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The hydrogen atom as an entangled electron—proton system
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We illustrate the description of correlated subsystems by studying the simple two-body hydrogen
atom. We study the entanglement of the electron and proton coordinates in the exact analytical
solution. This entanglement, which we quantify in the framework of the density matrix formalism,
describes correlations in the electron—proton motion. 1988 American Association of Physics Teachers.

[. INTRODUCTION [I. SUBSYSTEMS AND QUANTUM CORRELATIONS

In very broad terms, giving the state of a physical system
point to describe the physics of many-particle systems. | eans providing the necessary information to evaluate all its

L . . servables quantitatively. The states of a quantum mechani-
these models, the individual particles behave as mdependeggI system are frequently represented by vectors of unit norm

particleg tha’g move in a pote'ntial field that accounts for thq, a Hilbert space”, in general of infinite dimensiothence
interaction WI'[.h the other particles in an average sense. HOWheir usual designation as “state vectoyslf the system is
ever, depending on the systems and the properties that a8 a statd V), with (W|W)=1, the outcome of measurements

studied, the results of the independent particle calculationss 5, observable quantith has an expectation valug)
are not always sufficiently accurate. In that case it is NeceSsqual to

sary to correct for the fact that the motion of a single particle .

depends on the positions of the other particles, rather than on (A)=(W|A|¥), )
some average density. Consequently, in a system of interact- ~ L
ing particles, the probability of finding two particles with Where we use a caretA,” to distinguish the operator rep-

given positions or momenta is not simply the product of theresenting the observable from the observable itself. If the

single-particle probabilities: We say that the particles arevectors|wi>, 1=12,..area baS|_s of the Hilbert spage we
can use the completeness relatioss 3 ,,| W, ){ W[, to write

“correlated.” e expectation value as
In a more general context, the problem can be formulate(&h P

as the description of interacting subsysteftie single par-

ticle in the many-particle system being the example of the <A>:§H (W | Wi Wi Al W) (Wi F). 2
subsystem A convenient theoretical framework to deal with ’ R

this problem in quantum mechanics is provided by the denin matrix notation, thenn-matrix element of the\ operator

sity matrix theory, which is almost as old as quantum me+n the |w) basis is equal tm,= (W] A|w,). The remaining
chanics itself:” The ever-present interest in density matrix ingredients of Eq.(2) can be collected apm=(w,|¥)
theory, in spite of its long history, is justified by the power of X{(¥|w,,), known as the density matri®which is recog-

its description and the importance of its applications, whichnized as the matrix representing the so-called density opera-

extends to the study of the very foundations of quantumor, p=|W¥)(¥|, in the chosen basis. The expectation value
theory!=3 In this article, we briefly review some important of Eq. (2) can then be written as

aspects of density matrix theory and we illustrate its use for
describing correlations of interacting subsystems by studying (A)= 2 A 0 3)
the simple, exactly solvable system of the hydrogen atom. o onme

Independent particle models often provide a good startin
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which is the trace of the product of th® and p matrices, An important limiting situation is that in which the overall

(AY=Tr(Ap). In this expression, the state of the system isState vector¥) is itself a product of au vector and a
represented by the density matrix or, equivalently, by thevector, |[¥)=[u)|v). For these product states, the density
density operatop. The form of this operator, together with matrix p=|¥)('¥| becomes

the normalization property of the underlying state ve¢ioy,

lead to some important properties, which are of course p=|u)|v){v|(u|=p"p", (6)
shared by the corresponding density matrices. Namely, the

density operator is a non-negativeaning that¢|p|¢)  and the reduced densipy' is simply given bylu){ul|. This is
=0 for any vectoll¢)) self-adjoint operatorg=p'), of unit  just of the form of a density operator associated with the
trace [Tr(p)=1], and idempotentmeaning thatp=p?, state vectotu), which can then also be used to describe the

