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Abstract
We present a review on the notion of pure states and mixtures as mathematical concepts that apply for both classical and
quantum physical theories, as well as for any other theory depending on statistical description. Here, states will be presented
as expectation values on suitable algebras of observables, in a manner intended for the non-specialist reader; accordingly,
basic literature on the subject will be provided. Examples will be exposed together with a discussion on their meanings and
implications. An example will be shown where a pure quantum state converges to a classical mixture of particles as Planck’s
constant tends to 0.

Keywords Quantum states · Classical states · Algebraic QFT · Semiclassical limit

1 Introduction

In many textbooks on quantum physics, there is some
obscurity surrounding the notion of pure state, often giving
rise to some misconceptions. In quantum mechanics, for
instance, pure states are frequently associated to normalised
vectors (or, more precisely, to rays) in adequate Hilbert
spaces. This neither is an adequate definition nor is,
strictly speaking, a correct one since, according to a
mathematical construction known as GNS representation,
any state (including mixed ones) in an adequately defined
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algebra of observables can be represented by a vector state
in some Hilbert space. Moreover, this pseudo-definition
fails to capture the statistical quality of the notions of pure
and of mixed states, which is actually quite simple and
illuminating.

Our objective in this review is to present both the intuitive
meaning of the concept of pure and of mixed states as
well as to develop the mathematical (algebraic) formalism
around these notions in order to clarify some of these issues.

Besides, we will explore this formalism in order to
enhance our understanding about the physical nature hidden
beneath these algebraic and statistical notions. One of the
most notable results in this direction is the possibility of
unifying the treatment of quantum and classical observables
as elements in the same kind of algebra, known as C∗-
algebra, the only difference being that in the classical
case these elements commute with respect to the algebra’s
operation (multiplication or composition), whereas in the
quantum case they do not necessarily commute.

We also present in Section 6 a systematic procedure
(known as Weyl quantisation) for transforming classical
observables, namely, functions on a phase space, into
quantum ones, i.e. self-adjoint operators acting on a Hilbert
space. Then, by means of tools provided by semi-classical
analysis we will introduce, we will exhibit an example of a
family of pure quantum states that degenerates into classical
mixtures in the limit when Planck’s constant is taken small.

The physically important relation between purity of
states and irreducibility of certain representations of the
algebra of observables is discussed in Section 7. The
notion of purification of states is presented in Section 8.
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Sections 9, 10 and 11 are more technical, mathematically.
In Section 9, we introduce the important notion of normal
state and present its relation to the so-called density matrix,
a very important notion in quantum mechanics relevant
in discussions concerning certain aspects of quantum
information theory, as the notion of von Neumann entropy
and entanglement entropy. In Section 10, we present some
interesting remarks about the notion of purity and in
Section 11 we present results, through Krein-Milman and
Choquet’s theorems, on the existence of pure states and on
the decomposition of general states into pure ones.

1.1 Pure andMixed Probability Distributions

We start our presentation considering the simpler and
perhaps more familiar context of probability distributions,
where the notions of purity and of mixture can be discussed
in a quite elementary way.

Let us consider a probability space, which consists of a
set Ω , called event space, and a family F of subsets of Ω ,
called events. For technical reasons, F has to be a σ -algebra
of sets, but this point will not be relevant on what follows,
except to point out that Ω itself and the empty set ∅ are
possible events, that means, are elements of F .

A probability measure μ in (Ω, F ) is an assign-
ment of each event A ∈ F to a real number in
[0, 1] such that the following conditions are ful-
filled: μ(∅) = 0, μ(Ω) = 1 and, for any col-
lection {An ∈ F , n ∈ N} of disjoint subsets,
μ

(⋃
n∈N An

) = ∑∞
n=1 μ(An).

These postulates, widely known in the literature as
Kolmogorov axioms, capture the essential ingredients of the
intuitive notion of probability and many basic properties
of probability measures can be directly derived from them.
For instance, one of the easy consequences of the above
postulates is that μ(A) ≤ μ(B) for any A and B in F such
that A ⊂ B.

As a simple example, let Ω = R and let μ assign, to any
measurable subset A ⊂ R (for instance, an open interval),
the number:

μ(A) = 1√
2π

∫

A

e−x2/2dx .

μ(A) is the probability of occurrence of event A for the
particular Gaussian distribution considered in the integral.

A probability measure μ is said to be a mixture if there
are two other distinct probability measures μ1 and μ2, on
the same probability space, and numbers λ1, λ2 ∈ (0, 1)

with λ1 + λ2 = 1 such that:

μ(A) = λ1μ1(A) + λ2μ2(A) (1)

holds for all events A ∈ F . A probability measure is said to
be pure, or extremal, if it is not a mixture. In the Bayesian

parlance, the probabilities μ1 and μ2 are priors of μ and λ1

and λ2 are their respective likelihoods.
An expression like (1) is called a convex linear

combination of μ1 and μ2. Notice that μ1 or μ2 may
be mixtures themselves; and hence, we can say that a
probability measure is a mixture if it can be written as a
finite (or even infinite) convex sum of distinct probability
measures: μ(A) = ∑n

k=1 λkμk(A), for some n ∈ N, with∑n
k=1 λk = 1 and λk ∈ (0, 1) for all k.
In order to explain the intuitive nature of a mixed

probability distribution, let us consider a very simple
situation where mixture occurs. Suppose we order a large
amount of balls from two different factories, each factory
having its own standard fabrication processes. The balls
produced in each factory are not perfectly the same and will
differ randomly from each other. If we consider one specific
parameter for characterising the balls, say, their diameter,
we can associate to each factory a probability distribution
associated to the diameter: for 0 < d1 < d2, the quantity
μk ((d1, d2)) measures the probability for a ball produced
in factory k = 1, 2, to have a diameter in the interval
(d1, d2).

Now, consider that we mix the balls produced in both
factories, so that a fraction λk ∈ (0, 1) comes from the
production of factory k = 1, 2. Naturally, λ1+λ2 = 1. If we
measure the diameters of the balls in this mixed ensemble,
it is intuitively clear that measurements of the diameters of
the balls will be described by a probability measure μ given
by μ ((d1, d2)) = λ1μ1 ((d1, d2))+λ2μ2 ((d1, d2)), again
with 0 < d1 < d2.

The probability μ is therefore a mixture of the
probabilities μ1 and μ2 with fractions λ1 and λ2,
respectively, since the ensemble considered is a mixture (in
the common sense of the word) of two ensembles described
by the two probabilities μ1 and μ2.

Notice that the probabilities μ1 and μ2 can be themselves
mixtures, as it can happen if, for instance, the balls are
produced by different machines in each of the factories.

This example illustrates the intuitive idea behind the
notion of a mixed probability distribution: it describes
samples composed of objects of different origins which are
placed together. In contrast, pure probability distributions
describe systems that, in a sense, are not decomposable
in simpler ones. As we will see, in the case of quantum
systems, these notions are neatly reproduced in the algebraic
formalism.

1.2 Mean Values and Variances

Given a probability distribution on a probability space, there
is a series of statistical quantities that provide information
on the distribution. They can also provide some insight on
the nature of pure and mixed probability distributions.
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Let f : Ω → R be a real function defined on
the event space representing some observable quantity.
(Technically, f has to be a measurable function, but we
will not stress such mathematical points by now.) We define
its expectation, average or mean value, according to the
probability measure μ by:

Eμ(f ) ≡ 〈f 〉μ :=
∫

Ω

f dμ .

The variance of f on μ is defined by:

Varμ(f ) :=
〈(

f − 〈f 〉μ
)2

〉

μ
= 〈f 2〉μ − 〈f 〉2

μ .

As we see from the definition, Varμ(f ) measures how
much f typically deviates from its mean value 〈f 〉μ. It is
clear from the definition that Varμ(f ) ≥ 0. The quantity
σμ(f ) := √

Varμ(f ) is called the standard deviation of f

on μ.
Consider a mixed probability measure μ = λ1μ1+λ2μ2,

with μ1 and μ2 being two distinct probability measures in
some probability space and λ1, λ2 ∈ (0, 1) with λ1 +λ2 =
1. Then, one can easily see that

〈f 〉μ = λ1〈f 〉μ1 + λ2〈f 〉μ2 .

Moreover, one can also easily verify that

Varμ(f ) = λ1Varμ1(f )+λ2Varμ2(f )+λ1λ2
[〈f 〉μ1 − 〈f 〉μ2

]2 .

From this, we conclude that

Varμ(f ) ≥ λ1Varμ1(f ) + λ2Varμ2(f )

≥ min
{
Varμ1(f ) , Varμ2(f )

}
.

Hence, for the mixed probability measure μ the variance
Varμ(f ) is always larger than or equal to the smallest of
the numbers Varμ1(f ) or Varμ2(f ). Therefore, for a fixed
function f , the smallest values of Varμ(f ) will be obtained
for pure measures on this probability space. In this sense,
pure probability measures are those for which the deviation
of f from its mean value is smallest.

2 The Notion of State

In physics, the word “state” is often used in a somewhat
informal sense as a set S of intrinsic characteristics of
a system maximally specifying the possible outcomes of
measurements of observable quantities. A given physical
theory specifies which quantities are observable (i.e.
measurable through experiments) and a state can be defined,
with a little more precision, as a rule associating each
observable A and each set S of a system’s physical
characteristics to a probability measure μS,A describing the
statistical distribution of repeated measurement of A on
an ideally infinite ensemble of physical systems with the
same set of characteristics S. Although this definition is still

vague, it is the base for the precise definition of state that
we will present below, which is algebraic in its nature.

In classical mechanics, for instance, observables are
(measurable) functions A(q, p) defined in phase space and
the state of a system is specified by a probability distribution
ρ(q, p) defined in phase space so that the mean values
of repeated measurements of A in the state ρ are given by
〈A〉ρ = ∫

A(q, p)ρ(q, p)dqdp.
A relevant case consists of states given by the probability

distribution ρ0(q, p) = δ(q − q0)δ(p − p0), where
δ represents the Dirac measure and where (q0, p0) is
a given point in phase space. In this case, we have
〈A〉ρ0 = A(q0, p0). Moreover, as one easily checks,
Varρ0(A) = 0, leading to the interpretation that all
individual measurements of A in the state ρ0 will result in
the same value A(q0, p0). Hence, the state ρ0 represents a
deterministic state, fully characterised by q0 and p0, where
measurements of observable quantities always lead to the
same result.

