooth, real-valued functions onRd

x with bounded derivatives. The times-
scales of the equation 1.1 are characteristic of the analysis of the obstructions to the
dispersion of the energy. It is the long time scaling studied in [1,2,7,9,37,52,54],
by contrast to the short time analysis that allows to analyze transport effects and
is performed for example in [8,13,38,51,55] (the Schrödinger equation therein is
obtained from (1.1) by changing t into τ = εt).

1.1.1. TheWave Function, Observables and Quadratic Quantities We are in-
terested in the asymptotic behavior of the time-averagedpositiondensities |ψε(t, x)|2
as ε goes to 0. The wave function itself cannot be directly measured, but these den-
sities that allow to compute the probability P(A) of finding the position of the
electron in a set A at time t according to

P(A) =
∫
A
|ψε(t, x)|2dx .

We are interested in describing at leading order in ε the value of this probability
for bounded sets A. In other words, we would like to characterize, in the set of
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time-dependent probability measures, the time-averaged limit as ε → 0+ of the
position densities |ψε(t, x)|2dx , i.e. the limits as ε→ 0+ of the quantities

∫ b

a

∫
Rd

φ(x)|ψε(t, x)|2dx dt, φ ∈ C0(Rd), a < b, (1.2)

where C0(Rd) stands for the space of continuous compactly supported functions on
R
d . Note that these objects do not capture the fraction of the mass of the measure

that goes to infinity in x as ε goes to 0.
We will derive representations of these limits in terms of Effective mass equa-

tions. In its full generality, our result also describes the evolution of the action of
observables on the wave functions. Indeed, the wave function itself has no physical
meaning and it is the evolution of quadratic quantities such as those of Section 3.1
that carries information like the average momenta or the average energy. In (1.2),
the averaging in time takes into account the fact that a physical observation is not
instantaneous and, though small, its duration is not negligible. However, we will
discuss situations where local in time point-wise information can be derived about
the evolution of the energy densities (see Section 1.4.3).

1.1.2. Floquet-Bloch Theory It is classical in this context to use Floquet-Bloch
theory in order to diagonalize− 1

2�x+Vper. To this end, one introduces, for ξ ∈ R
d ,

the operator

P(ξ) := 1

2
|ξ + Dy |2 + Vper(y), y ∈ T

d ,

where Td = R
d\Zd is a flat torus. It is well known that this operator is essentially

self-adjoint on L2(Td) with domain H2(Td), and has a compact resolvent, hence
a non-decreasing sequence of eigenvalues counted with their multiplicities, which
are called Bloch energies or band functions

	1(ξ) ≤ 	2(ξ) ≤ · · · ≤ 	n(ξ) −→ +∞,

and an orthonormal basis of eigenfunctions (ϕn(·, ξ))n∈N∗ called Bloch waves or
Bloch modes, satisfying for all ξ ∈ R

d and n ∈ N
∗:

P(ξ)ϕn(·, ξ) = 	n(ξ)ϕn(·, ξ). (1.3)

Both Bloch waves and Bloch energies are continuous functions of the ξ -variable.
Besides, for all k ∈ 2πZd , the operator P(ξ + k) is unitarily equivalent to P(ξ)
through multiplication by y �→ eik·y , which implies that for all n ∈ N

∗, the
maps ξ �→ 	n(ξ) are 2πZd -periodic and the map ξ �→ ϕn(·, ξ) belongs to
C(Rd

ξ , L
2(Td

y)). The spectrum of − 1
2�x + Vper is then the union of the Bloch

bands Bn := 	n([0, 2π ]d), which are closed intervals:

Sp

(
−1

2
�x + Vper

)
=

⋃
n∈N∗

Bn .
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The Bloch energies ξ �→ 	n(ξ) are Lipschitz functions which are analytic outside
a set of zero Lebesgue measure (see [56]). In particular Bloch energies that are of
constant multiplicity as ξ varies are always analytic functions of ξ . These energies
are then called isolated. The opposite situation, that is, when two, otherwise distinct,
Bloch energies coincide at some point ξ is referred to as a crossing. At those points,
the multiplicity is greater than one and the corresponding Bloch bands have non-
empty intersection. When the space dimension is one, two Bloch bands can touch
at one edge and their crossing set consists on isolated points (see “Appendix A”
and the references therein); in higher dimensions more complicated situations can
occur: most bands overlap (in fact as soon as d ≥ 2 only a finite number of gaps
exist) and the crossing set may be a higher dimensional manifold (in fact, the union
of the graphs of the band functions form a real analytic variety). The survey article
[39] provides additional details on these issues.

1.1.3. Effective Mass Theory Sometimes also called effective Hamiltonian the-
ory, effective mass theory consists in showing that, under suitable assumptions on
the initial data ψε

0 , the energy density associated with the solutions of (1.1) can be
approximated for ε small by those of a simpler Schrödinger equation, the Effective
mass equation, which does not depend on ε and involves quantities related to the
Bloch energies.

Effective mass equations have then been derived in various contributions [1,2,
7,9,37,52,54] under the assumptions that the orthogonal projection of the initial
datum ψε

0 on spectral subspaces corresponding to the non-simple Bloch energies
is negligible, and that critical points of this band functions are non-degenerate.

All these contributions emphasize the important role played by the set of crit-
ical points of the Bloch energies. Indeed, the group velocity of the n-th mode is
ε−1∇	n(εξ), which becomes infinite in the limit ε → 0; this implies that the ob-
structions to the dispersive effects created by the n-th band, n ∈ N

∗, have to be
found above the set �n of critical points of the function 	n :

�n := {ξ ∈ R
d : ∇	n(ξ) = 0}. (1.4)

Quantifying the loss of mass at infinity due to dispersion can be done for instance
as in in [2], where the authors introduce a ε-dependent drift in order to take into
account the displacement to infinity of part of the mass.

A second feature that is assumed in the aforementioned references is the simplic-
ity of the band functions, which is an important technical ingredient in the proofs.
Simple band functions are smooth, and therefore group velocity is well defined ev-
erywhere. This property may fail in the presence of band crossings which produce
at worst a loss of regularity at the crossing points. In that case, the group velocity
ε−1∇ξ 	n(εξ) is no longer defined at the crossing points, even though it may have
directional limits, the archetype being the conical singularity 	n(ξ) ∼ ξ/|ξ | close
to ξ = 0. Our aim here is to deal with this difficulty: we will not take into account
the loss of mass at infinity and focus instead on the limit (1.2); note, however, that
our results take into account situations more general than the ones considered in
references quoted above, since we allow for band crossings and the singularities
they infer.
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This motivates the introduction of the crossing set of two distinct Bloch ener-
gies:


n,n′ := {ξ ∈ R
d : 	n(ξ) = 	n′(ξ)}, n, n′ ∈ N

∗, 	n 
= 	n′ . (1.5)

The band functions 	n , n ∈ N
∗, are piece-wise real analytic; their non-smoothness

points lie in the union of crossing sets
⋃

	n 
=	n′ 
n,n′ . We will also consider the
sets


n := 
n,n+1, n ∈ N
∗. (1.6)

The crossing problematic has been addressed since long for equations that are scaled
differently in the small parameter, in particular by George Hagedorn in the 90s
[36]. Since then, different approaches have been devoted to understand propagation
through crossings, from the use of normal forms [16,17], the analysis in terms of
Wigner measures [23,26,27] and Wigner functions [29–31], up to, more recently,
the analysis in terms of wave packets [55] in the case of non-singular crossings.
Indeed, the growing interest in crossings, especially conical ones, is linked with the
technological interest of new materials that are topological insulators (see [19,20]
and references therein). However, this question has never been addressed in the
context of the particular scaling in ε of equation (1.1).

In [14,15], the range of validity of the EffectiveMass Theory has been extended
to include degenerate critical points, through the introduction of a new class of
Effective mass equation which are of von Neumann type. However, the Bloch
modes involved in the description of the initial data are still assumed to be of
constant multiplicity. Our aim here is to consider situations where different Bloch
energiesmay have non-empty intersections inducing singularities and to treat rather
general initial data. Our result gives a a complete description of the weak limits
of the densities |ψε(t, x)|2 as ε goes to 0 when the crossings are conical, in a
sense that we shall make precise later. This is done through the analysis of the
weak limits of the Wigner function associated with ψε(t, x). Indeed, the Wigner
function introduced in Section 3 below, plays the role of a generalized energy-
density in the phase space T ∗Rd = R

d
x × R

d
ξ , the density |ψε(t, x)|2 being its

projection in the configuration space Rd
x . Our result covers all possible cases when

d = 1 and generic situations in higher dimensions.We also complete the description
of the picture by providing a characterisation of these limits when crossings are
degenerate, exhibiting the persistence of terms due to interactions between the
Bloch energies that cross. Our results rely on the use of a two-microlocal analysis
in the spirit of [3,4,6,42,45], using two-scale Wigner distributions [22,24,49,50].

1.2. General Assumption on the Initial Data

We denote by A(εDx ), for ε > 0, the scaled Fourier multiplier associated with
the function A(ξ), i.e. the operator satisfying

∀ f ∈ S(Rd), ̂A(εDx ) f (ξ) = A(εξ) f̂ (ξ),
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where the following normalization has been used for the Fourier transform

f̂ (ξ) =
∫
Rd

e−iξ ·x f (x)dx .

Along the paper, we will consider the functions spaces Hs
ε (R

d), defined for s ≥ 0,
that are the Sobolev spaces equipped with the norms

‖ f ‖Hs
ε (R

d ) := ‖ 〈εDx 〉s f ‖L2(Rd ),

where 〈ξ 〉 := (1+ |ξ |2)1/2.
Any function U ∈ L2(Rd

x × T
d
y) can be written in terms of Fourier series as

U (x, y) =
∑
k∈Zd

Uk(x)e
i2πk·y with ‖U‖2L2(Rd×Td )

=
∑
k∈Zd

‖Uk‖2L2(Rd )
.

We denote by Hs
ε (R

d × T
d), for s ≥ 0, the Sobolev space consisting of those

functions U ∈ L2(Rd × T
d) such that there exists ε0,C > 0 for which we have

∀ε ∈ (0, ε0), ‖U‖2Hs
ε (R

d×Td )
:=

∑
k∈Zd

∫
Rd
(1+ |εξ |2 + |k|2)s |Ûk(ξ)|2dξ ≤ C.

(1.7)

These functions can be projected on the bands as follows. For every n ∈ N
∗ and

ξ ∈ R
d , we denote by �n(ξ) the projector from L2(Td) onto the eigenspace

corresponding to 	n(ξ). The corresponding Fourier multiplier �n(εDx ) acts on
L2(Rd

x × T
d
y), since band functions are bounded. Finally, we define the operator

Lε acting on functions F ∈ Hs
ε (R

d × T
d), s > d/2, by

(LεF)(x) := F
(
x,

x

ε

)
.

Then there exists Cs > 0 such that, for every F ∈ Hs
ε (R

d × T
d),

‖LεF‖L2(Rd ) ≤ Cs‖F‖Hs
ε (R

d×Td ), (1.8)

uniformly in ε > 0. See [15, Lemma 6.2].

We will make the following assumption on the family of initial data in (1.1).

H0 There exists a bounded family (U ε
0 ) in Hs

ε (R
d × T

d) for some s > d/2
such that

ψε
0 = LεU ε

0 .

Note that if (ψε
0 )ε>0 is bounded in Hs

ε (R
d)with s > d/2,H0holdswithU ε

0 (y, x) =
ψε
0 (x)⊗ 1Td (y).
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1.3. The Case of the Dimension One

Let us first state our results in dimension d = 1. When d = 1, one can prove
that �n is contained in πZ, and consists only on non-degenerate critical points. In
addition, when |n − n′| > 1, 
n,n′ = ∅ and 
n ∩�n = ∅

(seeLemmaA.1). In this specific case,we are able to give a complete description
of the limit of the energy density of families of solutions to (1.1) with initial data
of the form stated in H0.

Theorem 1.1. Assume (ψε
0 ) satisfiesH0. Then there exists a subsequence (ψε�

0 )�∈N
of the initial data, such that for every a < b and every φ ∈ C0(R),

lim
�→∞

∫ b

a

∫
R

φ(x)|ψε�(t, x)|2dxdt =
∑
n∈N∗

∑
ξ∈�n

∫ b

a

∫
R

φ(x)|ψ(n)
ξ (t, x)|2dxdt,

where, for every n ∈ N
∗ and ξ ∈ �n, ψ

(n)
ξ solves the effective mass Schrödinger

equation

i∂tψ
(n)
ξ (t, x) = 1

2
∂2ξ 	n(ξ)∂

2
xψ

(n)
ξ (t, x)+ Vext(t, x)ψ

(n)
ξ (t, x) (1.9)

with initial datum

ψ
(n)
ξ |t=0 is theweak limit in L2(R)of the sequence

(
e
− i

ε�
ξ x
Lε��n(ε�Dx )U

ε�
0

)
.

Note someof the accumulation points of e
− i

ε�
ξ x
Lε��n(ε�Dx )U

ε�
0 may just be 0.

For example if one has Vper = 0, only the first Bloch energy 	1 has critical points
and they are precisely �1 = 2πZ. The addition, the associated projector �1(ξ)

coincides with the orthogonal projection onto Ceiky whenever ξ ∈ (k − π, k + π)

and k ∈ 2πZ. Therefore, if one takes U ε
0 (x, y) = ψε

0 (x)⊗ 1y∈Td , then

�1(εξ)Û
ε�
0 (ξ, ·) = 1(−π,π)(εξ)ψ̂ε�

0 (ξ),

and e
− i

ε�
2πkx

�1(εDx )(ψ
ε�
0 ⊗ 1y∈T) weakly converges to zero when k 
= 0.

Theorem 1.1 is derived as a consequence of a more general analysis that is valid
in any dimension under assumptions that are satisfied for all Bloch energies when
d = 1, and that is presented in the next section.

1.4. The Generic case with d ≥ 1-Conical Crossings

We now present results that, under a set of assumptions that always hold when
d = 1, give a description of effective mass equations in higher dimension under
the presence of generic crossings for data satisfying H0.
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1.4.1. Assumptions Ourfirst assumption concern themultiplicity ofBlochbands.

H1 For n ∈ N
∗, themultiplicity of theBloch energy	n is one, except at crossing

points, where it is two. This implies that a global labeling of the band functions
exists such that 
n,n′ 
= ∅ implies |n − n′| = 1.

Remark 1.2. Hypothesis H1 is thought to be generic, as follows from the varia-
tional characterization of eigenvalues of Schrödinger operatorswithBloch periodic-
ity conditions.Wemake it in order to avoid having statements that are unnecessarily
involved. As we stated it, it prevents from having simultaneous crossings of more
than two Bloch energies, and higher multiplicities (both scenarios are non-generic).
The proofs we provide can be adapted in order to deal with these situations.

We also consider a generic assumption on the set of critical points �n defined
in (1.4).

H2 For n ∈ N
∗, we assume that Hess 	n is of constant rank in a neighborhood

of each connected component of �n .

Remark 1.3. Let X ⊆ �n be a connected component of �n . By the constant rank
level set theorem, this hypothesis implies that each connected component X ⊆ �n

is a closed submanifold of Rd of dimension d − rk Hess 	n|X .
Finally, our third set of hypothesis concerns the geometry of the crossing sets


n . For stating this assumption, we introduce geometric objects associated with a
submanifold X of (Rd)∗: we consider its tangent spaces Tξ X and define the fibre
of the normal bundle N X of X above ξ ∈ X as the vector space Nξ X consisting
of those η ∈ (Rd)∗∗ = R

d that annihilate Tξ X

N X := {(ξ, η) ∈ X × R
d : η · ζ = 0, ∀ζ ∈ Tξ X}. (1.10)

With a Bloch mode 	n presenting crossings on a manifold 
n , we associate the
function gn defined on N
n by

(ξ, η) �→ gn(ξ, η) := 1

2
(	n+1(ξ + η)− 	n(ξ + η)) , ξ ∈ 
n, η ∈ Nξ
n .

(1.11)

Note that gn(ξ, η) ≥ 0 and gn(ξ, η) = 0 if and only if η = 0. Besides, for any
ξ ∈ 
n , η �→ gn(ξ, η) is differentiable in all η 
= 0 (see “Appendix B”). We
denote by ∇ηgn(ξ, η) this differential, which can be identified with a vector of
Nξ
n ⊂ Tξ (Rd)∗.

Definition 1.4. We say that the crossings of
n are conic if and only if there exists
a neighborhood U of 
n such that 	n and 	n+1 are of multiplicity 1 outside 
n in
U and there exists c > 0 such that

∀(ξ, η) ∈ N
n, |gn(ξ, η)| ≥ c|η|.
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Note that the critical sets �n contain no conical crossing point. Besides, one can
prove (see “Appendix B”) that, generically, as soon as the crossing set
n is a closed
submanifold ofRd , either 	n has a conical singularity along
n , either 	n is in C1,1.
We set, for n ∈ N

∗,

λn(ξ) = 1

2
(	n(ξ)+ 	n+1(ξ)) , ξ ∈ R

d , n ∈ N
∗, (1.12)

and we introduce the following last assumption:

H3 For n ∈ N
∗, we assume that the crossing set
n is a smooth closed subman-

ifold ofRd . Moreover, the crossing is of conic type in the sense of Definition 1.4
and for all ξ ∈ 
n , η ∈ Nξ
n with η 
= 0,

∇ξ λn(ξ)± ∇ηgn(ξ, η) 
= 0.

1.4.2. The Result: Dispersion Above Conical Crossings For stating the result,
we need to introduce other geometric objects associated with a submanifold X
of (Rd)∗. We define its cotangent bundle as the union of all cotangent spaces to X

T ∗X := {(ξ, x) ∈ X × R
d : x ∈ T ∗ξ X}, (1.13)

each fibre T ∗ξ X is the dual space of the tangent space Tξ X . We shall denote by
M+(T ∗X) the set of non-negative Radon measures on T ∗X . We observe that
every point x ∈ R

d can be uniquely written as

x = v + z where v ∈ T ∗ξ X and z ∈ Nξ X.

Then, given a function φ ∈ L∞(Rd) and a point (ξ, v) ∈ T ∗X , we denote by
mX
φ (ξ, v) the operator acting on L2(Nξ X) by multiplication by φ(v + ·). We shall

denote by L(L2(Nξ X)) the set of bounded operators acting on L2(Nξ X) and by
L1+(L2(Nξ X)) the set of operators that are non-negative and trace-class. When
X = �n and assumptionH2 holds, wewill consider the operator Hess 	n(ξ)Dz ·Dz

acting on Nξ�n for any ξ ∈ �n .

Theorem 1.5. Assume H1, H2 and H3 are satisfied for all n ∈ N
∗ and consider

(ψε)ε>0 a family of solutions to equation (1.1) with an initial data (ψε
0 )ε>0 that

satisfiesH0. Then, there exist a subsequence (ψε�
0 )�∈N of the initial data, a sequence

of non negative measures (νn)n∈N on T ∗�n, and a sequence of measurable non
negative trace-class operators (Mn)n∈N

Mn : T ∗ξ �n � (ξ, v) �→ Mn(ξ, v) ∈ L1+(L2(Nξ�n)), TrL2(Nξ�n)
Mn(ξ, v) = 1,

both depending only on (ψε�
0 )�∈N, such that for every a < b and every φ ∈ C0(Rd)

one has

lim
�→+∞

∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt

=
∑
n∈N

∫ b

a

∫
T ∗�n

TrL2(Nξ�n)

(
m�n
φ (ξ, v)Mt

n(ξ, v)
)
νn(dξ, dv)dt, (1.14)
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where t �→ Mt
n(ξ, v) ∈ C(R,L1+(L2(Nξ�n)) solves the von Neumann equation{

i∂t Mt
n(ξ, v) =

[
1
2Hess	n(ξ)Dz · Dz + m�n

Vext
(ξ, v) , Mt

n(ξ, v))
]

M0
n = Mn .

