PGF5299: Physical Cosmology II

Problem Set 6

(Due October 28, 2014)

1) Spherically Symmetric Lens: Recall that the reduced deflection angle vector $\hat{\vec{\alpha}}=\left(\alpha_{1}, \alpha_{2}\right)$ is given by

$$
\begin{equation*}
\hat{\vec{\alpha}}\left(\vec{r}_{\perp}\right)=2 \int_{-\infty}^{\infty} \vec{\nabla}_{\perp} \Phi\left(r_{\|}, \vec{r}_{\perp}\right) d r_{\|} \tag{1}
\end{equation*}
$$

For a point lens with mass M, the potential is $\Phi\left(r_{\|}, \vec{r}_{\perp}\right)=G M /\left(r_{\|}^{2}+r_{\perp}^{2}\right)^{1 / 2}$. Therefore, for a vector $\vec{\xi}=\vec{r}_{\perp}$ on the lens plane at a distance ξ away from M, the deflection becomes

$$
\begin{equation*}
\vec{\alpha}(\vec{\xi})=4 G M \frac{\vec{\xi}}{\xi^{2}} \tag{2}
\end{equation*}
$$

For a more general lens, we can consider the lens made up of point masses on the lens plane, each one at a distance ξ_{i} from an origin so that at ξ the reduced deflection is

$$
\begin{align*}
\hat{\vec{\alpha}}(\vec{\xi}) & =\sum_{i} \alpha_{i}\left(\vec{\xi}-\vec{\xi}_{i}\right)=4 G \sum_{i} M_{i} \frac{\vec{\xi}-\vec{\xi}_{i}}{\left|\vec{\xi}-\vec{\xi}_{i}\right|^{2}}=4 G \overbrace{\int d^{d^{2} \xi^{\prime}} \underbrace{\int_{d z \rho(r)}^{d M}}_{\Sigma\left(\xi^{\prime}\right)} \frac{\vec{\xi}-\vec{\xi}^{\prime}}{\left|\vec{\xi}-\vec{\xi}^{\prime}\right|^{2}}} \\
& =4 G \int d^{2} \xi^{\prime} \frac{\Sigma\left(\xi^{\prime}\right)\left(\vec{\xi}-\vec{\xi}^{\prime}\right)}{\left|\vec{\xi}-\vec{\xi}^{\prime}\right|^{2}} \tag{3}
\end{align*}
$$

or in terms of $\vec{\theta}=\vec{\xi} / D_{L}$, the deflection $\vec{\alpha}(\vec{\xi})=\hat{\vec{\alpha}}(\vec{\xi}) D_{L S} / D_{S}$ (in wich $\left.\vec{\theta}=\vec{\beta}+\vec{\alpha}\right)$

$$
\begin{align*}
\vec{\alpha}(\vec{\theta}) & =\frac{D_{L S}}{D_{S}} 4 G \int d^{2} \theta^{\prime} \frac{D_{L} \Sigma\left(D_{L} \theta^{\prime}\right)\left(\vec{\theta}-\overrightarrow{\theta^{\prime}}\right)}{\left|\vec{\theta}-\overrightarrow{\theta^{\prime}}\right|^{2}}=\frac{1}{\pi} \int d^{2} \theta^{\prime} \Sigma\left(D_{L} \theta^{\prime}\right) \frac{4 \pi G D_{L S} D_{L}}{D_{S}} \frac{\left(\vec{\theta}-\overrightarrow{\theta^{\prime}}\right)}{\left|\vec{\theta}-\overrightarrow{\theta^{\prime}}\right|^{2}} \\
& =\frac{1}{\pi} \int d^{2} \theta^{\prime} \kappa\left(\theta^{\prime}\right) \frac{\left(\vec{\theta}-\overrightarrow{\theta^{\prime}}\right)}{\left|\vec{\theta}-\overrightarrow{\theta^{\prime}}\right|^{2}} \tag{4}
\end{align*}
$$

where the convergence $\kappa(\theta)=\Sigma\left(D_{L} \vec{\theta}\right) / \Sigma_{\text {crit }}$ and $\Sigma_{\text {crit }}^{-1}=4 \pi G D_{L} D_{L S} / D_{S}$
a) For a spherically symmetric lens, argue that the deflection must point towards the lens center (i.e. $\vec{\alpha}=\alpha(\theta) \vec{\theta} / \theta$) and show that its magnitude is

$$
\begin{equation*}
\alpha(\theta)=\frac{M(<\theta)}{\pi D_{L}^{2} \Sigma_{\text {crit }}} \frac{1}{\theta}=\frac{m(\theta)}{\theta} \tag{5}
\end{equation*}
$$

where $M(<\theta)$ is the mass contained within θ and $m(\theta)$ is an average surface density normalized by the critical surface density.
b) Since $\vec{\alpha}=\alpha(\theta) \vec{\theta} / \theta$ and $\theta=\left(\theta_{1}^{2}+\theta_{2}^{2}\right)^{1 / 2}$, compute $\partial \alpha_{i} / \partial \theta_{j}$, for $i, j=1,2$. Express the results in terms of $\alpha(\theta)$ and $d \alpha / d \theta$.
c) Use the previous relations to compute $\kappa(\theta), \gamma_{1}(\vec{\theta}), \gamma_{2}(\vec{\theta})$ in terms of $\alpha(\theta)$ and $d \alpha / d \theta$.
d) Compute the shear amplitude $\gamma(\theta)=\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)^{1 / 2}$ and the average convergence $\bar{\kappa}(\theta)$

$$
\begin{equation*}
\bar{\kappa}(\theta)=\frac{1}{\pi \theta^{2}} \int 2 \pi \theta^{\prime} d \theta^{\prime} \kappa\left(\theta^{\prime}\right) \tag{6}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\gamma(\theta)=\bar{\kappa}(\theta)-\kappa(\theta) \tag{7}
\end{equation*}
$$

2) NFW Profile: Recall the spherical NFW halo profile is given by:

$$
\begin{equation*}
\rho\left(r \mid M_{v i r}, z\right)=\frac{\rho_{s}}{c r / r_{v i r}\left(1+c r / r_{v i r}\right)^{2}} \tag{8}
\end{equation*}
$$

a) Show analytically that the mass contained within the virial radius of this halo is

$$
\begin{align*}
M_{v i r} & =\int_{0}^{r_{v i r}} d r 4 \pi r^{2} \rho(r)=4 \pi \rho_{s} \frac{r_{v i r}^{3}}{c^{3}} f^{-1} \tag{9}\\
\text { where } \quad f(c) & =\left[\ln (1+c)-\frac{c}{1+c}\right]^{-1} \tag{10}
\end{align*}
$$

b) Using $r=|\vec{r}|$ with $\vec{r}=\left(r_{\|}, \vec{r}_{\perp}\right)$ and $\vec{r}_{\perp}=D_{L} \vec{\theta}$, compute either analytically or numerically the projected surface density profile

$$
\begin{equation*}
\Sigma(\theta)=\int_{-r_{v i r}}^{r_{v i r}} d r_{\|} \rho(r) \tag{11}
\end{equation*}
$$

and plot the convergence $\kappa(\theta)=\Sigma(\theta) / \Sigma_{\text {crit }}$ versus θ induced by a halo of mass $M_{\text {vir }}=14.0$ at $z_{l}=0.5$ on a source galaxy at $z_{s}=2.0$.

Note: Look at Takada and Jain 2003.