On the other hand, in quantum mechanics, it is commonly
thought that all the possible pure “states” of a physical
system are described by normalised vectors of a Hilbert
space, and the possible measurable observables by self-
adjoint operators acting on them. Vectors in a Hilbert space
H may indeed represent pure states (either in the intuitive
notion explained above or in the formal one to be presented
below). However, as we shall discuss, not every state can
be represented as a vector in H and vector states are not
necessarily pure.

For instance, let us consider the Hilbert space represent-
ing a two-level system (a qubit) described in the Hilbert
space H = C

2. If we have several copies of this system in
the same state ψ ∈ H (with ‖ψ‖2 = 〈ψ, ψ〉 = 1)1 and
measure each one of them for an observable A, the mean
value 〈A〉ψ of the measured results is given by the inner
product 〈A〉ψ = 〈ψ, Aψ〉. However, if the copies are com-
posed by a few systems in a state φ1 ∈ H and a few other in
a different state φ2 ∈ H (let us suppose a fraction p1 of the
total number of particles in φ1, and p2 in φ2, so p1 + p2 =
1), then the mean value of the several measurements is
expected to be 〈A〉 = p1 〈φ1, Aφ1〉 + p2 〈φ2, Aφ2〉. Calcu-
lating the average of the measures taken for different copies
of a system is precisely what is meant by average value of
an observable for a system in a defined state, so there must
be a state in which the system can be that corresponds to
this mean value p1 〈φ1, Aφ1〉 + p2 〈φ2, Aφ2〉.

Is there any vector state that could represent such a
mixture of states, i.e. a vector ψ ∈ C

2 such that 〈ψ, Aψ〉 =
p1 〈φ1, Aφ1〉+p2 〈φ2, Aφ2〉? The answer is no, unless it is

1Scalar products (or inner products) in Hilbert spaces will be always
denoted here by 〈φ, ψ〉 rather than by 〈φ |ψ〉. We follow the
physicists’ convention: they are antilinear in the first argument and
linear in the second.
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a trivial mixture where either p1 or p2 is 0, or φ1 = φ2 (this
will follow from Theorem 3 in Section 4.2). An example of
such impossibility is shown in Section 5.1, leading us to the
conclusion that a more comprehensive way of representing
states is needed in order to fully describe a quantum system.

Mixtures as those commented above are usually intro-
duced in a quantum theory based on (separable) Hilbert
spaces H as density operators ρ, which are positive
trace class operators normalised so as Tr(ρ) = 1. For a
finite (possibly infinite) mixture of states φ1, . . . , φn with
weights p1, . . . , pn (and

∑n
k=1 pk = 1), it is constructed

as:

ρ =
n∑

k=1

pk |φk〉 〈φk| (2)

(in the infinite case, the sum’s convergence is uniform) and
it is easy to see that the average value may be calculated by
means of the formula 〈A〉ρ = Tr(ρA), since

Tr(ρA) =
n∑

k=1

pk 〈φk, Aφk〉 .

We shall denote by L (H ) the set of bounded (i.e.
continuous) linear operators acting on a Hilbert space H .

We remark that any operator such as that in Eq. (2) has
the properties listed above for density operators. Conversely,
if some ρ ∈ L (H ) is positive and Tr(ρ) < ∞, then it is
a compact operator (see e.g. [1]) and, therefore, possesses
discrete and finitely degenerate spectrum and a spectral
decomposition ρ = ∑∞

k=1 
k |φk〉 〈φk|, where the φk is
normalised and mutually orthogonal, and 
k > 0 with∑∞

k=1 
k = 1, allowing us to interpret ρ as the density
operator of an infinite mixture of states φk with statistical
weights 
k .

2.1 The Physically Motivated Topology on States

Any deeper analysis of quantum physics requires the
introduction of topologies in the set of observables or in
the set of states, that means, the introduction of the notion
of closeness between different observables or between
different states. This is particularly relevant if we intend to
use the notion of convergence of observables or of states.
The difficulty is that the space of observables (typically
a C∗-algebra) and the associated set of states are usually
infinite dimensional and, therefore, are usually equipped
with many non-equivalent topologies, i.e. with many non-
equivalent notions of closeness between their elements and,
therefore, equipped with many non-equivalent notions of
convergence.

For the space of states, it is possible to point to a
physically motivated topology, that we now describe. Other
useful topologies will be mentioned later (as the norm

topology in the set of states in C∗-algebras; see Definition
2).

Let us take an observable A; for the sake of simplicity,
imagine that it possesses a finite set of possible outcome
values, and let λ be one of them. Then, its relative frequency
νA(λ, n) when A is measured on n copies of a system in the
state ω should converge to a probability pA(λ) in the limit
n → ∞, and so must converge the measurements’ mean
value

∑
k λkν(λk, n) to the expectation value ω(A). As we

saw in the beginning of this section, saying that a system
is in the state ω means precisely that whenever we take
measurements on its copies for an observable A, we will
obtain an outcome according to the probability distribution
λ �−→ pA(λ) = ω(EA

λ ), where EA
λ is the spectral projection

of A on the closed subspace of eigenvectors with eigenvalue
λ. This is, in theory, how to connect the positive linear
functional ω to the intrinsic property of a physical system
that we called state; in practice, this connection is trickier.

It happens that it is not possible to take an infinite number
of measurements resulting in a value λ, nor can we obtain
all possible outcomes for an observable in the case where
it has an infinite set of possible results, so we never know
a system’s exact probability distributions λ �−→ pA(λ).
Worse, we may not measure a system for every possible
observable A. As a consequence, we are bent not to know a
system’s state exactly; for the most we may hope to acquire
from data are some approximative mean values for small
sets of finite observables.

In order to treat this problem, consider first a particular
bounded observable A. The first and the second issues are
set by taking a number n of measurements sufficiently large
so as to have:

|v(A) − ω(A)| < ε,

where v(A) = ∑
k λkνA(λk, n) is the measured mean value

of A, and ε > 0 is an error that we may take arbitrarily
small, by hypothesis. Unfortunately, it is possible that a
sufficiently large n that works for all observables does
not exist. Yet, we may have arbitrarily precise information
on ω for finite sets of observables: taking observables
A1, . . . , Ak and an error ε, we define a neighbourhood of
ω with radius ε in the set of all states � as:

Ωε(A1, . . . , Ak; ω) = {
α ∈ � : ∣∣α(Aj ) − ω(Aj )

∣∣

< ε, ∀j ∈ {1, . . . , k}} .

Surely, ω ∈ Ωε(A1, . . . , Ak; ω). Also, this neighbour-
hood contains any state ω̃ satisfying ω̃(A) = v(A) at least
for A = A1, . . . , Ak , so under any measurement of observ-
ables A1, . . . , Ak , ω̃ describes our actual physical system
as well as ω. In this sense, the states in Ωε(A1, . . . , Ak; ω)

are good approximations for ω.
Besides, it is a mathematical fact that this kind of

neighbourhoods induces in � a topology, called in [2]
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physical or weak topology, whose notion of convergence
may be cast in the following way: one says that a sequence2

of states ωn converges physically, or weakly, to ω if, for
any observable A, the mean values converge, i.e. if one has
ωn(A) −→ ω(A) as n → ∞. As a conclusion, ω may
be completely determined by means of a process of taking
limits in the weak sense.

It is important to clarify some differences in nomencla-
ture: among mathematicians, the topology referred to as
weak topology is called weak-∗ topology. The reason relies
on the fact that sets defined like Ωε(A1, . . . , Ak; ω), with
A1, . . . , Ak in a normed vector space V , and ω any bounded
linear functional on V , form a basis of neighbourhoods for
a locally convex topology on the dual of V .

Topologies can be similarly introduced in the space
of observables, providing notions of closeness between
operators. We will make use of some of them in our final
sections.

In the so-called norm (or uniform) topology, two
operators A and A′ acting on a Hilbert space H are
considered close if for some prescribed ε > 0 one has
‖A − A′‖ := sup

∥∥(A − A′)ψ
∥∥ < ε, where the supremum

is taken over all vectors ψ ∈ H with ‖ψ‖ = 1. This means
that Aψ and A′ψ differ in norm by an amount smaller than
the prescribed error ε regardless of the normalised vectors
ψ . In this topology, we say that a sequence of operators A′

n

converges to A if for any ‖A − A′
n‖ goes to zero when n

goes to infinity.
In the so-called strong operator topology in a

Hilbert space H , two operators A and A′ are con-
sidered close with respect to a distinct finite set of
normalised vectors ψj ∈ H , j = 1, . . . , N ,
and for some prescribed ε > 0, if one has∥∥(A − A′)ψj

∥∥ < ε, for all j = 1, . . . , N . This means
that the vectors Aψj and A′ψj differ in norm, for each
j = 1, . . . , N , by an amount smaller than the prescribed
error ε. In this topology, we say that a sequence of operators
A′

n converges to A if they eventually become close, when
n → ∞, with respect to all finite sets of normalised vectors
ψj ∈ H , j = 1, . . . , N , and all ε > 0.

In the so-called weak operator topology in a Hilbert
space H , two operators A and A′ are considered close
with respect to a distinct set of normalised vectors ψj ∈
H , j = 1, . . . , N , and for some prescribed ε > 0, if∣∣〈ψj , (A−A′)ψj 〉

∣∣ < ε, for all j = 1, . . . , N . This means
that A and A′ provide the same expectation values for the
vector states defined by the vectors ψj , j = 1, . . . , N , up
to an error smaller than the prescribed ε. In this topology, we

2Strictly speaking one should use nets to characterise convergence in
those topologies, instead of sequences. For the sake of clarity, we will
use the latter. See, e.g., [17].

say that a sequence of operators A′
n converges to A if they

eventually become close when n → ∞ with respect to all
finite sets of normalised vectors ψj ∈ H , j = 1, . . . , N ,
and all ε > 0.

In the weak operator topology, the notion of closeness
between operators is expressed in terms of their expectation
values and, therefore, is directly linked to measurable
quantities.

In infinite-dimensional Hilbert spaces all operator
topologies defined above differ [6], leading to distinct
notions of convergence between operators, a very signif-
icant fact for the mathematical analysis of quantum sys-
tems. For instance, convergence of sequences of operators
in the uniform operator topology implies convergence in
the strong operator topology. Analogously, convergence of
sequences of operators in the strong operator topology
implies convergence in the weak operator topology. In both
cases, the opposite statements are not generally valid.

