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To construct a self-adjoint operator the domain of the operator has to be specified by imposing an
appropriate boundary condition or conditions on the wave functions on which the operator acts. We
illustrate situations for which different boundary conditions lead to different operators and hence to
different physics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Operators are essential to quantum mechanics. Obs
ables are represented by linear, self-adjoint operators in
Hilbert space of the states of the system under considera
For mathematicians an operator acting in a Hilbert sp
consists of its action and its domain. The action refers
what the operator does to the functions on which it acts. T
domain is the specified set of functions on which the ope
tor acts. However, most textbooks on quantum mechanic
not mention the domain of the operators.~An exception is
the book by Ballentine.1! Textbooks usually state that an o
servable should correspond to a Hermitian operator. The
tinction between a self-adjoint operator and a Hermitian
erator is not mentioned. The distinction is rather subtle,
we shall see that it has to do with the domain of the opera
We note that a Hermitian operator also is called a symme
operator in the mathematical literature.

The situation in the physics literature was no better u
the recent excellent article by Bonneau, Faraut, and Val2

on self-adjoint extensions. We are aware of only two ot
related articles. One is by Jordan,3 who pointed out the im-
portance of specifying operator domains and the relations
of the domain with the boundary conditions on the wa
functions. The other article is by Capri4 on self-adjointness
and broken symmetry. The concept of self-adjoint opera
is essential in quantum mechanics, and we believe that p
ics students should be aware of it. The construction of s
adjoint operators produces some new and interesting p
lems. There are also some problems in physics, for insta
the problem of helicity conservation in the Aharonov–Boh
scattering of a Dirac particle, that can be solved only if
consider such technicalities.5

The purpose of this paper is to supplement and expand
presentation given in Ref. 2. We examine six examples of
following general procedure. We start with a Hermitian o
erator, and determine if it can be used to construct a s
adjoint operator by modifying its domain. If the answer
positive, we say that the operator can be extended, and
construct self-adjoint operators by imposing suitable bou
ary conditions on the wave functions. Usually the result i
family of operators that depend on one or more paramet
Different values of the parameters result in different d
mains, differing in the boundary conditions satisfied by t
1 Am. J. Phys.72 ~1!, January 2004 http://aapt.org/a
rv-
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wave functions, and hence in different operators. These
erators represent new and interesting physics.

In Sec. II we explain what a self-adjoint operator is b
comparing it with an operator that is merely Hermitian.
the rest of the paper we show by example how to const
self-adjoint operators. In Sec. III we explain how to dete
mine whether a certain Hermitian operator may be extend
that is, if it is possible to obtain a family of self-adjoin
operators that depends on one or more parameters. In Se
we discuss, again by example, how to obtain the family
boundary conditions that characterize the family of se
adjoint operators. Finally in Sec. V we consider the releva
of these operators to physics. The solution of each exam
is done in parts and is divided over Secs. III–V. In Append
A we give additional discussion that shows why the presc
tions given in the main body of the paper work, and in A
pendix B we give the solution of an exercise.

II. WHAT IS A SELF-ADJOINT OPERATOR?

Most students think that the domain of an operator is
tomatically specified. They think that, ifÂ is an operator and

if Âw belongs to the Hilbert space, thenw belongs to the

domain ofÂ, which, as we shall see, is rarely so. In gener

the set of functions to whichÂw belongs to the Hilbert spac
is too large. The reason for specifying the domain is that
want the operator to be self-adjoint. Furthermore, it is p
sible for operators with the same action to be different s
adjoint operators if they have different domains.

Let us explain the above considerations with an exam
Consider a free particle moving on the one-dimensional h
line. The kinetic energy operator of the particle isH0

52 (h2/2m) d2/dx2. Consider the set of functions,w(x),
defined for 0<x,` such that*0

`uw(x)u2dx is finite, that is,
they are square integrable. This set of functions forms a H
bert space denoted by mathematicians byL2@0,̀ #. There are
functions in this space for which

E
0

`U2 h2

2m

d2w~x!

dx2 U2

dx5`,

and hence the operatorH0 omits some functionsw(x) from
the Hilbert space.
1jp © 2004 American Association of Physics Teachers
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However, the condition thatÂw belongs to the Hilbert
space is not sufficient even for physicists. It is quite reas
able to argue that for the particle to be confined to the h
line, 0<x,`, there must be an infinite barrier atx50. This
barrier forces us to impose the conditionw(0)50. Math-
ematically, however, this condition makesH0 self-adjoint as
we shall see.

Because we are going to integrate by parts, we must
move various sets of functions fromL2@0,̀ #. First we re-
move all the functions that although square integrable, do
go to zero asx→`. An example of such a function can b
found in Ref. 6. Second we remove all functions that are
absolutely continuous. A function is absolutely continuous
it is the integral of its derivative, that is,f (x) is absolutely
continuous if f (x)5*0

x@d f(t)/dt# dt1 f (0). An example of
a function that is continuous, but does not have a derivat
is given in Refs. 7 and 8. We callV the subset ofL2@0,̀ #
that is so formed.

Consider two functionsw1(x) and w2(x) such that
w1(0)50, butw2(0)Þ0, both belonging toV. Consider the
matrix element

~w2,H0w1!5E
0

`

w2* ~x!F2
h2

2m

d2w1~x!

dx2 Gdx. ~1!

The adjoint of the operatorH0 can be obtained by doing a
integration by parts and having it act onw2* (x) ~from now on
we use units such thath2/2m51). We have

d

dx Fw2* ~x!S d

dx
w1~x! D G5

dw2* ~x!

dx

dw1~x!

dx

1w2* ~x!
d2w1~x!

dx2 , ~2!

d

dx F S dw2* ~x!

dx D ~w1~x!!G5
dw2* ~x!

dx

dw1~x!

dx

1
d2w2* ~x!

dx2 w1~x!. ~3!

If we subtract Eq.~3! from Eq. ~2!, we obtain

2
d2w2* ~x!

dx2 w1~x!

5w2* ~x!F2
d2w1~x!

dx2 G1
d

dx S w2* ~x!
dw1~x!

dx D
2

d

dx S dw2* ~x!

dx
w1~x! D . ~4!

We then integrate both sides and obtain

E
0

`

2
d2w2* ~x!

dx2 w1~x!dx2E
0

`

w2* ~x!F2
d2w1~x!

dx2 Gdx

5w2* ~0!
dw1~0!

dx
2

dw2* ~0!

dx
w1~0!. ~5!

The reader can easily verify that ifw2* (0) and w1(0) are
both zero, we have
2 Am. J. Phys., Vol. 72, No. 1, January 2004
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E
0

`F2
d2w2~x!

dx2 G* w1~x!dx5E
0

`

w2* ~x!F2
d2w1~x!

dx2 Gdx,

~6!

or

~H0w2 ,w1!5~w2 ,H0w1!. ~7!