which follows from|W)(W| W )(W¥|=|¥)(P|). state of the subsystem. In general, the state védtpcannot
The use of state vectorsl) to describe the state of a be factored in this fashion, however. In this case one says
guantum system is, however, not general enough to covdhat the two subsystems are in an “entangled” state. The
many frequently occurring situations. As we shall discusgiensity matrix of an entangled state does not factor and ap-
below, a suitable generalization is provided by the densitpears as a series of andv products: The subsystems are
matrix language, if only we relax the idempotency require-correlated. The number of terms gives some indication of the
ment. departure from the uncorrelated density matrix, but as the
Often, when probing a system, only part of the total sys-number of terms depends on the choice of basis iruthad
tem is subjected to a measurement. For example, in a typical spaces, this is not a good measure of correlation or en-
scattering experiment only the scattered particle is detectedanglement. A way out of this difficulty is, however, pro-
The target system is left behind in a final state that could b&ided by a simple and remarkable result due to Schhfate
different from its initial state, but this state is not observedalso Refs. 2, 8, and)3vhich essentially identifies a “natu-
directly. It is then natural to divide the total system into theral” basis (in the sense of being determined by the structure
target system and the single-particle system of the scatteresf the entangled state itsglin which the description of the
Also, in many experiments involving mesoscopic, or semi-entanglement is achieved with maximum simplicity.
macroscopic, quantum devices, it is very hard, if not impos- The Schmidt basis is a product basis, in the usual sense
sible, to ensure efficient isolation from the environment,that it is written as the tensor product of two particular bases,
which then plays the role of a second subsystem coupled tone for the 7, space and another for th#, space. In order
the system of intere§tMathematically, such partitioning of to find these two bases one looks for the eigenvectors of the
the system into subsystems means factoring the Hilbert spaggduced density matrices. If the state is not entanghed,
7 into the tensor product of the corresponding subspace;|u>|v>, p! and p* each have one single eigenvector of
H=T7,® 7, . If the 7, and .7, spaces are spanned, re- ho-arg eigenvaludy) for p® and|v) for p?, and the nu-

spectively, by the basdsi), i=12,... andv;), j=1.2....  merical value of the corresponding eigenvalues is equal to 1.
then.” is spanned by the product states)|v;). Accord-  One then completes the basis in each subspace by including
ingly, a state vectot¥) describing the state of the system enough additional orthonormal vectors which are moreover

can be expanded as orthogonal to the single “relevant” vector with nonzero ei-
genvalue. Each one of these additional basis vectors is then
|q,>:2 di jlupv;)- (4) an eigenvector of the corresponding reduced density with
o

eigenvalue zero, and the large degree of arbitrariness in
) . choosing them reflects the large degeneracy of the corre-
Suppose now that one wishes to describe the state of ongyonding eigenvalue zero. If, on the other hand, the sub-
of the subsystems alone, say subsysteniThe observable systems are correlated, theH and p* have a spectrum of
quantities of this subsystem are represented by operatofpnvanishing eigenvalues. Interestingly, as we prove below,
which act nontrivially on the vectors of7, while acting on  the eigenvalues of thg" andp® operators are the same. To
the vectors of7, simply as the unit operator. The expecta- see that, we assume that th& matrix in the|u;) basis is
tion value of such operators can be obtained from the regiagonalized by the unitary transformatidd (S;U, U
duced density matrix for the system, which is defined as _ o . * R
- - =9, ZiUUji=6)),
the trace of the full density matrig over thev subspace.
When the entire system is in the state describedhy this
reads Ek pikUi=MUj . ()

— *

Pu=Tr, IE; %‘ |uidlvj)d; jdiciuid (vl The pY-matrix elements are given by EQq(5), pii
=3;d;;di;, so that Eq(7) can be written as

=2 2 updy iUl )

ko > did U =\U;

s Hij ijk|_)\|UI|' (8)
We can understand the trace as a stjmover the probabili- k)
ties for thev subsystem to be in any possikhtq) state. For
example, in the scattering experiment where only the state dy
the detected particle is determined, the final state of the tar-
get (v) system is not measured, and one has to sum over the d* d d¥ U=\ d* U. 9
probabilities of finding the target in all possiblie,) states. .2;’ Zk i gk 'zi: = ©

ultiplying Eq. (8) by d7},, and summing oveir, we obtain
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Defining Vj ;== d;Uy, we find with Eq.(9) that the vec-  lll. SINGLE-PARTICLE SYSTEM
tor of components\(y;,V5,...,Vj,...) is aneigenvector of

o with eigenvalue, For the sake of illustration, we apply the density matrix

description to a single, “elementary” particle system. In
spite of the extreme simplicity of this type of system, the
z Pl V=NV (10) density ma_trix Iar_1g_uage enables us to consider states that are
i not accessible within the standard state ve@omwave func-

tion) description—mixed states—which are of interest for

where P:)ijEid;Idij . It follows that pU and p have the the discussion of correlated many-particle systems.

