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To construct a self-adjoint operator the domain of the operator has to be specified by imposing an
appropriate boundary condition or conditions on the wave functions on which the operator acts. We
illustrate situations for which different boundary conditions lead to different operators and hence to
different physics. ©2004 American Association of Physics Teachers.
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[. INTRODUCTION wave functions, and hence in different operators. These op-
erators represent new and interesting physics.

Operators are essential to quantum mechanics. Observ-In Sec. Il we explain what a self-adjoint operator is by
ables are represented by linear, self-adjoint operators in tHgomparing it with an operator that is merely Hermitian. In
Hilbert space of the states of the system under consideratiof€ rest of the paper we show by example how to construct
For mathematicians an operator acting in a Hilbert spac&®€lf-adjoint operators. In Sec. Ill we explain how to deter-
consists of its action and its domain. The action refers tdnine whether a certain Hermitian operator may be extended,

what the operator does to the functions on which it acts. Th&at i?' if t':] ifdeSSigle to obtain a family of tself-alldjgint y
domain is the specified set of functions on which the operanera.l ors that depends on one or more parameters. in Sec.
e discuss, again by example, how to obtain the family of

tor acts. However, most textbooks on quantum mechanics d\t()youndar conditions that characterize the family of self-
not mention the domain of the operatofén exception is y y

: _ adjoint operators. Finally in Sec. V we consider the relevance
the book by Ballentiné) Textbooks usua[ly state that an ob . of these operators to physics. The solution of each example
servable should correspond to a Hermitian operator. The di

o L -, 35 done in parts and is divided over Secs. IlI-V. In Appendix
tinction between a self-adjoint operator and a Hermitian OPA e give additional discussion that shows why the prescrip-

erator is not mentioned. The distinction is rather subtle anq : . . .
. . . ! ons given in the main body of the paper work, and in Ap-
we shall see that it has to do with the domain of the operatorI grven | I y paper w nAp

o : _gendix B we give the solution of an exercise.
We note that a Hermitian operator also is called a symmetri
operator in the mathematical literature.
The situation in the physics literature was no better until
the recent excellent article by Bonneau, Faraut, and \7a|ent”' WHAT IS A SELF-ADJOINT OPERATOR?

on self-adjoint extensions. We are aware of only two other \oqt students think that the domain of an operator is au-
related articles. One is by Jordamyho pointed out the im-

portance of specifying operator domains and the relationshi_bonfaﬁwlly specified. Th_ey think that, 4 is an operator and
of the domain with the boundary conditions on the wavelf A¢ belongs to the Hilbert space, thgnbelongs to the
functions. The other article is by Cabion self-adjointness  domain ofA, which, as we shall see, is rarely so. In general,
and broken symmetry. The concept of self-adjoint Operatorg, e set of functions to whicA¢ belongs to the Hilbert space

is essential in quantum mechanics, and we believe that physs ;) ) large. The reason for specifying the domain is that we

ics students should be aware of it. The construction of selfwam the operator to be self-adjoint. Furthermore, it is pos-

adjoint operators produces some new and interesting prolgp|e for operators with the same action to be different self-
lems. There are also some problems in physics, for 'nSta”C%djoint operators if they have different domains.

the problem of helicity conservation in the Aharonov—Bohm | at s explain the above considerations with an example.
scattering of a Dirac pa_r;gle, that can be solved only if weconsider a free particle moving on the one-dimensional half
consider such technicalities. line. The kinetic energy operator of the particle ki,

The purpose of this paper is to supplement and expand the _ (h2/2m) d?/dx?. Consider the set of functionsy(x),

presentation given in Ref. 2. We examine six examp_l_es of th%lefined for G=x<o such thatf’| ¢(x)|2dx is finite, that is,
following general procedure. We start with a Hermitian op- hey are square integrable. This set of functions forms a Hil-
erator, and determine if it can be used to construct a selft- y 4 9 y

adjoint operator by modifying its domain. If the answer is bert space denoted by mathematiciang. b0, ]. There are

positive, we say that the operator can be extended, and vJQnCt'OHS in this space for which
construct self-adjoint operators by imposing suitable bound- = h? d?e(x)|?

ary conditions on the wave functions. Usually the result is a f T om dx X=
family of operators that depend on one or more parameters.
Different values of the parameters result in different do-and hence the operatét, omits some functiong(x) from
mains, differing in the boundary conditions satisfied by thethe Hilbert space.
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However, the condition thafe belongs to the Hilbert [ dPep(x)|* dxe [F ot d®¢1(x) d
space is not sufficient even for physicists. It is quite reason- |, |~ dx2 Pa(x)dx= o ¢2 ()|~ — g2 9%
able to argue that for the particle to be confined to the half (6)

line, 0=x<, there must be an infinite barrierxat 0. This

barrier forces us to impose the conditigg{0)=0. Math-  or

ematically, however, this condition makely, self-adjoint as

we shall see. (Hop2,¢1) = (¢2,Hoep1). 7
Because we are going to integrate by parts, we must re-

move various sets of functions froim,[000]. First we re-

move all the functions that although square integrable, do n

go to zero ax— . An example of such a function can be

found in Ref. 6. Second we remove all functions that are no

absolutely continuous. A function is absolutely continuous if

it is the integral of its derivative, that i$(x) is absolutely

continuous iff(x) = f[df(t)/dt] dt+f(0). An example of

a function that is continuous, but does not have a derivativeorigin is self-adjoint.