The important point here is that the boundary condition
the function on the right,w1(x), is exactly the same as th
boundary condition for the function to the left,w2(x). In
other words, when the action and the domain of the oper
that acts on the right is equal to the action and the domai
its adjoint, that is, the operator that acts on the left, the
erator is said to be self-adjoint. So the operator2d2/dx2

defined in the domainV8 of functions ofV that vanish at the
origin is self-adjoint.

Another operator can be obtained by imposing on
functions V the conditionsw1(0)50 and dw1(0)/dx50.
This operator is called Hermitian. However, it is not se
adjoint, becausew2* (0) anddw2* (0)/dx can take any finite
value and Eq.~6! is nevertheless satisfied, that is, the dom
of the adjoint is larger than the domain of the operator.
fact, the domain of the adjoint is all functions ofV that
remain inV after acted on by2d2/dx2.

Note that we have definedV8 by removing sets of func-
tions fromL2@0,̀ # and requiring that the functions vanish
the origin. However, we must be sure that the resulting se
dense inL2@0,̀ #, which means that given an arbitrary fun
tion f (x)PL2@0,̀ # and an arbitrary positive numberd.0,
there is always a functionw(x) belonging toV8 such that
*0

`u f (x)2w(x)u2dx,d. The domain of an operator has to b
dense in order that the adjoint exists~see Ref. 9 for a proof!.
The reader should not worry about this point. Mathema
cians have proved that all sets used in this work10 are dense
in the relevant Hilbert space. In many cases given a func
of the Hilbert space, a plot of it together with a plot of
convenient function ofV8 will convince the reader.

We now rewrite Eq.~5! as

E
0

`

2
d2w2* ~x!

dx2 w1~x!dx

5E
0

`

w2* ~x!F2
d2w1~x!

dx2 Gdx1w2* ~0!w1~0!

3F 1

w1~0!

dw1~0!

dx
2

1

w2* ~0!

dw2* ~0!

dx G . ~8!

We see that if we let

1

w~0!

dw~0!

dx
5k, ~9!

wherek can be any real number, we obtain another opera
In fact, we obtain a family of operators that depend onk.
They all have the same action2d2/dx2, but they act on
different domains characterized byk. As we have said, the
casek5` (w(0)50) is usually identified with an infinite
wall at x50.

We can now define what is a Hermitian operator and w
is a self-adjoint operator. Consider an operatorÂ defined in a
2Araujo, Coutinho, and Fernando Perez
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dense domainD(Â) of a Hilbert space. Its adjointÂ1,
whose domain isD(Â1), is such that for allf and w

PD(Â),

~Â1f,w!5~f,Âw!. ~10!

The operatorÂ is Hermitian if its action is the same as th
action ofÂ1 and if the domain of its adjointÂ1, D(Â1), is
such thatD(Â),D(Â1), that is, the domain of the operato
is contained in the domain of the adjoint. If the action ofÂ is
the same as the action ofÂ1 andD(Â)5D(Â1), the opera-
tor is self-adjoint. The domain of the adjoint is deduced fro
Eq. ~10! as we shall see in the examples.

III. HOW DO WE KNOW IF AN OPERATOR IS
SELF-ADJOINT?

We now show by examples how we can determine if
operator has a family of self-adjoint extensions and the nu
ber of parameters on which this family depends. As a bo
we learn how to tell if an operator is self-adjoint.

A. Example 1, part 1: A free particle in the right half of
the real line

Consider the operator2d2/dx2 defined in the domain o
functions w(x), 0<x,`, such thatw vanishes near the
origin.11 The functionsw(x) are continuous and infinitely
differentiable. All the functions in the domain vanish in
small, but finite interval@0,a# wherea.0 is an arbitrary real
number, and also forx.b.a, another arbitrary real numbe
The condition*0

`uw(x)u2dx,` is automatically satisfied. An
example of such a function isuab(x)50 for 0<x<a and
x>b anduab(x)5exp@1/((x2a)(x2b))# for a,x,b.

This operator is Hermitian as we have seen in Sec. II.
w1(x) be a function in the domain defined above. Th
w1(x) vanishes in the neighborhood ofx50 and so does
dw1(x)/dx. Therefore the right-hand side of Eq.~5! is zero
even if w2(x)Þ0, and hence, the domain of the adjoint is
subset of absolutely continuous functions that vanish ax
→` of L2@0,̀ # and that remain in the domain when act
on by the operator.

To see if this operator can be extended to a family
self-adjoint operators, that is, if we can construct self-adjo
operators from it, we consider

2
d2C1~x!

dx2 5 ihC1~x!, ~11!

2
d2C2~x!

dx2 52 ihC2~x!, ~12!

whereh is a real number introduced for dimensional reaso
only.

Let n1 and n2 be the numbers of linearly independe
solutions of Eqs.~11! and ~12!, respectively, that are in th
domain of the adjoint. The numbersn1 and n2 are called
deficiency indexes. Ifn15n25n, the operator can be ex
tended, andn2 is equal to the number of the parameters
the resulting family of self-adjoint operators. As we shall s
the parameters appear in the boundary conditions impo
on the functions atx50. If n15n250, the operator is self-
adjoint.
3 Am. J. Phys., Vol. 72, No. 1, January 2004
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It is easy to see that Eqs.~11! and ~12! have solutions in
the domain of the adjoint:

C1~x!5e2e2 ~p/4! ih~1/2!x, ~13!

C2~x!5e2e~p/4! ih~1/2!x. ~14!

So n15n251, and we conclude that the operator can
extended, that is, there is a one parameter family of s
adjoint operators. The operators depend on the bound
condition at x50, which contains one parameter. As w
know the boundary condition is

dw~0!

dx
5kw~0!, ~15!

wherek can be any real number.

B. Example 2, part 1: The delta function potential as a
self-adjoint extension

We will now show an example of an Hermitian operat
that when extended, will correspond to a free particle exc
for a delta function at the origin. Consider the opera
2d2/dx2 defined in the following domain. Letf (x) be a
function of the domain. Thenf (x) and d f(x)/dx are abso-
lutely continuous,d2f (x)/dx2PL2@0,̀ #, and f (0)50. This
operator is Hermitian and the domain of the adjoint can
calculated as follows. We use Eq.~4! and integrate from
2`→02 and from 01→` to obtain

E
2`

1`

2
d2w2* ~x!

dx2 w1~x!dx2E
2`

1`

w2* ~x!F2
d2w1~x!

dx2 Gdx

5w2* ~02!
dw1~02!

dx
2w2* ~01!

dw1~01!

dx

2
dw2* ~02!

dx
w1~02!1

dw2* ~01!

dx
w1~01!. ~16!