(1.15)

(recall that m�n
φ (ξ, v) (resp. m�n

Vext
(ξ, v)) denotes the operator acting on L2(Nξ�n)

by multiplication by φ(v + ·) (resp. Vext(v + ·))).
Above and throughout this article, when A and B are two operators acting on

the same Hilbert space, the notation [A, B] denotes the commutator AB − BA.
Several remarks are in order. First, note that the n-th term of the sum in (1.14)
measures how much the critical points of the n-th Bloch mode trap the energy and
prevent the dispersion effects. Theorem 1.5 also tells that conical crossings do not
trap energy. This Theorem 1.5 has exactly the same form than Theorem 2.2 in [15]
while the assumptions are quite different since crossings between Bloch energies
are authorized as long as they are conical. We shall see in the next subsection that
crossing points may trap energy when they also are critical points of the Bloch
energies (and thus they are no longer conical).

Secondly, we emphasize that Remark 4.2 (1) comments the determination of
(Mn)n∈N∗ and (νn)n∈N∗ from the initial data. The special case where �n is a point
is discussed in the next subsection.

Thirdly, recall that when d = 1, the assumptions H1, H2 and H3 are automat-
ically satisfied (see “Appendix A”). Therefore, Theorem 1.1 is a consequence of
Theorem 1.5 in the case where critical points are isolated.

Finally, we emphasize that Theorem 1.5 extends to situations where the Fourier
transform of the initial data is localized on a set of the form {εξ ∈ �+ 2πZd} for
some open subset � of a unit cell of 2πZd , provided the assumptions H2 and H3
are satisfied for all n ∈ N

∗ above points of � + 2πZd . We esquiss this approach
in Section 7.4 and explain how the arguments of the proofs detailed below can be
adapted to this setting by localisation (see Lemma 7.3).

1.4.3. The Special Case of Isolated Critical Points When H1, H2 and H3 are
satisfied for all n ∈ N

∗ and, moreover, all the sets�n consist in a family of isolated
critical points then T ∗�n = �n × {0}, N�n = R

d so that the operators Mt
n only

depend on the parameter ξ ∈ �n and the operator m
�n
φ (ξ, v) simply is the operator

of multiplication by φ. One can prove a statement very similar to Theorem 1.1
(see also Corollary 1.3 in [15] and Remark 4.2 (2)): the measures νtn are linear
combinations of Dirac masses at the points ξn ∈ �n and Mt

n(ξn) are orthogonal
projectors on Cψξn (t), the solution to

i∂tψ
ξn (t, x) = 1

2
Hess	n(ξn)Dx · Dxψ

ξn (t, x)+ Vextψ
ξn (t, x) (1.16)

with initial data ψξn (0) that is a weak limit of

(
e
− i

ε�
x ·ξn Lε��n(ε�Dx )U

ε�
0

)
ε�>0

in

L2(Rd).
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In order to illustrate this type of result in the multidimensional setting, we
state it in the particular case of well-prepared data that satisfy U ε

0 (y, x) =
ϕn0(y, εDx )uεn0(x) for some n0 ∈ N

∗ (and therefore�n(εDx )U ε
0 = 0 for n 
= n0).

More specifically, the class of well-prepared initial data that we will consider is
those of the form

ψε
0,n(x) := ϕn

( x

ε
, εDx

)
uεn(x), uεn(x) = e

i
ε
x ·ξnvεn(x), n ∈ N

∗ (1.17)

with ξn ∈ �n , (vεn)ε>0 bounded in Hs(Rd), s > d/2 or s > 1 when d = 1, and
such that

vεn ⇀ vn, ε→ 0+, in L2(Rd).

These data are closely related with those considered in [1,2] for example (this
connection is explained in detail in Lemma E.1). Their main properties are studied
in “Appendix E”).

Proposition 1.6. Assume H1, H2 and H3 are satisfied for all n ∈ N
∗ and that, for

some n0 ∈ N
∗, the set �n0 is discrete. Consider (ψ

ε)ε>0 a family of solutions to
equation (1.1) with initial data ψε

0 satisfying (1.17) for some ξn0 ∈ �n0 and v
ε
n0 ,

vn0 in L2(Rd). Then, there exists a subsequence (ψε�
0 )�∈N of the initial data such

that for every a < b and every φ ∈ C0(Rd) one has

lim
�→+∞

∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt =
∫ b

a

∫
Rd

φ(x)|ψξn0 (t, x)|2dt,

where ψξn0 (t) solves (1.16) with initial data ψξn0 (0) = vn0

If vε0 → vn0 as ε → 0+ in L2(Rd), then one has for all t ∈ R, ‖ψε
0‖L2 →

‖ψξn0 (t)‖L2 , which implies that no energy is dispersed. As a consequence of Re-
mark 7.2, one obtains that the result of Proposition 1.6 holds locally in time: for
all T > 0, there exists a subsequence (ψε�

0 ) of the initial data such that for every
φ ∈ C0(Rd) one has for all t ∈ [0, T ]

lim
�→+∞

∫
Rd

φ(x)|ψε�(t, x)|2dxdt =
∫
Rd

φ(x)|ψξn0 (t, x)|2.

Proposition 1.6 is an improvement of Theorem 3.2 in [2] since it holds without
any simplicity assumption on the Bloch energy 	n0 . However, in the case where
ξn0 /∈ �n0 as inTheorem4.5 of [2]where a drift is taken into account, the application
of Theorem 1.1 does not bring any improvement. In particular, if ξn0 ∈ 
n0 ,
Theorem 1.1 gives 0 at the limit and Theorem 4.5 of [2] does not apply (the drift
∇	n0(ξn0) is not defined). Studying how the mass goes to infinity in that special
case would be an interesting follow-up of the results presented here.
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1.5. A Non-generic Case with Interactions of Bloch Bands Above Non-conical
Crossing Points

In that section, we consider degenerate crossing points that we define as follows:

Definition 1.7. We say that the crossing set 
n is degenerate if some q ≥ 2 exists
such that the function gn defined in (1.11), satisfies

∃c > 0, ∀(ξ, η) ∈ N
n, |η| < 1, gn(ξ, η) ≤ c|η|q .
If the above inequality fails for any q ′ > q, we say the crossing set has degeneracy
of order q.

1.5.1. Assumptions We consider two Bloch energies that cross in a degenerate
manner, though isolated from the remainder of the spectrum.

H1’ 	n(ξ) and 	n+1(ξ) are two Bloch energies that cross on 
n and are of
multiplicity 1 outside 
n .
H2’ Hess 	n (resp. Hess 	n+1) is of constant rank in a neighborhood of each
connected component of �n (resp. �n+1).
H3’ The crossing set ξn is a smooth closed submanifold of Rd included in
�n ∩�n+1 and is degenerated of order q. Besides, 
n−1 = 
n+1 = ∅ and
– if q > 2, for all ξ ∈ 
n , the Hessian of λn is of rank d − Rank
n in a
neighborhood of 
n ,

– if q = 2, for all (ξ, η) ∈ N
n with |η| = 1,

Hess λn(ξ)η ±∇ηgn(ξ, η) 
= 0.

Note that the latter assumption can be considered as amaximal rank assumption.
Indeed, if q > 2, the Bloch energies are C2 and Hess 	n(ξ) = Hess 	n+1(ξ) =
Hess λn(ξ) above points ξ ∈ 
n . Moreover, if q = 2 and (ξk, ωk)k∈N is a sequence
of points satisfying for all k ∈ N,ωk ∈ Nξk
n with |ωk | = 1, we have the following
property: if (ξk, ωk) −→

�→+∞(ξ, ω) ∈ N
n then

Hess 	n(ξk)ωk −→
(ξk ,ωk )→(ξ,ω)

Hess λn(ξ)ω ± ∇ηgn(ξ, ω).

This property shows the link between Hess λn(ξ)η±∇ηgn(ξ, η) and Hess 	n(ξ)η.
The assumption H3’ implies that ∇λn = 0 on 
n . We shall see in the proof

that if ∇λn does not vanish on 
n , then these degenerate crossing points do not
contribute. The result then is comparable to the one of Theorem 1.5. Notice that
one always has

�n ∩�n+1 = 
n ∩�n = 
n ∩�n+1 = 
n ∩ {∇λn(ξ) = 0}.
At the difference with the results of the preceding section that were obtained

under the assumption that H1, H2 and H3 were satisfied for all n ∈ N
∗, we will

assume in this section that we have H1’, H2’ and H3’ for some single n ∈ N
∗

and we will choose well-prepared data concentrating on the bands 	n and 	n+1
involved in the assumptions.
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We assume that

ψε
0 (x) = ϕn

( x

ε
, εD

)
uεn(x)+ ϕn+1

( x

ε
, εD

)
uεn+1(x), (1.18)

where ϕn (resp. ϕn+1) is the Bloch wave associated with 	n (resp. 	n+1), and
(uεn)ε>0 and (uεn+1)ε>0 are bounded families in Hs

ε (R
d), s > d/2. These data are

somehow more general than those of (1.17) since no assumption is made on uεn ans
uεn+1.

1.5.2. The Result: Concentration Above Degenerate Crossings We prove that
for data as in (1.18), the way their components interact above the crossing set plays
a role in the determination of the weak limits of the time-averaged energy density.
We associate with the function gn defined on N
n (see (1.11)) the operator Q


n
gn (ξ)

acting on L2(Nξ
n) as a Fourier multiplier.

Theorem 1.8. Let (ψε)ε>0 be a family of solutions to equation (1.1) with initial
data satisfying (1.18). Assume the Bloch energies 	n and 	n+1 satisfies H1’, H2’
andH3’ with�n = �n+1 = 
n. Then, there exists a subsequence (ψ

ε�
0 )�∈N of the

initial data, a non negative measure ν0 ∈M+(
n) and a matrix M of measurable
trace-class operators

M : T ∗ξ 
n � (ξ, v) �→ M(ξ, v) ∈ L1+(L2(Nξ
n,C
2)),

TrL2(Nξ
n ,C2)M(ξ, v) = 1 dν0 a.e.,

both depending only on (ψε�
0 )�∈N, such that for every a < b and every φ ∈ C0(Rd)

one has

lim
�→+∞

∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt

=
∫ b

a

∫
T ∗
n

TrL2(Nξ
n ,C)

[m
n
φ (ξ, v)(mt

n + mt
n+1 + 2Re(mt

n,n+1))(ξ, v)]ν0(dξ, dv)dt,
where

Mt (ξ, v) =
(

mt
n(ξ, v) mt

n,n+1(ξ, v)
mt

n,n+1(ξ, v)∗ mt
n+1(ξ, v)

)

is a non negative trace class operator on L2(Nξ
n,C
2). In addition, the map

t �→ Mt (ξ, v) ∈ C(R,L1+(L2(Nξ
n,C
2))

solves a von Neumann equation that depends on the value of q:

• If q > 2, it solves

i∂t M
t (ξ, v) =

[(
1

2
Hessλn(ξ)Dz · Dz + m
n

Vext
(ξ, v)

)
IdC2 , Mt (ξ, v)

]
,

M0 = M. (1.19)
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• If q = 2, it solves

i∂t M
t (ξ, v) =

[(
1

2
Hess λn(ξ)Dz · Dz + m
n

Vext(t,·)(ξ, v)
)
IdC2 − Q
n

gn (ξ) J , Mt (ξ, v)

]
,

M0 = M (1.20)

with J =
(
1 0
0 −1

)
.

(recall that m
n
φ (ξ, v) (resp. m
n

Vext
(ξ, v)) denotes the operator acting on L2(Nξ
n)

bymultiplication byφ(v+·) (resp. Vext(v+·)), and Q
n
gn (ξ) is the Fouriermultiplier

on L2(Nξ
n) associated with the function gn(ξ, ·)).
In the latter statement, we have assumed for simplicity that the critical sets of

the two Bloch energies 	n and 	n+1 coincide with the crossing set 
n . We indeed
prove this result without this assumption; however, the resulting statement is more
involved (see Theorem 7.1).

1.5.3. The Special Case of Isolated Degenerate Crossing Points When 
n

consists in a family of isolated degenerate crossing points, the preceding statement
admits a simpler, more transparent formulation. Indeed, as in Section 1.4.3, the
operator Mt only depend on the parameter ξ ∈ 
n and the operator m�n

φ (ξ, v)

simply is the operator of multiplication by φ and Q
n
gn = gn(ξ, Dx ). We now

assume that ψε
0 satisfies (1.18) with

uεn(x) = e
i
ε
x ·ξnvεn(x) and uεn+1(x) = e

i
ε
x ·ξnvεn+1(x)

with ξn ∈ 
n , and for j ∈ {n, n + 1}, (vεj )ε>0 bounded in Hs(Rd), s > d/2 or
s > 1 when d = 1, and such that:

vεj ⇀ v j , ε→ 0+, in L2(Rd).

Proposition 1.9. Let (ψε)ε>0 be a family of solutions to equation (1.1) with initial
data satisfying (1.18). Assume the Bloch energies 	n and 	n+1 satisfy H1’, H2’
and H3’. Assume moreover �n = �n+1 = 
n consists in a family of isolated
critical crossing points. Then, there exists a subsequence (ψε�

0 )�∈N of the initial
data such that for every a < b and every φ ∈ C0(Rd) one has

lim
�→+∞

∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt =
∑
ξ∈
n

∫ b

a

∫
Rd

φ(x)

|ψξn
n (t, x)+ ψ

ξn
n+1(t, x)|2dxdt,

where

• if q > 2, for j ∈ {n, n+1}, ψξ
j solves the effective mass Schrödinger equation

i∂tψ
ξn
j =

1

2
Hessλn(ξn)Dx · Dxψ

ξn
j + Vextψ

ξn
j (1.21)
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• if q = 2, for j ∈ {n, n+1}, ψξ
j solves the effective mass Schrödinger equation

i∂tψ
ξn
j =

1

2
Hessλn(ξn)Dx · Dxψ

ξn
j + η j gn(ξn, Dx )ψ

ξn
j + Vextψ

ξn
j , (1.22)

with ηn = 1 and ηn+1 = −1.
Besides, for j ∈ {n, n + 1}, the initial data ψξn

j (0) = v j .

We stress the fact that, in contrast to what happened in the presence of a singular
crossing, the description of the limiting position density limit involves a term of
the form 2Re(ψξnψξn+1)which takes into account the coupling between the modes
corresponding to the two Bloch bands.

1.6. Ideas of the Proofs and Organisation of the Paper

We follow the semi-classical approach developed in [14,15] which is based on
semi-classical analysis. In these references, the Bloch energies in consideration are
smooth, and we have exhibited the role of the critical points of the Bloch energies
as principal contributors to the weak limits of the time-averaged energy densities.
We have also explained how a second microlocalisation allows to compute quanti-
tatively this contribution. We follow here this scheme of thoughts with additional
difficulties that are two-fold.

Firstly, in order to consider general initial data as in Theorem 1.1 and 1.5, and
to decompose them on the Bloch energies, we shall need to treat infinite series.
The assumption that the data satisfyH0 is the key point that we use technically for
treating this issue. We explain in Section 2 how we perform the decomposition and
which properties of the solution we use.

The second difficulty comes from the lack of regularity of the Bloch energies
close to the crossing sets, which requires to perform semi-classical calculus with
symbols of low regularity, what we do by using and developing ideas from [28].
We explain and construct in Sections 3 and 4 the semi-classical and two-microlocal
analysis of our problem.

This led us to the statement of two theorems that are interesting by themselves:
in Theorems 4.5 and 4.6,we describe the evolution of two-microlocal semi-classical
measures associated to the concentration of the solutions of (1.1) on one of the sets
of critical points�n , n ∈ N

∗
0, and in the context given by hypothesisH1,H2 andH3

for the first one and H1’, H2’ and H3’ for the second one. These two theorems
are proved in Sections 5 and 6 respectively; they are the core of the proofs of
Theorems 1.5 and 1.8, which are performed themselves in Section 7, together with
the proof of Theorem 1.1, Propositions 1.6 and 1.9.

Finally, some appendices are devoted to technical elements that we use in the
proofs of this paper: special features of the Bloch decomposition in dimension 1
(“Appendix A”), properties of the Bloch energies at a crossing (“Appendix B”),
elements of matrix-valued pseudo-differential calculus, in particular with low reg-
ularity (“Appendix C”), two scale pseudodifferential calculus (“Appendix D”) and
various remarks above well-prepared data (“Appendix E”).



Victor Chabu, Clotilde Fermanian Kammerer & Fabricio Macià

2. Separation of Scales and Control of the Oscillations

Here we present the first steps of the strategy that will lead to the proof of
Theorems 1.1, 1.5 and 1.8. Our starting point is the following Ansatz that is widely
used in this context and consists in separating the slow and fast scales of oscillation.
We look for a solution to (1.1) of the form

ψε(t, x) = U ε
(
t, x,

x

ε

)
, (t, x) ∈ R× R

d , (2.1)

where U ε(t, ·, ·) is a function on R
d × T

d . In order to make sense of this, some
regularity on the solutions ψε is required, and this partly justifies our assumption
H0. Uniqueness for solutions to the initial value problem for the Schrödinger equa-
tion (1.1) with initial data satisfying H0 implies that (2.1) holds provided U ε is a
solution to the system{

iε2∂tU ε(t, x, y) = P(εDx )U ε(t, x, y)+ ε2Vext(t, x)U ε(t, x, y),
U ε|t=0 = U ε

0 ,
(2.2)

By Lemma 6.5 in [15], this equation is well-posed in Hs
ε (T

d × R
d): there exists

Cs > 0 such that for every t ∈ R and U ε
0 ∈ Hs

ε (R
d × T

d),

‖U ε(t, ·)‖Hs
ε (R

d×Td ) ≤ ‖U ε
0‖Hs

ε (R
d×Td ) + Csε|t | (2.3)

uniformly in ε > 0.
We shall use a decomposition of the solution U ε in the basis of Bloch modes.

We set, for j ∈ N0,

Pε
ϕ j
W (x, y) := ϕ j (y, εDx )

∫
Td
ϕ j (z, εDx )W (x, z)dz, ∀W ∈ L2(Td × R

d).

(2.4)

Lemma 2.1. If (ψε
0 )ε>0 satisfies H0, then for all t ∈ R, the solution of (1.1) is

given by

ψε(t, ·) =
∑
n∈N∗

ψε
n (t, ·), (2.5)

where the convergence of the series takes place in L2(Rd) and

ψε
n (t, x) := LεPε

ϕn
U ε(t, x) = ϕn

( x

ε
, εDx

) ∫
Td
ϕn(y, εDx )U

ε(t, x, y)dy.

(2.6)

Moreover, for every t ∈ R,

lim sup
ε→0+

∥∥∥∥∥
∑
n>N

ψε
n (t, ·)

∥∥∥∥∥
L2(Rd )

−→
N→∞ 0. (2.7)
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The proof of this result requires two important technical facts that we gather in
the next two remarks.

Remark 2.2. Modulo the addition of a positive constant to equation (1.1), we may
assume that P(εDx ) is a positive operator (this will modify the solutions only by
a constant phase in time). In that case there exists constants ε0, c > 0 such that

c−1‖U‖Hs
ε (R

d×Td ) ≤ ‖ 〈εDx 〉s U‖L2(Rd×Td ) + ‖P(εDx )
s/2U‖L2(Rd×Td )

≤ c‖U‖Hs
ε (R

d×Td )

for every U ∈ Hs(Rd × T
d) and 0 < ε < ε0.