is given in Refs. 7 and 8. We cal} the subset of 5[ 0,<] Another operator can be obtained by imposing on the
that is SO formed. . functions () the conditions¢(0)=0 and d¢4(0)/dx=0.
Consider two functionse;(x) and ¢,(x) such that  Thig gperator is called Hermitian. However, it is not self-
¢1(0)=0, bute,(0)#0, both belonging td). Consider the  4gjgint, because? (0) andde (0)/dx can take any finite
matrix element value and Eq(6) is nevertheless satisfied, that is, the domain
of the adjoint is larger than the domain of the operator. In

The important point here is that the boundary condition for
tpe function on the rightp,(x), is exactly the same as the
Qboundary condition for the function to the lefg,(x). In

ther words, when the action and the domain of the operator
hat acts on the right is equal to the action and the domain of
its adjoint, that is, the operator that acts on the left, the op-
erator is said to be self-adjoint. So the operatod?/dx?
defined in the domaif)" of functions of() that vanish at the

- 2 42
(‘vaHO(Pl):f @3 (X) _Zh_% ) fact, _thg domain of the adjoin'[2 is gll functions 6f that
0 m  ax remain inQ) after acted on by d?/dx?.

Note that we have define@' by removing sets of func-
tions fromL,[ 0,2] and requiring that the functions vanish at
the origin. However, we must be sure that the resulting set is
dense in_,[ 0,2], which means that given an arbitrary func-
tion f(x) e L,[000] and an arbitrary positive number>0,

The adjoint of the operatd, can be obtained by doing an
integration by parts and having it act @ (x) (from now on
we use units such th&’/2m =1). We have

d *
— <P§(X)<E<P1(X)) = QDZ—(X) dea(x) there is always a functiog(x) belonging to)’ such that
dx dx dx dx I51f(x) — ¢(x)|2dx< 8. The domain of an operator has to be
d?p4(x) dense in order that the adjoint exist®e Ref. 9 for a prodf
+QD’£(X)T, (20 The reader should not worry about this point. Mathemati-
cians have proved that all sets used in this Woece dense
* * in the relevant Hilbert space. In many cases given a function
i M (@q(x }: M dea(X) of the Hilbert space, a plot of it together with a plot of a
dx dx dx dx convenient function of)’ will convince the reader.
d2e% (%) We now rewrite Eq(5) as
t g P 3

= d?p}(X)
f—d—iz%(x)dx

If we subtract Eq(3) from Eq. (2), we obtain 0

d2¢3 (x) _F \ )[ o] e
_T(Pl(x) o @5 (x T X+ ¢5(0)p1(0)
d2p,(x)] d de1(X) 1 dei(0) 1 de3(0)
=5 (X)| — |+ 72| 93 (X) 0) dx o d ®
dx dx dx ¢1(0) dx ¢3(0) dx
d [de5(x) We see that if we let
Tax| Tax e 4
1 de(0)
We then integrate both sides and obtain ¢(0) dx - ©
= d%e3(x) . d2@q(X) wherek can be any real number, we obtain another operator.
0 a2 Padx= . P2 (X)| = — g2 | dX In fact, we obtain a family of operators that depend son
They all have the same actiond?/dx?, but they act on
« - de(0) dg3(0) different domains characterized gy As we have said, the
=e2(0)— g 0. (3 casexk== (¢(0)=0) is usually identified with an infinite
wall at x=0.
The reader can easily verify that i3 (0) and ¢,(0) are We can now define what is a Hermitian operator and what
both zero, we have is a self-adjoint operator. Consider an operaatefined in a
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dense domairD(A) of a Hilbert space. Its adjoinA*, It is easy to see that Eqgl1) and(12) have solutions in
whose domain isD(A*), is such that for all¢ and ¢ e domain of the ?dlo'r/'t'
7T4)i77(l 2))(

eD(A), v (x)=e , (13
(A+ d)yQD) — (¢,A¢) (lo) qf_(x):e_e(ﬂ'/ll) i77(1/2)x. (14)
The operatorA is Hermitian if its action is the same as the Son,=n_=1, and we conclude that the operator can be

action ofA* and if the domain of its adjoini\*, D(A*), is  extended, that is, there is a one parameter family of self-
such thalD(A)CD(A*) that is, the domain of the operator adjoint operators. The operators depend on the boundary

. . . . . ) , condition atx=0, which contains one parameter. As we
is contained in the domain of the adjoint. If the actionfois

A ~ - know the boundary condition is
the same as the action Af" andD(A)=D(A"), the opera- do(0
tor is self-adjoint. The domain of the adjoint is deduced from ¢(0)
Eqg. (10) as we shall see in the examples.

=kp(0), (15

where x can be any real number.

. HOW DO WE KNOW IF AN OPERATOR IS B. Example 2, part 1: The delta function potential as a
SELF-ADJOINT? self-adjoint extension

We now show by examples how we can determine if an We will now show an example of an Hermitian operator
operator has a family of self-adjoint extensions and the numthat when extended, will correspond to a free particle except
ber of parameters on which this family depends. As a bonu#or a delta function at the origin. Consider the operator
we learn how to tell if an operator is self-adjoint. —d?/dx? defined in the following domain. Lef(x) be a

_ o ) function of the domain. Theffi(x) anddf(x)/dx are abso-
A. Example 1, part 1: A free particle in the right half of lutely continuousd?f (x)/dx?e L,[ 0], andf(0)=0. This
the real line operator is Hermitian and the domain of the adjoint can be