We set the right hand side of Eq.~16! to zero. Because
w1(02)5w1(01)50, we have that dw2* (01)/dx
2dw2* (02)/dx5d ~where d is any number!; because
dw1(02)/dx5dw1(01)/dx, we have w2* (02)5w2* (01).
Therefore, the domain of the adjoint consists of functio
that are absolutely continuous with first derivatives ab
lutely continuous except at the origin where they have
arbitrary discontinuity. Therefore the operator is Hermitia

To see if this operator can be extended to a family
self-adjoint operators, that is, if we can construct self-adjo
operators from it, we consider

2
d2C6

dx2 56 ihC6 , ~17!

where the constanth is included for dimensional reason
only. Equation~17! has solutions

C1~x!5H e(e2 i ~p/4!)h~1/2!x for 2`,x,0

e2(e2 i ~p/4!)h~1/2!x for 0,x,`,
~18!

C2~x!5H e(ei ~p/4!)h~1/2!x for `,x,0

e2(ei ~p/4!)h~1/2!x for 0,x,`.
~19!

Thus,n15n251, and we conclude that the operator can
extended, that is, there is a one parameter family of s
adjoint operators. The operators depend on the bound
condition atx50, which contains one parameter. As we sh
3Araujo, Coutinho, and Fernando Perez
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see in Sec. IV, the boundary condition corresponds to a d
function at the origin.

In the next example we consider an operator with the sa
action but with a different domain. We shall see that t
deficiency indices are different and in Sec. IV we shall s
that the family of self-adjoint extensions is different. In fa
they will contain the present case as a special case.
example and the next illustrate the importance of the dom
of the Hermitian operator from which one starts to constr
the family of self-adjoint operators.

C. Example 3, part 1: A free particle in the real line
from which the origin has been removed

In this example we consider a Hermitian operator that
be extended to a family of four parameter self-adjoint ope
tors. Those operators represent the most general point i
action at the origin. The delta function considered in t
previous example is a particular example of a point inter
tion.

Consider the operator2d2/dx2 defined in the whole rea
line with the origin removed.12 So the functions in this do
main are not defined forx50; the functionsuabcd(x) be-
longing to this domain vanish aroundx50, that is for2a
,x,b and also forx,2c and forx.d, wherea, b, c, and
d are arbitrary positive numbers. Therefore the domain
this operator consists of functions that vanish before
point x50 from the negative and positive sides and for lar
distances in both positive and negative directions.

This operator is clearly Hermitian. Considerw1(x) be-
longing to the domain of the operator~as defined above! and
an arbitrary absolutely continuousw2(x). Then using Eq.~4!
and integrating from2` to 02 and from 01 to `, we obtain

E
2`

1`

2
d2w2* ~x!

dx2 w1~x!dx2E
2`

1`

w2* ~x!F2
d2w1~x!

dx2 Gdx

5w2* ~02!
dw1~02!

dx
2w2* ~01!

dw1~01!

dx

2
dw2* ~02!

dx
w1~02!1

dw2* ~01!

dx
w1~01!. ~20!

The second line vanishes becausew1(02)5w1(01)50; also
dw1(02)/dx5 dw1(01)/dx50 independent of the corre
sponding values ofw2* (06). Thus we obtain

E
2`

1`

2
d2w2* ~x!

dx2 w1~x!dx2E
2`

1`

w2* ~x!F2
d2w1~x!

dx2 Gdx

50. ~21!

The domain of the adjoint is the set of all square integra
functions from2` to ` that vanishes whenx→6`, but are
not defined atx50. The functions also are absolutely co
tinuous from2`→02 and from 01→`, and remain in the
set when acted on by the operator. To see if this operator
be extended to a self-adjoint operator, consider

2
d2C6~x!

dx2 56 ihC6~x!. ~22!

It is easy to see that there are two solutions for the posi
sign and two for the negative sign, so thatn15n252. The
solutions are
4 Am. J. Phys., Vol. 72, No. 1, January 2004
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C1
1 5H 0, 2`,x,0

e2e2 ~p/4! ih~1/2!x, 0,x,`,
~23!

C1
2 5H ee2 ~p/4! ih~1/2!x, 2`,x,0

0, 0,x,`,
~24!

C2
1 5H 0, 2`,x,0

e2e1 ~p/4! ih~1/2!x, 0,x,`,
~25!

C2
2 5H ee1 ~p/4! ih~1/2!x, 2`,x,0

0, 0,x,`.
~26!

Therefore, as we shall see, we can create self-adjoint op
tors by imposing suitable boundary conditions on the wa
functions at the origin. The boundary conditions will depe
on four parameters.

D. Example 4, part 1: A free particle in the plane from
which the origin has been removed

In this example we consider an example of a Hermit
operator that can be extended to one parameter family
self-adjoint extensions which represent a renormalized t
dimensional delta function.

Consider the operator2¹2 in two dimensions. In polar
coordinates the radial part of the action of this operator~for
angular momentum zero! is given by

H52
1

r

d

dr S r
d

dr D . ~27!

To complete the definition we specify the domain which w
take to beC0

`$R2\$0%%, that is, functions that are continuou
infinitely differentiable, and vanish before the pointr 50 and
for r .b, whereb is an arbitrary positive number that varie
from function to function. In Example 2, we removed th
origin from the real line. In the present case we remove
point r 50 from the plane.

It is easy to check that this operator is Hermitian. Ta
w1(r ) belonging to the domain of the operator~as we de-
fined! and an arbitraryw2(r ). If we use integration by parts
we obtain

~Hw2~r !,w1~r !!2~w2~r !,Hw1~r !!

52E
0

`

dr r S d2

dr2 1
1

r

d

dr Dw2* ~r !w1~r !

1E
0

`

dr rw2* ~r !S d2

dr2 1
1

r

d

dr Dw1~r !

5 lim
r→0

r Fdw2* ~r !

dr
w1~r !2w2* ~r !

dw1~r !

dr G . ~28!

The second line vanishes for all values ofw2* (0) and
dw2* (0)/dr becausew1(0)50 anddw1(0)/dr50. Thus we
obtain

~Hw2~r !,w1~r !!2~w2~r !,Hw1~r !!50. ~29!

The domain of the adjoint is all absolutely continuo
functions ofL2(@0,̀ );r dr ), that is, functionsw(r ) that van-
4Araujo, Coutinho, and Fernando Perez



tio

-

if

ot
t
do

e

We

he
art

r is
, for

ter-
can
of

g
r

ish whenr→` such that*0
`uw(r )u2r dr ,`. To see if this

operator can be extended, we have to examine the solu
of

2
1

r

d

dr S r
d

dr DC6~r !56 ihC6~r !, ~30!

or

2
d2

dr2 C6~r !2
1

r

d

dr
C6~r !2~6 i !hC6~r !50. ~31!

