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The hydrogen atom as an entangled electron–proton system
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We illustrate the description of correlated subsystems by studying the simple two-body hydrogen
atom. We study the entanglement of the electron and proton coordinates in the exact analytical
solution. This entanglement, which we quantify in the framework of the density matrix formalism,
describes correlations in the electron–proton motion. ©1998 American Association of Physics Teachers.
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I. INTRODUCTION

Independent particle models often provide a good star
point to describe the physics of many-particle systems
these models, the individual particles behave as indepen
particles that move in a potential field that accounts for
interaction with the other particles in an average sense. H
ever, depending on the systems and the properties tha
studied, the results of the independent particle calculati
are not always sufficiently accurate. In that case it is nec
sary to correct for the fact that the motion of a single parti
depends on the positions of the other particles, rather tha
some average density. Consequently, in a system of inte
ing particles, the probability of finding two particles wit
given positions or momenta is not simply the product of
single-particle probabilities: We say that the particles
‘‘correlated.’’

In a more general context, the problem can be formula
as the description of interacting subsystems~the single par-
ticle in the many-particle system being the example of
subsystem!. A convenient theoretical framework to deal wi
this problem in quantum mechanics is provided by the d
sity matrix theory, which is almost as old as quantum m
chanics itself.1,2 The ever-present interest in density mat
theory, in spite of its long history, is justified by the power
its description and the importance of its applications, wh
extends to the study of the very foundations of quant
theory.1–3 In this article, we briefly review some importan
aspects of density matrix theory and we illustrate its use
describing correlations of interacting subsystems by study
the simple, exactly solvable system of the hydrogen atom
881 Am. J. Phys.66 ~10!, October 1998
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II. SUBSYSTEMS AND QUANTUM CORRELATIONS

In very broad terms, giving the state of a physical syst
means providing the necessary information to evaluate al
observables quantitatively. The states of a quantum mech
cal system are frequently represented by vectors of unit n
in a Hilbert spaceH, in general of infinite dimension~hence
their usual designation as ‘‘state vectors’’!. If the system is
in a stateuC&, with ^CuC&51, the outcome of measuremen
of an observable quantityA has an expectation valuêA&
equal to

^A&5^CuÂuC&, ~1!

where we use a caret, ‘‘Â, ’’ to distinguish the operator rep
resenting the observable from the observable itself. If
vectorsuwi&, i 51,2,... are a basis of the Hilbert spaceH, we
can use the completeness relation, 15(muwm&^wmu, to write
the expectation value as

^A&5(
m,n

^Cuwm&^wmuAuwn&^wnuC&. ~2!

In matrix notation, themn-matrix element of theÂ operator
in the uw& basis is equal toÂmn5^wmuÂuwn&. The remaining
ingredients of Eq.~2! can be collected asrnm5^wnuC&
3^Cuwm&, known as the density matrix,1,4,5 which is recog-
nized as the matrix representing the so-called density op
tor, r5uC&^Cu, in the chosen basis. The expectation va
of Eq. ~2! can then be written as

^A&5(
m,n

Âmnrnm , ~3!
881© 1998 American Association of Physics Teachers
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 [This artic
which is the trace of the product of theA and r matrices,

^A&5Tr(Âr). In this expression, the state of the system
represented by the density matrix or, equivalently, by
density operatorr. The form of this operator, together wit
the normalization property of the underlying state vectoruC&,
lead to some important properties, which are of cou
shared by the corresponding density matrices. Namely,
density operator is a non-negative~meaning that̂ furuf&
>0 for any vectoruf&! self-adjoint operator (r5r†), of unit
trace @Tr(r)51#, and idempotent~meaning thatr5r2,
which follows from uC&^CuC&^Cu5uC&^Cu!.

The use of state vectorsuC& to describe the state of
quantum system is, however, not general enough to co
many frequently occurring situations. As we shall discu
below, a suitable generalization is provided by the den
matrix language, if only we relax the idempotency requi
ment.