Consider the operator d%/dx? defined in the domain of calculated as follows. We use E@}) and integrate from

functions ¢(x), 0=<x<c, such thate vanishes near the —*—0" and from 0" to obtain

origin.!! The functionse(x) are continuous and infinitely +oo dch’;(x) +o d?¢,(X)
differentiable. All the functions in the domain vanish in af ——2<P1(X)dX—f @3 (X)| — 7—|dX
L . . —w dx —w dx
small, but finite interva] 0,a] wherea>0 is an arbitrary real
number, and also for>b>a, another arbitrary real number. de,(07) de,(01)
ition/ | o (x)|2dx<» i i sfi =03(07) g, — 30— —
The condition/ 5| ¢(x)|“dx<c is automatically satisfied. An ¥2 dx ®2 dx
example of such a function is,,(x)=0 for O=x=<a and .o .
x=b andu,,(X) =exg 1/((x—a)(x—b))] for a<x<b. _de3(07) (07)+ de3(07) (0) 16
This operator is Hermitian as we have seen in Sec. Il. Let dx 1 dx 1 '

¢1(x) be a fungtion in the domain defined above. Then \ve set the right hand side of E{L6) to zero. Because
¢1(x) vanishes in the neighborhood @&=0 and so does 01(07)=¢1(07)=0, we have that de}(0")/dx

de,(x)/dx. Therefore the right-hand side of E) is zero

even if ¢,(x) #0, and hence, the domain of the adjoint is a
suobosetf Ef %bzolute(;yt; otntlnuoys_fu:]hctu()jns that Vr? nisix ?s dTherefore, the domain of the adjoint consists of functions
— of Ly[O] and that remain in the domain when acte that are absolutely continuous with first derivatives abso-

on by the operator. Jutely continuous except at the origin where they have an

To see if this operator can be extended to a family of,pinary giscontinuity. Therefore the operator is Hermitian.
self-adjoint operators, that is, if we can construct self-adjoint To see if this operator can be extended to a family of

operators from it, we consider self-adjoint operators, that is, if we can construct self-adjoint

—de3(07)/dx=6 (where § is any number because
de1(07)/dx=dg,(07)/dx, we have ¢3(07)=¢3(0").

d>¥,(x) operators from it, we consider
B T A R R 11 42w, oy .
T a2 I,
d®¥_(x) dx
-l kA SR CP (12 where the constany is included for dimensional reasons

) . ) ) only. Equation(17) has solutions
where is a real number introduced for dimensional reasons

only e My 12x - for _o<x<0

Let n,. andn_ be the numbers of linearly independent Y. ()= e (€ Ny o 0<x<oo, (18
solutions of Egs(11) and (12), respectively, that are in the _
domain of the adjoint. The numbers. andn_ are called e ™)y 2x for w<x<0
deficiency m?gxes. I, =n_=n, the operator can be ex- W _(x)= o (T 1 00 0 <x<oo. (19
tended, andh“ is equal to the number of the parameters of

the resulting family of self-adjoint operators. As we shall see,Thus,n, =n_=1, and we conclude that the operator can be
the parameters appear in the boundary conditions imposesktended, that is, there is a one parameter family of self-
on the functions ax=0. If n, =n_=0, the operator is self- adjoint operators. The operators depend on the boundary
adjoint. condition atx=0, which contains one parameter. As we shall
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see in Sec. 1V, the boundary condition corresponds to a delta 0, —oo<x<0
function at the origin. qf}rz{ (i) | (12 (23
In the next example we consider an operator with the same e ® T 0<x<os,
action but with a different domain. We shall see that the o (nlA)i (112
deficiency indices are different and in Sec. IV we shall see ;2 :{e T me<x<0 (24)
that the family of self-adjoint extensions is different. In fact, T 10, 0<x<w,
they will contain the present case as a special case. This
example and the next illustrate the importance of the domain 0, —o<x<0
of the Hermitian operator from which one starts to construct W ={ et ()1, (1 (25
the family of self-adjoint operators. € » O<x<e,
o : 2 [eeﬂﬂ/‘w”(mx, —<x<0
C. Example 3, part 1: A free particle in the real line Ve = (26)
from which the origin has been removed 0, O<x<e.

In this example we consider a Hermitian operator that car] "€refore, as we shall see, we can create self-adjoint opera-
be extended to a family of four parameter self-adjoint operalCrs by imposing suitable boundary conditions on the wave
tors. Those operators represent the most general point intgidnctions at the origin. The boundary conditions will depend
action at the origin. The delta function considered in the®n four parameters.
previous example is a particular example of a point interac-
tion.
~ Consider the operator dz/gxz defined in the whole real b gyample 4, part 1: A free particle in the plane from
Ilng with the origin removed? So the fur]ct|ons in this do- \yhich the origin has been removed
main are not defined fox=0; the functionsu,,.{X) be-
longing to this domain vanish around=0, that is for—a In this example we consider an example of a Hermitian
<x<b and also fox< —c and forx>d, wherea, b, c, and operator that can be extended to one parameter family of
d are arbitrary positive numbers. Therefore the domain of€lf-adjoint extensions which represent a renormalized two-
this operator consists of functions that vanish before thélimensional delta fU“Ct'O”-2 . _ _
pointx=0 from the negative and positive sides and for large Consider the operatorV* in two dimensions. In polar

distances in both positive and negative directions. coordinates the radial part of the action of this operéfor
This operator is clearly Hermitian. Consider(x) be-  angular momentum zeyas given by
longing to the domain of the operat@s defined aboyeand 1d d
an arbitrary absolutely continuoys(x). Then using Eq(4) H=-— T a( r a) . (27
and integrating from-o to 0~ and from 0" to %, we obtain
P Y . ) To complete the definition we specify the domain which we
f _ ‘PZ(X)(P (x)dx—f ot (x| - d ‘Pl(x)}dx take to beCg{R?\{0}}, that is, functions that are continuous,
o dx® Tt o 2 dx? infinitely differentiable, and vanish before the poirt 0 and
de,(07) de,(07) for r>b, whereb is an arbitrary positive number that varies
=3(07) ————¢%(0") ——— from function to function. In Example 2, we removed the
dx dx origin from the real line. In the present case we remove the
de%(07) de%(0%) point_r=0 from the plane. _ _ N
- Tgpl(o_)—l— T@1(0+)_ (20) It is easy to check that this operator is Hermitian. Take