Remark 2.3. In view of (1.3), and the fact that P(ξ) depends analytically on ξ ,
follows that ξ �→ ϕ j (·, ξ), j ∈ N

∗, are continuous functions from R
d to L2(Td)

(see also [56]) and that, for every s > 0, the family P(ξ)s depends continuously
on ξ (with P(ξ) positive).

These remarks imply the boundedness of the operators Pϕ j in Hs
ε (T

d × R
d)

for all j ∈ N0. To see this, note that Remark 2.3 implies that formula 2.4 defines a
bounded operator on L2(Td × R

d). Moreover, we have

[P(εDx )
s/2, Pε

ϕ j
] = [〈εDx 〉s , Pε

ϕ j
] = 0.

If follows from Remark 2.2 that there exists c1 > 0 such that, for allW ∈ Hs
ε (R

d×
T
d),

‖Pε
ϕ j
W‖Hs

ε (R
d×Td ) ≤ c1‖W‖Hs

ε (R
d×Td ),

and, more generally, that everyW ∈ Hs
ε (R

d×T
d) can be expressed in the topology

of Hs
ε (R

d × T
d) as

W =
∑
n∈N∗

Pε
ϕn
W.

Proof of Lemma 2.1. The boundedness in Hs
ε (T

d × R
d) of the operator Pϕ j and

the boundedness of Lε from Hs
ε (T

d × R
d) to L2(Rd) for s > d/2 imply that

that (2.5) holds in L2(Rd).
It remains to prove (2.7). In view of (2.3), (1.8), it is enough to show that if

(V ε)ε>0 is a bounded family in Hs
ε (R

d×T
d), s > d/2, we have, for d/2 < r < s,

lim sup
ε→0+

∥∥∥∥∥
∑
n>N

Pε
ϕn
V ε

∥∥∥∥∥
Hr
ε (R

d×Td )

−→
N→∞ 0.

Remark 2.2 implies that we only have to prove

lim sup
ε→0+

∥∥∥∥∥
∑
n>N

P(εDx )
r/2Pε

ϕn
V ε

∥∥∥∥∥
2

L2(Rd×Td )
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+ lim sup
ε→0+

∥∥∥∥∥
∑
n>N

〈εDx 〉r Pε
ϕn
V ε

∥∥∥∥∥
2

L2(Rd×Td )

−→
N→∞ 0. (2.8)

We thus focus on proving (2.8).

Let us consider the series
∑

n>N P(εDx )
r/2Pε

ϕn
V ε (the proof for

∑
n>N〈εDx 〉r Pε

ϕn
V ε is similar). In view of (2.4),

P(εDx )P
ε
ϕn
V ε(x, y) = ϕn(y, εDx )	n(εDx )

∫
Td
ϕn(z, εDx )V

ε(x, z)dz,

This implies

∥∥∥∥∥
∑
n>N

P(εDx )
r/2Pε

ϕn
V ε

∥∥∥∥∥
2

L2(Rd×Td )

=
∑
n>N

∥∥∥P(εDx )
r/2Pε

ϕn
V ε

∥∥∥2
L2(Rd×Td )

.

We decompose V ε in Fourier series and write V ε(x, y) = ∑
j∈Zd V ε

j (x)e
2iπ j ·y ,

whence

P(εDx )P
ε
ϕn
V ε(x, y)

= ϕn(y, εDx )
∑
j∈Zd

	n(εDx )

(∫
Td
ϕn(z, εDx )e

2iπ j ·zdz
)
V ε
j (x),

and by functional calculus,

P(εDx )
r/2Pε

ϕn
V ε(x, y) = ϕn(y, εDx )

∑
j∈Zd

dn(εDx , j)V
ε
j (x)

with

dn(ξ, j) = 	n(ξ)
r/2

(∫
Td
ϕn(z, εDx )e

2iπ j ·zdz
)

We use three observations.

(1) First, if δ > 0 is fixed, there exists J0 such that

lim sup
ε→0+

∑
| j |>J0

∫
Rd
(1+ |εξ |2 + | j |2)r |V̂ ε

j (ξ)|2dξ < δ.

To see this note that:∑
| j |>J0

∫
Rd
(1+ |εξ |2 + | j |2)r |V̂ ε

j (ξ)|2dξ ≤ (1+ |J0|2)r−s‖V ε‖2Hs (Rd×Td )
,

due to the definition of the Hs
ε -norm (1.7). Since (V ε)ε>0 is uniformly bounded

in Hs
ε (R

d), the claim follows.
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(2) Second, given δ > 0 and J0 ∈ N, one can find R = R(δ, J0) > 0 such that

lim sup
ε→0+

∑
| j |<J0

∫
|εξ |>R

(1+ |εξ |2 + | j |2)r |V̂ ε
j (ξ)|2dξ < δ.

This follows from the estimate∫
|εξ |>R

(1+ |εξ |2 + | j |2)r |V̂ ε
j (ξ)|2dξ ≤ (1+ R2)r−s‖V ε‖2Hs (Rd×Td )

,

and again from the fact that (V ε)ε>0 is uniformly bounded in Hs
ε (R

d × T
d).

(3) Third, given J0, R > 0,

DN (R, J0) := sup
| j |≤J0

sup
|ξ |≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞ 0.

To see why this holds, note that, for j ∈ Z
d ,

R
d � ξ �−→

∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P(ξ)r/2e2iπ j ·∥∥∥2

L2(Td )
∈ (0,∞) (2.9)

is a non-negative continuous function. The claim then follows from Dini’s
theorem, which ensures that for every R > 0, j ∈ Z

d one has

sup
|ξ |≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞ 0.

We now use these observations to treat the series whose terms are∥∥∥P(εDx )
r/2Pε

ϕn
V ε

∥∥∥2
L2(Rd×Td ))

=
∑
j∈Zd

∫
Rd
|dn(εξ, j)|2|V̂ ε

j (ξ)|2dξ.

Fix δ > 0, and consider J0 given by Point (1) and R = R(δ, J0) given by Point
(2). Decompose the sum of integrals in three terms

∑
j∈Zd

∫
Rd
=

∑
| j |≤J0

∫
|εξ |≤R

+
∑
| j |≤J0

∫
|εξ |>R

+
∑
| j |>J0

∫
Rd

.

We start by analyzing the third term. Note that

∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P(ξ)r/2e2iπ j ·∥∥∥2

L2(Td )
≤ cr (1+ |ξ |2 + | j |2)r

Therefore,

lim sup
ε→0+

∑
n>N

∑
| j |>J0

∫
Rd
|dn(εξ, j)|2|V̂ ε

j (ξ)|2dξ

≤ lim sup
ε→0+

∑
| j |>J0

∫
Rd

∑
n∈N∗

|dn(εξ, j)|2|V̂ ε
j (ξ)|2dξ
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≤ cr lim sup
ε→0+

∑
| j |>J0

∫
Rd
(1+ |εξ |2 + | j |2)r |V̂ ε

j (ξ)|2dξ < crδ,

using observation (1).
The second term is analyzed using observation (2):

lim sup
ε→0+

∑
n>N

∑
| j |≤J0

∫
|εξ |>R

|dn(εξ, j)|2|V̂ ε
j (ξ)|2dξ

≤ cr lim sup
ε→0+

∑
| j |≤J0

∫
|εξ |>R

(1+ |εξ |2 + | j |2)k |V̂ ε
j (ξ)|2dξ < crδ.

Observation (3) ensures that

∑
n>N

∑
| j |≤J0

∫
|εξ |≤R

|dn(εξ, j)|2|V̂ ε
j (ξ)|2dξ ≤ DN (R, J0)‖V ε‖2L2(Rd×Td )

.

As a consequence of this analysis,

lim sup
N→+∞

lim sup
ε→0+

∑
n>N

∑
j∈Zd

∫
Rd

∣∣∣∣
∫
Td
	n(εξ)

r/2ϕn(z, εξ)e
2iπ j ·zdz

∣∣∣∣
2

|V̂ ε
j (ξ)|2dξ

< 2crδ.

Since δ is arbitrary, the result follows. ��
Lemma 2.1 provides an important element of the proof of the Theorems 1.1

and 1.5 of this paper. It allows to reduce the problem to solutions consisting only of
finite superposition of Blochmodes, that we are going to studywith a semi-classical
perspective, as explained in the next section.

3. Semi-classical Approach to the Energy Dynamics

Thenature of thepropagationof the asymptotic energydensity for high-frequency
solutions to semi-classical dispersive-type equations is better understood if the
usual, physical-space, energy density is lifted to a phase-space energy density.
There is no canonical lifting procedure, roughly speaking these choices correspond
to different quantization procedures. Here we will work with the lifting procedure
that corresponds to the Weyl quantization, from which the Wigner functions are
obtained (see the definition in (3.1)).

It should be noted that although the asymptotic limit in equation (1.1) we are
interestedmight not appear to fit in the semi-classical regime one can indeed place it
in that context. One can check that any solutionψε of (1.1) becomes, after rescaling
in time as uε(t, ·) := ψε(εt, ·), a solution to a semi-classical Schrödinger equation
with highly oscillating potential:

iε∂t u
ε(t, x)+ ε2

2
�xu

ε(t, x)− Vper
( x

ε

)
uε(t, x)− ε2Vext(εt, x)u

ε(t, x) = 0.
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Hence, the asymptotic limit we are interested in can be viewed as performing
simultaneously the semi-classical and long-time limits. This approach was pursued
in [14,15] to dealwith the casewhere no crossings betweenBloch bands are present,
and this point of view is also adopted in references [2,54]. Here the situation is
more complicated, as interactions between projections on different Bloch bands
may occur. This regime involving performing simultaneously the semi-classical
and long time limit has been useful in other contexts, we refer the reader to the
survey articles [5,43,44].

In Section 3.1 below,we recall elements of the theory of semi-classicalmeasures
that we apply to (ψε)ε>0 in the next two sections. We first discuss in Section 3.2
the relations between the semi-classical measures of (ψε)ε>0 and those of the
families (ψε

n )ε>0 that have been introduced in (2.5) and (2.6). Then, we analyze
the localisation properties of these semi-classical measures in Section 3.3, which
motivates a two-microlocal approach.

3.1. Semi-classical Measures and Energy Densities

Let us recall briefly some basic facts of the theory of semi-classical measures
[34,35,40] thatwill be needed in the sequel. Fromnowon, for every s ∈ R, N ∈ N

∗,
Hs
ε (R

d ,CN ) will denote the space Hs
ε (R

d)N equipped with the norm

‖�‖Hs
ε (R

d ,CN ) =
⎛
⎝ N∑

j=1
‖� j‖2Hs

ε (R
d )

⎞
⎠

1/2

, � = (�1, · · · , �N ).

We associate to every� ∈ L2(Rd ,CN ) := H0
ε (R

d ,CN ) a microlocal versionW ε
�

of the (matrix-valued) energy density

� ⊗� = (�i� j )1≤i, j≤N ∈ C
N×N .

The matrix-valued function W ε
� ∈ L2(R2d ,CN×N ) is defined by

W ε
�(x, ξ) =

∫
Rd

eiξ ·v�
(
x − εv

2

)
⊗�

(
x + εv

2

) dv

(2π)d
, (3.1)

and its action on symbols a ∈ C∞0 (R2d ,CN×N ) is related with semi-classical
pseudodifferential calculus according to∫

R2d
TrCN×N (a(x, ξ)W ε

�(x, ξ))dx dξ =
(
opε(a)�,�

)
L2(Rd ,CN )

where opε(a) denotes the matrix-valued semi-classical pseudodifferential operator
of symbol a. The Wigner function satisfies the following bounds for every a ∈
C∞0 (R2d ,CN×N ) and ε > 0:∣∣∣(opε(a)�,�)

L2(Rd ,CN )

∣∣∣ ≤ Cd‖�‖2L2(Rd ,CN )
‖a‖Cd+2(R2d ,CN×N ); (3.2)



Victor Chabu, Clotilde Fermanian Kammerer & Fabricio Macià

for Cd > 0 depending only on d. If in addition a ≥ 0 (meaning that a takes values
in the set of non-negative Hermitian matrices),∫

R2d
TrCN×N (a(x, ξ)W ε

�(x, ξ))dx dξ ≥ −Caε‖�‖2L2(Rd ,CN )
, (3.3)

for some Ca > 0 that can be computed in terms of a and its derivatives. Estimate
(3.2) is a consequence of the Calderón-Vaillancourt theorem (C.1), whereas (3.3)
is a reformulation of Gårding’s inequality (C.3). A direct computation also shows
that W ε

� is actually a lift of � ⊗�:∫
Rd

W ε
�(x, ξ)dξ = � ⊗�(x). (3.4)

Suppose now that (�ε)ε>0 is a bounded sequence in L2(Rd ,CN ); then (3.2) ensures
that (W ε

�ε ) is a bounded sequence of distributions. In addition, (3.3) implies that
all its accumulation points are non negative Radon matrix-valued measures, that
is, measures valued on the set of complex N × N Hermitian positive-semidefinite
matrices. Moreover, any measure μ obtained from (W ε

�ε ) along some subsequence
(ε�) satisfies (see (C.4), (C.5))

μ(R2d) ≤ lim inf
�→∞ ‖�ε�‖2L2(Rd )

.

Thesemeasures are called semi-classical orWignermeasuresof the family (�ε)ε>0.

Remark 3.1. If (W ε�
�ε� ) converges in S ′(R2d) to the semiclassical measure μ then,

for every a ∈ C0(R
d
x ×R

d
ξ ) that is d + 2 times continuously differentiable in x the

following holds:∫
R2d

TrCN×N (a(x, ξ)W ε�
�ε� (x, ξ))dx dξ −→

�→∞

∫
R2d

TrCN×N (a(x, ξ)μ(dx, dξ)).

This follows from Remark C.3 and assertion (1) of Lemma C.4.

Finally, the lift property (3.4) is transferred to an accumulation pointμgenerated
from a subsequence (�ε�),i.e.,

∀φ ∈ C0(Rd ,CN×N ), lim
�→∞

∫
Rd

TrCN×N (φ(x)(�ε� ⊗�ε�)(x))dx

=
∫
Rd

TrCN×N (φ(x)μ(dx, dξ)),

provided that no mass of (�ε�) is lost at infinity in Fourier space:

lim sup
�→∞

∫
|ε�ξ |>R

|�̂ε�(ξ)|2dξ −→
R→∞ 0. (3.5)

This condition, referred sometimes to as ε-oscillation, is fulfilled as soon as the
sequence (�ε)ε>0 is bounded in Hs

ε (R
d)N for some s > 0.
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Let us conclude this concise review of semi-classical measures by recalling
how the matrix-valued semi-classical measure μ = (μi, j )1≤i, j,≤N is related to the
semi-classical measures of the families of components (�ε

j ), for j = 1, . . . , N .
Suppose that the subsequence (�ε�) gives the semi-classical measure μ. Then, for
every 1 ≤ i, j,≤ N ,

∀a ∈ C∞0 (R2d), lim
�→∞

(
opε(a)�

ε�
i , �

ε�
j

)
L2(Rd )

=
∫
R2d

a(x, ξ)μi, j (dx, dξ).

(3.6)

Moreover, since μ takes values on the set of Hermitian positive-semidefinite ma-
trices, one also has that the μi,i are non-negative (scalar) Radon measures and that
μi, j is absolutely continuous with respect to bothμi,i andμ j, j . The latter condition
implies that μi, j = 0 as soon as μi,i and μ j, j are mutually singular. In particular,

μi,i ⊥μ j, j �⇒ ∀a ∈ C∞0 (R2d), lim
�→∞

(
opε(a)�

ε�
i , �

ε�
j

)
L2(Rd )

= 0. (3.7)

In this article, we are mainly interested in time-dependent versions of these ob-
jects. Themodifications required in order to adapt the theory to this context are rather
straightforward. Suppose now that (�ε)ε>0 is bounded in L∞(Rt ; L2(Rd

x ,C
N )).

Define W ε
�ε as

W ε
�ε (t, x, ξ) := W ε

�ε(t,·)(x, ξ)

=
∫
Rd

eiξ ·v�ε
(
t, x − εv

2

)
⊗�ε

(
t, x + εv

2

) dv

(2π)d
. (3.8)

Then (3.2) again implies that, for every θ ∈ L1(R) and every a ∈ C∞0 (R2d ,CN×N ),∣∣∣∣
∫
R

∫
R2d

θ(t)TrCN×N (a(x, ξ)W ε
�ε (t, x, ξ))dx dξ dt

∣∣∣∣
≤ Cd‖�ε‖2L∞(Rt ;L2(Rd

x ,C
N ))
‖θ‖L1(R)‖a‖Cd+2(R2d ,CN×N ). (3.9)

This ensures that (W ε
�ε ) is bounded in S ′(R × R

2d). Moreover, any accumula-
tion point μ of this family is a non negative Radon measure on R× R

2d , because
of (3.3). It follows from (3.9) that the projection of μ onto the t-variable is ab-
solutely continuous with respect to the Lebesgue measure on R. Therefore, we
conclude using the disintegration theorem the existence of a measurable map from
t ∈ R to non negative, finite, matrix-valued Radon measures μt on R

2d such that
μ(dt, dx, dξ) = μt (dx, dξ)dt .

Summing up, for every sequence (ε�)�∈N going to 0 as � goes to +∞ such
that (W ε�

�ε� ) converges in the sense of distributions the following holds: for all
θ ∈ L1(R) and a ∈ C∞0 (R2d ,CN×N ),∫

R

∫
R2d

θ(t)TrCN×N (a(x, ξ)W ε�
�ε� (t, x, ξ))dx dξ dt −→

�→∞∫
R

∫
R2d

θ(t)TrCN×N (a(x, ξ)μt (dx, dξ))dt. (3.10)
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If the sequence (�ε�(t, ·)) is in addition ε-oscillating (3.5) for almost every t ∈ R,
the projections of the measures μt on the ξ -variable are the limits of the energy
densities: for every θ ∈ L1(R), φ ∈ C0(Rd ,CN×N ),∫

R

∫
Rd

θ(t)TrCN×N (φ(x)(�ε� ⊗�ε�)(t, x))dx −→
�→∞∫

R

∫
Rd

θ(t)TrCN×N (φ(x)μt (dx, dξ)) dt. (3.11)

Remark 3.2. Time-dependent analogues of (3.6), (3.7) also hold after replacing
μi, j by μt

i, j and averaging in the t-variable. So does the analogue of Remark 3.1.

3.2. The Semi-classical Measure of (ψε)ε>0 in Terms of Those of the Sequences
(ψε

n )ε>0, n ∈ N

We now focus on the basic properties of semi-classical measures associated to
a sequence (ψε)ε>0 of solutions to (1.1), issued from initial data (ψε

0 )ε>0 that are
bounded in Hs

ε (R
d) for some s > d/2, and onto clarifying how they are related to

those of the families of projections (ψε
n )ε>0 defined in (2.6).

First note that the highly oscillating character of the Schrödinger propagator
prevents in general to be able to extract a subsequence along which W ε

ψε(t,·) will
converge for every t ∈ R. Following [3,6,41] we consider time averages of the
Wigner functions we just described.

Identity (3.10) applied to this context states that whenever (W ε�
ψε� ) converges in

the sense of distributions for some sequence (ε�)�∈N going to 0 as � goes to +∞
the following holds: for all θ ∈ L1(R) and a ∈ C∞0 (R2d),∫

R

∫
R2d

θ(t)a(x, ξ)W ε�
ψε� (t, x, ξ)dx dξ dt −→

�→∞

∫
R

∫
R2d

θ(t)a(x, ξ)ς t (dx, dξ)dt,

(3.12)

where, for a.e. t ∈ R, ς t is a non negative Radon measure on R
2d .

