MAT 3211 - Álgebra Linear

Terceira lista de exercícios

1. Quais dos subconjuntos do ${\bf R}^3$ listados abaixo podem ser considerados como linearmente independentes?

(a)
$$\{(1,0,0),(0,1,0),(0,0,1),(2,3,5)\}$$

(b)
$$\{(1,1,1),(1,0,1),(1,0,-2)\}$$

(c)
$$\{(0,0,0),(1,2,3),(4,1,-2)\}$$

(d)
$$\{(1,1,1),(1,2,1),(3,2,-1)\}$$

2. Quais dos subconjuntos do \mathcal{P}_4 listados abaixo podem ser considerados como linearmente independentes?

(a)
$$\{1, x-1, x^2+2x+1, x^2\}$$

(b)
$$\{2x, x^2+1, x+1, x^2-1\}$$

(c)
$$\{x(x-1), x^3, 2x^3-x^2, x\}$$

(d)
$$\{x^4+x-1, x^3-x+1, x^2-1\}$$

3. Determinar os valores de m e n para que os conjuntos de vetores do ${\bf R}^3$ dados abaixo sejam linearmente independentes.

(a)
$$\{(3,5m,1),(2,0,4),(1,m,3)\}$$

(b)
$$\{(1,3,5),(2,m+1,10)\}$$

(c)
$$\{(6,2,n),(3,m+n,m-1)\}$$

4. Sejam v_1, \ldots, v_m vetores não nulos num espaço vetorial E. Demonstre que, se nenhum deles é combinação linear dos anteriores, o conjunto $X = \{v_1, \ldots, v_m\}$ é linearmente independente.

1

- 5. Prove que $\{1\ ,\ e^x\ ,\ e^{2x}\ ,\ e^{3x}\ ,\ e^{4x}\}$ é um conjunto linearmente independente no espaço C^∞ (R) (sugestão: dada uma combinação linear nula, derive-a em relação a x, divida o resultado por e^x , e prossiga com o mesmo raciocínio).
- **6.** Mostre que os polinômios 1, x-1, x^2-3x+1 formam uma base para \mathcal{P}_2 . Por consequência, exprima o polinômio $2x^2-5x+6$ como combinação linear dos elementos dessa base.
- 7. Mostre que os vetores u=(1,1) e v=(-1,1) formam uma base para ${\bf R}^2$ e exprima, cada um dos vetores $e_1=(1,0)$ e $e_2=(0,1)$, por meio de uma combinação linear dos elementos dessa base.
- 8. Encontre não apenas uma base, mas a dimensão dos seguintes subespaços do R⁴:

(a)
$$U = \{(x, y, z, t) \in \mathbb{R}^4 : x - y = 0 \text{ e } x + 2y + t = 0\}$$

(b)
$$V = \{(x, y, z, t) \in \mathbb{R}^4 : x - y = y \text{ e } x - 3y + t = 0\}$$

9. Considere o hiperplano

$$H = \{(x_1, \dots, x_n) \in \mathbb{R}^n : a_1 x_1 + \dots + a_n x_n = 0\}$$
,

onde os coeficientes a_1, \ldots, a_n são números reais não nulos. Prove que H é um subespaço vetorial de dimensão n-1 dentro do \mathbb{R}^n , e encontre uma base para esse subespaço.

- 10. Sejam u e v vetores linearmente independentes de um espaço vetorial E. Dado $\alpha \neq 0$, prove que o conjunto de dois elementos $\{v, v + \alpha u\}$ é uma base do subespaço gerado pelos vetores $v, v + \alpha u, v + 2u, \dots, v + nu, \dots$
- 11. As matrizes quadradas T de ordem n, cujos elementos t_{jk} (com $1 \le j, k \le n$) são nulos quando j < k, são chamadas *triangulares inferiores*. Prove que elas constituem um subespaço vetorial $L \subset M$ ($n \times n$), obtenha uma base para L, e determine a sua dimensão.
- 12. Determinar não apenas uma base, mas a dimensão do espaço solução de cada um dos

seguintes sistemas lineares homogêneos listados abaixo:

(a)
$$\begin{cases} x - y = 0 \\ 2x - 3y = 0 \\ 6x + 6y = 0 \end{cases}$$

(b)
$$\begin{cases} x + y + z = 0 \\ 2x - y - 2z = 0 \\ x + 4y + 5z = 0 \end{cases}$$

(c)
$$\begin{cases} 2x - 2y + z = 0 \\ 3x - y + 3z = 0 \\ 3y + 4z = 0 \end{cases}$$

(d)
$$\begin{cases} x - y - z - t = 0 \\ 3x - y + 2z - 4t = 0 \\ 2y + 5z + t = 0 \end{cases}$$

- 13. Determinar as coordenadas do vetor $u=(4,-5,3)\in \mathbf{R}^3$ em relação as seguintes bases:
 - (a) $\{(1,1,1),(1,2,0),(3,1,0)\}$
 - **(b)** $\{(1,2,1),(0,3,2),(1,1,4)\}$
- **14.** Sejam $E = \{e_1, e_2, e_3\}$ e $G = \{g_1, g_2, g_3\}$ duas bases do \mathbb{R}^3 , tais que

$$g_1 = e_1 - e_2 - e_3$$

$$g_2 = 2e_2 + 3e_3$$

$$g_3 = 3e_1 + e_3$$

- (a) Determine as matrizes de mudança:
 - ullet da base E para a base G; e
 - da base G para a base E.
- **(b)** Se um vetor $u \in \mathbb{R}^3$ possui coordenadas 1, 2 e 3 em relação à base E, quais são as coordenadas do mesmo vetor em relação à base G?