Often, when probing a system, only part of the total s
tem is subjected to a measurement. For example, in a typ
scattering experiment only the scattered particle is detec
The target system is left behind in a final state that could
different from its initial state, but this state is not observ
directly. It is then natural to divide the total system into t
target system and the single-particle system of the scatt
Also, in many experiments involving mesoscopic, or sem
macroscopic, quantum devices, it is very hard, if not imp
sible, to ensure efficient isolation from the environme
which then plays the role of a second subsystem couple
the system of interest.6 Mathematically, such partitioning o
the system into subsystems means factoring the Hilbert s
H into the tensor product of the corresponding subspa
H5Hu^ Hv . If the Hu and Hv spaces are spanned, r
spectively, by the basesuui&, i 51,2,... anduv j&, j 51,2,...,
then H is spanned by the product statesuui&uv j&. Accord-
ingly, a state vectoruC& describing the state of the syste
can be expanded as

uC&5(
i , j

di , j uui&uv j&. ~4!

Suppose now that one wishes to describe the state of
of the subsystems alone, say subsystemu. The observable
quantities of this subsystem are represented by opera
which act nontrivially on the vectors ofHu while acting on
the vectors ofHv simply as the unit operator. The expect
tion value of such operators can be obtained from the
duced density matrix for theu system, which is defined a
the trace of the full density matrixr over thev subspace.
When the entire system is in the state described byuC&, this
reads

ru5TrvS (
i , j

(
k,l

uui&uv j&di , jdk,l* ^uku^v l u D
5(

i ,k
(

j
uui&di , jdk, j* ^uku. ~5!

We can understand the trace as a sum( j over the probabili-
ties for thev subsystem to be in any possibleuv j& state. For
example, in the scattering experiment where only the stat
the detected particle is determined, the final state of the
get (v) system is not measured, and one has to sum ove
probabilities of finding the target in all possibleuv l& states.
882 Am. J. Phys., Vol. 66, No. 10, October 1998
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An important limiting situation is that in which the overa
state vectoruC& is itself a product of au vector and av
vector, uC&5uu&uv&. For these product states, the dens
matrix r5uC&^Cu becomes

r5uu&uv&^vu^uu5rurv, ~6!

and the reduced densityru is simply given byuu&^uu. This is
just of the form of a density operator associated with
state vectoruu&, which can then also be used to describe
state of the subsystem. In general, the state vectoruC& cannot
be factored in this fashion, however. In this case one s
that the two subsystems are in an ‘‘entangled’’ state. T
density matrix of an entangled state does not factor and
pears as a series ofu and v products: The subsystems a
correlated. The number of terms gives some indication of
departure from the uncorrelated density matrix, but as
number of terms depends on the choice of basis in theu and
v spaces, this is not a good measure of correlation or
tanglement. A way out of this difficulty is, however, pro
vided by a simple and remarkable result due to Schmidt7 ~see
also Refs. 2, 8, and 9! which essentially identifies a ‘‘natu
ral’’ basis ~in the sense of being determined by the struct
of the entangled state itself! in which the description of the
entanglement is achieved with maximum simplicity.

The Schmidt basis is a product basis, in the usual se
that it is written as the tensor product of two particular bas
one for theHu space and another for theHv space. In order
to find these two bases one looks for the eigenvectors of
reduced density matrices. If the state is not entangled,uC&
5uu&uv&, ru and rv each have one single eigenvector
nonzero eigenvalue,uu& for ru and uv& for rv, and the nu-
merical value of the corresponding eigenvalues is equal t
One then completes the basis in each subspace by inclu
enough additional orthonormal vectors which are moreo
orthogonal to the single ‘‘relevant’’ vector with nonzero e
genvalue. Each one of these additional basis vectors is
an eigenvector of the corresponding reduced density w
eigenvalue zero, and the large degree of arbitrariness
choosing them reflects the large degeneracy of the co
sponding eigenvalue zero. If, on the other hand, the s
systems are correlated, thenru and rv have a spectrum o
nonvanishing eigenvalues. Interestingly, as we prove bel
the eigenvalues of theru andrv operators are the same. T
see that, we assume that theru matrix in the uui& basis is
diagonalized by the unitary transformationU ~( iUil Ui j*
5d l j ; ( iUli U ji* 5d j l !,

(
k

r ik
u Ukl5l lUil . ~7!