In addition, ς t can be related to the weak limits of the energy densities since
the family (ψε)ε>0 is ε-oscillating.

Remark 3.3. If (ψε
0 )ε>0 is bounded inHs

ε (R
d) for some s > d/2 then (ψε(t, ·))ε>0,

the corresponding family of solutions to (1.1), is ε-oscillating for every t ∈ R. This
follows from [15, Lemma 6.2] applied to the family (U ε)ε>0 of solutions to (2.2)
once one notices that for r ∈ ( d2 , s), R > 0 and t ∈ R,∫

|εξ |>R
‖Û ε(t, ξ, ·)‖2Hr (Td )

dξ ≤ R−2(s−r)(‖ψε
0‖Hs

ε (R
d ) + Csε|t |)2,

as follows from estimate (2.3).

As a consequence of this, (3.11) implies one has for the subsequence (ε�) of (3.12)
and for θ ∈ C∞0 (R), φ ∈ C∞0 (Rd),∫

R

∫
Rd

θ(t)φ(x)|ψε�(t, x)|2dx dt −→
�→+∞

∫
R

∫
R2d

θ(t)φ(x)ς t (dx, dξ)dt.
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(3.13)

For n, n′ ∈ N
∗, we use the notationW ε

n,n′ to refer to the Wigner function of the pair

ψε
n , ψ

ε
n′ . In other words, for every a ∈ C∞0 (R2d),∫
R2d

a(x, ξ)W ε
n,n′(t, x, ξ)dx dξ =

(
opε(a)ψ

ε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

.

The same argument presented before shows that for n, n′ ∈ N, there exists a
sequence (ε�)�∈N going to 0 as � goes to +∞ such that, for all θ ∈ L1(R),
a ∈ C∞0 (R2d),∫

R

∫
R2d

θ(t)a(x, ξ)W ε
n,n′(t, x, ξ)dx dξ dt −→

�→∞

∫
R

∫
R2d

θ(t)a(x, ξ)μt
n,n′(dx, dξ))dt,

(3.14)

where, for a.e. t ∈ R, μt
n,n′ is a (signed) Radon measure on R

2d .

Proposition 3.4. There exist a subsequence (ε�)�∈N going to 0 as � goes to +∞
such that (3.12) and (3.14) hold simultaneously for all n, n′ ∈ N

∗. In addition, for
a.e. t ∈ R,

ς t =
∑

n,n′∈N∗
μt
n,n′ ,

the convergence of the series being understood in the weak-∗ topology of the space
of Radon measures on R

2d .

Proof. We proceed to a first extraction to have (3.12) and we keep denoting by ε
the resulting subsequence. We put

�ε
N := (ψε

1 , . . . , ψ
ε
N ) ∈ C(Rt ; L2(Rd

x ,C
N )).

We know that (W ε
�ε

N
), defined by (3.8), are uniformly bounded in C(Rt ;S ′(R2d ,

C
N×N )), both in ε > 0 and N ∈ N

∗.
By (3.10), any accumulation point of (W ε

�ε
N
) obtained along some subsequence

(ε�)�∈N is a time-dependent family of non negative matrix-valued Radon measures
μt
N . By diagonal extraction, we can find a sequence (ε�)�∈N such that (W ε�

�
ε�
N
)ε>0

converge for every N ∈ N
∗. We denote by (μt

N )N∈N∗ their respective limits. By
(3.6) we know that, for every n, n′ ≤ N ≤ N ′ one has

(μt
N )n,n′ = (μt

N ′)n,n′ = μt
n,n′ ,

where μt
n,n′ is obtained through (3.14). This shows that we can find a sequence

(ε�)�∈N as claimed.
Define now ψN ,ε := ∑N

n=1 ψε
n . One has that for a ∈ C∞0 (R2d) and t ∈ R,∫

R2d
a(x, ξ)W ε�

ψN ,ε�
(t, x, ξ)dx dξ =

∫
R2d

a(x, ξ)TrCN×N

(
Q W ε�

�
ε�
N
(t, x, ξ)

)
dx dξ,
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where Q is the N × N matrix whose all entries are equal to one. Therefore,
(W ε�

ψN ,ε�
)�∈N converges to the semi-classical measure given, for a.e. t ∈ R, by

ς t
N =

∑
1≤n,n′≤N

μt
n,n′ .

Finally, (2.5) and Lemma 2.1 imply that for every θ ∈ L1(R),

lim sup
�→∞

∫
R

θ(t)‖ψε�(t, ·)− ψN ,ε� (t, ·)‖2L2(Rd )
dt −→

N→∞ 0;

which in turn guarantees that, for every θ ∈ L1(R), a ∈ C∞0 (R2d),∫
R

∫
R2d

θ(t)a(x, ξ)ς t
N (dx, dξ)dt −→N→∞

∫
R

∫
R2d

θ(t)a(x, ξ)ς t (dx, dξ)dt.

��
The rest of this article is devoted to computing the measures μt

n,n′ .

3.3. Localization of Semi-classical Measures

If the operator LεPε
ϕn

is applied to problem (2.2), one deduces that ψε
n (which

is defined by (2.6)) satisfies the pseudo-differential equation{
iε2∂tψε

n (t, x)) = 	n(εDx )ψ
ε
n (t, x)+ ε2 f εn (t, x), (t, x) ∈ R× R

d ,

ψε
n (0, x) = ϕn

( x
ε
, εDx

) ∫
Td ϕn(y, εDx )ψ

ε
0 (x)dy,

(3.15)

with

f εn (t, x) := ϕn

( x

ε
, εDx

) ∫
Td
ϕn(y, εDx )(Vext(t, x)U

ε(t, x, y))dy.

This fact will be used to obtain all the information on themeasuresμt
n,n′ defined

in (3.14) that is relevant to our purposes. In this section we gather some basic facts;
in following sections we will introduce a more precise machinery that will allow
us to obtain a complete picture.

Proposition 3.5. Let (ψε
0 ) be bounded in Hs

ε (R
d) for some s > d/2. For any

n, n′ ∈ N
∗, let (ψε

n )ε>0 and (ψε
n′) be defined by (2.6) and let μt

n,n′ be given by

(3.14). Let � ⊆ R
d be open and invariant by translations by 2πZd . Then the

following hold:

(1) If ∇ξ 	n ∈ Lip(Rd) on � and ∇ξ 	n|� 
= 0, then

μt
n,n(R

d ×�) = 0, for a.e. t ∈ R.

(2) Let δ > 0 and suppose that

� ⊂ {ξ ∈ R
d : |	n(ξ)− 	n′(ξ)| ≥ δ}.

Then |μt
n,n′ |(Rd ×�) = 0, for a.e. t ∈ R.
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Proof. Point 1 is proved in an analogousmanner than Proposition 3.4 in [15]. Using
the calculus of semi-classical pseudo-differential operators with low regularity of
Lemma C.4 it is possible to prove that for every θ ∈ C∞0 (R) and a ∈ C∞0 (Rd×�),∫

R

θ(t)(opε(∇ξ 	n · ∇xa)ψ
ε
n (t, ·), ψε

n (t, ·))L2(Rd )dt −→
ε→0

0.

By (3.14), this implies that, for almost every t ∈ R,∫
Rd×�

∇ξ 	n(ξ) · ∇xa(x, ξ)μ
t
n,n(dx, dξ) = 0.

This implies that the measure μt
n,n1Rd×� is invariant by the flow (x, ξ) �→ (x +

s∇	n(ξ), ξ). Since μt
n,n is non negative and finite, necessarily it is identically 0.

For proving Point 2, it is enough to obtain, for every θ ∈ C∞0 (R) and a ∈
C∞0 (Rd ×�): ∫

R

θ(t)
(
opε(a)ψ

ε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

dt −→
ε→0

0.

We have

iε2
d

dt

(
opε(a)ψ

ε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

= ((
	n′(εDx )opε(a)− opε(a)	n(εDx )

)
ψε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

+ ε2Rε(t),

(3.16)

where |Rε(t)| ≤ C‖ f εn (t, ·)‖2L2(Rd )
is locally uniformly bounded in t ∈ R for every

ε > 0.
By Lemma C.4 (2), the following holds with respect to the L(L2(Rd)) norm:

	n′(εDx )opε(a)− opε(a)	n(εDx ) = opε ((	n′ − 	n)a)+ O(ε).

This identity together with integration by parts transforms (3.16) into∫
R

θ(t)
(
opε ((	n′ − 	n)a) ψ

ε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

dt

= ε2

i

∫
R

θ ′(t)
(
opε(a)ψ

ε
n (t, ·), ψε

n′(t, ·)
)
L2(Rd )

dt + O(ε).

Taking limits ε→ 0, which is possible by Remarks 3.1 and 3.2, we obtain∫
R

∫
R2d

θ(t)(	n′(ξ)− 	n(ξ))a(x, ξ)μ
t
n,n′(dx, dξ)dt = 0.

By density, this relation holds for all a ∈ C0(Rd × �), in particular for ã =
(	n − 	n′)−1a. This shows that, as we wanted to prove

∀θ ∈ C∞0 (R), ∀a ∈ C0(Rd ×�),

∫
R

∫
R2d

θ(t)a(x, ξ)μt
n,n′(dx, dξ)dt = 0.

��



Victor Chabu, Clotilde Fermanian Kammerer & Fabricio Macià

Proposition 3.5 shows that μt
n,n can only charge the sets �n of critical points

of 	n or the set where 	n has a conical crossing with another Bloch energy (i.e.
where 	n ceases to be C1,1(Rd)). It also shows that 
n,n′ is the only region where
the measures μt

n,n′ can be non-zero. Since, assuming H1, the crossing sets reduce
to ∪n∈N0
n , the analysis of the measures μt

n,n′ will be performed in the following
sections by means of a second microlocalisation above the sets �n and 
n , under
the assumption H1, H2 and H3.

4. Two Microlocal Analysis

The analysis of the concentration of a family on a submanifold of the phase
space turned out to be an important element of the analysis of its behavior. Two-
microlocal semi-classical measures gives a quantitative overview on these concen-
tration phenomena. They were first introduced simultaneously and independently
in [50] and by one of the author in her thesis (see the articles [21,22,24]), and
they have found applications in different fields, as for example [26,42] and articles
connected to these ones. We recall in Section 4.1 the definition of two-microlocal
semi-classical measures that is useful in our context and apply the theory to families
(ψε)ε>0 of solution to (1.1) in Section 4.1 in the frameworks of Theorem 1.5 and
of Theorem 1.8. This leads to the statement of two results (Theorems 4.5 and 4.6)
that will be proved in the next Sections 5 and 6.

4.1. Two-Scale Semi-classical Measures

We study here the concentration of a bounded family (�ε)ε>0 of L∞(R, L2

(Rd ,CN )) on a setRd×X where X is assumed to be a connected, closed embedded
submanifold of (Rd)∗ of codimension p. Following [15], we achieve a second
microlocalization aboveRd × X and we crucially use that the geometric properties
of X imply that there exists a tubular neighbourhoodU of {(σ, 0) : σ ∈ X} ⊆ N X
such that the tubular coordinate map

U � (σ, v) �−→ σ + v ∈ (Rd)∗

is a diffeomorphism onto its image V . In that case, there exists a smooth map
σX : V −→ X such that, for every ξ ∈ V ,

ξ = σ + v, (σ, v) = (σX (ξ), ξ − σX (ξ)) ∈ U. (4.1)

We extend the phase space T ∗Rd := R
d
x × (Rd)∗ξ with a new variable η ∈ Rd ,

where Rd is the compactification of (Rd)∗ obtained by adding a sphere Sd−1 at
infinity. The spaceA(2) of test functions associated with this extended phase space
is formed by those functions

a ∈ C∞(T ∗Rd
x,ξ × R

d
η,C

N×N )

which satisfy the two following properties:
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(1) there exists a compact K ⊂ T ∗Rd such that, for all η ∈ R
d , the map (x, ξ) �−→

a(x, ξ, η) is a smooth matrix-valued function compactly supported in K ;
(2) there exists a smooth matrix-valued function a∞ defined on T ∗Rd × Sd−1 and

R0 > 0 such that, if |η| > R0, then a(x, ξ, η) = a∞(x, ξ, η/|η|).
For a ∈ A(2) supported in Rd × V × R

d , we write

aε(x, ξ) := a

(
x, ξ,

ξ − σX (ξ)

ε

)
.

We associate to �ε(t) a two-microlocal Wigner distribution

WX,ε(t) ∈ D′(Rd × V × Rd), WX,ε
�ε (t) = (WX,ε

j,k )1≤ j,k≤N ;

its action on test functions a ∈ A(2) supported in Rd × V × R
d is defined by〈

WX,ε
�ε (t), a

〉
:= (

opε(aε)�
ε(t), �ε(t)

)
L2(Rd ,CN )

. (4.2)

Since the family of operators (opε(aε))ε>0 is uniformly bounded in L2(Rd ,CN×N )

(as a consequence of the Calderón-Vaillancourt theorem, see “Appendix C”), it fol-
lows that (WX,ε

�ε (t)) is a bounded sequence of distributions. In addition, any smooth,
compactly supported test function a ∈ C∞0 (Rd × V,CN×N ) can be naturally iden-
tified to an element ofA(2) which does not depend on the last variable. For such a,
one clearly has 〈

WX,ε
�ε (t), a

〉
= 〈

W ε
�ε (t), a

〉 ;
hence WX,ε

�ε (t) is a lift of W ε
ψε (t) to the extended phase-space. We thus focus on

the asymptotic description of the quantities∫
R

θ(t)〈WX,ε
�ε (t), a〉dt, θ ∈ L1(R), a ∈ A(2). (4.3)

In order to describe the limits of these quantities, we must introduce some
notations. We consider an open subset W of V where there exists ϕ : W −→ R

p a
smooth function such that the ξ ∈ W for which ϕ(ξ) = 0 are precisely those which
are inW ∩ X . We also assume that dϕ(σ) for σ ∈ W ∩ X is of maximal rank. These
coordinates functions give parametrization of the manifolds under consideration
and for every σ ∈ W ∩ X , we can write

Nσ X = { t dϕ(σ)z : z ∈ R
p}.

This parametrization allows todefine ameasure on Nσ X and the space L2(Nσ X,C2).
Different ϕ will give equivalent norms. The function ϕ also induces a smooth map
B from the neighbourhood W of σ into the set of d × p matrices such that

ξ − σX (ξ) = B(ξ)ϕ(ξ), ξ ∈ W. (4.4)
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Therefore, given a function a ∈ C∞0 (Rd × W × R
d ,CN×N ) and a point (σ, v) ∈

T ∗σ X , we can use ϕ to define an operator acting on f ∈ L2(Nσ X,CN ) by

Qϕ
a (σ, v) f (z) =

∫
Rp×Rp

a

(
v + t dϕ(σ)

z + y

2
, σ, B(σ )η

)
f (y)eiη·(z−y) dη dy

(2π)p
.

In other words, Qϕ
a (σ, v) is obtained from a by applying the non-semi-classical

Weyl quantization to the symbol a
(
v + t dϕ(σ) · , σ, B(σ ) · ) ∈ C∞0 (Rp × R

p,

C
N×N ),

Qϕ
a (σ, v) = aW

(
v + t dϕ(σ)z, σ, B(σ )Dz

)
. (4.5)

Using invariance properties with respect to changes of coordinate systems that are
precisely described in [15], Section 4, one can conclude that a induces an opera-
tor QX

a on L2(Nσ X,CN ). Clearly, QX
a (σ, v) is smooth and compactly supported

in (σ, v); moreover, QX
a (σ, v) is a compact operator on L2(Nσ X,CN ) for every

(σ, v) ∈ T ∗X .

Proposition 4.1. (Proposition 4.2 and 4.4 of [15]) There exist a sequence (ε�), a
measurable map t �→ γ t valued in the set of non negative (matrix-valued) measures
on T ∗Rd×Sd−1, a measurable family of (scalar) non negative measures νt on T ∗X
and a measurable map t �→ Mt , where

Mt : T ∗X � (σ, v) �−→ Mt (σ, v) ∈ L1(L2(Nσ X,C
N ))

and TrL2(Nσ X,CN ) M
t (σ, v) = 1, νt -a.e. (σ, v) ∈ T ∗X

such that, for every θ ∈ C∞0 (R) and a ∈ A(2) supported inRd ×V ×R
d , one has:∫

R

θ(t)
〈
WX,ε� (t), a

〉
dt −→

ε�→0∫
R

θ(t)
∫
T ∗X

TrL2(Nσ X,CN )(Q
X
a (σ, v)M

t (σ, v))νt (dσ, dv)dt

+
∫
R

θ(t)
∫
T ∗Rd×Sd−1

TrCN×N

(
a∞(x, σ, ω)γ t (dx, dσ, dω)

)
dt. (4.6)

The family of operators Mt (σ, v) describes the part of the concentration that
comes from finite distance while the measure γ t (dx, dσ, dω) is often called the
part at infinity of the two-scale semi-classical measure. In particular

γ t (x, ξ, ω)1ξ /∈X = μt (x, ξ)⊗ δ

(
ω − ξ − σX (ξ)

|ξ − σX (ξ)|
)
,

where μt is a semi-classical measure of (�ε(t))ε>0.

Remark 4.2. (1) In a stationary setting, similar objects can be associated with (non
time dependent) bounded families in L2(Rd). More precisely, if ( f ε)ε>0 is a
bounded family in L2(Rd ,CN ), one can associate with ( f ε)ε>0 a pair M0dν0
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defined by the existence of a subsequence (ε�) such that for all a ∈ C∞0 (R3d ,

C
N×N ),(
opε�(aε�) f

ε� , f ε�
) −→
ε�→0

∫
T ∗X

TrL2(Nσ X,CN )(Q
X
a (σ, v)M0(σ, v))ν0(dσ, dv).

The initial data in the the von Neumann Equation (1.15) (Theorem 1.5) and in
the von Neumann Equations (1.19) and (1.20) (Theorems 1.8) are constructed
in that manner, with N = 1, X = �n and f ε = ψε

n (0) for Equation (1.15) and
with N = 2, X = 
n and f ε = t (ψε

n (0), ψ
ε
n+1(0)) ∈ C

2 for Equations (1.19)
and (1.20).

(2) When X = {ξ0}, then σX (ξ) = ξ − ξ0 and one has for a ∈ C∞0 (R3d)(
opε(aε) f

ε, f ε
) = (

op1(a(x, ξ0 + εξ, ξ)e−
i
ε
x ·ξ0 f ε, e−

i
ε
x ·ξ0 f ε

)
and the operator op1(a(x, ξ0, ξ) is compact As a consequence, the part at finite
distance of any two-microlocal measure associated with the concentration of
( f ε) on X is a projector | f ξ0〉〈 f ξ0 |where f ξ0 is a weak limit in L2 of the family

(e− i
ε
x ·ξ0 f ε).

(3) Note that for determining the part of the concentration that comes from finite
distance, it is enough to consider symbols a that are compactly supported in all
the variables.

4.2. Two Microlocal Semi-classical Measures for the Families (ψε
n (t))n∈N

These objects allow to determine the semi-classical measure ς t . Indeed, in
[15], we have proved that they allow to describe ς t above critical points of 	n
for which the hessian of 	n is of maximal rank on the set of critical points �n

(see assumption H2 and H2’). We will use them to prove that ς t = 0 above all
crossing sets satisfying H3 and to show that ς t can be non zero because of modes
interactions above degenerate crossing points satisfying H3’.

4.2.1. Critical Points We recall here results from [14,15], mainly Theorem 2.2
in [15] which gives a precise description of the measures μt

n,n above the set �n of
critical points of 	n (see (1.4)). Let � be an open set of Rd such that �n ∩ � is a
submanifold.