¢1(r) belonging to the domain of the operat@s we de-
The second line vanishes becays¢0 ™ )=¢,(07)=0; also  fined an_d an arbitraryp,(r). If we use integration by parts,
de,(07)/dx=de,(07)/dx=0 independent of the corre- We obtain

sponding values op3 (0™). Thus we obtain (Heo(r),01(r) = (@2(r),He1(r))

+= d?e5(x) e d®¢1(x) e d2 1d
|- eton | eoa - S5 ox == fo dr r(d—rz+ ra) P30 ex(n)
=0. (21 o 2
* — —
The domain of the adjoint is the set of all square integrable * jo drrez(r) d_rz+ r dr) ¢1(r)
functions from— e« to « that vanishes whex— * o, but are .
not defined ak=0. The functions also are absolutely con-  _ . des (1) (r)— *(r)d(Pl(r) 29
tinuous from—o—0~ and from 0" —, and remain in the T | dr e dr
set when acted on by the operator. To see if this operator can
be extended to a self-adjoint operator, consider The second line vanishes for all values of(0) and
d2W ., (x) de3 (0)/dr becausep,(0)=0 andde,(0)/dr=0. Thus we
- T =xigV.(x). (22 obtain
It is easy to see that there are two solutions for the positive (Hea(r), @1(r) = (¢2(r),Hea(r) =0. (29)
sign and two for the negative sign, so tmt=n_=2. The The domain of the adjoint is all absolutely continuous
solutions are functions ofL,([0,°);r dr), that is, functionsp(r) that van-
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ish whenr — such thatfg|¢(r)|?r dr<e. To see if this

of

1d( d L
_Fa<ra)‘l’r(r>=—m‘l’:(f% (30

or
2 1d _

“gre V=T g V(D= (=) n¥.(r)=0.

Equation(31) has two normalizable solutions, namely,

W (r)=Ko(e™ "V pt7), (32

Therefore,n, =n_=1, and the operator given by E7)
has a one-parameter family of self-adjoint extensions.

Exercise 1:Consider the operator given by E@7). Use
the unitary transformation,

U:Lo([02);rdr)—Ly([002);dr) (Uf)(r)

(31

=1~ Y2(r), (33
to show that the action of the operator becomes
2 1
Tl (34)

Define its domain a€;((0,%)/{0}) and show that the defi-
ciency indices are, =n_=1.

E. Example 5, part 1: A free Dirac particle in the real
line from which the origin has been removed

The kinetic energy operator is given by

. d
HD:_|C¥_+ﬁm,

ax (35
where
0 —i
a=(i 0), (36)
1 0
A=\, _1). (37

We take the domain to beC{(R\{0}))?, which means

that the two components are both continuous, infinitely dif-

ferentiable, and vanish fer<a<b and forr >b and also for
r>—a’'>—-b andr>—-b’, wherea, b, a’, andb’ are ar-

bitrary positive numbers that depend on the function. Note x
that the constants for the upper components need not
equal to the constants for the lower component. In this do=

main the operator of Eq35) is Hermitian. Considetp,(x)
belonging to the domain of the operatas we definedand

an arbitrarye,(x). Then if we use integration by parts, we

obtain
[Hpea(X),01(X)) — (@2(X),Hpe1(X)]
=¢3(0")ag(07)—@5(07 )apy(07). (38)

The expression in EQq.(38) vanishes because;(07)
=¢,(0") =0, independent of the values @f (0*).

To see if we can extend the operatdp, we look at a
square-integrable, two-component function that satisfies

HpW  (r)=+in¥.(r), (39

5 Am. J. Phys., Vol. 72, No. 1, January 2004

operator can be extended, we have to examine the solutior|1

HpoW_(r)=—inpW¥_(r). (40

Pis not very difficult to see thah, =n_=2. So again we
have a four parameter family of self-adjoint extensions. We
define the functior{inote that the zero has been remoyved

1 if x>0
= . 41
§0=10 it x<o. (41)
The solutions are
e,(n2+m2)(1/2)xg(x)
1 _ r -
vi=| m_ln1/28*(7}2+m2)(1/2)X§(X) , (42)
| m+iz|
e(_”2+m2)1/2xé(_x)
‘Pi: -m_iﬂ-llz 2, .2 (43
~(P+mA) Mgy |
+_m+i77_ € &§(=x)
ef(n2+m2)(1/2)xg(x)
1 IR EV7)
\P7 — m |77 ef(”’}2+m2)1/2X§(X) ! (44)
| M+17]
e(ﬂ2+m2)<1/2)xf( —X)
\1,2_ = [ m_| 7]- 12 2 2 . (45)
(P +m?) e
+_m+i77_ € §(=x)

F. Example 6, part 1: A free Dirac particle in a plane from
which the origin has been removed

In polar coordinates the radial part of the action of the
kinetic energy operator for the zero angular momentum part
is

d 1
m - a+r
Hap= d (46)
o _
It is easy to see that
HopV.=*ximV¥., (47

(wherem has been introduced for dimensional reagdres
solutions

Ko(v2mr)
_ eii (77/4)K1(‘/§mr) ’

e . . .
ut these solutions are not normalizable. So the operator is

V.= (48)

self-adjoint. As we shall see, the above result means that, for
instance, we cannot put&function at the origint?

