PGF5299: Physical Cosmology II

Problem Set 3

(Due September 26, 2014)

1) Correlation Function in Redshift Space. In class, we saw that the correlation function in redshift space is anisotropic in space and given by

$$
\begin{equation*}
\xi_{g}^{s}(\mathbf{s})=\xi_{g}^{s}\left(s_{\|}, s_{\perp}\right)=\xi_{g}^{s}\left(s, \mu_{s}\right)=b^{2} \sum_{l=0,2,4} c_{l}(\beta) L_{l}\left(\mu_{s}\right) \xi_{l}^{s}(s) \tag{1}
\end{equation*}
$$

where $L_{l}\left(\mu_{s}\right)$ is the Legendre Polinomial of order $l, \mu_{s}=\cos \left(\theta_{s}\right)$ is the cosine of the angle between the vector \mathbf{s} and the line-of-sight $\hat{\mathbf{z}}$, the coefficients

$$
c_{l}(\beta)=\frac{2 l+1}{2} \int_{-1}^{1}\left(1+\beta x^{2}\right)^{2} L_{l}(x) d x= \begin{cases}1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}, & l=0 \tag{2}\\ \frac{4}{3} \beta+\frac{4}{7} \beta^{2}, & l=2 \\ \frac{8}{35} \beta^{2}, & l=4\end{cases}
$$

where $\beta=f / b, b$ is the galaxy bias and $f=\frac{d \ln D}{d \ln a}$, and the multipoles

$$
\begin{equation*}
\xi_{l}^{s}(s)=i^{l} \int \frac{k^{2} d k}{2 \pi^{2}} j_{l}(k s) P^{r}(k) \tag{3}
\end{equation*}
$$

a) From the real-space matter power spectrum $P^{r}(k)$ (e.g. from CAMB), use Eq.(3) to compute the multipoles $\xi_{l}^{s}(s)$ for $l=0,2,4$. Plot them in log-scale and apropriate ranges.
b) Assuming $b=1$, use Eq. (2) to compute the coefficients $c_{l}(\beta)$. If you have a numerical growth function D, use it to compute f. Otherwise use a fitting function (e.g. $f=\Omega_{m}^{\gamma}(z)$).
c) Finally, use Eq.(1) to obtain the correlation function as a function of parallel and perpendicular directions at $z=0$ and 1.0 and make a 2 D plot of your results, with $s_{\perp}=$ $s \sin \theta$ in the x -axis and $s_{\|}=s \cos \theta_{s}$ in the y -axis, and a color code for the value of $\xi^{s}\left(s_{\perp}, s_{\|}\right)$. Compare these results to a similar 2D plot for the isotropic real space correlation $\xi^{r}(s)$.
2) Multipoles and Bessel Function. Use Eq.(3) and the properties of spherical Bessell functions $j_{l}(x)$ to show that the multipoles can also be written in terms of the real-space correlation function $\xi^{r}(x)$ as

$$
\begin{aligned}
\xi_{0}^{s}(s) & =\int \frac{k^{2} d k}{2 \pi^{2}} \frac{\sin (k s)}{k s} P^{r}(k)=\xi^{r}(s) \\
\xi_{2}^{s}(s) & =\left(\frac{3}{s^{3}} \int_{0}^{s} d x x^{2} \xi^{r}(x)\right)-\xi^{r}(s) \\
\xi_{4}^{s}(s) & =\frac{5}{2}\left(\frac{3}{s^{3}} \int_{0}^{s} d x x^{2} \xi^{r}(x)\right)-\frac{7}{2}\left(\frac{5}{s^{5}} \int_{0}^{s} d x x^{4} \xi^{r}(x)\right)+\xi^{r}(s)
\end{aligned}
$$

This is useful to propagate into redshift space, non-linear prescriptions that modify the real-space power spectrum or correlation, i.e. from a prescription $\xi^{r}(x) \rightarrow \xi_{\mathrm{NL}}^{r}(x)$ one can obtain further $\xi_{\mathrm{NL}}^{s}(\mathbf{s})$. Notice that

$$
\bar{\xi}(s)=\frac{3}{s^{3}} \int_{0}^{s} d x x^{2} \xi^{r}(x)=\frac{3}{4 \pi s^{3}} \int_{0}^{s} d^{3} x \xi^{r}(x)
$$

represents the volume average of ξ up to radius s.