same eigenvalues If the nonvanishing eigenvalues are not In the coordinate representation, which corresponds to the

degenerate, then all these vectors are automatically orthogég‘;:ge t?]feﬂé%r?ls?tenmgtcryog?ac}f Tree Cs?r?r?g_]a;?t%?:r:tg{eﬁ
nal. And if, moreover, the set of eigenvectors with nonvan- ’ Y K P gie-p y

ishing eigenvalue is still not complete, one still may Com_represented by the state vecid), takes on the form

plete the bases with additional orthogonal vectors which are

again eigenvectors of the respective reduced densities with p(r,r")=(r[¥)(¥[r" )= (r)¥*(r’), (12

eigenvalue zero. Expandin@) in the product basis con-

structed in this way, which thus includes the eigenvectors,\,here<r|\p>:\p(r) is the wave function. In the general

luy) of p" and|v,) of p",[¥)=3,c\|uy)|vy), the reduced  case the single-particle density matrix is an objegt,r’)

density matrices take on the form with the properties of hermiticityp(r,r')=p*(r’,r), unit

trace, [d® p(r,r)=1, and non-negativity, [d>r [d>r’
pu:z EREIRYOND (12) X ¢*(r)p(r,r")¢(r’)20. Note that !dempotency is not be-
) ing required in order to allow for mixed states.

We shall be concerned with a particular class of states
which is diagonal and shows that theeigenvalues are equal Which we shall refer to as homogeneous states. By definition,
toA= |C)\|2. This also shows that the eigenvectors with zerothese states are translationally invariant, meaning that trans-
eigenvalue do not participate in the expansion. The eigenvalation by an arbitrary position vectd® leaves the density
ues\ are thus both the probabilities of finding subsystem matrix, and hence the state itself, unaltere(t:+R,r’ +R)
in the stateu, ) and the probabilities of finding subsystem =p(r.r'’). As a consequence, all the density matrix elements
in the stategv, ). The set of numberf, |? can therefore be depend only on relative positions, specifically(r,r’)
interpreted as a distribution of occupation probabilities. In=p(r—r’). In this case, the Fourier transforptk) of p(r
fact, the unit trace condition on the complete density opera—r’),
tor p ensures thak,|c,|?>=1. For uncorrelated subsystems, 1
there is just one nonvanishing probability and this distribu- —r')= 3k D ik-Tr—r'
tion has]avanishing “width” o?sﬁ)andard geviation. It is then p(r=r’) (2) fd kplkexik-[r=r']), (13
reasonable to use the standard deviation as a measure of th@ys a dual role in the description of the homogeneous state:
correlation.” Note that when the two subsystems are corre1) it is proportional to the momentum distribution of the
lated, i.e., there is more than just one nonvanishing occupasystem, and?) it gives the eigenvalues of the density matrix.
tion probability|c,|?, the reduced density matrix E€L1) is  \We shall now prove both assertions.
no longer idempotent, although all the other properties listed [et us first evaluate the expectation valym of the mo-

above forp still hold. As a result of this, the state of an mentum. If the system is pure and described by the quantum
entangled subsystem cannot be described in terms of a staigate|¥), then

vector in the corresponding Hilbert space, and one is forced

to use the density matrix language. In this case one says that <p>:J d3r W (N[ —iAV]W(r)

the subsystem is in a “mixed” state. “Pure” states, associ-

ated with definite state vectors, are, on the other hand, al-

ways associated with idempotent density operators. = _iﬁJ' d3 d3r’ S(r—r")V,p(r,r’). (14)
In summary, the foregoing discussion shows that a sub-

system of a larger quantum system is, in general, in a mixeghe trace prescription for calculatifg), obtained above, is

state, even if the state of the system as a whole is purgyjso valid for mixed states and inserting E#j3), we obtain
Furthermore, the Schmidt analysis shows that in this case the

state of the complementary subsystem has exactly the same i 3 3, e '
degree of impurity, in the sense that both reduced density {p)= 'ﬁf d rf d>r’ &(r—r")Vp(r,r’)
matrices have the same spectrum. This corresponds to the 1
impurity of both subsystems being due to their mutual en- = J' d3rf dsr,f d3K[ %k Tp(K)
tanglement in the given overall pure state. To the extent that (2m)°

a given quantum system is not really isolated, but interacts . , ,

with other systemgpossibly a nondescript “environmenk,” xexplik-[r=r'])a(r=r’),
this analysis also shows that assuming the purity of its state QO _

is inadequately restrictive. In the following section we exam- =23 J d*k[7ikTp(k), (15

ine the spatially homogeneous, but possibly not pure, states

of a single quantum particle, independently of any dynamicalvhere we have used a large quantization voldne avoid
processes that may in fact give real existence to such statgmoblems related to states of infinite norm. This normaliza-
An example of such a dynamical process will be given nexttion scheme, commonly called box normalization, assumes
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that the particle is confined to a large volufe which is  with their inherent observable properties, without regard to
taken to be infinite at the end of the calculatidh—~c. A any dynamical processes that might have led to their prepa-
plane wave state is then normalized as &)//Q. Sub-  ration. In the following section we consider a simple but

stituting p=7k in the integration of Eq(15), we find that definite composite dynamical system and use the tools devel-
’ oped here in order to study the entanglement effects gener-

ated by definite interaction processes.