Equation~31! has two normalizable solutions, namely,

C6~r !5K0~e7 i ~p/4!h1/2r !. ~32!

Therefore,n15n251, and the operator given by Eq.~27!
has a one-parameter family of self-adjoint extensions.

Exercise 1:Consider the operator given by Eq.~27!. Use
the unitary transformation,

U:L2~@0,̀ !;r dr !→L2~@0,̀ !;dr ! ~U f !~r !

5r 2 1/2f ~r !, ~33!

to show that the action of the operator becomes

2
d2

dr2 2
1

4r 2 . ~34!

Define its domain asC0
`((0,̀ )/$0%) and show that the defi

ciency indices aren15n251.

E. Example 5, part 1: A free Dirac particle in the real
line from which the origin has been removed

The kinetic energy operator is given by

HD52 ia
d

dx
1bm, ~35!

where

a5S 0 2 i

i 0 D , ~36!

b5S 1 0

0 21D . ~37!

We take the domain to be (C0
`(R\$0%))2, which means

that the two components are both continuous, infinitely d
ferentiable, and vanish forr ,a,b and forr .b and also for
r .2a8.2b and r .2b8, wherea, b, a8, andb8 are ar-
bitrary positive numbers that depend on the function. N
that the constants for the upper components need no
equal to the constants for the lower component. In this
main the operator of Eq.~35! is Hermitian. Considerw1(x)
belonging to the domain of the operator~as we defined! and
an arbitraryw2(x). Then if we use integration by parts, w
obtain

@HDw2~x!,w1~x!!2~w2~x!,HDw1~x!#

5w2* ~01!aw1~01!2w2* ~02!aw1~02!. ~38!

The expression in Eq.~38! vanishes becausew1(02)
5w1(01)50, independent of the values ofw2* (06).

To see if we can extend the operatorHD , we look at a
square-integrable, two-component function that satisfies

HDC1~r !51 ihC1~r !, ~39!
5 Am. J. Phys., Vol. 72, No. 1, January 2004
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HDC2~r !52 ihC2~r !. ~40!

It is not very difficult to see thatn15n252. So again we
have a four parameter family of self-adjoint extensions.
define the function~note that the zero has been removed!

j~x!5H 1 if x.0

0 if x,0.
~41!

The solutions are

C1
1 5S e2(h21m2)~1/2!xj~x!

2Fm2 ih

m1 ihG1/2

e2(h21m2)~1/2!xj~x!D , ~42!

C1
2 5S e(h21m2)1/2xj~2x!

1Fm2 ih

m1 ihG1/2

e2(h21m2)~1/2!xj~2x!D , ~43!

C2
1 5S e2(h21m2)~1/2!xj~x!

2Fm2 ih

m1 ihG1/2

e2(h21m2)1/2xj~x!D , ~44!

C2
2 5S e(h21m2)~1/2!xj~2x!

1Fm2 ih

m1 ihG1/2

e(h21m2)~1/2!xj~2x!D . ~45!

F. Example 6, part 1: A free Dirac particle in a plane from
which the origin has been removed

In polar coordinates the radial part of the action of t
kinetic energy operator for the zero angular momentum p
is

H2D5S m 2S d

dr
1

1

r D
d

dr
2m

D . ~46!

It is easy to see that

H2DC656 imC6 , ~47!

~wherem has been introduced for dimensional reasons! has
solutions

C65S K0~&mr!
2e7 i ~p/4!K1~&mr! D , ~48!

but these solutions are not normalizable. So the operato
self-adjoint. As we shall see, the above result means that
instance, we cannot put ad function at the origin.13

IV. BOUNDARY CONDITIONS

We now show how the boundary conditions can be de
mined. As we have seen in Sec. III, a Hermitian operator
be extended to a self-adjoint operator if the number
square-integrable solutions ofÂC656 ihC6 , which we
called n1 and n2 , are equal. The first step in determinin
the boundary conditions is to construct a unitary operatoU
that relates functionsC1 andC2 .
5Araujo, Coutinho, and Fernando Perez
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A. Example 1, part 2: A free particle in the right half of
the real line

As we have seen, the solutions of Eqs.~11! and ~12! for
this case are

C1~x!5e2e2 ~p/4! ih~1/2!x, C2~x!5e2e~p/4! ih~1/2!x.
~49!

The unitary matrix relating the subspace generated
C1(x) to the subspace generated byC2(x) is therefore
one-dimensional, that is, just a complex number of modu
one. Hence, the self-adjoint extensions depend on one
rameter only. We setU5a with uau51.

The prescription for obtaining the boundary conditions
simply to require that

E
0

`

2
d2~C1~x!1aC2~x!!*

dx2 w~x!dx

5E
0

`

~C1~x!1aC2~x!!* F2
d2w~x!

dx2 Gdx. ~50!

Equation~50! is equivalent to Eq.~6! with w2’s replaced by
C1(x)1aC2(x). We use Eq.~5! to obtain

~C1~0!1aC2~0!!*
dw~0!

dx

2
d~C1~0!1a.C2~0!!*

dx
w~0!50. ~51!

If we replace the values ofC1(0), C2(0), dC1(0)/dx,
anddC2(0)/dx by using Eq.~49!, we obtain

~11a* !
dw~0!

dx
1~e~p/4! ih1/21a* e2 ~p/4! ih1/2!w~0!50,

~52!

or if we let a5eiq,

1

w~0!

dw~0!

dx
5h1/2cosS q

2
1

p

4 D Y cos
q

2
5k, ~53!

in agreement with the result obtained in Eq.~9!. Note that the
constanth was absorbed in the constantk. The fact that the
constanth can be absorbed is general and is the reason
mathematicians seth51 from the very beginning.

B. Example 2, part 2: The delta function potential as a
self-adjoint extension

We now explain how to obtain the boundary condition
As we shall see, the boundary conditions will be the on
obtained heuristically by considering a delta function at
origin.

We found in Sec. III that Eq.~17! has one solution each i
the domain of the adjoint. The unitary matrix relating t
subspace generated byC1(x) to the subspace generated
C2(x) is therefore one-dimensional, that is, just a comp
number of modulus one,eia. The prescription to obtain the
boundary conditions is simply to require that
6 Am. J. Phys., Vol. 72, No. 1, January 2004
y

s
a-

y

.
s
e

x

E
2`

`

2
d2~C1~x!1eiaC2~x!!*

dx2 w~x!dx

5E
2`

`

~C1~x!1eiaC2~x!!* F2
d2w~x!

dx2 Gdx. ~54!

If we use Eq.~16!, we find

~C1~02!1eiaC2~02!!*
d~w~02!

dx
2~C1~01!

1eiaC2~01!!*
d~w~01!

dx

2
d~C1~02!1eiaC2~02!!*

dx
w~0!