Theorem 4.3. [15] Let (Mt
ndν

t
n, γ

t
n) be a pair of two-microlocal semi-classical

measures associated with the concentration of (ψε
n (t)) above �n ∩�. Then, there

exists Mndνn, a two-microlocal measure associated to the concentration at finite
distance of (ψε

n (0)) on �n ∩� such that νtn = ν0n = νn, t �→ Mt
n(ξ, v) belongs to

the space C(R;L1+(L2(Nξ�n)) and solves the von Neumann equation (1.15) with
initial data M0

n = Mn.Moreover, if the Hessian of 	n is of maximal rank on�n∩�,
then γ t

n = 0.

Remark 4.4. (1) The maximal rank assumption consists in saying that

Rank Hess 	n(σ ) = codim�n, σ ∈ �n,

or equivalently: Ker Hess 	n(σ ) = Tσ�n, σ ∈ �n .
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(2) It is important to notice that the families (Mt
n) are completely determined by

the initial data: up to a subsequence for which one has

(
opε� (a)ψ

ε�
n (0), ψε�

n (0)
) −→
ε�→0

∫
T ∗�n

TrL2(Nξ�)

[
Q�n

a (ξ, v)M0
n (ξ, v)

]
ν0n (dξ, dv).

4.2.2. ConicalCrossingPoints WhenH1,H2 andH3 for all n ∈ N
∗, the crossing

sets
n are manifolds. Besides, because of the periodicity of the Bloch energies,
n

thus is the union of connected, closed embedded submanifold of (Rd)∗ and we can
focus on each of these connected components by considering the two-microlocal
setting of Section 4.1 with N = 1 and the family (ψε

n )ε>0 for this submanifold.

Theorem 4.5. AssumeH1,H2 andH3 holds for some n ∈ N
∗. Let
 be a connected

component of 
n. Then any pair (Mt
ndν

t
n, dγ

t
n) of two-microlocal semi-classical

measures associated with the concentration of (ψε
n (t)) on 
 satisfy νtn = 0 and

γ t
n = 0. Therefore μt

n,n1
 = 0.

The proof of this result is performed in Section 5.

4.2.3. Degenerate Crossing Points We now suppose that n is fixed and we con-
sider the concentration of ψε

n (t) and ψ
ε
n+1(t) when the crossing set 
n involving

the two Bloch energies 	n and 	n+1 satisfies H3’. We consider a connected com-
ponent Y of 
n which is assumed to be included into �n and �n+1, the sets of
critical points of 	n and 	n+1 respectively. We consider the two-microlocal setting
of Section 4.1 for N = 2, the submanifold Y and the family

�ε(t) = (ψε
n (t), ψ

ε
n+1(t)) ∈ C

2.

In view of Lemma B.1, the equation satisfied by �ε is

iε2∂t�
ε = �(εD)�ε + ε2Vext(t, x)�

ε + ε3Fε(t, x) (4.7)

with (Fε(t)) uniformly bounded in L2(Rd) and

�(ξ) = Diag(	n(ξ), 	n+1(ξ)) = λn(ξ)Id − gn (ξ, ξ − σY (ξ)) J,

J =
(
1 0
0 −1

)
, (4.8)

where gn ∈ C∞ (�ξ∈� ({ξ} × Nσ
n (ξ)

n

))
(see also (1.11) where the restriction

of gn to points of 
n is introduced), and the function λn is defined in (1.12). Note
that by assumption H3’, there exists c > 0 such that we have gn(σ, η) ≤ c|η|q for
all σ ∈ 
n and η ∈ Nσ
n , and gn(ξ, η) = |η|2θn(ξ) by (2) of Lemma B.1.

Theorem 4.6. We suppose that H1’, H2’ and H3’ hold. Consider a connected
component Y of 
n that is included in �n ∩ �n+1. Let (Mtdνt , dγ t ) be a pair
associated with the concentration of the family (�ε(t))ε>0 on Y . Then, γ t = 0 and
there exists Mdν0 associatedwith the concentration at finite distance of (�ε(0))ε>0
on Y such that νt = ν0 and the following holds:

(1) If q = 2, Mt satisfies (1.20) with initial data M.
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(2) If q > 2, Mt satisfies (1.19) with initial data M.

Remark 4.7. Note that, even in Case (2), it can happen that the modes interact
above the crossing, if they were doing so at time t = 0. Corollary E.3 provides
examples of such initial data.

The proof of Theorem 4.6 is the subject of Section 6.

5. Proof of Theorem 4.5

We prove Theorem 4.5 in two steps: first we focus on the part of the two-scale
semi-classical measure that comes from infinity in Section 5.1, then we concen-
trate on the part at finite distance in Section 5.2. We use the characterization of
Lemma B.1 and write

	n(ξ) = λn(ξ)− gn(ξ, ξ − σ
(ξ)), 	n+1(ξ) = λn(ξ)+ gn(ξ, ξ − σ
(ξ))

(5.1)

with λn smooth and gn ∈ C∞ (�ξ∈� ({ξ} × Nσ
n (ξ)

n

))
and η �→ gn(ξ, η) homo-

geneous of order 1 in η (see (1) in Lemma B.1). Note that the function introduced
in the introduction in (1.11) is the restriction of gn to N
n (and thus have been
denoted similarly).

5.1. The Two-Scale Semiclassical Measures at Infinity

Let a ∈ A(2) supported in R
d × W × R

d where W is an open subset of Rd

where we have tubular coordinates for 
. Let χ ∈ C∞0 (Rd) such that χ = 1 on
B(0, 1) and χ = 0 on B(0, 2)c with 0 ≤ χ ≤ 1. We set, for R, δ > 0

aR,δ(x, ξ, η) = a(x, ξ, η)((1− χ(η/R))χ((ξ − σ
(ξ))/δ).

Then, in view of equation (3.15),

iε
d

dt
(opε(a

R,δ
ε )ψε

n (t), ψ
ε
n (t)) = ε−1

(
[opε(aR,δ

ε ), 	n(εD)]ψε
n (t), ψ

ε
n (t)

)
+ O(ε).

(5.2)

Using (5.1), the homogeneity of gn , and the notation introduced in (D.1), we write

	n(εD) = λn(εD)− εgn(εD, D − ε−1σ
(εD)) = λn(εD)− ε(gn)ε(εD).

Therefore, we have

ε−1
[
opε(a

R,δ
ε ), 	n(εD)

]
= opε(∇xa

R,δ
ε · ∇λn)−

[
opε(a

R,δ
ε ), (gn)ε(εD)

]
+ O(ε).

We can now apply Lemma D.1 with k = 0, and we obtain

ε−1
[
opε(a

R,δ
ε ), 	n(εD)

]
= opε(bε)+ O(ε)+ O(R−1)+ O(δ)
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with b = ∇xaR,δ ·∇λn−∇xaR,δ ·∇ηgn . Passing to the limits ε→ 0, then R →+∞
after time integration against θ ∈ C∞0 (R), we obtain by (5.2),∫

R

θ(t)
(
opε(bε)ψ

ε
n (t), ψ

ε
n (t)

)
dt = O(ε)+ O(R−1)+ O(δ).

We deduce that∫
R×Rd×
×Sd−1

θ(t)(∇λn(σ )−∇ηgn(σ, ω)) · ∇xa∞(x, σ, ω)dγ t
n (x, σ, ω) = 0.

This implies that the measure γ t
n(x, σ, ω) is invariant by the flow

(x, σ, ω) �→ (x + s(∇λn(σ )−∇ηgn(σ, ω), σ, ω), s ∈ R.

As a consequence, γ t
n is supported on {∇λn(σ ) − ∇ηgn(σ, ω) = 0}, and by H3,

γ t
n = 0.

5.2. The Two-Scaled Semiclassical Measures Coming from Finite Distance

In view of Remark 4.2 (3), we now choose a ∈ C∞0 (Rd × W × R
d) where W

is as above. Let θ ∈ L1(R). Arguing as in (5.2), we observe∫
R

θ(t)
(
[opε(aε), ε−1	n(εDx )]ψε

n (t), ψ
ε
n (t)

)
= O(ε).

Using that a is compactly supported in the variable η and the homogeneity of g,
we obtain in L(L2(Rd)),

1

ε
[opε(aε), 	n(εDx )] = iopε(∇λn(ξ) · ∇xaε)− [opε(aε), (gn)ε(εD)] + O(ε).

Passing to the limit ε→ 0 thanks to Lemma D.2, we obtain∫
R

θ(t)TrL2(Nσ
)(i Q

∇λn ·∇x a − [Q


a (σ, v), Q


g (σ )]Mt

n(σ, v))ν
t
n(σ, v)dt = 0.

(5.3)

This relation has important consequences on the structure of Mt
n,n and νtn . For

stating them, we write

∇λn(σ ) = ∇⊥λn(σ )+∇�λn(σ ), ∇⊥λn(σ ) ∈ Nσ
 and ∇�λn(σ ) ∈ Tσ
.

Lemma 5.1. Equation (5.3) implies

supp(νtn) ⊂ {(σ, v) ∈ T
, ∇�λn(σ ) = 0}
and

[Q

F (σ ),M

t
n(σ, v)] = 0 dνtn a.e. (σ, v) ∈ N
,

where F(σ, η) = ∇⊥λn(σ ) · η + gn(σ, η).
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Proof of Lemma 5.1. We use a system of equations ϕ(ξ) = 0 of
 and the matrix
B defined in (4.4). For σ ∈ X and ζ ∈ TσRd , we have

(Id − dσ
(σ))ζ = B(σ )dϕ(σ)ζ,

which allows to decompose ζ as

ζ = dσ
(σ)ζ + B(σ )dϕ(σ)ζ, dσ
(σ)ζ ∈ Tσ
 and B(σ )dϕ(σ)ζ ∈ Nσ
.

In particular, B(σ )dϕ(σ) = Id on Nσ
. In view of this observation, we write for
(σ, v) ∈ T
, and (z, ζ ) ∈ (Nσ
)

∗

∇λn(σ ) · ∇xa(v+t dϕ(σ)z, σ, B(σ )ζ )

= ∇�λn(σ ) · ∇va(v+t dϕ(σ)z, σ, B(σ )ζ )+∇⊥λn(σ ) · (B(σ )∇z)

· (a(v + t dϕ(σ)z, σ, B(σ )ζ )
)

We obtain

Qϕ

∇λn(ξ)·∇x a
(σ, v) = ∇�λn(σ ) · ∇vQϕ

a (σ, v)− i[Qϕ
F (σ ), Q

ϕ
a (σ, v)],

with Qϕ
F (σ ) = F(σ, B(σ )Dz). Therefore, equation (5.3) can be written as∫

R

θ(t)TrL2(Nσ
)(i∇�λn(σ ) · ∇vQ

a (σ, v)

+[Q

a (σ, v), Q



F (σ )]Mt

n(σ, v))ν
t
n(σ, v)dt = 0,

We deduce that

i∇�λn(σ ) · ∇v(Mt
ndν

t
n)+ [Q


F (σ ),M
t
ndν

t
n] = 0.

Taking the trace gives

∇�λn(σ ) · ∇vνtn = 0,

whence the invariance of νtn by the flow defined on T
 by

(σ, v) �→ (σ, v + s∇�λn(σ )), s ∈ R,

which implies the results. ��
We conclude the analysis of the two-scaled Wigner measures at finite distance

Mt by using Lemma 5.2 below. For this, we need to check that its assumptions are
satisfied. Hypothesis H3 implies that if ∇�λn(σ ) = 0, then for all η ∈ Nσ
 \ {0},

∇⊥λn(σ )− ∇ηgn(σ, η) 
= 0.

Considering ∇ζ (F(σ, B(σ )ζ )), we have
∇ζ (F(σ, B(σ )ζ )) = t B(σ )

(
∇⊥λn(σ )− ∂ηgn(σ, η)

)

= 0,

because B(σ ) is invertible on Nσ
, and the assumptions of the next lemma are
satisfied.
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Lemma 5.2. Let p ∈ N and M be a non negative trace-class operator on L2(Rp),
and F ∈ C∞(Rp \ {0}) such that ∇ζ F(ζ ) 
= 0 for all ζ ∈ R

p \ {0}. Assume[
F(Dz),M

] = 0. Then M = 0.

Proof. Let φ ∈ L2(Rp) be an eigenvector of M for an eigenvalue � 
= 0. Then, for
all j ∈ N,

φ j := (F(Dz))
jφ

is also an eigenvector for �. Since � is of finite multiplicity because M is trace-
class, we deduce that the set {φ j , j ∈ N} is of finite dimension. Let k ∈ N

∗ the
first index such that the family (φ j )0≤ j≤k is not a family of independent
vectors. Then, there exist α0, · · ·αk ∈ R non all equal to 0, and such that
k∑
j=0

α jφ j = 0. In Fourier variables, we obtain

⎛
⎝ k∑

j=0
α j F(ζ )

j

⎞
⎠ φ̂(ζ ) = 0. The set

C =
⎧⎨
⎩ζ ∈ R

p,

k∑
j=0

α j F(ζ )
j = 0

⎫⎬
⎭ is the union of a finite number of sets Cβ ,

Cβ = {F(ζ ) = β}
for β a real-valued root of the polynomial

∑
0≤ j≤k α j X j . Since ∇ζ F(ζ ) 
= 0 for

all ζ 
= 0, these sets Cβ are hypersurfaces of Rp and thus of Lebesgues measure 0.
So it is for C and we deduce that φ = 0. ��

6. Proof of Theorem 4.6

Theorem 4.6 contains two statements. First, it states that the two-scale semi-
classical measures at infinity is 0, what we prove in Section 6.1 below, by showing
invariance properties of its diagonal elements. Secondly, it gives transport equations
that allow to compute the two-scale semi-classical measures coming from finite
distance from the knowledge of the initial data. We focus on this latter point in
Section 6.2.

6.1. Analysis at Infinity

Weperform theproof forq = 2, the proof forq > 2 is similar. Let�ε be a family
of solutions to equation (4.7). Let a ∈ A(2) supported in R

d × W × R
d where W

is an open subset of Rd where we have tubular coordinates for the manifold Y . Let
χ ∈ C∞0 (Rd) such that χ = 1 on B(0, 1) and χ = 0 on B(0, 2)c with 0 ≤ χ ≤ 1.
We set for R, δ > 0

aR,δ(x, ξ, η) = a(x, ξ, η)((1− χ(η/R))χ((ξ − σY (ξ))/δ)

and we consider the symbol

ã R,δ(x, ξ, η) = |ξ − σY (ξ)|−1aR,δ(x, ξ, η).
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By Lemma C.4 (1) (see also “Appendix D”), there exists a constant C > 0 such
that

‖opε(ã R,δ
ε )‖L(L2(Rd )) ≤ C(εR)−1.

In view of (4.8) and of (2) in Lemma B.1, we write with the notations introduced
in (D.1)

�(εD) = λn(εD)Id − ε2(gn)ε(εD).

Therefore, if E is a constant diagonal matrix of C2×2, we obtain[
opε(ã

R,δ
ε E) , �(εD)

]
=

[
opε(ã

R,δ
ε ) , λn(εD)

]
E

−ε2
[
opε(ã

R,δ
ε ) , (gn)ε(εD)

]
E J,

where we have used that E J = J E . We observe that setting

b(x, ξ, η) = |η|−1aR,δ(x, ξ, η),

we have

ε opε(ã
R,δ
ε ) = opε(bε)

and we can apply Lemma D.1 because b ∈ A(2)
−1 and gn ∈ H2. We deduce that

ε
[
opε(ã

R,δ
ε ) , (gn)ε(εD)

]
= [

opε(bε) , (gn)ε(εD)
] = opε((∇xb · ∇ηg)ε)

with ∇xb(x, ξ, η) = |η|−1∇xaR,δ(x, ξ, η). Therefore, we are left with

1

ε

[
opε(ã

R,δ
ε E) , �(εD)

]
= opε(∇x ã

R,δ
ε · ∇ξ λn(ξ))E − opε((∇xb · ∇ηgn)ε)E J

+O(ε)+ O(R−1)+ O(δ).

We use ∇λn(ξ) = Hess λn(σY (ξ))(ξ − σY (ξ))+ O((ξ − σY (ξ))
2) and we set

c(x, ξ, η) := ∇xa
R,δ(x, ξ, η) · Hess λn(σY (ξ)) η|η| E

−∇xa
R,δ(x, ξ, η) · 1

|η|∇ηgn (ξ, η) E J.

Note that c ∈ A(2) and

1

ε

[
opε(ã

R,δ
ε E) , �(εD)

]
= opε(cε)+ O(ε)+ O(R−1)+ O(δ).

Therefore, passing to the limit ε to 0, then R to +∞ and finally δ to 0, we obtain
for all θ ∈ C∞0 (R),∫

R

θ(t)
∫
Rd×Y×Sd−1

TrC2×2
(∇xa∞(x, σ, ω) · (Hess λn(σ )ω E −∇ηgn(σ, ω)E J )

)
γ t (dx, dσ, dω)dt = 0.
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Let us denote by γ t
n,n and γ t

n+1,n+1 the diagonal coefficients of the matrix-valued
measure γ t . Choosing the 2× 2 diagonal matrix E such that E J = E , we deduce
that the measure γ t

n,n is invariant by the flow

(x, σ, ω) �→ (x + s(Hess λn(σ )ω − ∇ηgn(σ, ω)), σ, ω), s ∈ R.

Then, choosing E such that E J = −E , we obtain that the measure γ t
n+1,n+1 is

invariant by the flow

(x, σ, ω) �→ (
x + s(Hess λn(σ )ω + ∇ηgn(σ, ω)), σ, ω

)
, s ∈ R.

From assumption H3’, we deduce γ t
n,n = 0 and γ t

n+1,n+1 = 0, and the positivity
of γ t implies that γ t = 0. One argues similarly when q > 2, and proves that the
term in gn does not contribute to the limit.

6.2. The Two-Scale Semiclassical Measures Coming from Finite Distance

Here again, we write the proof for q = 2. We choose θ ∈ L1(Rd), a ∈
C∞0 (Rd × W × R

d ,C2×2) where W is a tubular neighbrohood of Y where the
function σY is defined. Using the homogeneity of the function g(ξ, η), we have

i
d

dt

(
opε(aε)�

ε(t),�ε(t)
) = I ε1 (t)+ I ε2 (t) (6.1)

with

I ε1 (t) =
(
[opε(aε), ε−2λn(εDx )+ Vext(t, x)]�ε(t),�ε(t)

)
I ε2 (t) = −

((
opε(aε)J (gn)ε(εD)− (gn)ε(εD)Jopε(aε)

)
�ε(t),�ε(t)

)
.

Note that if q > 2, the homogeneity implies I ε2 (t) = O(εq−2). Section 5.1 in [15]
gives the uniform boundedness of the family of time dependent functions t �→ I ε1 (t)
and Lemma D.2 yields the uniform boundedness of the family of time dependent
functions t �→ I ε2 (t). Therefore, the left-hand side of (6.1) is uniformly bounded
with respect to ε. Therefore, the maps t �→ Mt (σ, v)dνt (σ, v) defined on TY will
be continuous in time.

Remark 6.1. At that level of the proof, one sees that by Ascoli theorem, one can
find for each T > 0 a sequence ε� for which the limit of

(
opε�(aε�)�

ε�(t),�ε�(t)
)

exists for all t ∈ R. One then deduces the convergence t by t of these quantities.