<p>=J d*p pf(p), (16)

— 37> i ;
wheref(p).—[Q/(ZTrh) lp(p/%). Similarly, the expectation IV. HYDROGEN ATOM
value of higher-order powers of momentum components are

equal to the corresponding higher-order moments of (¢ We now apply the density matrix formalism to stationary
function, e.g.((p-X)%)=fd3p(p-X)*f(p). Thus,f(p) may states of a system that can display correlation: the two-body
be interpreted as a momentum distribution function. hydrogen atom. The hydrogen atom consists of an electron
To see thap(k) gives the eigenvalues of the density ma-and a proton, interacting by means of the Coulomb potential.
trix, we use Eq(13) to evaluate The Hamiltonian of the electron—proton system is
. 02 02 2
37 ) SXRIk-TT) A=l P & 19
f d3r’ p(r—r") Nl 2m. " 2my Jre—ry|’ (19
] wherep andr denote the momentum and position operators
1 J’ e exp(ik’-r) f &r in coordinate space, and the subscripend , indicate the
- (2m)® p(k?) JQ ' electron and the proton.
In fact, the hydrogen atom can be treated as two uncorre-
) - expik-r) lated subsystems. Transforming to relativesr,—r., and
xexpifk—k']-r")=p(k) i (17 center-of-mass coordinateR=(Mgf o+ m,r,)/M, whereM

is the total massM =mg+m,, the Hamiltonian separates
which we recognize as the eigenvalue equation of the densityito a center-of-mass term which takes on the form of a
matrix [Eq. (7)] in coordinate representation. From Efj7),  free-particle HamiltonianH = p&/2M, and an “internal”

it follows that the eigenvectors of the density matrix are theqamiltonian which governs the relative motion of the elec-
plane wave states of momentwnand that the corresponding tron and the protonH; = ﬁf/Zm,—ezlr, wherem, is the

eigenvalues are equal Tg(K). _ _ _ ~

The density matrix of a homogeneous single-particle sysz‘adUC_‘:‘d massm, '=m, '+ my*. The product ofHy, and
tem doesnot generally describe a pure system. To see thatHi €igenstates,
we remind the reader that a pure system is characterized by p
an idempotent density matrip?=p. For the homogeneous ‘I’(R,F)=¢int(f)exr<i — -R) / JQ, (20)
single-particle system, this implies that the eigenvalues of h
the density matrix satisfp(k)2=p(k). Consequently, for a is an eigenstate. According to the definitions introduced in
pure homogeneous single-particle system, we find@le)  Sec. II, the internal and center-of-mass subsystems for the
=0 orp(k)=1. Furthermore, the unit trace condition on the State(20) are not correlated. If the hydrogen atom is in its
density matrix implies atomic ground state, the internal wave functiah,, is

equal to

1:fd3rp(0) ) 1(1)3/2 et
n(N=—=1|—| exp—rl/a

Q int’ \/; ag 0

- - 3T -
(0= f d kP(k)H; p(k), (18 (hydrogen in & state, (21)

where in the last step we reconverted the momentum integrathereay is the Bohr radiusay=7%2/m;e?. _

to the sum of discrete momenta appropriate to the adopted Partitioning the hydrogen atom differently into electron

volume quantization. Thus, the homogeneous single-particland proton subsystems gives an entangled state:

system that is pure can only be described by a density matrix P [mgretmyr,]

with a single eigenvalue, sgy(k), equal to 1, and all other W (re,rp)=dindre=rplexp i = - ————— V.

eigenvaluesp(k)=0, k#k,. Such a density matrix repre- 22)

sents a particle with a definite momentuizero standard _ .

deviation of the distribution of density matrix eigenvalyes The reduced density matrix for the electron system can be

corresponding to a plane wave wave functiofr|¥) obtained by taking the trace over the proton basis set of

—exp(k,-r)/VQ. In contrast, an impure single-particle sys- coordinate eigenfunctions:

tem has a spectrum(k) of density matrix eigenvalues. The , 3 .