The ru-matrix elements are given by Eq.~5!, r ik
u

5( i j di j dk j* , so that Eq.~7! can be written as

(
k, j

di j dk j* Ukl5l lUil . ~8!

Multiplying Eq. ~8! by dil 8
* , and summing overi , we obtain

(
i , j

(
k

dil 8
* di j dk j* Ukl5l l(

i
dil 8
* Uil . ~9!
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Defining Vj ,l5(kdk j* Ukl , we find with Eq.~9! that the vec-
tor of components (V1l ,V2l ,...,Vjl ,...) is aneigenvector of
rv with eigenvaluel l :

(
j

r l 8 j
v Vjl 5l lVll 8 , ~10!

where r l 8 j
v

5( idil 8
* di j . It follows that ru and rv have the

same eigenvaluesl. If the nonvanishing eigenvalues are n
degenerate, then all these vectors are automatically orth
nal. And if, moreover, the set of eigenvectors with nonva
ishing eigenvalue is still not complete, one still may co
plete the bases with additional orthogonal vectors which
again eigenvectors of the respective reduced densities
eigenvalue zero. ExpandinguC& in the product basis con
structed in this way, which thus includes the eigenvect
uul& of ru and uvl& of rv,uC&5(lcluul&uvl&, the reduced
density matrices take on the form

ru5(
l

uclu2uul&^ulu, ~11!

which is diagonal and shows that thel eigenvalues are equa
to l5uclu2. This also shows that the eigenvectors with ze
eigenvalue do not participate in the expansion. The eigen
uesl are thus both the probabilities of finding subsystemu
in the statesuul& and the probabilities of finding subsystemv
in the statesuvl&. The set of numbersuclu2 can therefore be
interpreted as a distribution of occupation probabilities.
fact, the unit trace condition on the complete density ope
tor r ensures that(luclu251. For uncorrelated subsystem
there is just one nonvanishing probability and this distrib
tion has a vanishing ‘‘width’’ or standard deviation. It is the
reasonable to use the standard deviation as a measure o
correlation.10 Note that when the two subsystems are cor
lated, i.e., there is more than just one nonvanishing occu
tion probabilityuclu2, the reduced density matrix Eq.~11! is
no longer idempotent, although all the other properties lis
above forr still hold. As a result of this, the state of a
entangled subsystem cannot be described in terms of a
vector in the corresponding Hilbert space, and one is for
to use the density matrix language. In this case one says
the subsystem is in a ‘‘mixed’’ state. ‘‘Pure’’ states, asso
ated with definite state vectors, are, on the other hand
ways associated with idempotent density operators.

In summary, the foregoing discussion shows that a s
system of a larger quantum system is, in general, in a mi
state, even if the state of the system as a whole is p
Furthermore, the Schmidt analysis shows that in this case
state of the complementary subsystem has exactly the s
degree of impurity, in the sense that both reduced den
matrices have the same spectrum. This corresponds to
impurity of both subsystems being due to their mutual
tanglement in the given overall pure state. To the extent
a given quantum system is not really isolated, but intera
with other systems~possibly a nondescript ‘‘environment’’!,
this analysis also shows that assuming the purity of its s
is inadequately restrictive. In the following section we exa
ine the spatially homogeneous, but possibly not pure, st
of a single quantum particle, independently of any dynam
processes that may in fact give real existence to such st
An example of such a dynamical process will be given ne
883 Am. J. Phys., Vol. 66, No. 10, October 1998
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III. SINGLE-PARTICLE SYSTEM

For the sake of illustration, we apply the density mat
description to a single, ‘‘elementary’’ particle system.
spite of the extreme simplicity of this type of system, t
density matrix language enables us to consider states tha
not accessible within the standard state vector~or wave func-
tion! description—mixed states—which are of interest f
the discussion of correlated many-particle systems.