3 The Algebraic Approach to Quantum
Systems

The familiar Hilbert space approach, however, has limita-
tions when dealing with quantum systems with infinitely
many degrees of freedom, as those considered in quantum
field theory and quantum statistical mechanics, mainly due
to important features commonly manifest in such systems,
such as superselection sectors, phase transitions and the
existence of some special states, for instance “thermal or
finite temperature” states, that cannot be properly described
in the Hilbert space formalism. A universal formalism that
can be applied to general quantum systems was proposed by
Haag, Kastler and many others (see e.g. [2, 3] or, for a more
recent review, [4]). We will refer to this formalism as the
algebraic approach to quantum systems. In general terms,
it emphasises the dichotomy between observables (repre-
senting physically meaningful and measurable quantities)
and states (dealing with the statistics of measurements of
physically observable quantities).

In this formalism, observables are treated as abstract
associative algebras of a certain kind (usually C∗ and/or
von Neumann algebras are considered), while states are
associated to positive normalised linear functionals on these
algebras. Within the algebraic approach, one is no longer
restricted to the use of the vectors or density operator on H
in order to describe states. Moreover, this formalism allows
the treatment of pure and mixed states in a very general
and elegant fashion, a point that will be relevant for our
purposes.

As we mentioned, it was due to the efforts of Haag
and others that C∗-algebras have been recognised as the
relevant mathematical objects for the universal description
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of observables in quantum systems. Let us briefly describe
such algebras.

Let us denote by O the set of observables of a physical
system. O must have a real vector space structure; moreover,
the composition of some observables must result in a new
observable. This suggests that O must be contained in a
larger set that is an associative algebra. Let us denote a
minimal associative algebra satisfying these properties by
A. Hence, A is a (complex) vector space endowed with
associative multiplication. We also require the existence of
an operation ∗ : A −→ A, called an involution in A, such
that for all A, B ∈ A and z ∈ C one has: (A∗)∗ = A,
(A + B)∗ = A∗ + B∗, (zA)∗ = zA∗ and3 (AB)∗ = B∗A∗.
Here, z denotes the complex conjugate of z ∈ C.

The algebra L(H ), for example, possesses these
properties and the involution is related the notion of the
adjoint of a bounded operator acting on H with respect to
the scalar product on H .

The requirement of associativity in quantum systems
deserves some physical clarification. Regarding the ele-
ments of A as operations acting on a quantum system, the
order of two successive operations matters and the algebra
of observables is not supposed to be commutative. If we
consider three successive operations, however, one has to
guarantee that the last operation does not depend on the pre-
vious ones, which is achieved through the requirement of
associativity.

Finally, since A is an extension of the more physically
relevant set O , we need a way to distinguish O within A.
The involution provides a method to identify the elements
of O among all elements of A: let A ∈ A, if A ∈ O , then
A = A∗. One can wonder if A∗ = A implies A ∈ O .
In the first attempts to axiomatise quantum mechanics, it
was required that any self-adjoint operator should represent
an observable, but for physical reasons this requirement
was discarded. There are many examples of self-adjoint
operators not associated to observables. If U is any unitary
operator acting on a Hilbert space of physical states H ,
then U + U∗ is self-adjoint, but it may not be associated
to a measurable quantity. For example, when U represents
the shift operator on a separable Hilbert space, acting on
an orthonormal base of vectors {φn}n∈Z as Uφn = φn+1).
Another example: consider a Fermionic field ψ and take
ψ + ψ∗, a self-adjoint operator not related to a measurable
quantity. For a more detailed discussion on the axioms of
quantum mechanics, see [5].

The last ingredient in our construction is a norm on A

which must be compatible with the multiplication and the
involution operations. We now define:

3These rules are not supposed to hold in the case of unbounded
operators acting on Hilbert spaces. See e.g. [1].

Definition 1 A C∗-algebra is a set A provided with a
complex linear structure, an associative multiplication, an
involution and a norm such that:

(i) λ(AB) = (λA)B = A(λB), for all A, B ∈ A and
λ ∈ C;

(ii) A(B + C) = AB + AC, for all A, B, C ∈ A;
(iii) ‖AB‖ ≤ ‖A‖‖B‖, for all A, B ∈ A;
(iv) ‖A∗A‖ = ‖A‖2, for all A ∈ A;
(v) A, as a vector space, is complete with the norm.

The algebra L (H ), of all bounded (continuous)
operators acting on a Hilbert space H , is known to be a
C∗-algebra. One might ask whether the definition above
leads to anything different from the usual description of
quantum mechanics based in Hilbert spaces. The answer to
this question is negative and is based on the following facts
(respectively, Theorems 2.1.10 and 2.1.11A of [6]):

Theorem 1 Let A be a C∗-algebra. There exists a Hilbert
space H such that A is isomorphic to some self-adjoint
closed subalgebra of L (H ).

So, essentially, a C∗-algebra is an abstract algebra of
operators. Furthermore:

Theorem 2 If a C∗-algebra A is commutative, then there
exists a locally compact Hausdorff topological space X

such that A is isomorphic to C0(X), i.e. the algebra of
continuous complex functions on X that vanish at infinity4.

In other words, (commutative) C∗-algebras can be
viewed as abstract algebras of functions. Hence, the notion
of states as functionals over A is suitable for both quantum
and classical theories, as well as any other experimental
theories.

Besides, on one hand, a C∗-algebra can always be
mapped to a closed ∗-subalgebra of L (H ) for some
suitable Hilbert space H . On the other hand, such H may
be obtained by means of the GNS construction that we will
present in Section 7.

Finally, just like the operators in L (H ), the elements
of a C∗-algebra possess adjoints, norms and even spectra:
given A ∈ A, the spectrum of A is the set:

Indeed, one may speak about the inverse of an element A

in a C∗-algebra since either it has an identity , or we may
map A to a larger algebra Ã containing an identity, a case
where we consider the spectrum of A in A to be its spectrum

4A function f ∈ C0(X) vanishes at infinite if, for any ε > 0, there is
K ⊂ X compact such that |f (x)| < ε for any x ∈ X \ K .
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as an element in Ã.5 As a result, we can still have the usual
interpretation of the spectrum of a self-adjoint operator as
the possible outcomes of physical experiments. Moreover,
some C∗-algebras admit traces, i.e. positive functionals
acting on them that generalise the usual notion of trace of
an operator [6, 7].

A last comment worth mentioning is that if traditionally
one considers unbounded operators such as momentum
or the Hamiltonian as observables, in practice one never
performs measurements capable of observing the entire set
of possible values of momenta or energy when they are not
bounded. Sensors and physical equipment have always a
bounded range within which they are suitable for making
measurements, so what is really done in a physical theory is
to account for measurements of a real observable A within
a certain bounded interval I ⊂ R, whose correspondent
operator AχI (A) is bounded by supp |I |. Here, χI is
the so-called characteristic function of I : for real x, the
function χI (x) equals 1 for x ∈ I and 0 otherwise. The
operator χI (A) is defined by the functional calculus for
self-adjoint operators A. An unbounded observable A shall
thus be thought of as some kind of limit AχIn (A) along an
increasing sequence of intervals In ↗ R (for more details,
see the notion of affiliated operators in [6]).

4 States as Functionals on C∗-Algebras

Since we have re-elaborated our concept of observables,
that of states ought to be rediscussed too. Indeed, as we
have argued in Section 2, a state could be thought of
as some property of a physical system that associates to
each observable A, a probability measure describing the
statistical distribution of repeated measurements of A on
many copies of the same system.

This can be achieved if we associate to A the number
ω(A) corresponding to the mean value of all its outcomes
over the several measurements, for if one knows the
averages of any observables, including those like “the
frequency of the outcome a in an experiment measuring A”,
then it is possible to reconstruct the statistical distribution
for A. For this reason, states will be defined as functions
from A into the theory’s scalars, usually C, with the special
property that ω(A) must be a real number if A is indeed a
physical observable, i.e. if A ∈ O ⊂ A.

Other reasonable properties for ω to have a physical
meaning are:

5Concretely, Ã is the algebra with elements (λ, A) ∈ C × A,
involution (λ, A)∗ = (λ, A∗) and multiplication (λ1, A1)(λ2, A2) =
(λ1λ2, λ1A2 + λ2A1 + A1A2); one easily checks that (1, 0) is an
identity in Ã, and the convenient way to map A into Ã is through the
application A �−→ (0, A).

– Positivity For a positive observable A, one must have
ω(A) � 0, for if any possible measurement of A results
in a positive value, so must be their average. This is
equivalent to saying that ω(A∗A) � 0 for any A ∈ A.

– Boundedness The average of a set of values cannot be
greater than their supremum; the measurable values of
an observable A are the elements of its spectrum, which
is bounded by ‖A‖. It follows that ω(A) � ‖A‖, or,
more shortly:

‖ω‖ = sup
A�=0

observable

|ω(A)|
‖A‖ � 1. (3)

For a matter of convenience, we always take the
supremum over the entire A \ {0}.

– Normalisation ω(A) is to be the average of measure-
ments of A. If the algebra A has an identity , whose
only measurable value is 1, we must impose ,
consequently the supremum in (3) is achieved and one
gets ‖ω‖ = 1. If the algebra has no identity, there will
be a bounded non-decreasing net6 (Aν)ν∈I of operators
approximating the identity (see Theorem 2.2.18 of [6]),
which causes ω(Aν) to approximate 1 and the supre-
mum in (3) to be exactly 1. In any way, we end up with
‖ω‖ = 1.

– Linearity In the usual description of quantum physics,
the average of linear combinations of two observables
A and B, λ ∈ R, is given by the combination of their
averages:

〈A + λB〉 = 〈A〉 + λ 〈B〉 ,

irrespective to whether A end B are compatible
observables or not, i.e. whether the corresponding
operators A and B commute or not. Hence, we must
have ω(A+λB) = ω(A)+λω(B) at least for A and B

being themselves observables and λ ∈ R, and so being
A+λB. If one of these is not an observable (for instance
if , and λ = 1), it is not physically
clear what their linear combination should mean, nor
even which interpretation one should give to ω(A).
Therefore, imposing linearity on ω with respect to A for
any A ∈ A is an arbitrary choice, so as to end up with
a linear theory; linearity is apparently not a physical
requirement unless for the restriction of ω to real linear
combinations of elements of O . Nonetheless, the theory
we obtain doing so seems to be a good description of
what is actually seen in the laboratory experiments.

