PGF5299: Physical Cosmology II

Problem Set 5

(Due October 21, 2014)

1) Halo Model Ingredients

In PS4, you computed the halo mass-function for a fit from Tinker et al. 2008

$$
\begin{align*}
\frac{d n\left(z, M_{v i r}\right)}{d \ln M_{v i r}} & =f(\sigma) \frac{\bar{\rho}_{m 0}}{M_{v i r}} \frac{d \ln \sigma^{-1}}{d \ln M_{v i r}} \tag{1}\\
f(\sigma) & =A\left[\left(\frac{\sigma}{b}\right)^{-a}+1\right] \exp \left[-\frac{c}{\sigma^{2}}\right] \tag{2}
\end{align*}
$$

Now you must set values for A, a, b, c appropriate for $\Delta=\Delta_{c}$ (Eq. 11 below). Here $\sigma^{2}\left(M_{v i r}\right)$

$$
\begin{equation*}
\sigma^{2}(z, R)=D^{2}(z) \int \frac{k^{2} d k}{2 \pi^{2}}|W(k R)|^{2} P_{L}(k) \tag{3}
\end{equation*}
$$

where $M=\bar{\rho}_{m 0} 4 \pi R^{3} / 3, P_{L}(k)$ is the linear power spectrum at redshift $z=0$ and

$$
\begin{equation*}
W(k R)=\frac{3}{k^{2} R^{2}}\left[\frac{\sin (k R)}{k R}-\cos (k R)\right] \tag{4}
\end{equation*}
$$

is the Fourier Transform of a spherical top-hat window of radius R.
a) For a fiducial cosmology, compute the halo bias for the fit from Tinker et al. 2010:

$$
\begin{equation*}
b(z, M)=1-A \frac{\nu^{a}}{\nu^{a}+\delta_{c}^{a}}+B \nu^{b}+C \nu^{c} \tag{5}
\end{equation*}
$$

where $\nu=\delta_{c} / \sigma$. Plot $b(z, M)$ versus M for $z=0$ and $z=1$ in the range $M=\left[10^{12}, 10^{16}\right]$. Use log scale in the M axis and linear scale for $b(M)$.
b) For a fiducial cosmology, compute the halo profile for the fit of NFW:

$$
\begin{equation*}
\rho\left(r \mid M_{v i r}, z\right)=\frac{\rho_{s}}{c r / r_{v i r}\left(1+c r / r_{v i r}\right)^{2}} \tag{6}
\end{equation*}
$$

for a halo of mass $M_{v i r}=10^{14} M_{\odot} / h$ at redshift $z=0$ and plot $\rho(r)$ versus r. You will need the formulae sequence below:

$$
\begin{align*}
E^{2}(z) & =\Omega_{m}(1+z)^{3}+\Omega_{D E}(1+z)^{3(1+w)}, \tag{7}\\
\rho_{c r i t}(z) & =\rho_{c r i t, 0} E^{2}(z), \tag{8}\\
\omega_{m}(z) & =\Omega_{m}(1+z)^{3} / E^{2}(z), \tag{9}\\
x & =\omega_{m}(z)-1, \tag{10}\\
\Delta_{c} & =18 \pi^{2}+82 x-39 x^{2}, \tag{11}\\
\Delta_{c} & =\frac{3 M_{v i r}}{\rho_{c r i t}(z) 4 \pi r_{v i r}^{3}} \rightarrow \quad \text { Find } r_{v i r}, \tag{12}\\
\nu\left(M^{*}\right) & =1 \quad \rightarrow \quad \text { Find } M^{*}, \tag{13}\\
c\left(M_{v i r}, z\right) & =\frac{9}{1+z}\left[\frac{M_{v i r}}{M^{*}}\right]^{-0.13} \rightarrow \quad \text { Find } c, \tag{14}\\
M_{v i r} & =4 \pi \rho_{s} \frac{r_{v i r}^{3}}{c^{3}}\left[\ln (1+c)-\frac{c}{1+c}\right] \rightarrow \quad \rightarrow \quad \text { Find } \rho_{s}, \tag{15}
\end{align*}
$$

2) Bonus Problem: Halo Model: Combine the Halo Model ingredients you found before to compute the Halo-Model power spectrum at $z=0$ with the formulae sequence:

$$
\begin{align*}
u(k \mid M) & =\int_{0}^{r_{v i r}} d r 4 \pi r^{2} \frac{\sin k r}{k r} \frac{\rho(r \mid M)}{M} \quad \text { see Cooray } \& \text { Sheth } 2002 \tag{16}\\
P^{1 h}(k) & =\int d \ln M \frac{M^{2}}{\bar{\rho}_{m 0}^{2}} \frac{d n}{d \ln M}|u(k \mid M)|^{2} \tag{17}\\
P^{2 h}(k) & =\left[\int d \ln M \frac{M}{\bar{\rho}_{m 0}} \frac{d n}{d \ln M} b(M) u(k \mid M)\right]^{2} P_{L}(k) \approx P_{L}(k) \text { when } k \rightarrow 0 \tag{18}\\
P(k) & =P^{1 h}(k)+P^{2 h}(k) \tag{19}
\end{align*}
$$

Plot $P_{L}(k), P^{1 h}(k), P^{2 h}(k)$ and $P(k)$, as well as the non-linear spectrum from halofit.