We now integrate equation (6.1) against a function θ and pass to the limit ε→ 0.
By Section 5.1 in [15], we have for θ ∈ C∞0 (R), up to the subsequence defining
Mtdνt∫

θ(t)I ε1 (t)dt −→
ε→0∫

R

θ(t)
∫
TY

TrL2(Nσ Y,C2)

([
QY

a (σ, v),
1

2
Hessλn(σ ) Dz · Dz +mVext(t,·)(x, v)

]
Mt (σ, v)

)

νt (σ, v)dt.
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By Lemma D.2 for studying the term I ε2 ,∫
θ(t)I ε2 (t)dt −→

ε→0∫
R

θ(t)
∫
TY

TrL2(Nσ Y,C2)

(
QY

a (σ, v)J Q
Y
gn (σ )− QY

gn (σ )J Q
Y
a (σ, v)

)
Mt (σ, v)

)
νt (σ, v)dt.

=
∫
R

θ(t)
∫
TY

TrL2(Nσ Y,C2)

([
QY

a (σ, v) , J QY
gn (σ )

]
Mt (σ, v)

)
νt (σ, v)dt

Reporting the result in (6.1), we obtain

− i
∫
R

θ ′(t)
∫
TY

TrL2(Nσ Y,C2)(Q
Y
a (σ, v)M

t (σ, v))dνt (σ, v)dt

=
∫
R

θ(t)
∫
TY

TrL2(Nσ Y,C2)

([
QY
a (σ, v),

(
1

2
Hessλn(σ ) Dz · Dz + mVext(t,·)(x, v)

)
Id

+ J QY
gn (σ )

]
Mt (σ, v)

)
νt (σ, v)dt.

We deduce that

∂t (M
tdνt ) =

[(
1

2
Hessλn(σ ) Dz · Dz + mVext(t,·)(x, v)

)
Id + QY

gn (σ )J , Mtdνt
]
dνt .

Taking the trace of this expression gives ∂tνt = 0, whence νt = ν0 (because of the
continuity of t �→ νt ), and the equation satisfied by Mt .

7. Proof of the Main Theorems

7.1. Proofs of Theorem 1.5 and Proposition 1.6

We prove here the results obtained underH1,H2 andH3, which corresponds to
a general setting without too much assumptions on the initial data and with generic
hypothesis on the Bloch energies.

Proof of Theorem 1.5. Let (ε�) be a sequence given by Proposition 3.4 and ς t and
μt
n,n′ the corresponding semi-classical measures along that sequence. Because of

the assumptionH1 and Part (2) of Proposition 3.5, μt
n,n′ = 0 for a.e. t ∈ R as soon

as |n − n′| > 1. Besides, by H2, we can use Theorem 4.3 to determine μt
n,n1�n .

Finally, byH3 and Theorem 4.5,μt
n,n = μt

n,n1�n and the result follows. We obtain
that for a subsequence ε� for a, b ∈ R and ϕ ∈ C∞0 (Rd),∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt −→
ε�→0∑

n∈N0

∫ b

a

∫
T ∗X

TrL2(Nσ�n
(m�n

φ (σ )Mt
n(σ, v))νn(dσ, dv)dt,

once if; observed that, for a(x, ξ) := φ(x), the operator Qa(σ, v) coincides with
m�n
φ (σ ). ��
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Proof of Proposition 1.6. For the data considered in that statement, one hasU ε
0 =

ϕn0(y, εDx )uεn0 . Therefore, Mn = 0 for n 
= n0 and Mt
n too. We then focus on

calculating Mn0 above any ξ ∈ �n0 . By Corollary E.3 (1), since ξ is an isolated
point of �n0 , the measure νn0 is given by

νn0(dξ) = ‖vn0‖2L2

∑
j∈2πZd

|cn0(ξn0 + j)|2δ(ξ − ξn0 − j),

and, for j ∈ 2πZd , the operator Mn0(ξn0 + j) is the projector onCvn0 . As a conse-
quence, the solution Mt (ξn0+ j) of (1.15) is the orthogonal projection onCψξn0 (t)
where ψξn0 satisfies (1.16). We obtain that for any φ ∈ C∞0 (Rd),∫
�n0

TrL2(Rd )m
�n0
φ (Mt

n0 (ξ))νn0 (dξ) =
(∫

Rd
φ(x)|ψξn0 (t, x)|2dx

) ∑
j∈Zd

|cn0 (ξn0 + j)|2

=
∫
Rd

φ(x)|ψξn0 (t, x)|2dx,

where we have used that N�n0 = R
d , m

�n0
φ is the operator of multiplication by φ,

and the conservation of L2 norms for the equation (1.16) (‖vn0‖L2 = ‖ψξn0 (t)‖L2

for all t ∈ R). ��

7.2. Proof of Theorem 1.8 and Proposition 1.9

We focus here on degenerate crossings involving two energies isolated from
the remainder of the spectrum and well-prepared data that concentrate on these
modes. We will indeed prove a more general result than Theorem 1.8, assuming
that 
n is included in �n ∪ �n+1 but not necessarily equal to �n and �n+1 (the
latter being non necessarily equal). Thus, one has to take into account the additional
contributions to the energy densities generated by the points of (�n ∪�n+1) \
n

and Theorem 1.8 is a straightforward corollary of the next result.

Theorem 7.1. Then, there exists a subsequence ε� −→
�→+∞ 0, three non negativemea-

sures νn ∈M+(T ∗�n), νn+1 ∈M+(T ∗�n+1) and ν0 ∈M+(
n) depending on
(ψ

ε�
0 ), three measurable trace-class operators Mn, Mn+1 and M

Mn : T ∗ξ �n � (ξ, v) �→ Mn(ξ, v) ∈ L1+(L2(Nξ�n)),

TrL2(Nξ�n)
Mn(ξ, v) = 1 dνn a.e.

Mn+1 : T ∗ξ �n+1 � (ξ, v) �→ Mn+1(ξ, v) ∈ L1+(L2(Nξ�n+1)),
TrL2(Nξ�n+1)Mn+1(ξ, v) = 1 dνn+1 a.e.

M : T ∗ξ 
n � (ξ, v) �→ M(ξ, v) ∈ L1+(L2(Nξ
n,C
2)),

TrL2(Nξ
n ,C2)M(ξ, v) = 1 dν0 a.e.

such that for every a < b and every φ ∈ C0(Rd) one has

lim
�→+∞

∫ b

a

∫
Rd

φ(x)|ψε�(t, x)|2dxdt
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=
∑

j=n,n+1

∫ b

a

∫
T ∗(� j\
n)

TrL2(Nξ� j )
[m
n

φ (ξ, v)Mt
j (ξ, v)]ν j (dξ, dv)dt

+
∫ b

a

∫
T ∗
n

TrL2(Nξ
n ,C)
[m
n

φ (ξ, v)(mt
n + mt

n+1

+ 2Re(mt
n,n+1))(ξ, v)]ν0(dξ, dv)dt,

where

Mt (ξ, v) =
(

mt
n(ξ, v) mt

n,n+1(ξ, v)
mt

n,n+1(ξ, v)∗ mt
n+1(ξ, v)

)

is a non negative trace class operators on L2(Nξ
n,C
2).

Besides, the map t �→ Mt
n(x, ξ) ∈ C(R,L1+(L2(Nξ�n)) solves the von Neu-

mannequation (1.15)and similarly for Mt
n+1 and	n+1, and themap t �→ Mt (ξ, v) ∈

C(R,L1+(L2(Nξ
n,C
2)) solves (1.19) if q > 2 and (1.20) if q = 2. All the initial

data depend on (ψε�
0 ) as in Remark 4.2.

Proof. We have

U ε
0 (x, y) = ϕn(y, εDx )u

ε
n(x)+ ϕn+1(y, εDx )u

ε
n+1(x)

and we are going to take advantage of the fact that U ε
0 ∈ Ran�(ξ), the spectral

projector on

Ker(P(ξ)− 	n(ξ))⊕ Ker(P(ξ)− 	n+1(ξ)).

By assumption H1’, the band of the spectrum of P(ξ) consisting of the pair
{	n(ξ), 	n+1(ξ)} is separated from the remainder of the spectrum by a gap, which
implies that ξ �→ �(ξ) is analytic. We claim that a consequence of this is that if
(ε�) is a sequence given by Proposition 3.4, then

ς t = μt
n,n + μt

n+1,n+1 + μt
n,n+1 + μt

n+1,n . (7.1)

By Proposition 3.5, ς t has only support above�n (because ofμt
n,n),�n+1 (because

of μt
n,n+1) and 
n (because of the crossed terms). Then, the result of Theorem 1.8

comes from two observations:

(1) assumption H2’ allows to use Theorem 4.3 to determine μt
n,n above �n \ 
n

and μt
n+1,n+1 above �n+1 \
n+1,

(2) assumptionH3’ allows to use Theorem 4.6 to compute μt
n,n , μ

t
n+1,n+1, μt

n,n+1
and μt

n+1,n above 
n in terms of the coefficients of the matrix-valued measure

Mtdν0. In view of (7.1), we obtain that for all φ ∈ C∞0 (Rd),∫
Rd×
n

φ(x)ς t (dx, dξ) =
∫
T ∗
n

Tr
[
m
n
φ (ξ, v)EMt (ξ, v)

]
ν0(dξ, dv),

E =
(
1 1
1 1

)
(7.2)
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It remains to discuss Equation (7.1), which comes from (1.8) and the estimate∥∥(1−�(εDx ))U
ε(t)

∥∥
Hs
ε (R

d×Td )
≤ εCs(1+ |t |)

for s > d/2. We observe that the family

W ε(t, x) = (1−�)(εDx )U
ε(t, x).

satisfies the system

iε2∂tW
ε = P(εDx )W

ε + ε2VextW
ε + ε3Gε, W ε(0) = 0

with Gε(t) = −ε−1 [�(εDx ), Vext(t)]U ε(t) uniformly bounded in L2(Rd ×T
d).

Therefore, when s = 0, the estimate comes from an energy argument. We then
proceed as in Lemma 6.7 in [15] by induction in s ∈ N and interpolation between
s and s + 1, observing that, in view of Remark 2.2, it is enough to prove that
P(εDx )

s/2W ε and 〈εDx 〉sW ε go to 0 in L2(Rd × T
d). ��

As a by-product of the proofs, we have the following remark:

Remark 7.2. In view of Remark 6.1, for all T > 0, there exists a sequence ε� for
which one has for any φ ∈ C∞(Rd),∫

Rd
φ(x)|ψε(t, x)|2dx ≥

∫
T ∗
n

TrL2(Nξ
n)

(
m
n
φ (ξ, v)(mt

n + mt
n+1

+2Remt
n,n+1)(σ, v)

)
ν0(dξ, dv). (7.3)

Let us assume∫
T ∗
n

TrL2(Nξ
n)

(
m0

n + m0
n+1 + 2Rem0

n,n+1
)
dν0 = ‖ψε

0‖L2 .

Then
∫
T ∗
n

TrL2(Nξ
n)

(
mt

n + mt
n+1 + 2Remt

n,n+1
)
dν = |ψε(t, x)|2dx , and the

inequality (7.3) becomes an equality. One has obtained a t by t description of the
limit of the energy density. The same observation holds in the frame of Theorem4.3.

It remains to prove Proposition 1.9.

Proof of Proposition 1.9. According to the assumptions, we have �n = �n+1 =

n . Therefore, we only have to compute Mdν0 and solve the von Neumann equa-
tions defining Mt in both studied cases. For the data considered in that statement,
one has ψε

0 = ψε
0,n + ψε

0,n+1 (where the latter families are defined in (1.16)) with
ξn = ξn+1. Therefore, by Corollary E.3, ν0 is given by

ν0(dξ) = (‖vn‖2L2 + vn+1‖2L2)
∑

j∈2πZd

|cn(ξn + j)|2δ(ξ − ξn − j)

and, for j ∈ 2πZd , the operator M0(ξn + j) is the projector on C
t (vn, vn+1).

The solution of the Heisenberg equations (1.19) and (1.20) then are orthogonal
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projectors on C
t (ψ

ξn
n , ψ

ξn
n+1) as defined in the statement of Proposition 1.9. In

view of (7.2) and of m
n
φ = φ(x), we conclude for φ ∈ C∞0 (Rd),∫


n

TrL2(Rd ,C2)(m

n
φ EMt (ξ))ν0(dξ)

=
(∫

Rd
φ(x)|ψξn

n (t, x)+ ψ
ξn
n+1(t, x)|2dx

) ∑
j∈Zd

|cn0(ξn0 + j)|2

=
∫
Rd

φ(x)|ψξn
n (t, x)+ ψ

ξn
n+1(t, x)|2dx

��

7.3. The 1-d Case: Proof of Theorem 1.1 and Discussion of Proposition 1.6

We now focus on the results devoted to the 1-dimensional case. By Lemma
A.1, the Bloch energies 	n have only non-degenerate critical points and�n ⊂ πZ.
Besides, they are smooth outside the set of crossing points
n = πZ \�n , that are
all conical. Therefore, the assumptions of Theorem 1.5 are satisfied and

ς t =
∑
n∈In

μt
n,n .

with μt
n,n determined by the pairs Mt

n)ν
t
n . It remains to characterize the pairs

(Mt
n, νn) that are associated with the discrete sets �n . For this reason, T ∗�n =

�n × {0} and N�n = R
d , the measure νtn is a sum of Dirac masses and the op-

erator Mt
n is constant and an orthogonal projector on a function ψ(n)

ξ that has to
satisfy (1.9) since Mt

n satisfies (1.15) (see also Corollary 1.4 in [15]).
It can be illuminating to see how Proposition 1.6 can be deduced from Theo-

rem 1.1 when d = 1. The assumptions of Proposition 1.6 correspond to the choice
of

ψε
0 (x) = ϕn0

( x

ε
, εDx

)
e

i
ε
xξn0 vεn0(x)

with ξn0 ∈ �n0 and (vεn0)ε>0 bounded in Hs(R) with s > 1. This in turn, corre-
sponds to setting

U ε
n0(x, y) = ϕn0 (y, εDx ) e

i
ε
xξn0 vεn0(x).

As a consequence, we have�n(εDx )U ε
0 = 0 for n 
= n0 and�n0(εDx )U ε

0 = U ε
0 ,

whence

Lε�n(εDx )U
ε
0 =

{
0 for n 
= n0,

ψε
0 for n = n0.

We deduce that the weak limitsψ(n)
ξ (n ∈ N

∗ and ξ ∈ �n) that we have to consider
in Theorem 1.1 satisfy

ψ
(n)
ξ (0) =

{
0 for n 
= n0,

w− lim
ε→0

e− i
ε
xξψε

0 for n = n0.
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Lemma E.2 yields

ψ
(n0)
ξ (0) = w− lim

ε→0
e−

i
ε
xξψε

0 =
{

0 if ξ /∈ ξn0 + 2πZ,
cn0(ξn0 + j)vn0 if ξ = ξn0 + j, j ∈ 2πZ.

We recall that the sequence (cn(ξ + j)) j∈Z are the Fourier coefficients of y �→
ϕn(y, ξ). As a consequence, for t ∈ R, we have

ψ
(n0)
ξ (t) =

{
0 if ξ /∈ ξn0 + 2πZ,

cn0(ξn0 + j)ψξn0 (t) if ξ = ξn0 + j, j ∈ 2πZ

where ψξn0 (t) solves (1.9) with n = n0 and initial data ψξn0 = vn0 . Applying
Theorem 1.1, we obtain

lim
ε→0

∫ b

a

∫
R

φ(x)|ψε(t, x)|2dxdt =
∑
j∈2πZ

∫ b

a

∫
R

φ(x)|cn0 (ξn0 + j)|2|ψξn0 (t, x)|2dxdt

=
∫ b

a

∫
R

φ(x)|ψξn0 (t, x)|2dxdt,

where we have used that∑
j∈2ıZ

|cn0(ξn0 + j)|2 = ‖ϕ(·, ξn0‖2L2(T)
= 1.

7.4. Extension of the Setting to More General Situations

Our results could be formulated differently by assuming that the initial data is
localised in Fourier variables on a set � in which the assumptions H1, H2 and H3
of Theorem 1.5 are satisfied. More precisely, we assume that � is a Z

d -periodic
open subset ofRd such that there exists a unit cellB ofZd for which�∩B is strictly
included in B. We prove here that the analysis of the semi-classical measure ς t of
(ψε)ε>0 in R×R

d ×� can be performed by localizing the initial data ψε
0 , which

allows to extend the results of Theorem 1.5 to data with less strict assumptions on
the Bloch energies.

Lemma 7.3. Let� as above and χ ∈ C∞(Rd) be 2πZd-periodic, supported in the
interior ofB+2πZd and equal to 1 on�. LetU ε

χ (t) be the solution of equation (2.2)
with initial data χ(εD)U ε

0 . Then, for every s ≥ 0 there exists a constant Cs > 0
such that, for all t ∈ R,∥∥∥U ε

χ (t)− χ(εDx )U
ε(t)

∥∥∥
Hs
ε (R

d×Td )
≤ εCs(1+ |t |).

Moreover, if ψε
0 = LεU ε

0 , then there exist C > 0 such that∥∥∥LεU ε
χ (t)− χ(εDx )ψ

ε(t)
∥∥∥
L2(Rd )

≤ εC(1+ |t |).
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Proof of Lemma 7.3. Note that we have U ε
χ (0) = χ(εDx )U ε

0 . We observe that
Ũ ε = χ(εDx )U ε satisfies the system

iε2∂t Ũ
ε = P(εDx )Ũ

ε + ε2VextŨ
ε + ε3Fε,

with Fε(t) = ε−1 [χ(εDx ), Vext(t)]U ε(t) is uniformly bounded in L2(Rd × T
d).

A standard energy estimate then gives the result for s = 0. Then, in view of
Remark 2.2, it is enough to prove that P(εDx )

s/2(Ũ ε−U ε
χ ) and 〈εDx 〉s(Ũ ε−U ε

χ )

go to 0 in L2(Rd × T
d). We proceed by induction in s ∈ N and interpolation

between s and s + 1, following the arguments of the proof of Lemma 6.7 in [15].
This proves the first estimate of the lemma.

To prove the second estimate, note that whenever χ is 2πZd -periodic, we have

χ(εD)
(
e

i
ε
k·x ·

)
= e

i
ε
k·xχ(εD + k) = e

i
ε
k·xχ(εD)

for k ∈ 2πZd . Thus [χ(εD), Lε] = 0 where Lε is the operator defined in (1.8).
We deduce that

χ(εD)ψε(t) = χ(εD)LεU ε(t) = Lεχ(εD)U ε(t).

Therefore, combining (1.8) and the previous estimate, finishes the proof of the
lemma. ��
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Appendix A. One Dimensional Bloch Modes

We review the main aspects of the theory that are needed here; the reader can refer to the
books [48,53] or the articles [32,39,47] among others for additional details.
First of all, note that φ ∈ L2(T) solves P(ξ)φ = λφ for some ξ, λ ∈ R if and only if
f (y, λ) := eiξ yφ(y) is a solution to:

− 1

2
∂2y f (y, λ)+ Vper(y) f (y, λ) = λ f (y, λ), y ∈ R, (A.1)

satisfying the periodicity condition

f (1, λ) = eiξ f (0, λ). (A.2)

Given λ ∈ R, the solutions of (A.1) are linear combinations of two solutions f1(y, λ) and
f2(y, λ) satisfying

f1(0, λ) = ∂y f2(0, λ) = 1, f2(0, λ) = ∂y f1(0, λ) = 0.