6 An increasing net of operators is a net such that Aν � Aμ whenever
ν � μ; the operators’ order relation is defined in the following way:
Aν � Aμ if Aν − Aμ is a positive operator, i.e. if its spectrum is
included in R

+.
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We are thus led to:

Definition 2 Given a C∗-algebra A, ω is said to be a state
over A if it is a bounded positive linear functional with
‖ω‖ = supA∈A

A�=0

|ω(A)|
‖A‖ = 1.

Remark 1 Supposing that a C∗-algebra A has an identity
, it is possible to show (see e.g. [6, 20, 21]) that

a linear functional ω on A is bounded with
if and only if it is positive. This close connection
between positivity and boundedness allows us to require
in Definition 2 that a state be merely a positive linear
functional satisfying . If the algebra has no
identity, then it has at least a non-decreasing net (Aν)ν∈I

approximating it (Theorem 2.2.18 of [6]), and this remark
holds under the form ‖ω‖ = ω

(
supν∈I Aν

)
.

The first evident virtue of this new notion of state is
epistemological, as it applies not only to quantum physics,
but also for any experimental science whose systems are in
states about which we have information exclusively through
series of measurements, so we can only determine them
by the statistical profile of the data we gather. This holds
regardless of any predefined deterministic notion of state,
and regardless of having or having not complete knowledge
about the system that one might obtain from a totally
accurate measurement.

An obvious example of such an experimental theory is clas-
sical physics itself, and in Section 5.2 we show how this rigor-
ous notion of state fits perfectly the classical situation from
the laboratory’s point of view (recall Theorem 2 above).

Another of this concept’s advantages is that it does
encompass more quantum states than previously; in Section
10.1, we exhibit a state that cannot be written neither as
a vector nor as a density operator. In this case, however,
the reader should pay attention to the point that this state
will be defined through a process of taking limits, which
is not fortuitous. In fact, any state on a C∗-algebra A may
be approximated by a sequence of states that correspond to
density operators when A is realised as a concrete operator
algebra L(H ) (see Theorems 1, 7 and 8).

Finally. we notice that if ω1 and ω2 are two states in A

and λ ∈ [0, 1], it can be easily verified from the definition
that the convex combination λω1 + (1 − λ)ω2 is also a state
in A. This remark will be essential for the notion of pure and
mixed states below.

4.1 Pure andMixed States

Now, we come to the central notions in this discussion. As
informally described above, pure states are those that cannot
be written as a convex combination of other states. This

concept may be formalised for C∗-algebras in the following
way:

Let be A a C∗-algebra, and ω a state on it. ω is said to be
pure if, given a scalar λ ∈ [0, 1] and states ω1 �= ω2 on A

such that:

ω = λω1 + (1 − λ)ω2,

then necessarily λ = 0 or λ = 1. Otherwise, ω is said to be
a mixture of ω1 and ω2.

In Section 7, we will present an important criterion for
characterising a state ω on A as pure. It will be done by
means of evaluating the reducibility of the representation
of A into a specific algebra of operators on a Hilbert
space especially constructed for A and ω, the so-called
GNS representation. This characterisation is very important
because it makes clear the point that a mixed state is a sort of
composite system where each component can be analysed
by an independent algebra of observables, namely, by an
irreducible representation in the GNS Hilbert space of the
abstract observable algebra.

4.2 Pure and Vector States

When the C∗-algebra is a subalgebra of L (H ) for some
Hilbert space H , there is a natural way of defining states on
it, which is to take a Ψ ∈ H with norm ‖Ψ ‖ = 1 and put

ωΨ (A) = 〈Ψ, AΨ 〉
for any A ∈ A. Proving that this ωΨ is a true state in
the sense of Definition 2 is straightforward: obviously, it is
linear and positive (for ωΨ (A∗A) = ‖AΨ ‖2 � 0), so by
Remark 1, ‖ωΨ ‖ = ‖Ψ ‖2 = 1.

A state ω on A ⊂ L(H ) such that there exists a unit
vector Ψ in H satisfying:

ω(A) = 〈Ψ, AΨ 〉 ,

for any A ∈ A is said to be a vector state.
If the C∗-algebra considered is the algebra of all

continuous operators acting on a Hilbert space, one has the
following important statement:

Theorem 3 Any vector state on the C∗-algebra
L (H ) is pure.

This theorem is a particular case of Theorem 4, whose
proof is given below.

This theorem may explain why some quantum mechanics
textbooks present the concepts of pure and of vector states
as equivalent. It is important to emphasise, however, that
these concepts are not equivalent, in general, and one may
find situations, even physically relevant ones, where certain
pure states are not vector states and certain vector states are
not pure.
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Indeed, in Section 10.1, we exhibit an example of a pure
state that is not a vector state. Moreover, in the presence of
superselection rules, one can see on physical grounds that
not all vector states are pure.

As an example, consider the simple case where we have
two superselection sectors corresponding to some conserved
“charge” assuming two distinct values. The physical Hilbert
space H is a direct sum of two mutually orthogonal
subspaces H = H1 ⊕ H2, but the algebra of observables
cannot be the whole L (H ), since there are operators in
L (H ) that map H1 into H2 (and vice versa), violating
the superselection rule. Thus, the algebra of observables has
to be a subalgebra of L (H1) ⊕ L (H2). Let us assume
for simplicity that the algebra of observables coincides
with L (H1) ⊕ L (H2). Take a vector in H in the form
Ψ = (a1ψ1) ⊕ (a2ψ2), where ψ1 ∈ H1 and ψ2 ∈ H2

are normalised vectors (i.e. ‖ψ1‖H1 = ‖ψ2‖H2 = 1)
and where a1 and a2 are non-zero complex numbers with
|a1|2 + |a2|2 = 1 . Then, Ψ is also normalised and, for any
observable A = A1 ⊕ A2, one has:

ωΨ (A) = |a1|2ω1(A) + |a2|2ω2(A) ,

where ω1(A) = ω1 (A1 ⊕ A2) := ωψ1(A1) and,
analogously, ω2(A) = ω2 (A1 ⊕ A2) := ωψ2(A2) are two
states on L (H1) ⊕ L (H2). Thus, the vector state ωΨ is
not a pure state on L (H1) ⊕ L (H2), but a mixture of ω1

and ω2. The relation between purity and indecomposability
of the algebra will be further discussed in Section 7.

Although being a pure state does not imply being a
vector state in the general picture, as stressed above, in
some important cases this happens to be true; together with
Theorem 3, this means that in these situations both concepts
are indeed equivalent. In Section 10.2, for instance, we show
that for a C∗-algebra composed of all the compact operators
on some Hilbert space, all pure states are vector ones.

We shall need a technical generalisation of Theorem 3:

Theorem 4 LetH be some Hilbert space andA ⊂ L (H )

be a C∗-subalgebra of L (H ). Consider a normalised
vectorΦ ∈ H . If the orthogonal projection on the subspace
generated by Φ is an element of A, then the vector state ωΦ

on A is pure.

In the case when A = L (H ), this implies Theorem 3,
above, since in this case all orthogonal projectors on the
unidimensional subspaces generated by the vectors of H
belong to A.

Proof We follow closely the joint proof of Theorem 2.8 and
of Lemma 2.9 in [2]. For simplicity, let us assume that A
contains a unit .

By contradiction, let us assume that ωΦ is a mixed state
on A. Then, there are λ ∈ (0, 1) and two distinct states ω1

and ω2 on A such that:

〈Φ, AΦ〉 = λω1(A) + (1 − λ)ω2(A) (4)

for all A ∈ A. Let E be the orthogonal projector on the
one-dimensional subspace generated by Φ. By assumption
E ∈ A and , and we may write:

It follows from this that

which implies . Analogously, one has
, for both a = 1, 2. Since

one has ωa(B) = ωa(EBE) for both a = 1, 2. Now, for
any Ψ ∈ H one has EΨ = 〈Φ, Ψ 〉 Φ and, hence,

EBEΨ = 〈Φ, Ψ 〉 EBΦ = 〈Φ, Ψ 〉 〈Φ, BΦ〉Φ

= 〈Φ, BΦ〉 (〈Φ, Ψ 〉 Φ) = 〈Φ, BΦ〉EΨ ,

which implies EBE = 〈Φ, BΦ〉E. It follows that
ωa(B) = ωa(EBE) = 〈Φ, BΦ〉ωa(E). Taking, in
particular, , this says that 1 = ωa(E) for both
a = 1, 2. Hence, ωa(B) = 〈Φ, BΦ〉 for each a = 1, 2
and for all B ∈ A, which contradicts (4) with ω1 and ω2

being distinct. This completes the proof.
The case when A does not contain a unit can be treated

similarly by using the so-called approximants of the identity
(see e.g. [6]).

5 Examples

5.1 Mixtures of Vector States in QuantumMechanics

Let us consider the simple case where our C∗-algebra is
just L (H ), for H a Hilbert space representing a non-
interacting two-level system of particles, namely H = C

2,

where level 1 is represented by e1 =
(

1
0

)
and level 2 by

e2 =
(

0
1

)
. In this section, we are going to show that in

general there is no vector state Ψ ∈ C
2 that could represent

a mixture of states Φ1 and Φ2 with respective statistical
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weights p1 and p2, i.e. that it may be that no Ψ is such
that 〈Ψ, AΨ 〉 = p1 〈Φ1, AΦ1〉 + p2 〈Φ2, AΦ2〉 for all
observables, that turn out to be self-adjoint operators A ∈
L (H ) (in this case, Hermitian 2 × 2 complex matrices).

Take a mixture of p1 = 1
3 particles in state Φ1 = e1 and

p2 = 2
3 in Φ2 = e2; put Ψ =

(
ψ1

ψ2

)
, with ψ1, ψ2 ∈ C. In

order that the mean values of an observable A =
(

a1 0
0 a2

)

coincide when measured for Ψ and for the mixture, it is
necessary that |ψ1|2 = 1

3 and |ψ2|2 = 2
3 ; we could thus

choose ψ2 =
√

2
3 and ψ1 = eiγ

√
1
3 , with some phase γ ∈ R

that can be fixed if we take an observable B =
(

0 b

b 0

)
and

impose again that the mean values of B must coincide in
both cases: we find out that γ = π

2 . As a conclusion, one

has Ψ = 1√
3

(
i√

2

)
.

