# PGF5299: Physical Cosmology II 

## Problem Set 7

(Due November 04, 2014)

## 1) Fisher Matrix:

Recall the Fisher matrix components related to parameters $p_{\alpha}$ and $p_{\beta}$ is

$$
\begin{equation*}
F_{\alpha \beta}=-\left\langle\frac{\partial^{2} \ln \mathcal{L}}{\partial p_{\alpha} \partial p_{\beta}}\right\rangle \tag{1}
\end{equation*}
$$

The covariance of the parameters can then be approximated as $C_{\alpha \beta} \approx F_{\alpha \beta}^{-1}$. Compute the Fisher matrix for the 2 cases below:
a) A Poisson Likelihood with mean/variance $\overline{\mathbf{m}}=\bar{m}_{i}$ for a sequence of $\mathbf{N}=N_{i}$ measurements:

$$
\begin{equation*}
\mathcal{L}(\mathbf{N} \mid \overline{\mathbf{m}})=\prod_{i=1}^{b} \frac{\bar{m}_{i}^{N_{i}} e^{-\bar{m}_{i}}}{N_{i}!} \tag{2}
\end{equation*}
$$

b) A Gaussian Likelihood with non-zero mean $\overline{\mathbf{m}}=\bar{m}_{i}$ and covariance $\mathbf{C}=C_{i j}$ for a sequence of $\mathbf{N}=N_{i}$ measurements:

$$
\begin{equation*}
\mathcal{L}(\mathbf{N} \mid \overline{\mathbf{m}}, \mathbf{C})=\frac{1}{(2 \pi)^{b / 2}(\operatorname{det} \mathbf{C})^{1 / 2}} \exp \left[-\frac{(\mathbf{N}-\overline{\mathbf{m}}) \mathbf{C}^{-1}(\mathbf{N}-\overline{\mathbf{m}})^{t}}{2}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
(\mathbf{N}-\overline{\mathbf{m}}) \mathbf{C}^{-1}(\mathbf{N}-\overline{\mathbf{m}})^{t}=\sum_{i, j=1}^{b}\left(N_{i}-\bar{m}_{i}\right) C_{i j}^{-1}\left(N_{j}-\bar{m}_{j}\right) \tag{4}
\end{equation*}
$$

Suggestion: Look at Tegmark, Taylor and Heavens, 1997.
c) Guess a form for the Fisher Matrix that interpolates between both cases above. Suggestion: Look at Lima and Hu, 2004.

## 2) MCMC:

Let us do a very simple MCMC fit. First generate a sequence of 100 pairs $(x, y)$ where $x=1,2, \ldots, 100$ and $y$ is drawn from a gaussian distribution $G(y) \propto \exp \left[(y-\bar{y}) / 2 \sigma_{y}^{2}\right]$ with $\bar{y}=a x+b$ and $\sigma_{y}=2$. Fix $a=2$ and $b=1$ to generate these 100 points. Make a plot of $y$ versus $x$ and show also the line $\bar{y}$ versus $x$ superposed.

Now pretend that all you have is this sequence of measured 100 points $(x, y)$. Model the likelihood of the measurements as gaussian $\mathcal{L}(y \mid a, b, c)=G\left[(y-\bar{y})^{2} / 2 \sigma_{y}^{2}\right]$ with variance $\sigma_{y}^{2}=c$ and mean $\bar{y}=a x+b$. Your goal is to determine the model parameters $a, b, c$ from the 100 measurements of $y$ versus $x$.

Starting from $(a, b, c)=(0,0,1)$ as an initial guess point in parameter space, compute its likelihood and proceed in the usual Metropolis-Hasting steps to construct a chain for the parameters. Notice you have to choose the step size with which you'll generate new points in parameter space, so you should play with that a little bit.

Do you approach the correct solution for $a, b, c$ ? After how many steps? From the chain points, determine a $68 \%$ confidence region in the $(a, b)$ plane after marginalizing over $c$ (i.e. irrespective of the value of $c$ ).

Repeat the Metropolis-Hasting procedure above but start with $(a, b, c)=(1.8,1.1,4.2)$ as initial guesses.

