4310255 - Física Experimental para Química

Atividade Extra - Profa. Maria Fernanda (Turmas A e B do IQ-USP)

Parte I

- 1. Escreva algumas linhas dizendo o que você entende por uma medida e o valor verdadeiro de uma grandeza de interesse físico. Dentre todas essas grandezas existem aquelas que não são mensuráveis de maneira direta? Se sim, dê no mínimo um exemplo.
- 2. O que são os algarismos significativos de uma medida física seja ela direta ou indireta? Existe alguma relação entre eles e a incerteza associada a uma medição qualquer? Se sim, qual?

Parte II

Tomemos como objeto de nosso estudo um pêndulo simples; ou seja, um sistema físico constituído por um objeto de massa m não nula suspenso por um fio inextensível, cujo comprimento é L, com massa desprezível e que prende-se a um ponto fixo no espaço.

Supondo que no movimento do objeto as únicas forças que atuam sobre ele são as forças peso e de tração, a equação que descreve este movimento é dada por

$$m\frac{d^2\theta}{dt^2} + m\frac{g}{L}\sin\theta = 0 ,$$

onde $\theta: I \to \mathbb{R}$ é a função que descreve o ângulo existente entre o fio e um dos vetores do campo gravitacional durante o movimento¹.

Considerando que o pêndulo executa pequenas oscilações, podemos assumir que $\sin\theta\approx\theta$. Assim a equação de movimento reescreve-se como

$$\frac{d^2\theta}{dt^2} + \omega^2\theta = 0 \quad , \quad \text{com} \quad \omega^2 = g/L \quad . \tag{1}$$

- 1. Assumindo que a solução da equação diferencial homogênea (1) é da forma $\phi(t) = e^{rt}$, encontre a equação característica do problema. Quais são as suas raízes?
- 2. Considerando que r_1 e r_2 são as raízes da equação característica, demonstre que $\phi(t) = ae^{r_1t} + be^{r_2t}$ também é solução de (1), onde a e b são duas constantes arbitrárias.
- 3. Tendo em vista que $e^{\pm irt} = \cos{(rt)} + i\sin{(rt)}$, reescreva $\phi(t)$ em termos das funções seno e cosseno, mostrando que $\phi(t) = A\cos{(\omega t)} + B\sin{(\omega t)}$ também é a solução de (1), onde A e B são duas constantes.

 $^{^{1}}$ Aqui g é o módulo da aceleração da gravidade.

4. Usando o fato que as funções $\sin x$ e $\cos x$ têm período igual a $2\pi n$, onde $n \in \mathbb{N} \setminus \{0\}$, prove que o período de $\phi(t)$ é

$$T_n = \frac{2\pi n}{\omega} = 2\pi n \sqrt{\frac{L}{g}} \quad . \tag{2}$$

No caso, $T = T_1$ é o período fundamental do pêndulo simples.

Parte III

Considere que num experimento envolvendo um pêndulo simples², um grupo de estudantes coletou os seguintes dados, referentes a 5 (cinco) oscilações completas e com o auxílio de um cronômetro de resolução 0,01s.

7,45s	7,33s	8,01s	7,50s	6,77s	8,22s	7,08s	7,29s	7,16s	8,31s
5,99s	7,05s	7,09s	8,11s	8,03s	7,50s	7,49s	6,71s	7,03s	7,54s
6,88s	7,01s	7,47s	7,43s	8,22s	8,05s	7,45s	6,95s	6,75s	7,01s
7,62s	9,08s	7,41s	7,77s	7,23s	6,50s	8,46s	7,19s	6,94s	7,44s
8,01s	7,53s	7,10s	6,79s	8,00s	7,93s	7,81s	7,30s	8,47s	7,16s

- 1. Calcule o desvio padrão desta amostra, e o consequente erro estatístico associado a este período não fundamental.
- 2. Haja vista que os tempos médios das reações visual, auditiva e motora dos estudantes dão-se, respectivamente, por 0,0082s, 0,0031s e 0,16s, calcule a incerteza total ΔT_5 relacionada aos dados acima listados e, por consequência, determine $T_5 = \bar{T}_5 \pm \Delta T_5$.
- 3. Com base no resultado do item anterior, calcule $T_1 = \bar{T}_1 \pm \Delta T_1$.
- 4. Sabendo que as medições realizadas pelos mesmos estudantes trouxeram

$$L = (52, 24 \pm 0, 05) cm$$

como o comprimento associado ao fio que supomos ser inextensível, faça uma estimativa para a aceleração da gravidade $g=(\bar{g}\pm\Delta g)$. O valor obtido pode ser considerado compatível com o calculado pelo IAG, dado por $g_{\text{IAG}}=(978,64\pm0,03)~cm/s^2$? Comente.

²Posto a oscilar de modo que, nas considerações expostas acima, θ seja consideravelmente pequeno para todo $t \in \mathbb{R}$.