In the coordinate representation, which corresponds to
choice of the eigenfunctionsur & of the coordinate operator a
basis, the density matrixr of a pure single-particle system
represented by the state vectoruC&, takes on the form

r~r ,r 8!5^r uC&^Cur 8&5C~r !C* ~r 8!, ~12!

where ^r uC&5C(r ) is the wave function. In the genera
case, the single-particle density matrix is an objectr(r ,r 8)
with the properties of hermiticity,r(r ,r 8)5r* (r 8,r ), unit
trace, *d3r r(r ,r )51, and non-negativity, *d3r *d3r 8
3f* (r )r(r ,r 8)f(r 8)>0. Note that idempotency is not be
ing required in order to allow for mixed states.

We shall be concerned with a particular class of sta
which we shall refer to as homogeneous states. By definit
these states are translationally invariant, meaning that tr
lation by an arbitrary position vectorR leaves the density
matrix, and hence the state itself, unaltered:r(r1R,r 81R)
5r(r ,r 8). As a consequence, all the density matrix eleme
depend only on relative positions, specifically,r(r ,r 8)
5r(r2r 8). In this case, the Fourier transformr̃(k) of r(r
2r 8),

r~r2r 8!5
1

~2p!3 E d3k r̃~k!exp~ ik–@r2r 8# !, ~13!

plays a dual role in the description of the homogeneous st
~1! it is proportional to the momentum distribution of th
system, and~2! it gives the eigenvalues of the density matri
We shall now prove both assertions.

Let us first evaluate the expectation value^p& of the mo-
mentum. If the system is pure and described by the quan
stateuC&, then

^p&5E d3r C* ~r !@2 i\¹#C~r !

52 i\E d3r d3r 8 d~r2r 8!¹ rr~r ,r 8!. ~14!

The trace prescription for calculating^p&, obtained above, is
also valid for mixed states and inserting Eq.~13!, we obtain

^p&52 i\E d3r E d3r 8 d~r2r 8!¹ rr~r ,r 8!

5
1

~2p!3 E d3r E d3r 8E d3k@\k#r̃~k!

3exp~ ik–@r2r 8# !d~r2r 8!,

5
V

~2p!3 E d3k@\k#r̃~k!, ~15!

where we have used a large quantization volumeV to avoid
problems related to states of infinite norm. This normaliz
tion scheme, commonly called box normalization, assum
883Tommasini, Timmermans, and de Toledo Piza
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 [This artic
that the particle is confined to a large volumeV, which is
taken to be infinite at the end of the calculation,V→`. A
plane wave state is then normalized as exp(ik–r )/AV. Sub-
stituting p5\k in the integration of Eq.~15!, we find that

^p&5E d3p pf ~p!, ~16!

wheref (p)5@V/(2p\)3#r̃(p/\). Similarly, the expectation
value of higher-order powers of momentum components
equal to the corresponding higher-order moments of thef (p)
function, e.g.,̂ (p̂–x̂)2&5*d3p(p–x̂)2f (p). Thus, f (p) may
be interpreted as a momentum distribution function.

To see thatr̃(k) gives the eigenvalues of the density m
trix, we use Eq.~13! to evaluate

E d3r 8 r~r2r 8!
exp~ ik–r 8!

AV

5
1

~2p!3 E d3k8 r̃~k8!
exp~ ik8–r !

AV
E d3r 8

3exp~ i @k2k8#–r 8!5 r̃~k!
exp~ ik–r !

AV
, ~17!

which we recognize as the eigenvalue equation of the den
matrix @Eq. ~7!# in coordinate representation. From Eq.~17!,
it follows that the eigenvectors of the density matrix are
plane wave states of momentumk and that the correspondin
eigenvalues are equal tor̃(k).

The density matrix of a homogeneous single-particle s
tem doesnot generally describe a pure system. To see th
we remind the reader that a pure system is characterize
an idempotent density matrix,r25r. For the homogeneou
single-particle system, this implies that the eigenvalues
the density matrix satisfyr̃(k)25 r̃(k). Consequently, for a
pure homogeneous single-particle system, we find thatr̃(k)
50 or r̃(k)51. Furthermore, the unit trace condition on t
density matrix implies

15E d3r r~0!