IV. BOUNDARY CONDITIONS

We now show how the boundary conditions can be deter-
mined. As we have seen in Sec. lll, a Hermitian operator can
be extended to a self-adjoint operator if the number of
square-integrable solutions @f\Ifi=iin‘Ifi, which we
calledn, andn_, are equal. The first step in determining
the boundary conditions is to construct a unitary operbtor
that relates function¥ , andW¥ _ .

Araujo, Coutinho, and Fernando Perez 5



A. Example 1, part 2: A free particle in the right half of
the real line

As we have seen, the solutions of E¢kl) and (12) for
this case are

_e— (74 i7](1/2)X

V.o(x)=e :

_elm4)i 77(1/2))(

(49

V_(x)=e

The unitary matrix relating the subspace generated by

V¥ (x) to the subspace generated ¥y (x) is therefore

e(x)dx

= AW (x)+e W _(x))*
f_m_ dx?

d?e(x)

=£;(\If+(x)+ei“‘lf_(x))* — 5|9 (54)

If we use Eq.(16), we find

. d(¢(0~
(¥, (07)+e' "W _(07))* %—(‘K(OW

one-dimensional, that is, just a complex number of modulus

one. Hence, the self-adjoint extensions depend on one pa-

rameter only. We set) = a with |a|=1.

d(¢(0")

+eiaq,f(o+))* ix

The prescription for obtaining the boundary conditions is

simply to require that

fm_ d* (W () +aW _(x)*

0 dXZ QD(X)dX
o0 d2
=f0 (W, (X)+a¥_(x)* —%ZX) dx. (50)

Equation(50) is equivalent to Eq(6) with ¢,’'s replaced by
T, (xX)+a¥_(x). We use Eq(5) to obtain

de(0)
dx

d(¥, (0)+ .V _(0))*
- 0 ¢(0)=0.

(V1(0)+a¥_(0)*

(51)

If we replace the values o¥, (0), ¥_(0), d¥,(0)/dx,
anddW¥ —(0)/dx by using Eq.(49), we obtain

do(0 . )
(1+a*) ";(X ) (el 112 ok = (7)1 12) o (0) =,
(52
or if we let a=¢e'?,
1 de(0) 12 3 3
W ax C §+Z COSE—K, (53

in agreement with the result obtained in E9). Note that the
constanty was absorbed in the constaatThe fact that the

d(P,(07)+e*¥_(07))*

- ax ¢(0)
d(W_(0")+e ¥ _(0"))*

+( ( )dX (0M)) 0(0)=0,

(59

We replace the values & . (0"), ¥_(0"), d¥_(0")/dXx,
etc., and obtain

a o
2’)71/2C0{ Z + E

——(0)
CO% E)

where g is an arbitrary real number. EquatidB6) is the
boundary condition when we treat the Satirger equation
formally, by considering heuristically a delta function at the
origin. However, as will be explained in Sec. V, the heuristic
procedure for obtaining the boundary conditions is not
strictly correct.

de(07) de(07)

dx dx

=0¢(0), (56)

C. Example 3, part 2: A free patrticle in the real line
from which the origin has been removed

We found in Sec. Il that Eq(22) of Example 2 has two
linearly independent solutions for each sign. Therefore the

subspace generated by?(x) and \Ifi(x) is two-

constanty can be absorbed is general and is the reason whglimensional, and so is the subspace generatel bgx) and

mathematicians sep=1 from the very beginning.

B. Example 2, part 2: The delta function potential as a
self-adjoint extension

W2 (x). The mapping between the two subspaces is given by
a 2X 2 unitary matrixU given by

Uj; Ugpp coshe/(¢+a
U= =
U2y

i sinbe~1(d-2)
~|isinbe@*a '

U cosbe (c7a)

(57)

We now explain how to obtain the boundary conditions.

As we shall see, the boundary conditions will be the onesrhen the boundary conditions can be obtained by enforcing
obtained heuristically by considering a delta function at the
*

e(x)dx

origin. +of 2

We found in Sec. lll that Eq(17) has one solution each in J ;—Xz(\lﬁ(x)ntull\lfl,(x)+u12‘1'2,(x))
the domain of the adjoint. The unitary matrix relating the 7 —=
subspace generated Ny, (x) to the subspace generated by +oo d%e
W _(x) is therefore one-dimensional, that is, just a complex =j [P (x)+up P (x)+uP2(x)]* d—deX,
number of modulus ones'®. The prescription to obtain the *
boundary conditions is simply to require that

(58)
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2 *
W(‘I’i(X) HUu VL) +uxrPE (X)) | e(x)dx

[

a2 1 2 *dch
=f_w[‘P+(x)+u21‘1'_(x)+u22‘I'_(x)] de-

(59

That is, we enforce Eq(21) with ¢, replaced by¥? (x)
+u T () +u P2 (x), and W2 (x)+uy¥l(x)
+u,,¥? (x), respectively, wherall (x), ¥2 (x), ¥ (x),
and¥? (x) are given by Eqs(23)—(26).