1
d~C1~01!1eiaC2~01!!*

dx
w~0!50. ~55!

We replace the values ofC1(01), C2(01), dC1(01)/dx,
etc., and obtain

dw~01!

dx
2

dw~02!

dx
52

2h1/2cosS p

4
1

a

2 D
cosS a

2 D w~0!

5gw~0!, ~56!

where g is an arbitrary real number. Equation~56! is the
boundary condition when we treat the Schro¨dinger equation
formally, by considering heuristically a delta function at th
origin. However, as will be explained in Sec. V, the heuris
procedure for obtaining the boundary conditions is n
strictly correct.

C. Example 3, part 2: A free particle in the real line
from which the origin has been removed

We found in Sec. III that Eq.~22! of Example 2 has two
linearly independent solutions for each sign. Therefore
subspace generated byC1

1 (x) and C1
2 (x) is two-

dimensional, and so is the subspace generated byC2
1 (x) and

C2
2 (x). The mapping between the two subspaces is given

a 232 unitary matrixU given by

U5S u11 u12

u21 u22
D 5S cosbei (c1a) i sinbe2 i (d2a)

i sinbei (d1a) cosbe2 i (c2a) D .

~57!

Then the boundary conditions can be obtained by enforc

E
2`

1`F d2

dx2 ~C1
1 ~x!1u11C2

1 ~x!1u12C2
2 ~x!!G* w~x!dx

5E
2`

1`

@C1
1 ~x!1u11C2

1 ~x!1u12C2
2 ~x!#*

d2w

dx2 dx,

~58!
6Araujo, Coutinho, and Fernando Perez
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E
2`

1`F d2

dx2 ~C1
2 ~x!1u21C2

1 ~x!1u22C2
2 ~x!!G* w~x!dx

5E
2`

1`

@C1
2 ~x!1u21C2

1 ~x!1u22C2
2 ~x!#*

d2w

dx2 dx.

~59!

That is, we enforce Eq.~21! with w2 replaced byC1
1 (x)

1u11C2
1 (x)1u12C2

2 (x), and C1
2 (x)1u21C2

1 (x)
1u22C2

2 (x), respectively, whereC1
1 (x), C1

2 (x), C2
1 (x),

andC2
2 (x) are given by Eqs.~23!–~26!.

If we use Eq.~20! and Eqs.~23!–~26!, we find from Eqs.
~58! and ~59! that

~11u11* !w8~01!1~ei ~p/4!1e2 i ~p/4!h1/2u11* !w~01!

2u12* w8~02!1e2 i ~p/4!h1/2u12* w~02!50, ~60!

u21* w8~01!1e2 i ~p/4!h1/2u21* w~01!2~11u22* !w8~02!

1~ei ~p/4!1e2 i ~p/4!u22* h1/2!w~02!50, ~61!

wherew8(06)5dw(06)/dx.
To bring Eqs.~60! and ~61! to a more familiar form, we

multiply Eq. ~60! by e2 i (p/4)u21* and Eq.~61! by ei (p/4)(1
2 iu11* ). Then we subtract the two resultant equations a
replaceu11* by its value given by Eq.~57!, assuming that
sinbÞ0:

w8~01!5eidF&S cosS a1
p

4 D2cosb sinS c2
p

4 D
sinb

D G
3w8~02!

1eidF&S sina2cosb cosc

sinb D Gw~02!h1/2. ~62!

We let

a85&S cosS a1
p

4 D2cosb sinS c2
p

4 D
sinb

D , ~63!

b85&S sina2cosb cosc

sinb D , ~64!

q85d. ~65!

Then Eq.~62! can be written as

w8~01!5eiq8@a8w8~02!1b8h1/2w~02!#. ~66!

Similarly, if we multiply Eq. ~60! by u21* and Eq.~61! by
(12u11* ) and subtract the resulting equations, we obtain

h1/2w~01!52eidF&S cosa1cosb cosc

sinb D Gw8~02!

1eidF&S cosS a1
p

4 D1cosb sinS c1
p

4 D
sinb

D G
3w~02!h1/2. ~67!

We let
7 Am. J. Phys., Vol. 72, No. 1, January 2004
d

d852&S cosa1cosb cosc

sinb D , ~68!

g85&S cosS a1
p

4 D1cosb sinS c1
p

4 D
sinb

D , ~69!

and write Eq.~67! as

h1/2w~01!5eiq8~d8w8~02!1g8h1/2w~02!! . ~70!

Thus we can express the results of Eqs.~66! and ~70! as
follows:

S w8~01!

h1/2w~01! D5eiq8S a8 b8

d8 g8
D S w8~02!

h1/2w~02! D , ~71!

and it is easy to verify that the real parametersa8, b8, g8,
andd8 satisfya8g82b8d851.

On the other hand, ifu125u2150, that is, if sinb50, Eqs.
~60! and ~61! become

w8~06!5¸6w~06!, ~72!

where¸6 is any real number. The meaning of Eq.~72! is that
the two sides of the real line became decoupled.

The constanth in Eq. ~71! can be easily absorbed in th
constantsb8 andd8 by dividing the second equation byh1/2.
As mentioned, the fact that the constant can be absorbe
general and the constanth could have been set equal to uni
from the beginning. From Eq.~71! we have

S w8~01!

w~01! D5eiqS a b

d g D S w8~02!

w~02! D , ~73!

wherea85a, b5b8h1/2, d5d/h1/2, g5g8, andq5q8.
The physics of the boundary conditions given by Eq.~73!

was studied in Refs. 14 and 15. We shall return to the phy
of the above boundary conditions in Sec. V.

D. Example 4, part 2: A free particle in the plane from
which the origin has been removed

As we have shown, the solutions of Eq.~31! are

C6~r !5K0~e7 i ~p/4!h1/2r !. ~74!

The subspace generated byC1(r ) is one-dimensional and s
is the space generated byC2(r ). Therefore the unitary ma
trix mapping the two subspaces is just a complex numbe
modulus one,eiu. Thus the self-adjoint extensions depend
one parameter only.

The boundary conditions are obtained by enforcing:

2E
0

`

drr S d2

dr2 1
1

r

d

dr D ~C1~r !1eiuC2~r !!* w~r !

52E
0

`

drr ~C1~r !1eiuC2~r !!* S d2

dr2 1
1

r

d

dr Dw~r !,

~75!

which is the condition of Eq.~29! with w2(r ) replaced by
C1(r )1eiuC2(r ). If we use Eq.~28!, we obtain
7Araujo, Coutinho, and Fernando Perez
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~C1~r !1eiuC2~r !!* w~r !

2S C1~r !1eiuC2~r ! G* d

dr
w~r ! D50. ~76!