Nonetheless, take the observable C =
(

0 i

−i 0

)
. The

mean value of C for the mixture is 0, whereas 〈Ψ, CΨ 〉 =
2
√

2. Therefore, no state Ψ ∈ C
2 may represent the mixture

consisting of 1
3 of particles in the state e1 and 2

3 of them in
e2.

In fact, the algebra of observables of a two-level system
coincides with the set of all complex 2 × 2 matrices.
Moreover, we know (see Section 9) that a general state for
this algebra is of the form ωρ(A) = Tr(ρA), where ρ,
the so-called density matrix , is a self-adjoint and positive
matrix such that Trρ = 1. Since ρ is a self-adjoint operator,

it can be written in the form , where �a· �σ
is a notation for a1σ1 +a2σ2 +a3σ3, with ak , k = 0, . . . , 3,
being real numbers and σl , l = 1, 2, 3, being the Pauli
matrices.7 The condition Trρ = 1 implies a0 = 1. In
this case, the eigenvalues of ρ are 
1 = 1+‖�a‖

2 and 
2 =
1−‖�a‖

2 ; and hence, the condition of ρ having strictly positive
eigenvalues is ‖�a‖ < 1. For ‖�a‖ = 1, one has 
1 = 1
and 
2 = 0, implying that the matrix ρ is an orthogonal
projector. Hence, we can associate the space of states for
a two-level system with a closed unit sphere centred at the
origin in a three-dimensional space, the so-called Bloch
sphere, with the pure states being those on the surface of
the sphere (corresponding to ‖�a‖ = 1) and with the mixed
states being inside the sphere (corresponding to ‖�a‖ < 1).

5.2 Experiment-Determined States in Classical
Physics

Classically, the trajectory of a particle submitted to a smooth
potential remains completely determined given its position

7The matrices , σ1, σ2 and σ3 are a basis in the real space of the 2 × 2
self-adjoint matrices.

and momentum at a certain instant; besides, any other
physical quantity may be expressed in terms of these data,
like the energy and the angular momenta. Thus, the phase
space becomes a natural environment for describing the
states of classical systems, whose observables are scalar
functions defined over this phase space.

Effectively, although in the classical theory the particle’s
states are understood as the points of the phase space, even
the classical experiments alone cannot determine them with
total accuracy: an experiment only furnishes a set of data
permitting one to depict a (usually continuous) probability
distribution with a mean value and a standard deviation,
which allows us to calculate the probability of finding a
particle within some region in the phase space, though not
to assert that the particle will be precisely in one point
or another. This does not imply that points are not states;
they indeed are, since in classical mechanics, we admit
the particle to have fully determined values of position
and momentum, could we measure them or not. However,
this rather indicates the need for more states with lesser
localisation properties in order to take into account the fact
that we may also have access to reality through experiments
subjected to statistical errors.

Actually, it is possible to realise a commutative C∗-
algebra as an algebra of C0 functions on some phase space
(as reads Theorem 2), the states of which being linear
positive and normalised functionals on such continuous
functions. By the Riesz-Markov representation theorem (see
e.g. [11]), a linear, bounded and positive functional ω acting
on such a function f can be written as an integral over a
probability measure:

ω(f ) =
∫

f dμω,

where μω is a positive measure over the phase space; the
normalisation condition gives,

∫
dμω = 1, so μω may

be interpreted as a probability measure whose events are
points and (open) regions of the phase space, just as one
would need in order to represent classical physics as a
theory seriously committed to experimental results and their
intrinsic uncertainty.

Of course, this can only be done if A is commutative;
however, since commutativity basically means that the
observables are compatible, i.e. can be measured at the
same time, and in classical physics this is always the case
(for it is supposed that a measurement does not modify a
system’s state), such a restriction on the C∗-algebras is but
very natural.

Notice, though, that Dirac delta measures centred at a
single point in phase space of a classical mechanical system
are genuine probability measures, so states of completely
defined position and momentum are not excluded; on the
contrary, these are precisely the classical theory’s pure
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states. Consequently, this framework does not exclude the
possibility of a classical particle to have a definite position
and momentum. The novelty here is that our inability of
knowing them is not excluded as well, inasmuch as states
are allowed that correspond to the actual results of our
experiments.

In this context, it is also relevant to remark that, in
classical mechanics, the variance of any observable (i.e. a
measurable function in phase space) in a pure state vanishes
identically, since pure states are expressed by Dirac delta
measures centred at a point in phase space. Generally,
this characteristic is not shared by pure states in quantum
systems and this is one of the most relevant distinctions
between these theories.

6 Pure Quantum States and Their Classical
Limits

One of the physically interesting questions in this context
is about what happens with the purity of a given state of a
quantum system when the classical limit is taken. Naively,
one could believe that the purity is preserved but, as we will
now discuss, there are some interesting situations where a
pure quantum state is transformed into a classical mixture.

As we have seen above, the pure states in classical
physics are the one-particle well-defined position and
momentum states, namely the measures δx0 ⊗ δξ0 charging
points (x0, ξ0) of the phase space (for simplicity, we assume
it to be R

2). In the quantum picture for a system described
by observables in A = L (H ), with H a Hilbert space,
given an adequate normalised vector state ψ ∈ H , one can
consider the following �-dependent family of wave-packets:

ψ�(x) = 1

�
1
4

ψ

(
x − x0√

�

)
e

i
�
x·ξ0, for � > 0. (5)

These generally satisfy:

lim
�→0

〈
ψ�, Ĥ�ψ�

〉

H
= E(x0, ξ0),

where Ĥ� is the usual Hamiltonian operator and E is the
corresponding classical energy:

Ĥ� = −�
2

2
� + V and E = 1

2
ξ2 + V (x).

This calculation may be performed by noting that Ĥ� can
be formally given by the integral:

(
Ĥ�ψ

)
(x) = 1

2π�

∫

Rξ

∫

Ry

e
i
�

ξ ·(x−y)E

(
x + y

2
, ξ

)
ψ(y) dy dξ,

whose convergence can be assured if we take ψ with suffi-
cient decay in frequency, or else if we put in place of E a
function a ∈ C∞

0 (R2), so as the operator op�(a) defined by

(
op�(a)ψ

)
(x) = 1

2π�

∫

Rξ

∫

Ry

e
i
�

ξ ·(x−y)a

(
x + y

2
, ξ

)
ψ(y) dy dξ

is bounded. Hence, oph(a) ∈ A for all � > 0 and one can
show that:

lim
�→0

〈
ψ�, op�(a)ψ�

〉

H
= a(x0, ξ0).

The operator op�(a) is known in the literature as the Weyl
quantisation of the symbol a (see for instance [13, 14],
or [9] and the references quoted therein), and the set ϒ

generated by the Weyl quantisation of symbols in C∞
0 (R2)

is a C∗-subalgebra of A when embedded with the Moyal
or Weyl-Groenewold product, which is associative, but non-
commutative; see Theorem 4.11 in [14].

With more generality, a probability measure μ on R
2 is

said to be the Wigner or semiclassical measure[9, 10, 12]
associated to a normalised family of vectors (ψ�)�>0 ⊂ H
if, for any a ∈ C∞

0 (R2), one has:

lim
�→0

〈
ψ�, op�(a)ψ�

〉

H
=

∫

R2
a(x, ξ)μ(dx, dξ).

Within our framework of understanding states as linear
functionals over a C∗-algebra, we write down formally:

μ = sclim
�

ω�,

where ω� are states on the algebra ϒ given by ω� (A) =〈
ψ�, Aψ�

〉
H , for A ∈ ϒ . Since μ(R2) = 1, one can

understand μ as a classical state on a commutative C∗-
algebra describing the classical observables, which are
C∞

0 (R2) functions, as in Section 5.2.
A natural question that arises at this point is whether the

semiclassical limit of a family of pure states will always be
pure or not. The answer was given in [8], where the author
showed that a family of wave-packets not much different
from (5) may split into the combination of two Dirac delta
measures on the phase space. Even better: when regarding
a time-dependent situation where the quantum states evolve
according to a dynamical equation like Schrödinger’s, and
their associate Wigner measures evolve correspondingly, it
is possible to have an initial state of quantum pure states
concentrating to a classical pure state, and keeping like that
for a while, but then degenerating into a classical mixture.

More precisely, it was shown in Theorem 1.12 of [8]
that the pure states Ψ �

t which are the propagation under
V (x) = −|x| of initial data:

Ψ �

0 (x) = p1

�
1
4

Ψ 1
(

x√
�

)
+ p2

�
1
4

Ψ 2
(

x√
�

)
e−i�β−1x,
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Fig. 1 Trajectories followed by a pure state that splits into two at t = 0
on the phase-space origin, corresponding to the semiclassical limit of
Ψ �

t ; the arrows indicate the time’s increasing direction. Source: [8]

with p2
1 + p2

2 = 1, will behave semiclassically, under
appropriate choices of parameters,8 as

μt(x, ξ) = δ

(
x − t2

2

)
⊗ δ (ξ + t)

for t � 0, so being a classical pure state, whereas for t > 0
we will have:

μt (x, ξ) = p2
1δ

(
x − t2

2

)
⊗δ (ξ − t)+p2

2δ

(
x + t2

2

)
⊗δ (ξ + t) ,

which is a non-trivial convex combination of two pure
classical states, thus a mixture. In Fig. 1, we can observe the
trajectories followed by the semiclassical measures of the
quantum states Ψ �

t , which are always, we recall, pure, as
any vector state is.

7 Pure States and Irreducibility

We will now turn back to our general analysis and consider
the important relation between purity and irreducibility of
certain representations of the algebra of observables in
quantum systems. This discussion is of particular relevance
for the treatment of superselection sectors in quantum
systems with infinitely many degrees of freedom, as in
quantum field theory or quantum statistical mechanics.

It is possible to determine if a state ω on a C∗-algebra A

is pure or mixed by analysing the reducibility of a certain
representation of A into the space of bounded operators on
a Hilbert space suitably constructed from ω and A. This is
achieved by means of the GNS construction (named after
Gelfand, Naimark and Segal), which we sketch below.

8With 0 < β < 1
10 , Ψ 1, Ψ 2 ∈ C∞

0 (R), Ψ 1 supported on x > 0 and
supp Ψ 1 ∩ supp Ψ 2 = ∅.