standard deviation of thp(k) distribution is a measure of P(re’re):f d°rp W(re,rp)W*(re,rp)

the correlation or entanglement of the single-particle

systemt! o] meP 4 _

It should be remarked, finally, that all the above discussion =exp i g Lrerel "o bimlTe=Tp)
had a purely kinematical character, in the sense that we dealt .
with possible states of a quantum mechanical system and X (e =T1p)/
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. mg , , tum distribution f;(p) for atoms at rest, by means of a
=& [re=rel|pinre.re), (23 simple displacement in momentum space:

where we introduce the electron density mapiy for elec- f(p)=finy
trons in atoms at resP=0). It is interesting to note that the

electron subsystem of the hydrogen atom is homogeneoughere

To prove that, it is sufficient to show that,; depends om,
and rg asre—r,. Substitutingr,—r,=y and writing the
argument of¢jy, re—r,, asre—re+y, we do indeed find
that

Me )
p— ™M PJ, (29

1 64mag
find(P)= 2nh)’ S
h

. (30

Equation(29) expresses a Gallilean transformation from the
f Ay Ginr —Tp) Pindra—rp) center-of-mass reference frame=0) to the lab frame of
reference in which the atom is moving with velockyM . If

the electron in the center-of-mass frame has velogity
=p/m, then, in the lab frame, its velocity is observed as
v'=p/m,—P/M, corresponding to a momentum equal to

- [ @y gutre-rir o). 24

which depends solely on,—r . Consequently, the reduced My’ =p— (Mg /M)P
electron density matriX23) only depends on the relative € P N i

- T - ; Sincef andf;, are equal up to a translation in momentum
osition, indicating a homogeneous subsystem. This might Lo nt o
P g 9 y g space, their widths, or standard deviations, are equal. In the

appear surprising: We do not usually think of the electron in " I
hydrogen as a homogeneous system. However, the reducEgnter-of-mass framep) =0, so that the standard deviation

density matrix describes the observation of hydrogenic elecAP= v{p“)—({p))“ is equal to

trons in the assumption that the proton is “invisible.” Fur- 7

thermore Eq(22) describes a hydrogen of fixed momentum Ap=\ / f d3p p?fi(p)=—. (31)

(e.g., a beam of hydrogen atoms of well-defined velgaty ao

that the center-of-mass position of the atom is undeterminedrhys, although the electron subsystem is homogeneous, as a

It is then equally likely to observe the electron in any posi-consequence of the electron—proton correlation, a measure-

tion, and the electron subsystem is homogeneous. ment of the electron momentum can yield a finite range of
Consequently, as discussed in the previous section, thgalues. In accordance with the Heisenberg uncertainty prin-

Fourier transform of the density matrix plays a central role.ciple (the correlations confine the electron in the center-of-

The density-matrixpiy of a 1s electron in a hydrogen atom mass frame to a region of sizea,) the size of this region in

at rest[P=0 in Eqg. (23], has a simple analytical Fourier momentum space, or more precisely, the standard deviation

transform, Ap of the momentum distribution, equaiga,. In the con-

1 64wad text of describing correlating systenisp is a measure of the

~ 0 H .

pin(K)= =~ . (25)  strength of the correlatlor_l. The stronger the electron and pro-
" Q 1+ (agk) ton are correlated, the higher the valueagfand the larger

the region in momentum spacA ) over which the electron

The Fourier transfornp for an electron in an atom of arbi- - .,
momentum is “spread out.

trary momentumP is a translation ink space ofp;,;. To
show that, we insert the inverse Fourier transfornp afi the

expression for the density matri23), V. CONCLUSION

In this paper, we have reviewed aspects of density matrix
Pint(K") theory which pertain to the description of the entanglement
of correlated subsystems. The mutual entanglement of sub-
P systems of a largefpurg system is conveniently quantified
—+k’ ) (26) by the standard deviation of the reduced density matrix ei-
M7 genvalues of the entangled subsystems. For the sithple
The substitutionk =k’ +m.P/M#, then leads to the Fourier '€/€vani case of homogeneous single-particle subsystems,
transform: the Qen$|ty matrix eigenvalues give jchg particle’s momentum
distribution. Thus the standard deviation of the momentum
1 _ mgP distribution is a measure of the entanglement of the single-
p(re,re)= 27 J' d°k pint<k_ W) particle system, as we have illustrated for the specific ex-
™ ample of the electron in the two-body hydrogen atom.
Xexplik-[re—rel), (27)

from which it follows that

1
p(re 1= 58 f o’

m
xXexp |

'[re_ré]
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