We replaceC6(r ) by using Eq.~32! and take into accoun
the behavior at the origin of the functions16

K0~z!;2 ln
z

2
2g, ~77!

K1~z!;
1

z
, ~78!

whereg50.5772 is the Euler constant. If we also use tha16

d

dz
K0~z!52K1~z!, ~79!

we find that Eq.~76! gives

lim
r→0

H w2r
dw

dr
$ ln r 1b%J 50, ~80!

where b52 (p/4) tg (u/2) 1 ln (h/2) 1g can be any rea
number.

The physics of the boundary conditions given by Eq.~80!
was studied by a limiting procedure in Refs. 13 and 17.

Exercise 2:Show that the one parameter family of boun
ary conditions for the operator given by Eq.~34! is

af01f150, ~81!

where

f05 lim
r→0

~r 1/2 ln r !21w~r !,

~82!f15 lim
r→0

r 2 1/2@w~r !2f0r 1/2 ln r #.

~See p. 98 of Ref. 18 and Appendix B for the solution.!

E. Example 5, part 2: A free Dirac particle in the real line
from which the origin has been removed

As shown in Sec. III, each of Eqs.~39! and ~40! has two
linearly independent solutions. Thus the subspace gener
by C1

1 (x) and C1
2 (x) is two-dimensional, and so is th

subspace generated by the solutionsC2
1 (x) andC2

2 (x). The
mapping between the two subspaces is given by a 232 uni-
tary matrixU.

Let us takeU to be identical to Eq.~57! of Example 3:

U5S u11 u12

u21 u22
D 5S cosbei (c1a) i sinbe2 i (d2a)

i sinbei (d1a) cosbe2 i (c2a) D .

~83!

Thus the boundary conditions are obtained by enforcing

~HD~C1
1 ~x!1u11C2

1 ~x!1u12C2
2 ~x!!* ,w~x!!

5~~C1
1 ~x!1u11C2

1 ~x!1u12C2
2 ~x!!* ,HDw~x!!, ~84!

@HD~C1
2 ~x!1u21C2

1 ~x!1u22C2
2 ~x!!* ,w~x!#

5@~C1
2 ~x!1u21C2

1 ~x!1u22C2
2 ~x!!* ,HDw~x!#. ~85!

That is, we enforce Eq.~38! to vanish withw2 replaced by
C1

1 (x)1u11C2
1 (x)1u12C2

2 (x) and C1
2 (x)1u21C2

1 (x)
8 Am. J. Phys., Vol. 72, No. 1, January 2004
ted

1u22C2
2 (x), respectively, whereC1

1 (x),C2
1 (x),C1

2 (x),
andC2

2 (x) are given by Eqs.~42!–~45!.
If we write

w~x!5S w1~x!

w2~x! D , ~86!

and use Eq.~38! and Eqs.~42!–~45!, then Eqs.~84! and~85!
become

~11u11* !w2~01!1~ei arctan~h/m!

1e2 i arctan~h/m!u11* !w1~01!2u12* w2~02!

1e2 i arctan~h/m!u12* w1~02!50, ~87!

u21* w2~01!1e2 i arctan~h/m!u21* w1~01!2~11u22* !w2~02!

1~ei arctan~h/m!1e2 i arctan~h/m!u22* !w1~02!50. ~88!

If we takeh5m, then Eqs.~87! and~88! become similar
to Eqs.~60! and~61!. To write Eqs.~87! and~88! in the form
of Eq. ~71!, we have

S w1~01!

w2~01! D5US w1~02!

w2~02! D , ~89!

where

U5eiqS d g

a b D , ~90!

wherea, b, g, d, andq are any real numbers satisfyingbd
2ag51. On the other hand, ifu125u2150, Eqs.~87! and
~88! become

w2~06!5¸6w1~06!, ~91!

where¸6 is any real number. The meaning of Eq.~91! is that
the two sides of the real line became decoupled. The phy
of the boundary conditions given by Eq.~89! was studied in
Ref. 19.

F. Example 6, part 2: A free Dirac particle in a plane
from which the origin has been removed

In this case the operator given by Eq.~46! was found to be
self-adjoint. Some consequences of this fact will be cons
ered in Sec. V.

V. PHYSICAL INTERPRETATION

We now discuss the implication of the different se
adjoint extensions of an operator. In all the examples
have presented the self-adjoint extensions were constru
by modifying the boundary conditions at one point. An i
terpretation of this modification is that there is an interact
that acts at that point. That is why the theory of self-adjo
extensions is particularly suitable for studying point intera
tions. For a good but advanced review see Ref. 18. Le
examine how our examples illustrate the concept of po
interactions.
8Araujo, Coutinho, and Fernando Perez



in
b

t
sh

ct.
h

e

n-
d
ta
is

th
r

ea
u
s

i-

tly

at

e-
t the
us
is
e

the

ate
ed

m-
e
n-
the
if

n-

ng

in

that

at
e
se
t

e
nc-
A. Example 1, part 3: A free particle in the right half of
the real line

As we have seen the particle is confined to the half l
0<x,` and does not cross the origin. This situation can
realized by imposing the boundary condition

1

w~0!

dw~0!

dx
5k. ~92!

If k is a finite negative number, the pointx50 is impen-
etrable, but attracts the particle. On the other hand, ifk is a
finite positive number, the pointx50 is impenetrable bu
repels the particle. To see this we calculate the phase
d(k). It is easy to see thatk cot(d(k))5k and the scattering
length isa52 1/k. This effective range expansion is exa
If k,0, there is a bound state as shown in Ref. 2. T
scattering length is positive. Ifk.0, there is no bound stat
and the effective interaction is repulsive.

B. Example 2, part 3: The delta function potential as a
self-adjoint extension

In this example we found a family of self-adjoint exte
sions whose boundary conditions are the ones describe
the literature for a particle moving in the line with a del
function in the origin. The treatment found in the literature
however not strictly correct as we shall now see.

The Schro¨dinger equation for thed(x) interaction is

2
d2w

dx2 1gd~x!w~x!5Ew~x!. ~93!

We integrate both sides of Eq.~93! from 2e to e and let
e→0 to determine the boundary conditions, assuming
continuity of w(x). Howevergd(x) is not a proper operato
in the Hilbert space, because

E
2`

`

ugd~x!w~x!u2dx5g2E
2`

`

uw~0!u2dx5`, ~94!

unlessw(0)50.

C. Example 3, part 3: A free particle in the real line
from which the origin has been removed

We saw in Example 3 that a particle moving on the r
line from which the origin has been removed admits a fo
parameter family of self-adjoint extensions. Let us choo
one set:a51, b5g, g51, d50, andu50. Then the bound-
ary conditions reduce to

w8~01!2w8~02!5gw~01!, ~95!

and w(01)5w(02)5w(0). These are the boundary cond
tions obtained by formally manipulating the Schro¨dinger
equation with a Dirac delta function potential of strengthg at
the origin. However, as already explained, it is not stric
correct to write

H52
d2

dx2 1gd~x!, ~96!

because the delta function potential is not a proper oper
in the Hilbert space.