To begin with, define:

Nω = {
A ∈ A, ω(A∗A) = 0

}
.

Nω is a vector subspace of A, as it may be verified by the
Cauchy–Schwartz inequality (see e.g. [6]):
∣∣ω

(
A∗B)

)∣∣2 � ω(A∗A)ω(B∗B), (6)

valid for any A, B ∈ A and positive linear functionals ω.
Thus, one obtains a well-defined inner product 〈 · , · 〉ω on
the quotient space A/Nω of equivalence classes:

ψA =
{
Â : Â = A + I, I ∈ Nω

}

by posing 〈ψA, ψB〉ω = ω(A∗B) (its independence with
respect to the classes’ representatives can be verified once
again by means of the Cauchy–Schwartz inequality).

The canonical completion of A/Nω with respect to
the inner product 〈 · , · 〉ω, denoted Hω, is called the
representation space of A for the state ω.

Now, let us remark that Nω is also a left ideal of A,9

so the linear operator πω(A) acting on the dense subspace
A/Nω of Hω as πω(A)ψB = ψAB is well-defined;
moreover:

‖πω(A)ψB‖2 = ω(B∗A∗AB)

� ‖A‖2ω(B∗B) = ‖A‖2‖ψB‖2

(where we have used the same inequality as in footnote
9), showing that πω(A) is bounded and, therefore, may be
continuously extended to the whole Hω. Furthermore, it
is easy to see that, for any A1, A2 ∈ A and λ ∈ C,
we have πω(A1)πω(A2) = πω(A1A2), πω(A1 + λA2) =
πωA1 +λπω(A2) and πω

(
A∗

1

) = πω(A1)
∗. It is sufficient to

check these claims for vectors of the form ψB with B ∈ A,
since they are dense in Hω; so, given any B ∈ A:

πω(A1)πω(A2)ψB = ψA1A2B = πω(A1A2)ψB,

now, using the usual vector space operations for the quotient
space:

πω(A1 + λA2)ψB = ψ(A1+λA2)B = ψA1B + λψA2B

= (πω(A1) + λπω(A2))ψB,

and last
〈
πω(B∗)ΨA1 , ΨA2

〉
ω

= ω((B∗A1)
∗A2) = ω(A∗

1BA2)

= 〈
πω(B)∗ΨA1 , ΨA2

〉
ω

,

leading us to the conclusion that πω : A −→ L (Hω) is
actually a representation of the C∗-algebra A in the Hilbert
space Hω.

Finally, put if A has an identity.10

9 For any A, B ∈ A, one has ω((AB)∗(AB)) � ‖A‖2ω(B∗B) (see
[6]), so clearly AB ∈ Nω whenever B ∈ Nω.
10If A does not have an identity, similar results can be obtained using
nets converging to a unity. See e.g. [6].
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Not only will we have that the set

{ πω(A)Ωω : A ∈ A }
is the dense in Hω,11 for πω(A)Ωω = ψA, but also that

for any A ∈ A, i.e. within this particular representation
crafted for ω, this state appears as a vector state Ωω.

The triple (Hω, πω, Ωω) is called the GNS representa-
tion of the C∗-algebra A for the state ω.

Let be A a C∗-algebra and ω a state on it. A
triple (H , π, Ω) consisting of a Hilbert space H , a
representation π of A in L (H ) and a vector Ω ∈ H
such that the set {π(A)Ω : A ∈ A} is dense in H and that
〈Ω, π(A)Ω〉 = ω(A) is called a cyclic representation of A
for the state ω.

As we see, for any state ω over the C∗-algebra A, there
exists at least one cyclic representation, the GNS one,
(Hω, πω, Ωω). Actually, it is not difficult to verify that the
cyclic representations are unique up to unitary equivalences.
See, for instance, Theorem 2.3.16 of [6] for details.

Yet, given that we ended up representing ω as a vector
state despite of it being mixed or not, we may ask: is there a
way to discover whether ω, as a functional on A, was a pure
state or a mixture by analysing its cyclic representations?

Now intervenes the notion of irreducibility. A represen-
tation π of an algebra A into a vector space V is said to
be irreducible if there is no closed subspace U ⊂ V left
invariant by the action of π , apart from the trivial spaces
U = {0} and U = V . Said otherwise, π is irreducible if,
should π(A)U ⊂ U for U ⊂ V closed and every A ∈ A,
then either U = {0} or U = V . If π is not irreducible, it is
said to be reducible.

The following theorem is of central importance for this
discussion.

Theorem 5 Let A be a C∗-algebra and ω a state on it.
Then, ω is pure if, and only if, given a cyclic representation
(H , π, Ω) of A for ω, π is irreducible.

A proof can be found in references like [6, 15]. For the
convenience of the reader, we present it in Appendix 1.

As we see, purity manifests itself in irreducibility of
the cyclic representation of the algebra. On the other hand,
the fact that the cyclic representation of a mixed state
is reducible (and, therefore, can be further decomposed
into irreducible ones, as discussed in Section 11) means
that such states can be interpreted as being built by
elementary subsystems. This result is of major importance

11When this happens, Ωω is said to be a cyclic vector.

for understanding the distinction between pure states and
mixtures.

8 Purification of States

Given a quantum state defined in a separable Hilbert space
HI by a density matrix ρ, it is possible to find another
(not uniquely defined) separable Hilbert space HII such that
the original state can be represented as a normalised vec-
tor state Ψρ in the tensor product space HI⊗HII. Therefore,
the vector state defined by Ψρ is a pure state in the enlarged
algebra L (HI ⊗ HII) but, except when ρ is a one-
dimensional projection, it is not a pure state for the original

algebra . The vector Ψρ ∈
HI ⊗ HII is called a purification of the state defined by ρ.

These facts, which we are going to establish below, have
an interesting physical interpretation, since they say that
a given mixed state of a quantum system can always be
thought of as a pure state of a larger quantum system.

The vector Ψρ is not to be confused with the GNS
vector presented above, since the vector Ψρ is not cyclic and
separating for the original algebra
and since the algebra L (HI ⊗ HII) is indeed “larger” than
the “original” algebra .

Let HI be a separable Hilbert space and let ρ be a density
matrix acting on HI, i.e. a bounded, trace class, self-adjoint
and positive operator acting on HI with TrHI(ρ) = 1. The
expression L (HI) � D �→ TrHI(ρD) ∈ C represents a
state on the C∗-algebra L (HI).

Consider any other separable Hilbert space HII with
dim(HII) ≥ dim(HI). We can find a normalised vector
Ψρ ∈ H := HI ⊗ HII such that:

(7)

where PΨρ is the projector on the subspace generated by Ψρ .
Let 
k, k ∈ N be the eigenvalues of ρ (includ-

ing multiplicity), with 
k ≥ 0 for all k, and
let vk, k ∈ N be the corresponding normalised
eigenvectors, building a complete orthonormal basis in
HI:

〈
vi , vj

〉
HI

= δi,j . The spectral decomposition of ρ is

ρ = ∑∞
i=1 
iPvi

, where Pvi
is the orthogonal projector on

the one-dimensional subspace generated by vi .
Let {wl , l ∈ N} be an arbitrary orthonormal set

of vectors (not necessarily complete) in HII (i.e. with〈
wi , wj

〉
HII

= δi,j ). Define Ψρ ∈ H by

Ψρ :=
∞∑

i=1

√

i (vi ⊗ wi ) . (8)
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The sequence in the r.h.s. converges in H , because the
vectors vi ⊗ wi , i ∈ N, are orthonormal and because
{√
i, i ∈ N} is a square summable numerical sequence,
since

∑∞
i=1 
i = TrHI(ρ) = 1. We have,

establishing (7). For , in particular, this relation
shows that

∥∥ψρ

∥∥
H = 1.

The vector Ψρ defined in (8) depends on ρ (through the
eigenvalues 
i and the eigenvectors vi) and on the arbitrary
choice of the orthonormal vectors wj of HII. The l.h.s. of
(7), however, does not depend on the choice of the wj ’s.

It is relevant to notice that, except when ρ

is a one-dimensional projection, the vector state
defined by Ψρ is not a pure state for the algebra

. It is clear from (7) that, for two
density matrices ρ e ρ′ and for λ ∈ [0, 1], one has:

From this, it also follows that

since ΨPvi
= vi ⊗ wi . Hence, except when ρ

is a one-dimensional projection, the vector state
defined by Ψρ is not a pure state for the algebra

.
One can easily show that ρ = PtrHII(PΨρ ), where PtrHII

denotes the partial trace with respect to the Hilbert space
HII.

A relevant question is whether a physical process
(through a completely positive map) can be identified
leading to one of the purifications associated to a given state.
Such a process is known as physical purification and we
refer the reader to [22] for further discussions on this issue.

9 Normal States and Density Matrices

We now come to the important relation between purity and
normality of states. In spite of being mathematically a more
technical discussion, it is of central importance to physics

due to its relation to the notion of density matrices and to
other issues.

The underlying question relevant to physics is as follows:
under which circumstances can a state ω be defined by a
density matrix, i.e. can be written in the form ω(A) =
Tr (ρA)?

Definition 2 gives rise to far more exotic states than
those we are used to, represented by density operators when
A ⊂ L (H ) for some separable Hilbert space H . In
this case, these density operators amount to an important
part of the set of all states: as a corollary of Theorem 8,
the density operators are dense in the whole set of states
with respect to the weak operator topology, also known as
physical topology (details ahead). As a result, we are led
to looking for further characterisations regarding states in
order to better understand them.

In particular, we will see that density operators are the
realisation of normal states in the case where A ⊂ L (H ).

Recall that an increasing net of operators is a net
(Aν)ν∈I ⊂ A12 such that Aν � Aμ whenever ν � μ; the
operators’ order relation is defined in the following way:
Aν � Aμ if Aν − Aμ is a positive operator, i.e. if its
spectrum is included in R

+.

Definition 3 A state (or any positive functional) ω on a
C∗-algebra A is said to be normal if

ω

(
sup
ν∈I

Aν

)
= sup

ν∈I

ω(Aν)

for any bounded increasing net of positive operators
(Aν)ν∈I ⊂ A.