Define:

Mλ(y) :=
(

f1(y, λ) f2(y, λ)
∂y f1(y, λ) ∂y f2(y, λ)

)
;

then the existence of a solution to (A.1) satisfying (A.2) is equivalent to the fact that eiξ is
an eigenvalue of Mλ(1). One can check that det Mλ(y) = 1 for every y, λ ∈ R; therefore,
letting �(λ) := Tr Mλ(1), we find that eiξ ∈ SpMλ(1) if and only if:

�(λ) = 2 cos ξ. (A.3)

It can be shown that solutions to (A.1) depend analytically onλ, and thatmoreover,� extends
to an entire function of order 1/2. The real solutions to equations �(λ) = ±2 form infinite
increasing sequences (a±i ) that tend to infinity.
The following facts (the reader may find helpful to consult [47, Figure 1, p. 145] or [53,
Section XIII.16]) are illustrated in Fig. 1:

• The sequences (a±i ) are intertwined. More precisely, one has:

a+1 < a−1 ≤ a−2 < a+2 ≤ a+3 < a−3 · · · , (A.4)

• Let be I2i−1 = (a+2i−1, a
−
2i−1) and I2i = (a−2i , a

+
2i ). Then Ii has non-empty interior

and �
∣∣
Ii
is strictly decreasing for i odd and strictly increasing for i even.

• If aσi = aσi+1 for some i ∈ N, σ ∈ {+,−} then �′(aσi ) = 0.

These properties have important implications on the behavior of Bloch energies. For every
n ∈ N the following hold.

Fact 1 The nth Bloch energy is the solution to �
∣∣
In
(	n(ξ)) = 2 cos ξ .

Fact 2 	n is 2πZ-periodic (we knew this already), and moreover

	n(ξ) = 	n(2π − ξ), ∀ξ ∈ R.

Fact 3 	n
∣∣[0,π ] is strictly increasing if n is odd (resp. strictly decreasing if n is even)

and analytic in the interior of the interval. If it is differentiable at ξ = 0, π then
necessarily 	′n(ξ) = 0 and 	n is analytic around that point.
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Fig. 1. Hill’s discriminant for Vper(y) = 5 cos(2y) numerically calculated. All graphics
show the same set of data plottedwith different ranges. In the first two it is possible to observe
both divergence of �(λ) in the region λ ≈ inf y Vper(y) and non-decaying oscillations of
period ∼ √λ for λ −→∞. The third one illustrates how the intervals Ii , wherein solutions
to (A.1) are stable, are never empty, and why their borders a±i must satisfy (A.4). Roots

a+i admit π -periodic solutions, and a−i 2π -periodic solutions; in each case, there are two

linearly independent such solutions if and only if a±i coincides with a±i+1 or a
±
i−1. If this is

not the case, as for roots a±1 , a±2 and a+3 seen in the last image, then the equation also admits
a unstable solution. A complete study of �(λ) in one dimension is found in [46]

Fact 4 A crossing can happen only at two consecutive Bloch energies. Let n ∈ N be such
that


n := {ξ ∈ R : 	n(ξ) = 	n+1(ξ)} 
= ∅;
then 
n = πZ \ 2πZ if n is odd, 
n = 2πZ if n is even. Moreover

�′(	n(ξ)) = 0, ∀ξ ∈ 
n . (A.5)

In addition, critical points of Bloch energies in the one dimensional case are never degenerate
nor can occur at a crossing point.

Lemma A.1. The set of critical points of any Bloch energy 	n is contained in πZ and all
the critical points are non-degenerate. Moreover, the crossing set 
n associated with two
consecutive Bloch energies 	n and 	n+1 does not contain any critical points of the Bloch
energies 	n and 	n+1.

Proof. The first assertion on the critical points is property (3) above, whereas the second
follows from differentiating twice equation (A.3) and evaluating at a critical point ξ = kπ ,
k ∈ Z to get:

�′(	n(kπ))	′′n(kπ) = (−1)k+12.
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This relation also shows that �′(λ) cannot vanish at λ = 	n(kπ). Together with (A.5) this
shows that a critical point cannot be a crossing point. ��
Remark A.1. In the free case (Vper = 0) there is only a Bloch band of infinite multiplicity.
More generally, it has been proved in [10] that the absence of spectral gap is equivalent to
the periodic potential Vper being constant.

Appendix B. The Properties of the Bloch Energies at Crossing Points

Here we present a normal form for the expression of two Bloch energies 	n(ξ) and 	n+1(ξ)
close to the crossing set 
n (defined as 
n = 
n,n+1 in (1.5)).
Lemma B.1. Let σ0 be a point in the crossing set 
n of two consecutive Bloch energies 	n
and 	n+1 having neighborhood U with the following properties:

(i) 
n ∩U is a smooth manifold.
(ii) The multiplicities of 	n(ξ), 	n+1(ξ) are constant on each connected component of U \


n.
(iii) There exists δ0 > 0 such that for all ξ ∈ U,

d
({	n(ξ), 	n+1(ξ)},Sp P(ξ) \ {	 j (ξ), 	 j (ξ) = 	n(ξ) or 	 j (ξ) = 	n+1(ξ)}

) ≥ δ0.

Then, there exist � ⊆ U, a neighborhood of σ0 that is 2πZd -invariant, two functions

λn ∈ C∞(�), gn ∈ C∞
(
�ξ∈�

(
{ξ} × Nσ
n (ξ)
n

))
, and a function m ∈ L∞(U ) which

is constant on each connected component of U such that

∀ξ ∈ � \
n, 	n(ξ) = λn(ξ)− gn(ξ, ξ − σ
n (ξ)),

	n+1(ξ) = λn(ξ)+ m(ξ)gn(ξ, ξ − σ
n (ξ)).

Moreover,

(1) If the crossing set 
n is conical in U, then for all ξ ∈ U, the map Nσ(ξ)
 � η �→
gn(ξ, η) is homogeneous of degree 1 and gn(σ, η) 
= 0 when (σ, η) ∈ N
n with η 
= 0,

(2) If none of the points of 
n are conical crossings in U, then there exists θn ∈ C∞(Rd )

such that gn(ξ, η) = |η|2θn(ξ), which implies that 	n, 	n+1 ∈ C1,1(Rd ),
(3) If the multiplicities of 	n, 	n+1 are equal on U \
n then m = 1.

Remark B.2. Note that in case (2), the function θn can be zero on 
n .

Proof. We denote by j−(ξ), j+(ξ) the functions valued in N and constant on connected
component of U \
n such that for all ξ ∈ U \
n 	n− j+1(ξ) = 	n(ξ) for 1 ≤ j ≤ j−(ξ)
and 	n+ j (ξ) = 	n+1(ξ) for 1 ≤ j ≤ j+(ξ). We denote by�(ξ) the projector on

Fξ = Ker(P(ξ)− 	n(ξ))⊕ Ker(P(ξ)− 	n+1(ξ)).

By the assumptions on U , the pair {	n(ξ), 	n+1(ξ)} is isolated from the remainder of the
spectrum of P(ξ) when ξ ∈ U , this implies that the map U � ξ �→ �(ξ) ∈ L(L2(Td )) is
analytic and the function dim Fξ is constant for ξ ∈ U . We denote by �0 this constant and
we have �0 = j−(ξ)+ j+(ξ) for all ξ ∈ U \
n . Moreover, 	n(ξ) and 	n+1(ξ) are the two
only eigenvalues of the operator �(ξ)P(ξ)�(ξ) which maps Fξ onto Fξ for any ξ ∈ R

d .
Let us first show that it is possible to find � ⊆ U , with σ0 ∈ � and construct, for every
ξ ∈ �, an orthonormal basis (φ j (ξ, ·))1≤ j≤�0 of Fξ such that the maps ξ �→ φ j (ξ, ·) are
analytic for all j ∈ {1, · · · �0}. To see this, consider (ϕi (σ0, ·))1≤i≤�0 , a basis of Fσ0 . Chose
a neighborhood � of σ0 small enough to ensure that the vectors

�(ξ)ϕ j (σ0, ·), j ∈ {1, . . . , �0}
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form a rank �0 family. Then apply the standard Schmidt orthonormalization process to this
family.
Let A(ξ), ξ ∈ �, be the matrix of the operator �(ξ)P(ξ)�(ξ) in the basis we just con-
structed. This is a �0 × �0 analytic matrix that we can write

A(ξ) = λn(ξ)Id + A0(ξ)

with λn(ξ) := 1
�0
Tr

C
�0 A(ξ) and A0(ξ) analytic and trace-free. Moreover, A(ξ) is diago-

nalizable and has only two eigenvalues 	n(ξ) and 	n+1(ξ) that we write

	n(ξ) = λn(ξ)− g(ξ), 	n+1(ξ) = λn(ξ)+ m(ξ)g(ξ),

with g(ξ) > 0 and where, for ξ ∈ � \ 
n , m(ξ) is the ratio between the multiplicities of
	n(ξ) and 	n+1(ξ),

m(ξ) = j−(ξ)
j+(ξ)

and m is constant in the connected componnent of U \
n .
The functions −g(ξ) and m(ξ)g(ξ) are the two eigenvalues of A0(ξ). Therefore, they are
homogeneous function of degree 1 of the coefficients of A0(ξ) = (ai, j (ξ))1≤i, j≤�0 : we

write g(ξ) = G(A0(ξ)) where G is a homogeneous function on R

�20−1
2 . Here, we have

considered that a �0 × �0 trace-free Hermitian matrix is a function of �0 − 1 real-valued
diagonal coefficients and of �0(�0−1)2 complex-valued coefficients (those under the diagonal
being the conjugate of those above the diagonal), and we have observed that (�0 − 1) +
�0(�0−1)

2 = �20−1
2 .

By the definition of the crossing set, A0(ξ) = 0 if and only if ξ ∈ 
n . Since the map
ξ �→ A0(ξ) is analytic, it vanishes on
n at finite order q ∈ N and the crossing set is conical
if and only if q = 1 for all points of 
n . Therefore, in case (1), there exists a smooth tensor
T �0,1(ξ) such that

A0(ξ) = T �0,1(ξ)[ξ − σ
n (ξ)],

with

∀σ ∈ 
n ∩�, ∀η ∈ Nσ
n \ {0}, T �0,1(σ )η 
= 0
C
�0×�0 .

We deduce that

g(ξ) = gn(ξ, ξ − σ
n (ξ)), with gn(ξ, η) := G
(
T �0,1(ξ) [η]q

)

where gn is homogeneous of degree 1 in the variable η. Besides, if none of the crossing points
are conical, we write A0(ξ) = T �0,2(ξ)[ξ−σ
n (ξ)]2 with T �0,2(ξ) a smooth tensor, which
allows to prove Point (2) with

θn(ξ) = |ξ − σ
n (ξ)|−2G(T �0,2(ξ)[ξ − σ
n (ξ)]2).

That concludes the proof since Point (3) is obvious. ��
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Appendix C. Semi-classical Pseudo-differential Calculus

We recall here results about matrix-valued semi-classical pseudo-differential operators. We
denote by SN×N the set of functions a = (ai, j ) ∈ C∞(R2d ,CN×N ) which are bounded
together with their derivatives in matrix-norm. Then, for a ∈ SN×N , one defines the Weyl
semi-classical pseudo-differential operator of symbol a as

opε(a) f (x) =
∫
R2d

e
i
ε
ξ ·(x−y)a

(
x + y

2
, ξ

)
f (y)dy

dξ

(2πε)d
, ∀ f ∈ S(Rd ,CN ).

Properties of thesematrix-valuedpseudo-differential operators follow from thewell-understood
scalar theory, once the definition of the product ofmatrices and its non-commutativity is taken
into account. Unless stated otherwise, the reader may found proofs of the scalar versions of
the results presented here in [18,25,57], for instance.
The Calderón-Vaillancourt theorem [11,12] extends to the matrix-valued case and ensures
the existence of a constant Cd > 0 such that for every a ∈ SN×N one has

‖opε(a)‖L(L2(Rd ,CN )) ≤ Cd N ε
d (a), (C.1)

where

N ε
d (a) :=

∑
α∈N2d ,|α|≤d+2

ε|α|/2 sup
Rd×Rd

|∂αx,ξa|CN×N .

This estimate shows that semi-classical pseudo-differential operators are uniformly bounded
in L2(Rd ,CN ) for ε ∈ (0, 1]. Moreover, for every a ∈ SN×N ,

opε(a)
∗ = opε(a

∗). (C.2)

In particular, semi-classical pseudo-differential operators whose symbols take values in the
space of Hermitian matrices are self-adjoint on L2(Rd ,CN ).
In addition, the symbolic calculus for matrix-valued pseudodifferential operators goes as
follows:

Proposition C.1. Let a, b ∈ SN×N , then

opε(a)opε(b) = opε(ab)+
ε

2i
opε({a, b})+ ε2R(1)ε ,

with {a, b} = ∑d
j=1 ∂ξ j a ∂x j b − ∂x j a ∂ξ j b and

[
opε(a), opε(b)

] = opε([a, b])+
ε

2i
(opε({a, b})− opε({b, a}))+ ε2R(2)ε ,

‖R( j)ε ‖L(L2(Rd ,CN )) ≤ C sup
|α|+|β|=2

N ε
d (∂

α
ξ ∂

β
x a)N

ε
d (∂

β
ξ ∂

α
x b), j ∈ {1, 2},

for some constant C > 0 independent of a, b and ε.

Remark C.2. The term of order ε2 above has a particularly simple expression when b ∈
SN×N does not depend on x . The following hold in L(L2(Rd ,CN )):

opε(b)opε(a) = opε(ba)+
ε

2i

d∑
j=1

opε(∂ξ j b ∂x j a)

+ε
2

8

∑
1≤�,p≤d

opε(∂
2
ξ�ξp

b ∂2x�xp a)+ O(ε3),
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opε(a)opε(b) = opε(ab)−
ε

2i

d∑
j=1

opε(∂x j a ∂ξ j b)

+ε
2

8

∑
1≤�,p≤d

opε(∂
2
x�xp a ∂

2
ξ�ξp

b)+ O(ε3).

There are also analogues of Gårding’s inequality for elliptic differential operators [33] in
this context. If a ∈ SN×N takes values in the set of non-negative Hermitian matrices then
there exist Ca > 0, which depends on a finite number of derivatives of a such that

opε(a)+ Caε Id ≥ 0. (C.3)

This follows by considering a ∗ ρε , with ρε(x, ξ) := (πε)−de−
|x |2+|ξ |2

ε . A direct computa-
tion shows that opε(a ∗ρε) is a non-negative operator (see for instance [35]). One concludes
by noticing that, due to (C.1),

opε(a)− opε(a ∗ ρε) = O(ε), (C.4)

in L(L2(Rd ,CN )). The operator opε(a ∗ ρε) is called the anti-Wick quantization of the
symbol a ∈ SN×N , besides the fact that non-negative symbols correspond to non-negative
operators, the operator norm satisfies a simpler bound than that satisfied by their Weyl
counterparts, namely:

‖opε(a ∗ ρε)‖L(L2(Rd ,CN )) ≤ ‖a‖L∞(R2d ,CN×N ). (C.5)

Through the article, it is necessary to understand the boundedness and symbolic calculus
properties of operators with symbols of limited regularity. Denote by A the completion of
C∞0 (R2d ,CN×N ) with respect to the norm:

‖a‖A := sup
ξ∈Rd

sup
|α|≤d+2

∫
Rd
|∂αx a(x, ξ)|CN×N dx . (C.6)

Remark C.3. By a mollification argument, one can show that A contains all the functions
a ∈ C0(Rd

x × R
d
ξ ,C

N×N ) that are d + 2 times continuously differentiable with respect to
the first variable.

This regularity assumption is sufficient for our purposes (see [34, Lemma 3.7] and [28,
Section 3] for related results).

Lemma C.4. The space A enjoys the following properties:
(1) There exists a universal constant Cd > 0 only depending on d such that, for every

a ∈ A,

‖opε(a)‖L(L2(Rd ,CN )) ≤ Cd‖a‖A.
(2) Suppose 	 ∈ Lip(Rd

ξ ,C
N×N ) and a ∈ A. The following hold in L(L2(Rd ,CN )):

opε(a 	) = opε(a)	(εDx )+ O(ε),

opε(	 a) = 	(εDx )opε(a)+ O(ε).

(3) Suppose 	 ∈ C1,1(Rd
ξ ,R) (that is ∇	 ∈ Lip(Rd ,Rd )) and a ∈ A. The following hold

in L(L2(Rd ,CN )):

i

ε
[opε(a), 	(εDx )Id] = opε(∇xa · ∇	(ξ))+ O(ε).
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Proof. Suppose that A ∈ L(L2(Rd ,CN )) is of the form

A f (x) = 1

εd

∫
Rd

k

(
x + y

2
,
x − y

ε

)
f (y)dy, ∀ f ∈ S(Rd ,CN ); (C.7)

then one deduces, after change of variables and using Hölder’s inequality, that

|(A f, g)L2(Rd ,CN )| ≤ ‖ f ‖L2(Rd ,CN )‖g‖L2(Rd ,CN )

∫
Rd

sup
x∈Rd

|k(x, v)|
CN×N dv.

∀ f, g ∈ S(Rd ,CN ). (C.8)

In order to prove item (1), notice that the following identity holds,

opε(a) = (Fε)∗opε(a)Fε, a(x, ξ) := a(−ξ, x), (C.9)

where Fε stands for the semi-classical Fourier transform:

Fε( f )(ξ) =
∫
Rd

e−i
ξ
ε
·x f (x) dx

(2πε)d/2
.

The operator opε(a) is of the form (C.7) with k = (2π)−d â, where â denotes the Fourier
transform of a with respect to the first variable. Using (C.8), (C.9) and Plancherel’s formula
we conclude

|(opε(a) f, g)L2(Rd ,CN )|
≤ ‖ f ‖L2(Rd ,CN )‖g‖L2(Rd ,CN )

∫
Rd

sup
ξ∈Rd

|̂a(v, ξ)|
CN×N

dv

(2π)d

∀ f, g ∈ S(Rd ,CN ).

The constant Cd > 0 is then chosen such that:∫
Rd

sup
ξ∈Rd

|̂a(v, ξ)|
CN×N

dv

(2π)d
≤ Cd‖a‖A.

This concludes the proof of the first assertion.
In order to prove the second assertion, we show that

Rε := (Fε)∗(opε(a 	)− opε(a)	(εDx ))Fε,

satisfies ‖Rε‖L(L2(Rd ,CN )) = O(ε); the proof of the other identity is analogous. From (C.9),
we deduce that

Rε f (x) =
∫
Rd

rε
(
x + y

2
,
x − y

ε

)
f (y)

dy

(2πε)d
, ∀ f ∈ S(Rd ,CN ),

where rε(x, v) := â(v, x)(	(x)− 	(x − εv)). By (C.8) we can estimate:

‖Rε‖L(L2(Rd ,CN )) ≤
∫
Rd

sup
x∈Rd

|rε(x, v)|
CN×N

dv

(2π)d
.

By hypothesis, we can find L	 > 0 such that

|	(x)− 	(x − εv)|
CN×N ≤ L	ε|v|, ∀(v, x) ∈ supp â.

Therefore, using

|v||̂a(v, x)| ≤ (1+ |v|2)|̂a(x, v)| = |̂a(x, v)| + | ̂(−�a)(x, v)|,
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we deduce

‖Rε‖L(L2(Rd ,CN )) ≤ εCd L	(‖a‖A + ‖�a‖A).
For the third assertion, we show that

R̃ε := (Fε)∗(1
ε
[opε(a), 	(εD)] − opε(∇x · ∇	))Fε,

satisfies ‖R̃ε‖L(L2(Rd ,CN )) = O(ε). Indeed, the kernel of R̃ε is of the form (C.7) with

r̃ε(x, v) = i

ε
â(v, x) (	(x)− 	(x − εv))− ∇̂xa(v, x) · ∇	(x)

= i â(v, x)v · ∇	(x)− ∇̂xa(v, x) · ∇	(x)+ εθ(x, v)̂a(x, v)

and there exists L∇	 > 0 such that

|θ(x, v)| ≤ L∇	|v|2.
Using ivâ(v, x) = ∇̂xa(x, v) and |v|2 |̂a(x, v)| = | ̂(−�a)(x, v)|, we deduce

‖R̃ε‖L(L2(Rd ,CN )) ≤ εCd L∇	‖�a‖A.
��

Appendix D. Two-Scale Pseudodifferential Operators

We prove here technical lemma concerning the pseudodifferential operators considered in
Section 4.1, the formalism of which we follow. Due to the properties of Bloch energies,
we are going to consider more general classes of symbols than those of A(2) (as defined in

Section 4.1). For k ∈ Z, we introduce the class A(2)
k of smooths functions on R

3d that are
compactly supported in the variables (x, ξ) uniformly with respect to η and coincide with
an homogeneous function of degree k in η as soon as |η| > R0 for some R0 > 0. With these

notations, A(2) = A(2)
0 .