Other combinations ofa, b, g, d, andu can be used. Each
combination results in a different point interaction atx50. It
9 Am. J. Phys., Vol. 72, No. 1, January 2004
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is difficult to give an expression for the potentials repr
sented by these boundary conditions. The reason is tha
result of a delta function when acting in a discontinuo
function is undefined as shown in Ref. 20. In particular, it
difficult to obtain the boundary conditions for the derivativ
of the delta function,

2
d2

dx2 1g8
dd~x!

dx
, ~97!

by formally manipulating the operator as was done for
delta function potential above.14 However by renormalizing
the strength of the delta functions and taking appropri
limits, it is possible to get a feeling for these generaliz
point interactions.21

D. Example 4, part 3: A free particle in the plane from
which the origin has been removed

We now discuss the physical interpretation of the one fa
ily of self-adjoint extensions of a particle moving in th
plane from which the origin has been removed. As me
tioned, it is not possible in this case to make sense of
delta function potential at the origin. As shown in Ref. 17,
we assume a square-well potential of depthV0 and radiusr
at the origin and take the limitr→0 andV0→2` such that
V0d2→2g so that the potential approaches2gd2(r ), we
find that the energy of the ground state goes to2`. This
result means that the delta function potential in two dime
sions is too strong. To remedy this problem we can makeV0
diverge more slowly. This limiting procedure is the meani
of the boundary condition given in Eq.~80! and obtained in
Ref. 17, using a different method that we now explain
more detail.

Consider a particle moving in a plane, and assume
there is a point interaction at the origin,d2(r ), which is the
delta function in two dimensions,

2
\2

2m
¹2f~r …1gd2~r !f~r !5Ef~r !. ~98!

We introduce polar coordinates (r ,u) and replace thed2(x)
potential by a square well of depthV0 and radiusr. Because
this potential is attractive in two dimensions, it always has
least one bound state.22 Let uEbu be its energy. Because w
are going to letr→0, we consider s waves only, becau
states withlÞ0 will not be affected by the potential. We le

k5S 2m

\2 uEbu D 1/2

, ~99!

k05S 2m

\2 ~V02uEbu! D 1/2

. ~100!

If we match the solutions atr 5d, we have

2k0@J1~k0r!/J0~k0r!#52k@K1~kr!/K0~kr!#. ~101!

If we now let r→0 such thatuV0ur2→g, so that the poten-
tial would approach2gd2(r ), we find that the bound stat
energy diverges. So we have to renormalize the delta fu
tion. As explained in Ref. 17, we do this by lettingV0→` as
a function ofr such that
9Araujo, Coutinho, and Fernando Perez



n
ry

f a
s

in
e
se

ir
in

x-
m
r
a
gi
ed
re
m

sa
ss
re
im
re

or
ul
l-

I
ke
fo

on

-

he

-

-

it

m

k

lim
r→0

2k@K1~kr!/K0~kr!#5 lim
r→0

FrS lnS kr

2
1g D D G21

.

~102!

Thus the limiting procedure~the renormalized delta functio
in two dimensions! is the physical meaning of the bounda
condition given by Eq.~80!.

Exercise 3:Compare Eq.~102! with Eq. ~80! to obtain a
physical interpretation for the arbitrary constantb of Eq.
~80!.

E. Example 5, part 3: A free Dirac particle in the real
line from which the origin has been removed

The four parameter family of self-adjoint extensions o
Dirac particle moving in a line from which the origin ha
been removed is very similar to the Schro¨dinger case studied
in Example 3. The different self-adjoint extensions are po
interactions placed at the origin. Two particular cases w
studied in Ref. 18, p. 400. The nonrelativistic limit of the
interactions was studied in Ref. 19.

Exercise 4:Use the boundary conditions given by Eq.~89!
to obtain the bound states and scattering states of a D
particle moving in one dimension with a generalized po
interaction at the origin.19

F. Example 6, part 3: A free Dirac particle in a plane
from which the origin has been removed

Finally in Example 6 we saw that it is impossible to e
tend the Hamiltonian of a Dirac particle in the plane fro
which the origin has been removed, because the operato
obtained is already self-adjoint. In Ref. 13 this problem w
investigated by placing a square well potential at the ori
and taking the appropriate limit. By doing this we obtain
wave functions that are not normalizable at the origin. The
fore the procedure, unlike in the non-relativistic proble
treated in Example 4, fails.
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APPENDIX A: A THEOREM

We show why the prescriptions adopted in Secs. II and
work. We do not give rigorous proofs, but only wish to ma
the results more natural. Rigorous proofs can be found,
instance, in Ref. 23.

The main result is the following: LetÔ be a Hermitian
operator. If the equations,

Ôw656 iw6, ~A1!

have no square-integrable solutions, thenÔ is self-adjoint.
We know that if an operator is self-adjoint, then the acti
and the domain ofÔ andÔ1 are identical.
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Assume that there is aw that belongs to the domain ofÔ
such that

Ôw5 iw. ~A2!

Then we must have

Ô1w5 iw, ~A3!

and

2 i ~w,w!5~ iw,w!5~Ôw,w!5~w,Ô1w!5~w,Ôw!

5 i ~w,w!, ~A4!

and hencew50. So, if Ô is a self-adjoint operator, Eq.~A1!
has only trivial solutions, that is,w650, or has no square
integrable solutions.

Now let Ô be a Hermitian operator such that each of t
equations

ÔC15 iC1 , ~A5!

ÔC252 iC2 , ~A6!

has~for example! two normalizable linearly independent so
lutions, in the domain24 of the Ô1 so that the deficiency
indexes aren15n252. Let C1

1 and C1
2 be the two solu-

tions of Eq.~A5! andC2
1 andC2

2 the corresponding solu
tions of Eq.~A6!. We note thatC1

i ( i 51,2) form a vector

space of dimension two, and so doC2
i ( i 51,2). LetD1(Ô)

be the vector space spanned byC1
i ( i 51,2) andD2(Ô) be

the vector space spanned byC2
i ( i 51,2). LetU be a unitary

application ofD1(Ô) in D2(Ô) so that, for instance,

UC1
i 5(

j 51

2

ui j C2
j . ~A7!

Define now a new domain for the operator

D~Ô!5$w1C11UC1uwPD~Ô1!,C1PD1~Ô!%.

~A8!

Hence the action ofÔ in this new domain is

Ô~w1C11UC1!5Ôw1 iC12 iUC1 . ~A9!