If we use Eq.(20) and Eqgs(23)—(26), we find from Egs.
(58 and(59) that

(1+uf)e’(0")+(e™+e™ (™7l o(07)

— U (07)+e (™ pM2t0(07) =0, (60)
Ul (0%)+e ™Il 0(0%) — (1+u3) e’ (07)
(e e (usn ) e(07) =0, (61)

wherep’ (0)=de(0*)/dx.
To bring Egs.(60) and (61) to a more familiar form, we
multiply Eq. (60) by e (™¥u}, and Eq.(61) by e'(™¥(1

cosa-+ cosb cosc
8=-v2 . , (68)
sinb
T . w
cos( a+ 7 +cosb sin| c+ 7
Y=V sinb (69
and write Eq.(67) as
7"%(0") =€ (8'¢'(07)+y' n'%(07)). (70

Thus we can express the results of E@¥6) and (70) as
follows:
( ¢'(07) ): iﬂ’(al B’ ( ¢'(07)
7"%e(0") 8 '\ n"%(07)
and it is easy to verify that the real parameters 8’, y’',
and¢§’ satisfya’y'—B'6'=1.
On the other hand, ifi;,=u,;=0, that is, if silb=0, Egs.
(60) and(61) become
@' (0%)=x"¢(0%),

wherex ™~ is any real number. The meaning of E@2) is that

, (71)

(72

—iujy. Then we subtract the two resultant equations andhe two sides of the real line became decoupled.

replaceu?; by its value given by Eq(57), assuming that

sinb+0:
das | cosarfe 3
co§ a+ — | —cosb sin c— —
/(O+):eid o) 4 4
¢ sinb
Xe'(07)
et s sina— cosb cosc 0-) 12 62
e <b e(0) 7% (62
We let
w bsi T
o co a+Z —cosb sin C—Z o
@ sinb ' (63
sina—cosb cosc
=2 ], (64)
sinb
9 =d (65)
Then Eqg.(62) can be written as
©'(0")=€e"[a’¢'(07)+5 1"%(07)]. (66)

Similarly, if we multiply Eq.(60) by u3, and Eq.(61) by
(1—u3,) and subtract the resulting equations, we obtain

sinb ¢'(07)

cosa+ cosh cosc)

n1/2¢(0+): _eid ‘/?

+7T
coaz

. ar
+cosb sin| c+ 7

id
Te _‘/2 sinb
X @(07)7"2 (67)

We let
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The constanty in Eq. (71) can be easily absorbed in the
constantgd’ and s’ by dividing the second equation by
As mentioned, the fact that the constant can be absorbed is
general and the constaptcould have been set equal to unity
from the beginning. From Ed71) we have

(cp%o*)):ew(a B (<p'<0>

¢(07) 5 )\ e07)

wherea’ =a, B=p8'7*? 6=68/72 y=v', and9="9".
The physics of the boundary conditions given by EtB)

was studied in Refs. 14 and 15. We shall return to the physics
of the above boundary conditions in Sec. V.

: (73

D. Example 4, part 2: A free particle in the plane from
which the origin has been removed

As we have shown, the solutions of E§1) are

W.(r)=Kq(e™ (™ 9tr). (74

The subspace generatedWy, (r) is one-dimensional and so
is the space generated By_(r). Therefore the unitary ma-
trix mapping the two subspaces is just a complex number of
modulus oneg'?. Thus the self-adjoint extensions depend on
one parameter only.

The boundary conditions are obtained by enforcing:

—fdrr
0
d> 1d

=— fo drr(\If+(r)+ei”\If(r))*(W+ ra) o(r),

d2 1d i 6 *
gzt T g (T +eM ()% e(n)

which is the condition of Eq(29) with ¢,(r) replaced by
W, (r)+e %W _(r). If we use Eq.(28), we obtain

Araujo, Coutinho, and Fernando Perez 7



lim r[di(\p+(r)+e”’~lf_(r))*so(r)
r—0 r

*

(76)

—(\If+(r)+e”’\lf_(r) a<,o(r)>=o.

We replace¥ .. (r) by using Eq.(32) and take into account

the behavior at the origin of the functidfis

Ko(2)~—In5 7, (77

1
Ki(2)~ =,

: (78)

wherey=0.5772 is the Euler constant. If we also use that

d

azRo(2=—Ka(2), (79)
we find that Eq(76) gives

. de

lim go—rm{lnrvtﬁ} =0, (80

r—0

where 8= — (w/4) tg (6/2) +In(%/2) +y can be any real

number.
The physics of the boundary conditions given by EBf)
was studied by a limiting procedure in Refs. 13 and 17.

Exercise 2:Show that the one parameter family of bound-

ary conditions for the operator given by E®4) is

apot $,=0, (81
where
do=1lim(r*2Inr)~te(r),
r—0
$1=lim 1~ Y o(r)— por inr]. (82)
r—0

(See p. 98 of Ref. 18 and Appendix B for the solutjon.

E. Example 5, part 2: A free Dirac particle in the real line
from which the origin has been removed

As shown in Sec. lll, each of Eq$39) and (40) has two

+uy,W?2 (x), respectively, where¥! (x),w?(x),¥2(x),
and¥? (x) are given by Eqs(42)—(45).

If we write
[ e1(X)

and use Eq(38) and Eqs(42)—(45), then Eqs(84) and(85)
become

(1+Uf)ga(07) + (e et/
+e7 ! e MyT) 1 (07) — Ul,p(07)
+e i acanmmy (0=, (87)
Uk 0,(0F) + g i arctan( 77/m)u’z‘lgc)l(OJr) —(1+uz)e,(07)
+ (gl arcantnim) y g=i arctann/m) k) o (97) =0, (88)

If we take »=m, then Eqs(87) and(88) become similar
to Egs.(60) and(61). To write Eqs.(87) and(88) in the form
of Eq. (71), we have

@1(07)|  [@1(07)
(wxo+>)‘ ¢xo—>» ®9
where
[0 vy
_ Al
U=e (a 3" (90)

wherea, B, v, 6, and ¥ are any real numbers satisfyimgy
—avy=1. On the other hand, ifi;,=u,;=0, Egs.(87) and
(88) become

<P2(Oi): %t<P1(0i),

wherex™ is any real number. The meaning of E§1) is that

the two sides of the real line became decoupled. The physics
of the boundary conditions given by E@9) was studied in
Ref. 19.