5r~0!V5
V

~2p!3 E d3k r̃~k!→(
k

r̃~k!, ~18!

where in the last step we reconverted the momentum inte
to the sum of discrete momenta appropriate to the ado
volume quantization. Thus, the homogeneous single-par
system that is pure can only be described by a density ma
with a single eigenvalue, sayr̃(k1), equal to 1, and all othe
eigenvaluesr̃(k)50, kÞk1 . Such a density matrix repre
sents a particle with a definite momentum~zero standard
deviation of the distribution of density matrix eigenvalue!,
corresponding to a plane wave wave function,^r uC&
5exp(ik1–r )/AV. In contrast, an impure single-particle sy
tem has a spectrumr̃(k) of density matrix eigenvalues. Th
standard deviation of ther̃(k) distribution is a measure o
the correlation or entanglement of the single-parti
system.11

It should be remarked, finally, that all the above discuss
had a purely kinematical character, in the sense that we d
with possible states of a quantum mechanical system
884 Am. J. Phys., Vol. 66, No. 10, October 1998
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with their inherent observable properties, without regard
any dynamical processes that might have led to their pre
ration. In the following section we consider a simple b
definite composite dynamical system and use the tools de
oped here in order to study the entanglement effects ge
ated by definite interaction processes.

IV. HYDROGEN ATOM

We now apply the density matrix formalism to stationa
states of a system that can display correlation: the two-b
hydrogen atom. The hydrogen atom consists of an elec
and a proton, interacting by means of the Coulomb poten
The Hamiltonian of the electron–proton system is

Ĥ5
p̂e

2

2me
1

p̂p
2

2mp
2

e2

ure2r pu
, ~19!

wherep̂ andr denote the momentum and position operat
in coordinate space, and the subscriptse and p indicate the
electron and the proton.

In fact, the hydrogen atom can be treated as two unco
lated subsystems. Transforming to relative,r5r p2re , and
center-of-mass coordinates,R5(mere1mpr p)/M , whereM
is the total mass,M5me1mp , the Hamiltonian separate
into a center-of-mass term which takes on the form o
free-particle Hamiltonian,Ĥcm5 p̂R

2/2M , and an ‘‘internal’’
Hamiltonian which governs the relative motion of the ele
tron and the proton,Ĥ int5 p̂r

2/2mr2e2/r , where mr is the
reduced mass,mr

215me
211mp

21. The product ofĤcm and
Ĥ int eigenstates,

C~R,r !5f int~r !expS i
P

\
–RD Y AV, ~20!

is an eigenstate. According to the definitions introduced
Sec. II, the internal and center-of-mass subsystems for
state~20! are not correlated. If the hydrogen atom is in
atomic ground state, the internal wave function,f int , is
equal to

f int~r !5
1

Ap
S 1

a0
D 3/2

exp~2r /a0!

~hydrogen in 1s state!, ~21!

wherea0 is the Bohr radius,a05\2/mre
2.

Partitioning the hydrogen atom differently into electro
and proton subsystems gives an entangled state:

C~re ,r p!5f int~re2r p!expS i
P

\
•

@mere1mpr p#

M D Y AV.

~22!

The reduced density matrix for the electron system can
obtained by taking the trace over the proton basis se
coordinate eigenfunctions:

r~re ,re8!5E d3r p C~re ,r p!C* ~re8 ,r p!

5expS i
meP

\M
•@re2re8# D E d3r p f int~re2r p!

3f int* ~re82r p!/V
884Tommasini, Timmermans, and de Toledo Piza
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5expS i
meP

\M
•@re2re8# D r int~re ,re8!, ~23!

where we introduce the electron density matrixr int for elec-
trons in atoms at rest (P50). It is interesting to note that th
electron subsystem of the hydrogen atom is homogene
To prove that, it is sufficient to show thatr int depends onre

and re8 as re2re8 . Substitutingre82r p5y and writing the
argument off int , re2r p , as re2re81y, we do indeed find
that

E d3r p f int~r2r p!f int* ~re82r p!

