FMA0403- MECÂNICA QUÂNTICA I

Primeiro semestre 2009 Unidade 1 Lista de Problemas

1. Uma partícula de massa m está no estado cuja função de onda é:

$$\psi(x,t) = Ae^{-\frac{mwx^2}{2\hbar}}e^{-i\frac{wt}{2}},$$

onde A e w são constantes reais e positivas.

a)Calcule o valor de A que normaliza a função de onda.

b) Mostre que $\psi(x,t)$ é uma solução da equação de Schrodinger dependente do tempo, se V(x) é a energia potencial de um oscilador harmônico,

$$V(x) = \frac{mw^2x^2}{2}.$$

c)Calcule os valores médios de x, x^2, p, p^2 .

d) Calcule o desvio padrão das medidas da posição e do momento, σ_x , σ_p . O produto deles é consistente com o princípio da incerteza?

1.14 Griff.

2. Considere a função de onda normalizada

$$\psi(x,t) = \sqrt{\lambda}e^{-\lambda|x|}e^{-iwt}$$

onde , λ e w são constantes reais e positivas.

a)Determine os valores médios de x e x^2 .

b) Calcule o desvio padrão σ . Qual é a probabilidade da partícula se encontrar for a do intervalo $[\langle x \rangle - \sigma, \langle x \rangle + \sigma]$?

1.8 Griff.

3. A função de onda de uma partícula livre no instante t=0 é:

$$\psi(x,0) = (\frac{2a}{\pi})^{\frac{1}{4}}e^{-ax^2}$$

onde a é uma constante real e positiva.

- a) Determine $\psi(x,t)$.
- b) Faça um gráfico de $|\psi(x,t)|^2$ em t=0 e quando t é muito grande (quantifique "muito grande"). Qualitativamente o que acontece com $|\psi(x,t)|^2$ quando t cresce?
- c) Determine $\langle x \rangle, \langle p \rangle, \langle x^2 \rangle, \langle p^2 \rangle$.
- d)Ache σ_x, σ_p . O princípio da incerteza é satisfeito? Em que instante o sistema está mais próximo da incerteza mínima?
- e) Calcule $\phi(p,t)$. Qual é a densidade de probabilidade da partícula ter momento p? Ela varia com o tempo?
- f) Calcule $\langle p \rangle$ e $\langle p^2 \rangle$ usando a densidade de probabilidade calculada no item f. Compare com sua resposta no item d .

Dado

$$\int_{-\infty}^{\infty} e^{ax^2 + bx} dx = \sqrt{\frac{\pi}{-a}} e^{-\frac{b^2}{4a}}$$

2.22 Griff.

4. A função de onda de uma partícula livre no instante t=0 é dada por:

$$\psi(x) = \begin{cases} 2\alpha\sqrt{\alpha}xe^{-\alpha x} & \text{if } x > 0\\ 0 & \text{if } x < 0 \end{cases}$$

- a) Numa medida da posição, qual é o valor mais provável?
- b)Calcule $\langle x \rangle$ e $\langle x^2 \rangle$.
- c)Qual é a probabilidade da partícula se encontrar entre

$$x = 0 e x = \frac{1}{\alpha}$$
?

- d)Calcule $\phi(p)$. Use sua resposta para calcular $\langle p \rangle$ e $\langle p^2 \rangle$.
- e)Calcule a dispersão das medidas da posição e do momento. O principio da incerteza é satisfeito ?

Gasio. pg 48

5. A função de onda de uma partícula livre no instante t=0 é dada por:

$$\psi(x,0) = (\frac{2a}{\pi})^{\frac{1}{4}} e^{-ax^2} e^{ilx}$$

onde a e l são constantes reais e positivas.

a)Calcule $\psi(x,t)$.

- b)Determine $\langle x \rangle$ e $\langle \hat{p} \rangle$.
- c) Qual é a diferença entre os calculos do item b) com a fase nula (l=0) e com a fase não-nula ($l\neq 0$) ? Sua resposta sugere que interpretação fisica para esse termo?
- 6. a) Mostre que $\phi(p,t)$ é a função de onda de uma partícula livre na representação dos momentos.
 - b)Mostre que vale a identidade

$$e^{\frac{i\hat{p}a}{\hbar}}\hat{x}e^{\frac{-i\hat{p}a}{\hbar}} = \hat{x} + a$$

Sugestão: Calcule a ação de cada um dos operadores na representação dos momentos.

3.8 Gasio.