91

linearly independent solutions. Thus the subspace generated
by ¥ (x) and ¥2(x) is two-dimensional, and so is the F. Example 6, part 2: A free Dirac particle in a plane

subspace generated by the solutid@ifs(x) and¥?2 (x). The
mapping between the two subspaces is given bya 2ini-
tary matrixU.

Let us takeU to be identical to Eq(57) of Example 3:

(ull Ulz) (COSbei(c+a) i sinbe~i(d-2)
U= =

~|isinbg@ra  cosheitc-a) |-
(83

Thus the boundary conditions are obtained by enforcing
(Hp(W3 () +uy W (%) +u®2 (x))*, e(x))

= (VL0 +uPL 00 +ug¥2 (x)* Hpe(x), (84)
[Ho(W2 () + P () + Uz 2 (x)*, 0(X)]

=[(W3 () + UL ) +uz¥2 (x)* Hpe(x)].  (85)

That is, we enforce Eq.38) to vanish withe, replaced by
() +up P () +uP2(x) and W2 (x)+uyPt(x)

Uzp Up2
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from which the origin has been removed

In this case the operator given by E46) was found to be
self-adjoint. Some consequences of this fact will be consid-
ered in Sec. V.

V. PHYSICAL INTERPRETATION

We now discuss the implication of the different self-
adjoint extensions of an operator. In all the examples we
have presented the self-adjoint extensions were constructed
by modifying the boundary conditions at one point. An in-
terpretation of this modification is that there is an interaction
that acts at that point. That is why the theory of self-adjoint
extensions is particularly suitable for studying point interac-
tions. For a good but advanced review see Ref. 18. Let us
examine how our examples illustrate the concept of point
interactions.
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A. Example 1, part 3: A free particle in the right half of is difficult to give an expression for the potentials repre-
the real line sented by these boundary conditions. The reason is that the
result of a delta function when acting in a discontinuous
- o &unction is undefined as shown in Ref. 20. In particular, it is
O<x<c and does not cross the origin. This situation can be&jtficylt to obtain the boundary conditions for the derivative

realized by imposing the boundary condition of the delta function,
1 de(0) 2
_ =K. 92 d ,da(x)
o(0) dx K (92) —d—xz+g ax (97)

If «is a finite negative number, the poirt=0 is impen- . .
K g b b by formally manipulating the operator as was done for the

etrable, but attracts the particle. On the other hand, i a delta function potential abové.However by renormalizing

finite positive number, the point=0 is impenetrable but h of the delta f ; d taki .
repels the particle. To see this we calculate the phase shiﬁﬁ- strength of the deita functions and taking appropriate
' imits, it is possible to get a feeling for these generalized

8(Kk). It_ is easy to see thd«tco_t(&(k))=x and the_sca_ttering point interactiong
length isa= — 1/«. This effective range expansion is exact.

If k<O, there is a bound state as shown in Ref. 2. The

scattering length is positive. >0, there is no bound state

and the effective interaction is repulsive. D. Example 4, part 3: A free particle in the plane from
which the origin has been removed

B. Example 2, part 3: The delta function potential as a We now discuss the physical interpretation of the one fam-

self-adjoint extension ily of self-adjoint extensions of a particle moving in the

In this example we found a family of self-adjoint exten- Plan€ from which the origin has been removed. As men-

sions whose boundary conditions are the ones described Epﬂe(jf' It [[.S not ?Osﬁ'ﬁ’let It?] this c_asi to r:nake_seRnsfe 1°7f t_?e
the literature for a particle moving in the line with a delta 961 Tunction potential at thé ongin. AS shown in Ref. 17, 1

function in the origin. The treatment found in the literature is W& assume a square-well potential of degthand radiusp

however not strictly correct as we shall now see. at the origin and take the limji—0 andVo— — such that
The Schrdinger equation for thé(x) interaction is Voé°— —g so that the potential approachesys=(r), we
B find that the energy of the ground state goes-t®. This

(93) result means that the delta function potential in two dimen-
sions is too strong. To remedy this problem we can méke
diverge more slowly. This limiting procedure is the meaning

We integrate both sides of E¢93) from ~e fo € and let of the boundary condition given in E¢B0) and obtained in

¢—0 to determine the boundary conditions, assuming th?%ef. 17, using a different method that we now explain in
continuity of ¢(x). Howevergd(x) is not a proper operator more détail.

in the Hilbert space, because Consider a particle moving in a plane, and assume that

— g F 9900 8(X) =E¢ ().

o 5 , [ 5 there is a point interaction at the origit?(r), which is the
fﬁwlgé(x)cp(x)l dx=g LJ‘P(OH dx= oo, (949 delta function in two dimensions,
_ h?
unlesse(0)=0. — 5= V(1) + g8 (1) $(1) =E(r). (99
C. Example 3, part 3: A free particle in the real line We introduce polar coordinates,) and replace thé?(x)

from which the origin has been removed potential by a square well of depth, and radiusp. Because

We saw in Example 3 that a particle moving on the realthis potential is attractive in two dimensions, it always has at
line from which the origin has been removed admits a four€ast one bound stafé Let |E,| be its energy. Because we
parameter family of self-adjoint extensions. Let us chooseéire going to letp—0, we consider s waves only, because
one seta=1, 8=g, y=1, =0, andd=0. Then the bound- states withl # 0 will not be affected by the potential. We let
ary conditions reduce to