As one can see, the definition of normal states heavily
depends on the notion of operator order and seems to
express some kind of “order continuity” property. Indeed,
one may wonder whether there exists some topology in A

for which a state being normal would merely mean that it
is continuous. A topology as such does exist, actually more
than one. Let us define them.

Definition 4 Let H be a Hilbert space. We define the
following families of seminorms on L (H ):

– Ultra-strong seminorms For a sequence
(ψn)n∈N ⊂ �2(H ):

‖A‖ψ :=
( ∞∑

n=1

‖Aψn‖2

) 1
2

.

12I is the index set, the set where the indices take their values from.
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– Ultra-weak seminorms For a pair of sequences
(ψn)n∈N, (φn)N ⊂ �2(H ):

‖A‖ψ,φ :=
( ∞∑

n=1

|〈ψn, Aφn〉|2
) 1

2

.

The topologies induced on L (H ) by these families are
known, respectively, as the ultra-strong operator topology
and the ultra-weak operator topology.

Although these two topologies are distinct, being ultra-
weakly or ultra-strongly continuous is equivalent for linear
functionals.

Theorem 6 Let A ⊂ L (H ) be a C∗-algebra, and ω

a positive functional on it. The following conditions are
equivalent:

(i) ω is normal;
(ii) ω is ultra-strongly continuous;
(iii) ω is ultra-weakly continuous;
(iv) there exists (φn)n∈N ⊂ H with

∑∞
n=1 ‖φn‖2 < ∞

such that

ω =
∞∑

n=1

ωφn, (convergence in norm), (9)

where ωφn is given, for any A ∈ A, by ωφn(A) =
〈φn, Aφn〉.

A proof of this theorem can be found in [6, 7].
If H is a separable Hilbert space, it is now easy to

conclude from (9) that a normal state on A ⊂ L (H ) can
be represented by:

ω(A) = Tr (ρA), ∀A ∈ A, (10)

where

ρ =
∞∑

n=1

‖φn‖2 |Φn〉 〈Φn| ,

(φn)n∈N ⊂ H being the sequence obtained in the above
theorem, and Φn = φn

‖φn‖ .
Besides, since a state is by hypothesis normalised, it

follows that we will also have:

Tr (ρ) =
∞∑

n=1

‖φn‖2 = 1 ,

so ρ is a genuine density operator.

Theorem 7 Let H be separable. Normal states are
realised by density operators when A is mapped into
L (H ). Conversely, any states realised by density operator
is a normal state.

Proof From Theorem 1, it is known that A may be
isomorphically mapped onto a closed subalgebra Ã ⊂
L (H ), so the states on A may be mapped onto the states on
Ã. By Theorem 6 and the subsequent discussion, the proof
is complete.

Now, this section’s central result:

Theorem 8 Normal states are dense in the set of all states
according to the the weak (physical) topology, i.e. given
any state ω on a C∗-algebra A, there exists a sequence of
normal states (ωn)n∈N ⊂ A such that, for any A ∈ A,
ω(A) = limn ωn(A).

Proof Theorem 1.1 in [16].

Remark 2 As we saw in Section 2.1, an actual state ω

of a physical system may be determined by a process
of taking limits within the physical topology. In view
of the previous theorem, we may only consider normal
states to partially describe ω within weak neighbourhood
Ωε(A1, . . . , Ak; ω); however, it is important to bear in
mind that, even in this case, the limit, i.e. ω, may end up
being non-normal.

If a state is normal, it is easier to identify it as pure or
mixed:

Theorem 9 Let A be a C∗-algebra isomorphic to Ã ⊂
L (H ) for some separable Hilbert space H . Let ω be
a normal state on A and ρ ∈ Ã the density operator
associated to ω (see Theorem 7 above). Then ρ has Hilbert-
Schmidt norm

‖ρ‖HS = √
Tr(ρ∗ρ) = 1

if and only if ω is pure. If ω is a mixed state, ‖ρ‖HS < 1.

Proof Since ρ is a density operator, it is positive and
compact, so it is possible to choose a Hilbertian basis
(en)n∈N ⊂ H and a sequence of scalars 
n � 0 such that
ρ = ∑∞

n=1 
n |en〉 〈en|. Given that Tr (ρ) = ∑∞
n=1 
n = 1,

we must have 
n � 1 for every n ∈ N, which implies

2

n � 
n, the equality holding only in the case 
n = 0 or

n = 1; as a consequence, calculating its Hilbert-Schmidt
norm:

‖ρ‖2
HS = Tr (ρ∗ρ) =

∞∑

n=1


2
n,

it becomes clear that ‖ρ‖HS equals 1 if and only if there
is exactly one 
n non-null, say for n = N . Thus, we have
ρ = |eN 〉 〈eN | ∈ A, which means that ω is mapped to a state
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that acts on A ∈ Ã as Tr (ρA) = 〈eN , AeN 〉, a vector state.
By Theorem 4, states of this form are always pure, implying
the same for ω itself. Conversely, if ‖ρ‖HS < 1 strictly, then
we have at least two non-zero 
n’s; calling one of them 
N ,
one has:

ρ = λ |eN 〉 〈eN | + (1 − λ)ρ′,

with 0 < λ = 
N < 1 and ρ′ = 1
1−
N

∑∞
n=1
n�=N


n |en〉 〈en|.
Since ρ′ also represents a state, for it is a density operator,
we have that ρ is a non-trivial mixture, so it is not pure.

The converse affirmations, i.e. that being pure implies
‖ρ‖HS = 1, and being a mixture ‖ρ‖HS < 1, are also true,
as any density operator has Hilbert-Schmidt norm within
(0, 1].

As a side remark, we would like to highlight that it is
not trivial to see that |eN 〉 〈eN | and ρ′ define states on Ã,
since the spectral projections of ρ have no reason to belong
to Ã. Fortunately, the spectral projections are elements of
the closure of Ã ⊂ L (H ) in the weak operator topology
(wot), hence |eN 〉 〈eN | and ρ′ define normal states in the

von Neumann algebra Ã
wot

, the closure of Ã in the weak
operator topology. Finally, as seen in Theorem 6, normal
operators are (ultra-)weakly continuous and the conclusion
holds.

We should emphasise that normal states may be pure
or mixed. From their characterisation given in Theorem 9,
normal pure states acting on M ⊂ L (H ) are density
operators on H with unitary Hilbert-Schmidt norm, and
from the very proof of this result one sees that:

Theorem 10 Any normal pure state on the C∗-algebra
L (H ) is a vector state.

This last result justifies a very common statement, found
in many quantum mechanics textbooks, that pure states are
those whose Hilbert-Schmidt norm equals 1, and mixtures
those with ‖ρ‖HS < 1. This is only correct for normal
states, which tells us not the whole picture, as we will just
see in the next section.

10More Issues About Purity

In this section, we discuss some important issues and
examples concerning the relation between pure and vector
states.

10.1 A Pure State That Is Not a Vector State

Here, we will extend the study in Section 4.2 by exhibiting
an example of a pure state that is not a vector state. For

simplicity, let us suppose that H is a separable infinite-
dimensional Hilbert space with orthonormal basis {en}n∈N.
Let (an)n∈N ⊂ [0, 1) be a sequence such that an −→

n→∞ 1, for

instance: an = 2− 1
n .

Now, define an operator A ∈ L (H ) acting on a vector
Ψ = ∑∞

n=1 ψnen ∈ H as:

AΨ =
∑

n∈N
an ψnen.

Clearly, ‖AΨ ‖ < ‖Ψ ‖ for any Ψ ∈ H , and together with
‖Aen‖ −→ 1, we obtain ‖A‖ = 1. Finally, Theorem 5.1.11
in [15] states that there exists a pure state ω on L (H ) such
that ω(A) = ‖A‖ = 1; we claim that this pure state cannot
be vector. In fact, if it were the case, we would have, for
some φ ∈ H with ‖φ‖ = 1:

1 = ω(A) = 〈φ, Aφ〉 � ‖Aφ‖ < 1,

which is absurd.

10.2 All Pure States onK (H ) Are Vector States

The present example (inspired in Section 5.1.1 of [15])
contrasts with the previous one. Above, we have shown that
there may be in general pure states which are not vector;
here we will see the opposite, i.e. a special case where all
pure states are also vector, stressing the importance of the
particular algebra that we take for observables.

To begin with, noting by K (H ) the algebra of compact
operators on a separable Hilbert space H , it is known that
its dual is composed by the set of trace class operators acting
on H , in symbols: K (H ) = L1(H ). For the reader’s
convenience, let us quickly proof this fact by remarking that
the linear function L1(H ) � A �−→ TrA ∈ K (H )∗,
where TrA(K) = Tr (AK) for any K ∈ K (H ), is an
isometric isomorphism.

Indeed, taking an element ω ∈ K (H )∗, Riesz’s
representation theorem implies that there is a bounded
operator Aω ∈ L (H ) such that the sesquilinear form:

H × H � (x, y) �−→ ω (|x〉 〈y|) ∈ C

can be written as ω (|x〉 〈y|) = 〈x, Aωy〉. Aω is trace-class,
for picking up a Hilbertian basis {en}n∈N of H :

Using continuity and linearity of ω, denseness of the finite-
rank operators in K(H ) and further remarks about the
injectivity A �→ TrA, we obtain the desired duality.

Now, concerning a state ω on K (H ), it is easy to see
that the corresponding Aω will be positive; since it is also
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compact (as trace-class implies compact), there exists a
Hilbertian basis {en}n∈N of H for which Aω is diagonal,
i.e. Aωen = λnen, with λn � 0, and

∑∞
n=1 λn = 1 (this sum

comes from the normalisation of ω). For K ∈ K (H ), we
have:

ω(K) = Tr (AωK) =
∞∑

n=1

λn 〈en, Ken〉 . (11)

Hence, any state ω on K (H ) is a convex combination of
states like 〈en, Ken〉; if ω is pure, then λN = 1 for some
N ∈ N and λn = 0 for n �= N , so we conclude that it is also
a vector state.

11 Krein-Milman’s and Choquet’s Theorems

From the very beginning, we have been talking about
pure states, but until now we have not answered a crucial
question: do they exist?