Of particular interest for us are functions g(ξ, η), independent of the variable x , that are
smooth in ξ , and satisfy a symbol estimate of order k in η. We denote byHk the set of these
functions. For X a connected, closed embedded submanifold of (Rd )∗ and g ∈ Hk , the
operator

gε(εD) = g(εD, D − ε−1σX (εD)) (D.1)

is thenwell defined as an operatormapping Hs(Rd ) into Hs−k(Rd ) uniformly in εwhen s ∈
R.We are interested in the pseudodifferential calculus involving two-scale pseudodifferential

operator of the form opε(a) for a in A(2)
k for some k ∈ Z and Fourier multipliers gε(εD)

with g ∈ Hp for some p ∈ Z.
The first type of pseudodifferential calculus results that we shall use concerns the large values
of η. We consider χ ∈ C∞0 (Rd ) such that χ = 1 on B(0, 1) and χ = 0 on B(0, 2)c with
0 ≤ χ ≤ 1. We set for R, δ > 0

aR,δ(x, ξ, η) = a(x, ξ, η)((1− χ(η/R))χ((ξ − σ
(ξ))/δ).

On the support of aR,δ , εR ≤ |ξ − σ
(ξ)| ≤ 2δ. Note that if k > 0 and a ∈ A(2)
−k , the

estimate (C.6) yields that in L(L2(Rd )),

opε(a
R,δ
ε ) = O((εR)−k).
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Lemma D.1. Let k ∈ N, a ∈ A(2)
−k , g = g(ξ, η) inHk+1 and δ, R > 0. Then, inL(L2(Rd )),[

opε(a
R,δ
ε ), gε(εD)

]
= i opε

(
(∇xaR,δ · ∇ηg)ε

)
+ O(ε)+ O(δ)+ O(1/R).

Proof. We want to take advantage from the fact that we have |ξ − σ
(ξ)| > Rε on the
support ofaR,δε to avoid the singularity of the function g. Indeed,aR,δε is supported outside the
singularity of the function g. Let κ ∈ C∞(Rd ) supported outside 0 and such that (1−χ)κ =
(1− χ) and denote by κR the function defined by κR(η) = κ(η/R) so that

κRε (ξ) = κ

(
ξ − σX (ξ)

Rε

)
.

Standard symbolic calculus gives that for all N ∈ N, we have

opε(a
R,δ
ε ) = opε(a

R,δ
ε )κRε (εD)+ R−N opε(r

1,N
ε (x, ξ))

= κRε (εD)opε(a
R,δ
ε )+ R−N opε(r

2,N
ε (x, ξ))

where the symbols r j,Nε have symbol norms that are uniformly bounded and are supported in
the set {c0εR < ξ−σX (ξ) < C0εR} for some0 < c0 < C0. In particular, byPropositionC.1

and because g ∈ Hk+1, a ∈ A(2)
−k ,

opε(r
1,N
ε )gε(εD) = opε(r

1,N
ε gε)+ O(Rk+1−k) = opε(r

1,N
ε gε)+ O(R),

whence

opε(r
1,N
ε )gε(εD) = O(R).

Similarly, we have

gε(εD)opε(r
2,N
ε ) = O(R).

We deduce that[
opε(a

R,δ
ε ), gε(εD)

]
=

[
opε(a

R,δ
ε ), (κRg)ε(εD)

]
+ O(R−N+1).

The function ξ �→ κRg is now smooth, which allows to use standard results of symbolic
calculus, what we shall do in local coordinates.
We consider a system of local coordinates ϕ(ξ) = 0 of X and the d× p smooth matrix B(ξ)
such that

ξ − σX (ξ) = B(ξ)ϕ(ξ)

where ϕ(ξ) ∈ C
p×1 is a column. We associate with ϕ the diffeomorphism

% : ( tϕ(ξ), ξ ′′) �→ ξ

and, according to Lemma 4.3 in [15], there exists an isometry Uε of L2(Rd ) such that for
all b ∈ A(2) and f ∈ L2(Rd )

(opε(bε) f, f ) =
(
opε

(
b

(
t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ

′
ε

))
Uε f,Uε f

)
+ O(ε).

Note that if ξ, ζ, x ∈ R
d ,

d%(ξ)−1ζ = (dϕ(%(ξ))ζ, ζ ′′), t d%(ξ)−1x = t dϕ(%(ξ))x ′ + (0, x ′′),
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where dϕ(ξ) is the p × d matrix with lines the gradient of each of the component of ϕ.
Therefore, focusing on the commutator

Lε =
[
opε

(
aR,δ

(
t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ

′

ε

))
, (κ Rg) (%(εD), B(%(εD))Dx ′ )

]
,

we obtain, in L(L2(Rd )), that

Lε = opε

(
dϕ(%(ξ))∇xa

R,δ
(

t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ
′

ε

)
· t B(%(ξ))∇η(κ Rg)(

%(ξ), B(%(ξ))
ξ ′

ε

))
+ O(R−1)+ O(ε).

We observe that if σ ∈ X , B(σ )dϕ(σ) = Id− dσX (σ ) and dσX (σ )∇ηg(σ, η) = 0 because
∇ηg(σ, η) ∈ Nσ X and dσX (σ )ζ = 0 if ζ ∈ Nσ X . We deduce

[opε(aR,δε ), gε(εD)] = iopε(bε)+ O(ε)+ O(R−1)+ O(δ),

with

b(x, ξ, η) = κR(η)∇xaR(x, ξ, η) · ∇ηg (ξ, η) ∈ A(2)
0 .

Using κ(1− χ) = 1− χ , we obtain

b(x, ξ, η) = ∇xaR(x, ξ, η) · ∇ηg (ξ, η) .
��

Weshall also needproperties of two-scale symbolic calculus at finite distance, i.e. for symbols
that are compactly supported in all the variables, including the variable η. Here again, the
use of local coordinates and Lemma 4.3 in [15] are a crucial argument.

Lemma D.2. Let a ∈ C∞0 (R3d ) and g ∈ Hk for k ∈ N. Let ( f ε)ε>0 a bounded family

in L2(Rd ) and Mdν the two-scale Wigner measure at finite distance associated with its
concentration on X. Then, there exists a constant C > 0 such that for all ε > 0,(

opε(a)gε(εD) f
ε, f ε

) ≤ C‖ f ε‖L2(Rd ).

In addition, up to the subsequence defining Mdν,

(
opε(a)gε(εD) f

ε, f ε
)−→
ε→0

∫
T X∗

TrL2(Nσ X)(Q
X
a (v, σ )Q

X
g (σ )M(σ, v))dν(σ, v).

We recall that the notations of this section have been introduced in Section 4.1. Of course,
this lemma has standard generalizations to vector-valued families and to time dependent
families which are bounded in L∞(R, L2(Rd ,CN ).

Proof. Here again, we work in local coordinates ϕ(ξ) = 0 of X and we consider the d × p
smooth matrix B(ξ) such that

ξ − σX (ξ) = B(ξ)ϕ(ξ)

where ϕ(ξ) ∈ C
p×1 is a column. We associate with ϕ the diffeomorphism

% : ( tϕ(ξ), ξ ′′) �→ ξ
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and, we consider the isometry Uε of L2(Rd ) given by Lemma 4.3 in [15] such that for all
b ∈ A(2) and f ∈ L2(Rd )

(opε(bε) f, f ) =
(
opε

(
b

(
t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ

′
ε

))
Uε f,Uε f

)
+ O(ε).

We then concentrate on the operator

opε

(
a

(
t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ

′
ε

))
opε

(
g

(
%(ξ), B(%(ξ))

ξ ′
ε

))
.

Since a is compactly supported in all variables, we obtain, in L(L2(Rd )), that

opε

(
a

(
t d%(ξ)−1x,%(ξ), B(%(ξ)) ξ

′
ε

))

= opε

(
a

(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′)) ξ

′
ε

))
+ O(ε)

= opε
(
aW

(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′))Dx ′

))
+ O(ε).

One can then interpret this operator as an operator acting on L2(Rd
x ′′ , L

2(Rd
x ′)) where, as

explained in Section 4.1 of [15], for any (σ, v) = ((0, ξ ′′), (0, x ′′)) ∈ T X∗, the map

(z, ζ ) �→ a
(
t d%(0, ξ ′′)−1(z, x ′′),%(0, ξ ′′), B(%(0, ξ ′′))ζ

)
defines a function on T ∗(Nσ X), which implies that the operator

aW
(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′))Dx ′

)
acts on L2(Nσ X). It is the expression of the operator Qa(σ, v) in the local coordinates
induced by the choice of equations ϕ(ξ) = 0 of X .
The difficulty with gε(εD) is that the map (σ, η) �→ g(σ, η) is not bounded in η. Therefore,
we decompose g(σ, η) into two parts thanks to a function χ ∈ C∞0 (Rd ) such that χ = 1 on

B(0, 1) and χ = 0 on B(0, 2)c with 0 ≤ χ ≤ 1. Writing like before χ R(η) = χ(η/R) for
R > 0, we set

g = gχ R + g(1− χ R)

and we first focus on opε(aε)(g(1− χ R))ε(εD). Since now g(1 − χR) is smooth, we can
use standard symbolic calculus, and we have

opε(aε)(g(1− χ R))ε(εD) = opε((ag(1− χ R))ε)+ O(R−1)

because ∇ξ ((g(1 − χ R))ε) = O(R−1). Moreover, as soon as R is large enough, we have
ag(1− χ R) = 0. We conclude

gε(εD) = (gχ R)ε(εD)+ O(R−1)

and

opε

(
g

(
%(ξ), B(%(ξ))

ξ ′
ε

))
= opε

(
(gχ R)(%(0, ξ ′′), B(%(0, ξ ′′))Dx ′)

)
+OR(ε)+ O(R−1)
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in L(L2(Rd )). Note that in the following we will let first ε go to 0, and then R to +∞,
so that OR(ε) is negligible. Besides, when R goes to +∞, we are left with the operator
g(%(0, ξ ′′), B(%(0, ξ ′′)Dx ′) (with strong convergence), which is the expression in local
coordinates of the operator Qg(σ ).
At this stage of the proof, we are left with the quantity(

opε
(
aW

(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′))Dx ′

))
opε(g(%(0, ξ

′′),

B(%(0, ξ ′′))Dx ′))Uε f,Uε f
)
.

It turns out that the pairMdν has been defined in [15] (see Proposition 4.2) as a semi-classical

measure of the family (Uε f ), which is a bounded family in L2(Rd−p
x ′′ , L2(Rp

x ′)). Therefore,
in coordinates(

opε
(
aW

(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′))Dx ′

))
opε(g(%(0, ξ

′′), B(%(0, ξ ′′))Dx ′))Uε f,Uε f
)

−→
ε→0

∫
R2(d−p)

TrL2(Rp)(
opε

(
aW

(
t d%(0, ξ ′′)−1x,%(0, ξ ′′), B(%(0, ξ ′′))Dx ′

))
M(ξ ′′, x ′′)

)
dν(ξ ′′, x ′′)

=
∫
T X∗

TrL2(Nσ X)(Q
X
a (v, σ )Q

X
g (σ )M(σ, v))dν(σ, v).

��

Appendix E. Well-Prepared Data

We prove here properties of well-prepared initial (1.17).We shall use the Fourier coefficients
of the Bloch waves ϕn(y, ξ) for n ∈ N

∗. Recall that they satisfy the Bloch periodicity
condition:

ϕn(y, ξ + j) = e−i j ·yϕn(y, ξ), ∀ j ∈ 2πZd . (E.1)

Integrating (E.1) with respect to y on T
d gives an expression for the Fourier coefficients of

ϕn(·, ξ): for all y ∈ T
d and ξ ∈ R

d

ϕn(y, ξ) =
∑

j∈2πZd

cn(ξ + j)ei j ·y, cn(ξ) =
∫
Td

ϕn(y, ξ)dy. (E.2)

For s > 0, there exists Cn,s > 0 such that∑
j∈2πZd

〈 j〉2s |cn(ξ + j)|2 ≤ Cn,s〈ξ〉2s (E.3)

It turns out that these class of data are closely related to those studied in [1,2].

Lemma E.1. Let (ψε
0,n)ε>0 as in (1.17) with uεn = e

i
ε
ξn ·xvεn(x), vεn uniformly bounded in

Hs(Rd ), s > d/2 (or s > 1 when d = 1). Assume that ξ �→ ϕn(·, ξ) is Lipschitz. Then, we
have, in L2(Rd ),

ψε
0,n = e

i
ε
x ·ξnϕn

( x

ε
, ξn

)
vεn + O(ε).

Besides, if vεn → vn in L2, then ‖ψε
0,n‖L2 = ‖vn‖L2 + o(1) as ε goes to 0.
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Proof. We set ψ̃ε
0,n = e

i
ε
x ·ξnϕn

( x
ε , ξn

)
vεn . We write for x ∈ R

d

ψε
0,n(x) =

∑
j∈2πZd

e
i
ε
j ·x cn( j + εDx )u

ε
n(x).

Let θ ∈ L2(Rd ), we write (θ, ψε
0,n)L2(Rd ) =

∑
j∈2πZd α

ε
j with

αεj =
(
θ, e

i
ε
j ·x cn( j + εDx )u

ε
n

)
L2
=

(
θ, e

i
ε
( j+ξn)·x cn( j + ξn + εDx )v

ε
n

)
L2

.

By (E.3), there exists C > 0 such that

|αεj | ≤ C〈 j〉−s‖〈εDx 〉suεn‖L2‖θ‖L2 .

Therefore, the sum enters into the frame of Lebesgue dominated convergence. The same
holds for the series

(θ, ψ̃ε
0,n)L2(Rd ) =

∑
j∈2πZd

α̃εj , α̃εj =
(
θ, e

i
ε
( j+ξn)·x cn( j + ξn)v

ε
n

)
L2

.

Besides

αεj − α̃εj =
(
θ, e

i
ε
( j+ξn)·x (cn( j + ξn + εDx )− cn( j + ξn))v

ε
n

)
L2

.

The conclusion then comes from the observation that ξ �→ cn(ξ) is uniformly Lipschitz and
thus, one has∣∣∣αεj − α̃εj

∣∣∣ ≤ ‖θ‖L2‖(cn( j + ξn + εDx )− cn( j + ξn))v
ε
n‖L2 ≤ Cε‖θ‖L2‖Dxv

ε
n‖L2

which gives the result by the boundedness of the family (vεn)ε>0 in Hs(Rd ) with s ≥ 1.
Let us now compute the norm of ψε

0,n . One has ‖ψε
0,n‖2L2 =

∑
j, j ′∈2πZd β

ε
j, j ′ with

βεj, j ′ =
(
e
i
ε
·x( j− j ′)cn( j + ξn + εDx )v

ε
n(x), cn( j

′ + ξn + εDx )v
ε
n(x)

)
L2

.

Additionally, by (E.3), there exists C > 0 such that

|βεj, j ′ | ≤ C〈 j〉−s〈 j ′〉−s‖〈εDx 〉svεn‖2L2 .

Therefore, the sum enters into the frame of Lebesgue dominated convergence. If | j− j ′| ≥ 1
with j� − j ′

�

= 0, 0 ≤ � ≤ d , an integration by parts give

βεj, j ′ = iε( j� − j ′�)−1
∫
Rd

e
i
ε
·x( j− j ′)

∂x�

(
cn( j + ξn + εDx )v

ε
n(x)cn( j

′ + ξn + εDx )v
ε
n(x)

)
dx,

whence βεj, j ′ → 0 as ε→ 0 since (vεn)ε>0 is uniformly bounded in H1(Rd ). Moreover

∑
j∈2πZd

βεj, j =
∑

j∈2πZd

(2π)−d
∫
Rd
|cn( j + ξn + εξ)|2 |̂vεn(ξ)|2dξ.

Using
∑

j∈2πZd |cn(ξ)|2 = ‖ϕn(·, ξ)‖2L2(Td )
= 1, we deduce

∑
j∈2πZd

βεj, j = (2π)−d
∫
Rd
|vεn(ξ)|2dξ = ‖vεn‖2L2 −→

ε→0
‖vn‖2

and the conclusion follows. ��
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Let us now examine weak limits of such families.

Lemma E.2. Let (ψε
0,n)ε>0 as in (1.17) with uεn = e

i
ε
ξn ·xvn(x), (vεn)ε>0 bounded in

Hs(Rd ) with s > d/2 (or s > 1 when d = 1). Assume one has as ε goes to 0

vεn ⇀ vn in L2.

Then, the weak limits of
(
e− i

ε
x ·ξψε

0,n

)
ε>0

are non zero if and only if ξ ∈ ξn + 2πZd .

Besides, for any j ∈ 2πZd , one has as ε goes to 0

e− i
ε
x ·(ξn+ j)ψε

0,n ⇀ cn(ξn + j)vn in L2.

Proof. One writes

e− i
ε
x ·ξψε

0,n = e− i
ε
x ·ξ ∑

j∈2πZd

e− i
ε
x · j cn(εDx + j)e

i
ε
x ·ξnvεn

=
∑

j∈2πZd

e− i
ε
x ·( j+ξ−ξn)cn(ξn + j + εDx )v

ε
n

and the result follows. ��
As a corollary, we obtain a description of the concentration of these families on subsets of
interest.

Corollary E.3. Let X be a 2πZd periodic subset X of Rd consisting of isolated points and
containing ξn.

(1) Let MXdνX be the two-microlocal measures at finite distance associated with the con-
centration of (ψε

0,n)ε>0 on X. Then,

νX = ‖vn‖2L2

∑
j∈2πZd

|cn(ξn + j)|2δ(ξ − ξn − j)

and, for j ∈ 2πZd , the operator MX (ξn + j) is the projector of L2(Rd ) on Cvn.

(2) Consider the family of L2(Rd ,C2), �ε
n,n′ = t

(
ψε
0,n, ψ

ε
0,n′

)
with n 
= n′ and ξn′ =

ξn. Let MXdνX be the two-microlocal measures at finite distance associated with the
concentration of �ε

n,n′ on X. Then

νX =
(
‖vn‖2L2 + ‖vn+1‖2L2

) ∑
j∈2πZd

|cn(ξn + j)|2δ(ξ − ξn − j)

and, for j ∈ 2πZd , the operator MX (ξn + j) is the projector of L2(Rd ,C2) on
C

t (vn, vn+1).

Proof. Since ξn is an isolated point of X , by Remark 4.2, MX is the orthogonal projector
on a weak limit in L2 of

x �→ e− i
ε
x ·ξ ϕn

( x

ε
, εDx

)
uεn .

By Lemma E.2, any of this weak limit is 0 if ξ /∈ ξn + 2πZd and if ξ = ξn + j with
j ∈ 2πZd , then the limit is cn0 (ξn0 + j)vn0 whence we get the Part 1 of the result. The
proof of Part 2 follows the same lines. ��
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