If we require thatÔ be Hermitian in this new domain, then

becomes self-adjoint because in this new domainÔC6

56 iC6 has no solution. The boundary conditions ste
from the requirement that

S ÔS C1
i 1(

j 51

2

ui j C2
j D ,w D 5S S C1

i 1(
j 51

2

ui j C2
j D ,Ôw D .

~A10!

APPENDIX B: SOLUTION OF EXERCISE 2

We show how to go from the boundary condition~80! to
the boundary condition~81!. Because we are going to wor
close to the limit, we can write

r
dC~r !

dr
5C~r !2 lim

r→0
S C~r !

ln r D ln r . ~B1!

We replace Eq.~B1! in Eq. ~80! and obtain
10Araujo, Coutinho, and Fernando Perez
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lim
r→0

S C~r !2C~r !ln r 1S lim
r→0

C~r !

ln r D ln2 r 1bC~r !

2bS lim
r→0

C~r !

ln r D ln r D 50, ~B2!

which we write as

lim
r→0

ln r FC~r !

ln r
2C~r !1S lim

r→0

C~r !

ln r D ln r 1b
C~r !

ln r

2bS lim
r→0

C~r !

ln r D G50. ~B3!

Because limr→0 ln r→2`, we must have

lim
r→0

FC~r !

ln r
2C~r !1S lim

r→0

C~r !

ln r D ln r 1b
C~r !

ln r G50,

~B4!

where we have dropped the last ter
2b(limr→0 @C(r )/ ln r#) in comparison with the third term
(limr→0 @C(r )/ ln r#)ln r. If we replaceC(r )5 f(r )/r 1/2 in
Eq. ~B4!, we finally obtain

a lim
r→0

S f~r !

r 1/2 ln r D2 lim
r→0

S f~r !

r 1/2 2 lim
r→0

S f~r !

r 1/2 ln r D ln r D 50,

~B5!

wherea5b11 is an arbitrary real constant, related to t
energy of the unique bound state of this system~see Exercise
3!.

a!Electronic mail: coutinho@dim.fm.usp.br
1L. E. Ballentine,Quantum Mechanics~Prentice–Hall, Englewood Cliffs,
NJ, 1990!.

2G. Bonneau, J. Farant, and G. Valent, ‘‘Self-adjoint extensions of opera
and the teaching of quantum mechanics,’’ Am. J. Phys.69, 322–331
~2001!.

3T. F. Jordan, ‘‘Conditions on wave functions derived from operators
mains,’’ Am. J. Phys.44 ~6!, 567–570~1976!.

4A. Z. Capri, ‘‘Self-adjointness and spontaneously broken symmetry,’’ A
J. Phys.45, 823–825~1977!.

5Vanilse S. Araujo, F. A. B. Coutinho, and J. Fernando Perez, ‘‘On the m
general boundary conditions for the Aharonov-Bohm scattering of a D
particle: Helicity and Aharonov-Bohm symmetries conservation,’’ J. Ph
A 34, 8859–8876~2001!.

6David V. Widder,Advanced Calculus~Dover, New York, 1998! 2nd ed., p.
325.
11 Am. J. Phys., Vol. 72, No. 1, January 2004
rs

-

.

st
c
.

7Frigys Riesz and Bela S. Nagy,Functional Analysis~Dover, New York,
1990!, 2nd ed., pp. 4–5.

8E. C. Titchmarsh,The Theory of Functions~Oxford U.P., London, 1985!,
2nd ed., pp. 351–353 and 366.

9Thomas F. Jordan,Linear Operators for Quantum Mechanics~Wiley, New
York, 1969!, p. 30.

10Eberhard Zeidler,Applied Functional Analysis: Applications to Math
ematical Physics~Springer, New York, 1997!, pp. 116–117.

11We call this domainC0
`((0,̀ )\$0%). The symbolC means that the func-

tions are continuous. The superscript` means that the functions are infi
nitely differentiable. The subscript 0, and the removal of the origin,\$0%,
means that all the functions in the domain vanish in a small, but fin
interval @0,a# wherea.0 is an arbitrary real number, and also forx.b
.a, another arbitrary real number.

12We call this domainC0
`(R\$0%). The meaning of the symbolR\$0% is that

the point zero has been removed from the real line. So the functions in
domain are not defined forx50. The superscript̀ and the subscript 0
have the same meanings as before;\$0%, means that the functionsuabcd(x)
belonging toC0

`(R\$0%) vanish aroundx50, that is for2a,x,b and
also forx,2c and forx.d, wherea, b, c, andd are arbitrary positive
numbers. Therefore the domain of this operator consists of functions
vanish before the pointx50 from the negative and positive sides and f
large distances in both positive and negative directions.

13F. A. B. Coutinho and Y. Nogami, ‘‘Zero-range potential for the Dira
equation in two and three space dimensions: Elementary proof of Sv
sen’s theorem,’’ Phys. Rev. A42, 5716–5719~1990!.

14F. A. B. Coutinho, Y. Nogami, and J. Fernando Perez, ‘‘Generalized p
interactions in one-dimensional quantum mechanics,’’ J. Phys. A30,
3937–3945~1997!.

15F. A. B. Coutinho, Y. Nogami, and J. Fernando Perez, ‘‘Time-rever
aspects of the point interactions in one-dimensional quantum mechan
J. Phys. A32 ~12!, L133–L136~1999!.

16M. Abramowitz and Irene A. Stegun,Handbook of Mathematical Func-
tions ~Dover, New York, 1968!.

17J. Fernando Perez and F. A. B. Coutinho, ‘‘Schro¨dinger equation in two
dimensions for a zero-range potential and a uniform magnetic field:
exactly soluble model,’’ Am. J. Phys.59 ~1!, 52–54~1991!.

18S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden,Solvable Mod-
els in Quantum Mechanics~Springer-Verlag, New York, 1988!.

19V. Alonzo and S. De Vincenzo, ‘‘Delta-type Dirac point interactions a
their non-relativistic limits,’’ Int. J. Theor. Phys.124 ~3!, 467–479~2000!.

20D. Griffiths and S. Walborn, ‘‘Dirac deltas and discontinuous function
Am. J. Phys.67 ~5!, 446–447~1999!.

21T. Cheon and T. Shigehara, ‘‘Realizing discontinuous wave functions w
renormalized short-range potentials,’’ Phys. Lett. A243 ~3!, 111–116
~1998!.

22F. A. B. Coutinho, ‘‘Bound states in two dimensions and the variatio
principle,’’ Am. J. Phys.64 ~6!, 818–818~1996!.

23M. Reed and B. Simon,Methods of Modern Mathematical Physics~Aca-
demic, London, 1975!, Vol. 2.

24In the mathematical literature the two equations~A5! and~A6! are written
with O replaced by O1.
11Araujo, Coutinho, and Fernando Perez