Notice that pure states constitute some kind of “funda-
mental brick” in the construction of states, that is, if we have
a state ω we can wonder if it is a mixed state. Then, if it is
a mixed state, we have ω = λ1ω1 + λ2ω2 for two distinct
states ω1 and ω2 and λ1, λ2 ∈ (0, 1), and we can wonder
now if ω1 and ω2 are themselves mixed states. Proceeding
this way, after some steps, we write the original state as a
convex combination ω = ∑n

i=1 λiωi , with λi ∈ (0, 1) and∑n
i=1 λi = 1. This procedure is very similar to the one used

to prove that a positive integer number has a prime decom-
position, but there is a very important difference because
you cannot divide positive integers forever by divisors big-
ger than 1. This difference creates the possibility that the
process we suggested for decomposing states never stops,
leaving unanswered the question about the very existence
of pure states (apart from some concrete examples, like the
cases where A = L(H ), where it is known that vector
states are pure).

Is there a way to circumvent the problem of our
infinite process appealing for topology, that means can we
assure that at least the sequence obtained by our steps is
convergent, in which case we could write ω = ∑∞

i=1 λiωi ,
with λi ∈ (0, 1) and

∑∞
i=1 λi = 1?

Fortunately, it is possible to prove that there exist pure
states and, as our previous discussion suggests, that they
exist in such a number that all states can be written as limits
(in a suitable topology) of convex combination of them. This
is Krein-Milman’s theorem.

In order to state Krein-Milman’s theorem, we need to
define what is a face and what is an extremal point.

Definition 5 Let V be a topological vector space and C ⊂
V be a non-empty convex subset. A non-empty closed and

convex subset F ⊂ C is said to be a face (or extremal)
set of C if, given x, y ∈ C and λ ∈ (0, 1), the fact that
λx + (1 − λ)y ∈ F imply x, y ∈ F .

Notice that a face is a set such that, if it contains any
internal point of a line segment of C, then it contains the
whole segment. A good intuition on this definition comes
from polyhedra, which are in fact, the origin of the name
“face”. If we think of a cube, its squared faces are, indeed,
six faces in the sense above.

Notice now that a face is again a non-empty convex set;
hence, we can ask about the faces of a face. It is not difficult
to notice that a face of a face is also a face of the original
set (see Lemma 2.10.5 of [17]). Back to our example, we
can ask about the faces of the six squares and, it is easy to
verify, they are the squares’ edges (and the cube’s vertices),
and the edges’ faces are the ending points of the edges, i.e.
faces without subfaces that are unitary sets containing each
of the cube’s vertices. Let us give a special name to these
points.

Definition 6 Let V be a Hausdorff topological vector space
and let C ⊂ V be a non-empty convex set. An extremal
point of C is a element x ∈ C such that {x} is a face of C. We
denote Ext(C) = {x ∈ C : x is an extremal point of C}.

Of course the cube is a very simple instance of the
general question, but this example gives us a general idea on
what is going on: the extremal points of the cube, namely,
its vertices, can be used to obtain any other of the cube’s
points by taking convex combinations: first obtaining the
edges, after the faces and finally the interior of the cube.
That is, the cube is the smallest convex set containing
its vertices. We call this smallest convex set the convex
hull, that is, the convex hull of a set A is the intersection
of all convex subsets of the vector space containing A.
The convex hull of a set A is denoted by co (A). An
analogous definition can be done by taking the closed
convex subsets, that is the closed convex hull, which is
denoted by co (A1).

Another interesting fact is that, even in finite dimension,
Ext(K) is not necessarily closed. Consider for example the
y-displaced double cone in R

3:

C = co
(
{(x, y, 0) ∈ R

3 : x2+(y − 1)2 = 1} ∪ {(0, 0, 1), (0, 0, −1)}
)

.

Notice that (0, 0, 0) cannot be an extremal point of C,
since (0, 0, 0) = 1

2 (0, 0, 1) + 1
2 (0, 0, −1). In fact,

Ext(C) = {(x, y, 0) ∈ R
3 : x2+(y−1)2=1, x �= 0}∪{(0, 0, 1), (0, 0, −1)},
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which is not closed.

The double cone
Finally, we are fit for stating the general result.

Theorem 11 (Krein-Milman) Let V be a Hausdorff locally
convex topological vector space and let K ⊂ V be compact
and convex. Then, one has K = co (Ext(K)).

It is important to reinforce that compactness plays a
central role in the proof of Krein-Milman’s theorem. In fact,
we need compactness to ensure that this process of taking
faces of faces does end and does not end up in an empty
set, which is similar to the issue described in this section’s
second paragraph.

Now that we have Krein-Milman’s theorem in hand, we
can clarify our previous claim on the existence of pure
states. First of all, the closed unit ball of any infinity
dimensional Banach space is not compact in the norm
topology, but the closed unit ball in the dual of a normed
vector space is compact in the weak-∗ topology, thanks
to the Banach-Alaoglu’s theorem (see Theorem 2.6.18 of
[17]). The conclusion is that the states of any C∗-algebra
A ⊂ L(H ) constitute a weak-∗ closed subset S of the
weak-∗ compact set of all bounded and normalised linear
functionals on A. Hence, S is weak-∗ compact itself and,
by Krein-Milman’s theorem, S = co (Ext (S )). Since the
extremal points of S are the states that do not lay in the
interior of any segment line of S , what is a way to say that
they are not convex combinations of other states, Ext (S ) is
the set of all pure states.

There are several interesting consequences of Krein-
Milman’s theorem, among them, it can be used to prove that
given A ∈ A, there is a pure state ωA such that ωA(A) =
‖A‖. This result is used in the construction presented in
Section 10.1.

Let us return to Krein-Milman’s theorem. Suppose
V is a Hausdorff locally convex topological vector
space and K ⊂ V is compact and convex. Notice
now that, for every x ∈ co (Ext(K)), there exists
n ∈ N, {λi}ni=1 ⊂ [0, 1], with

∑n
i=1 λi = 1,

and {xi}ni=1 ⊂ Ext(K) such that x = ∑n
i=1 λixi .

Then, for every continuous linear functional f on V ,
f (x) = f (

∑n
i=1 λixi) = ∑n

i=1 λif (xi). When Ext(K) is
finite, we could also write f (x) = ∑

e∈Ext(K) λef (e), for
every f ∈ V ∗, with λe ∈ [0, 1]. Notice that the different
λe’s work as weights in the sum, with

∑
e∈Ext(K) λe = 1.

We can define the probability measures (Dirac measures)
δe : K → R by

δe(X) =
{

1, if e ∈ X,

0, if e /∈ X,

for each e ∈ Ext(K) and μ = ∑
e∈Ex(K) λeδe. It is quite

easy to check that f (x) = ∫
K

f dμ.
Notice that the measure μ is a regular Borel measure

satisfying μ(K) = 1, in other words, μ is a probability
measure. Furthermore, μ (K \ Ext(K)) = 0. A measure
satisfying this is said to be supported in Ext(K). In addition,
we have that f (x) = ∫

K
f dμ for all continuous linear

functional on V . A measure satisfying this property is said
to represent x ∈ K .

This is not an isolated case, and its generalisation is given
by:

Theorem 12 (Choquet) Let V be a Hausdorff locally
convex space and K ∈ V a metrizable convex compact set.
Then, for every x ∈ K , there exists a probability measure μ

supported in Ext(K) representing x.

Krein-Milman’s and Choquet’s theorems are equivalent
when Ext(K) is closed see [18].

Choquet’s theorem has a very interesting consequence
in von Neumann algebras. Let M ∈ L(H) be a von
Neumann algebra. Since a von Neumann algebra is a dual
space of some Banach space M∗, its closed unit ball
is weak-∗ compact. In addition, if H is separable, the
closed unit ball B1 ⊂ L(H ) with the weak-∗ topology is
metrizable. Hence, for K = B1, we are in the conditions
of Choquet’s theorem, so for any A ∈ B1 there exists a
probability measure μA supported in Ext(B1) such that,
for all continuous linear functionals on L(H ), f (A) =∫
B1

f dμA.
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Appendix 1: Proof of Theorem 5

Here, we follow [15] closely. First, take a non-null positive
linear functional ω′ such that, ∀A ∈ A, ω′(A∗A) �
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ω(A∗A). By the Cauchy-Schwartz inequality (6),

|ω′(A∗B)|2 � ω′(A∗A)ω′(B∗B) � ω(A∗A)ω(B∗B)

= ‖π(A)Ω‖2‖π(B)Ω‖2,

which implies, by Riesz representation theorem (see e.g.
[1]), the existence of a positive operator T ∈ L (H ) such
that 〈π(A)Ω, T π(B)Ω〉 = ω′(A∗B) (remark that the ses-
quilinear form (π(A)Ω, π(B)Ω) �−→ ω′(A∗B) may be
extended to the whole H , and thus the domain of T , only
because Ω is cyclic). Taking A, B, C ∈ A arbitrary:

〈π(A)Ω, T π(B)π(C)Ω〉 = ω′(A∗BC) = ω′ ((B∗A)∗C)

= 〈π(A)Ω, π(B)T π(C)Ω〉 ,

which implies that [T , π(B)] = 0 for any B.
As known in representation theory (as a consequence

of Schur’s Lemma, see e.g. [19]), if π is an irreducible
representation, any self-adjoint operator commuting with it
must be a multiple of the identity and vice versa. It happens
that, if for some λ ∈ C, then ω′ = λω. Let us show
an implication of this fact, that ω is a mixture if and only if
π is reducible, which is enough for the theorem’s statement.

Indeed, if ω is a mixture, one may find ω′ such that
ω′(A∗A) � ω(A∗A) which is not a multiple of ω: in this
case, there is a scalar σ ∈ (0, 1) and states ω1 and ω2 (none
of them multiples of ω) such that ω = σω1 + (1 − σ)ω2,
so just take ω′ = σω1. The corresponding T will not be a
multiple of the identity, hence the reducibility of π .

Conversely, supposing that π is reducible, one may find
a self-adjoint S ∈ A commuting with every π(B) and not
being a multiple of . As a consequence, any non-trivial
spectral projector P of S will also commute with π , not be
a multiple of the identity, and further satisfy .
Define the functional ω′(A) = 〈Ω, Pπ(A)Ω〉 and remark
that it is positive, not a multiple of ω, and that

This implies that ω is a non-trivial mixture ω = λω1 +
(1 − λ)ω2, with λ = ‖ω′‖ ∈ (0, 1) and states ω1 = 1

‖ω′‖ω′

and ω2 = 1
1−‖ω′‖ (ω − ω′) (see Remark 1 for a quick

justification that ‖ω2‖ = 1).
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