5E d3y f int~re2re81y!f int* ~y!, ~24!

which depends solely onre2re8 . Consequently, the reduce
electron density matrix~23! only depends on the relativ
position, indicating a homogeneous subsystem. This m
appear surprising: We do not usually think of the electron
hydrogen as a homogeneous system. However, the red
density matrix describes the observation of hydrogenic e
trons in the assumption that the proton is ‘‘invisible.’’ Fu
thermore Eq.~22! describes a hydrogen of fixed momentu
~e.g., a beam of hydrogen atoms of well-defined velocity! so
that the center-of-mass position of the atom is undetermin
It is then equally likely to observe the electron in any po
tion, and the electron subsystem is homogeneous.

Consequently, as discussed in the previous section,
Fourier transform of the density matrix plays a central ro
The density-matrixr int of a 1s electron in a hydrogen atom
at rest@P50 in Eq. ~23!#, has a simple analytical Fourie
transform,

r̃ int~k!5
1

V

64pa0
3

11~a0k!2 . ~25!

The Fourier transformr̃ for an electron in an atom of arbi
trary momentumP is a translation ink space ofr̃ int . To
show that, we insert the inverse Fourier transform ofr̃ in the
expression for the density matrix~23!,

r~re ,re8!5
1

~2p!3 E d3k8 r̃ int~k8!

3expS i Fmep

M\
1k8G–@re2re8# D . ~26!

The substitution,k5k81meP/M\, then leads to the Fourie
transform:

r~re ,re8!5
1

~2p!3 E d3k r̃ intS k2
meP

M\ D
3exp~ ik–@re2re8# !, ~27!

from which it follows that

r̃~k!5 r̃ intS k2
meP

M\ D . ~28!

Thus, compared tor̃ int , r̃ is displaced ink space by
meP/M\. Similarly, the momentum distributionf (p)
5@V/(2p\)3#r̃ int(p/\), is related to the electron momen
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tum distribution f int(p) for atoms at rest, by means of
simple displacement in momentum space:

f ~p!5 f intS p2
me

M
PD , ~29!

where

f int~p!5
1

~2p\!3

64pa0
3

11S a0p

\ D . ~30!

Equation~29! expresses a Gallilean transformation from t
center-of-mass reference frame (P50) to the lab frame of
reference in which the atom is moving with velocityP/M . If
the electron in the center-of-mass frame has velocityv
5p/me , then, in the lab frame, its velocity is observed
v85p/me2P/M , corresponding to a momentum equal
mev85p2(me /M )P.

Sincef and f int are equal up to a translation in momentu
space, their widths, or standard deviations, are equal. In
center-of-mass frame,^p&50, so that the standard deviatio
Dp5A^p2&2(^p&)2 is equal to

Dp5AE d3p p2f int~p!5
\

a0
. ~31!

Thus, although the electron subsystem is homogeneous,
consequence of the electron–proton correlation, a meas
ment of the electron momentum can yield a finite range
values. In accordance with the Heisenberg uncertainty p
ciple ~the correlations confine the electron in the center-
mass frame to a region of size;a0! the size of this region in
momentum space, or more precisely, the standard devia
Dp of the momentum distribution, equals\/a0 . In the con-
text of describing correlating systems,Dp is a measure of the
strength of the correlation: The stronger the electron and p
ton are correlated, the higher the value ofa0 and the larger
the region in momentum space (Dp) over which the electron
momentum is ‘‘spread out.’’

V. CONCLUSION

In this paper, we have reviewed aspects of density ma
theory which pertain to the description of the entanglem
of correlated subsystems. The mutual entanglement of s
systems of a larger~pure! system is conveniently quantifie
by the standard deviation of the reduced density matrix
genvalues of the entangled subsystems. For the simple~but
relevant! case of homogeneous single-particle subsyste
the density matrix eigenvalues give the particle’s moment
distribution. Thus the standard deviation of the moment
distribution is a measure of the entanglement of the sing
particle system, as we have illustrated for the specific
ample of the electron in the two-body hydrogen atom.
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