2m 1/2
¢ (07)—¢'(07)=ge(07), (995 k=(?|Eb|> ; (99)
and ¢(0")=¢(07)=¢(0). These are the boundary condi-

tions obtained by formally manipulating the Sctiimger _ 2—m(V ~|E |)) 12 (100
equation with a Dirac delta function potential of strengtht 0 p2t o b '
the origin. However, as already explained, it is not strictly _
correct to write If we match the solutions at= &, we have
d? —ko[J1(Kop)/Jo(kop)]= —Kk[K1(kp)/Ko(kp)].  (102)
HZ—W'FQCS(X), (96)

If we now letp—0 such thaiV,|p?—g, so that the poten-

because the delta function potential is not a proper operatdial would approach—gé°(r), we find that the bound state

in the Hilbert space. energy diverges. So we have to renormalize the delta func-
Other combinations o#, B3, y, 6, andd can be used. Each tion. As explained in Ref. 17, we do this by lettivg— > as

combination results in a different point interactiorxat0. It  a function ofp such that
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Kk
ko

lim — K[ K,(kp)/Ko(kp)]= lim 5

p—0 p—0

such that

p( n }1 Assume that there is @ that belongs to the domain &
(102 Op=ie. (A2)

Thus the limiting proceduréhe renormalized delta function Then we must have

in two dimensiongis the physical meaning of the boundary

condition given by Eq(80). Otp=ig, (A3)
Exercise 3:Compare Eq(102 with Eq. (80) to obtain a

physical interpretation for the arbitrary constggitof Eq. and

(80). ~i(¢,0)=(i0,0)=(0p,0)=(¢,0"¢)=(¢,00)

E. Example 5, part 3: A free Dirac particle in the real . Ad
line from which the origin has been removed =i(e.0), (Ad)

The four parameter family of self-adjoint extensions of aand hencepr=0. So, ifO is a self-adjoint operator, E¢A1)
Dirac particle moving in a line from which the origin has has only trivial solutions, that isp™=0, or has no square-
been removed is very similar to the Sctiimger case studied integrable solutions.
in Example 3. The different self-adjoint extensions are point Now let ©® be a Hermitian operator such that each of the
interactions placed at the origin. Two particular cases wergquations
studied in Ref. 18, p. 400. The nonrelativistic limit of these

interactions was studied in Ref. 19. ov,=iv,, (A5)
Exercise 4.Use the boundary conditions given by E§9) . .
to obtain the bound states and scattering states of a Dirac OV _=—i¥_, (A6)

particle moving in one dimension with a

Interaction at the origid® generalized point s for examplé two normalizable linearly independent so-

lutions, in the domaiff of the OF so that the deficiency

; _n 1 2
F. Example 6, part 3: A free Dirac particle in a plane indexes aren+—n,—2.1Let\If+ f”dq'+ be the two solu-
from which the origin has been removed tions of Eq.(A5) andW¥_ andW¥< the corresponding solu-

. . N . tions of Eq.(A6). We note that¥', (i=1,2) form a vector
Finally in Example 6 we saw that it is impossible to ex- . ) o N
tend the Hamiltonian of a Dirac particle in the plane from Space of dimension two, and so 48 (i=1,2). LetD . (O)
which the origin has been removed, because the operator $@ the vector space spanned ¥y, (i=1,2) andD_(O) be

obtained is already self-adjoint. In Ref. 13 this problem waspne vector space spanned B (i =1,2). LetU be a unitary
investigated by placing a square well potential at the origin N N ' .
+(0) in D_(0O) so that, for instance,

and taking the appropriate limit. By doing this we obtained@Pplication ofD
wave functions that are not normalizable at the origin. There- 2

fore the procedure, unlike in the non-relativistic problem U\PL:E Uijq'jf- (A7)
treated in Example 4, fails. j=1

Define now a new domain for the operator

D(0)={e+¥,+U¥ |¢eD(O"), ¥, D, (O)}.
(A8)
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APPENDIX A: ATHEOREM (() \pi++zl Uij‘I’j_> ’(P) :( \pi++21 uij\pi_ Oo].
We show why the prescriptions adopted in Secs. Il and 1lI : : (A10
work. We do not give rigorous proofs, but only wish to make
fche result§ more natural. Rigorous proofs can be found, foﬁ\PPENDIX B: SOLUTION OF EXERCISE 2
instance, in Ref. 23.
The main result is the following: Le® be a Hermitian We show how to go from the boundary conditit80) to
operator. If the equations, the boundary conditioli81). Because we are going to work
A - close to the limit, we can write
Op ==ip, (A1)
. . o - dw(r) _(W(r)
have no square-integrable solutions, th@ns self-adjoint. r ar =¥ (r)—Ilim nT Inr. (B1)
We know that if an operator is self-adjoint, then the action r—0
and the domain 06 andO™ are identical. We replace Eq(B1) in Eq. (80) and obtain
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lim
r—0

lim
r—0

(‘If(r)—\l’(r)lnrnL

W(r)
o )In2r+,8\I'(r)

W(r)
—B( lim—— inT Inr | =0, (B2)
which we write as
W(r W(r
liminr L—‘If( r)-+ ImL Inr+,3L
r0 Inr ro InT Inr
i POV
-B r:rrz)w =0. (83)
Because lim_ g Inr——o, we must have
W(r W(r
lim L—\If(r)Jr lim——- il Inr+,8L =0,
rol Inr (o Inr Inr
(B4)
where we have dropped the last term

—=B(lim,_o[W¥(r)/Inr]) in comparison with the third term
(lim, _o[¥(r)/InrDInr. If we replace¥(r)= ¢(r)/r'? in
Eqg. (B4), we finally obtain
—Iim( )Inr)=0,
ol f r

( ¢(r) ¢(r) é(r)
r
(B5)

th“m 1/2|n

r—0

—— | — lim
Inr) ol 11?2
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