
Chapter 6

Review

Let us review what we have seen so far before we proceed.

6.1 Electromagnetism

Maxwell’s equations:

∇ ·E =
ρ

ǫ0
(Gauss Law) (6.1)

∇ ·B = 0 (Nonexistence of Magnetic Monopoles) (6.2)

∇×E = −∂B

∂t
(Faraday induction Law) (6.3)

∇×B = µ0j+ µ0ǫ0
∂E

∂t
(Ampere Law) (6.4)

naturally imply charge conservation (divergence of Ampere’s Law):

∂ρ

∂t
+∇ · j = 0 (6.5)

We may define electromagnetic potentials

E = −∇φ− ∂A

∂t
(6.6)

B = ∇×A (6.7)

which under gauge transformations

φ′ = φ− ∂f

∂t
(6.8)

A′ = A+∇f (6.9)

produce the same electromagnetic fields

E′ = E (6.10)

B′ = B (6.11)
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The Lorenz gauge

∇ ·A+ µ0ǫ0
∂φ

∂t
= 0 (Lorenz Gauge) (6.12)

is particularly useful for electromagnetic waves. In fact, inserting the potentials in the Maxwell
Eqs. and imposing the Lorenz gauge, we obtain

�
2φ = − 1

c2
∂2φ

∂t2
+∇2φ = − ρ

ǫ0
(6.13)

�
2A = − 1

c2
∂2A

∂t2
+∇2A = −µ0j (6.14)

i.e., the potentials propagate according to the classical non-homogenous wave equation with con-
stant speed equal to the speed of light c2 = 1/µ0ǫ0. Unification: E&M ↔ Optics.

Finally, given the E&M fields, corresponding E&M forces F act on particles as:

F = q(E+ v ×B) (6.15)

6.2 Special Relativity

Postulate 1: The laws of physics are the same in all inertial frames.
Postulate 2: The speed of light is the same in all inertial frames.

Postulate 2 follows from postulate 1, since E&M is a set of physical laws.

6.2.1 Coordinates and Metric

Contravariant coordinates

xµ = (x0, x1, x2, x3) = (ct, x, y, z) (6.16)

Line element ds

ds2 = ηµνdx
νdxµ (6.17)

Metric ηµν

ηµν =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(6.18)

Covariant coordinates xµ

xµ = nµνx
ν = (−ct, x, y, z) (6.19)

Similarly,

xµ = ηµνxν , (6.20)

where ηµν inverse metric. Flat space: ηµν = ηµν .
Einstein sum convention: crossed repeated indices are summed over, e.g. ηµνxν ≡ ∑3

ν=0 ηµνxν
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6.2.2 Invariance of the Line Element:

Under 3d spatial rotations, coordinates transform as

xµ′ =
∂xµ′

∂xν
xν = Λµ

νx
ν (6.21)

with

Λµ
ν =







1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1







(6.22)

such that the 3d spatial line element

l2 = x2 + y2 + z2 = (x′)2 + (y′)2 + (z′)2 = l′2 (6.23)

is invariant.
Similary, under a boost with velocity v in the x-direction, the Lorentz transformations with

Λµ
ν =







γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







(6.24)

where

β =
v

c
< 1 (6.25)

γ =
1

√

1− β2
> 1 (6.26)

leave the 4-d line element s2 = −c2t2 + x2 + y2 + z2 invariant.

6.2.3 Time Dilation and Space Contraction

As a result, we have time dilation:

∆t′ = ∆t/γ (6.27)

and space contraction

∆x′ = γ∆x (6.28)

6.2.4 Tensors

Tensors defined according to their Lorentz transformations:

T ′µν = Λµ
αΛ

ν
βT

αβ (6.29)

scalar: tensor of rank 0 (invariant), vector: rank 1, matrix: rank 2, etc...
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Example: 4-velocity Uµ:

Uµ =
dxµ

dτ
=

(
dx0

dτ
,
dxi

dτ

)

=

(
cdt

dτ
, γ

dxi

dt

)

= (γc, γv) = γ(c,v) (6.30)

4-momentum (massive particles):

Pµ ≡ mUµ = (γmc, γmv) ≡
(
E

c
,p

)

Momentum (massive particles) (6.31)

Classical limit (v ≪ c we have γ = (1− β2)−1/2 ≈ 1 + β2/2 +O(β4):

E = γmc2 ≈ mc2 +
1

2
mv2 +O(β4) (6.32)

p = γmv ≈ mv +O(β3) (6.33)

More generally, for massive and massless particles:

Pµ =
dxµ

dλ
≡

(
E

c
,p

)

Momentum (massive and massless particles) (6.34)

where λ parametrizes the trajectory. Massive particles: λ = τ/m. Massless particles: τ = m = 0,
so choose something else or replace λ → t. Finally

PµPµ = −
(
E

c

)2

+ p2 = −m2c2 → E2 = (pc)2 + (mc2)2 (6.35)

6.2.5 Doppler Effect

Applying the Lorentz transformations to Pµ = (E/c,p) for a photon, we have

E′
γ =

√

1− β

1 + β
Eγ (6.36)

and since Eγ = hν:

ν ′ =

√

1− β

1 + β
ν (6.37)

or

λ′ =

√

1 + β

1− β
λ Doppler Redshift (6.38)

The redshift z is defined as

z =
∆λ

λ
=

λ′ − λ

λ
=

√

1 + β

1− β
− 1 ≈

√

(1 + β)2 − 1 =
v

c
(6.39)
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6.2.6 Covariant Formulation

Finally, one can show that the electromagnetic equations can be written in terms of tensors in a
covariant form. Defining:

jµ = (cρ, j) (6.40)

Aα = (φ/c,A) (6.41)

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
(6.42)

fµ = qFµνUν (6.43)

we have charge conservation:

∂jµ

∂xµ
= 0 , (6.44)

Wave equation:

�Aα = −µ0j
α , (6.45)

Gauge transformation:

A′α = Aα +
∂f

∂xα
(6.46)

Lorenz gauge:

∂Aα

∂xα
= 0 (6.47)

Maxwell’s equations:

∂Fµν

∂xν
= µ0j

µ (6.48)

∂Fµν

∂xσ
+

∂Fσµ

∂xν
+

∂Fνσ

∂xµ
= 0 (6.49)

and Lorentz force:

fµ = qFµνUν (6.50)

6.2.7 Energy-Momentum Tensor

The energy-momentum tensor Tµν is generally defined as

Tµν = ”flux of Pµ across surface of constant xν” = Pµ per surface ⊥ to xν .

e.g.

T 00: density of P 0 = E : energy density

T ii: flux of P i in the xi direction : force f i per area ⊥ to xi = pressure

For a perfect fluid:

Tαβ = (ρ+ P )UαUβ + Pηαβ (6.51)
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6.3 General Relativity

6.3.1 Equivalence Principle

Locally inertial frames: freely-falling frames in small enough regions for which special relativity
holds locally.

Weak Equivalence Principle (WEP): ”In small enough regions of space-time, the motion

of freely-falling particles is the same in a uniform gravitational field and in a uniformly accelerated
frame, i.e. the laws of Mechanics take the same form as in an unaccelerated frame in the absence
of gravitation. As a result, at every point of space-time in an arbitrary gravitational field, it is
possible to choose a ”locally inertial frame” such that in small enough regions the laws of Mechanics

reduce to those of special relativity.”

Strong Equivalence Principle (SEP): Replace laws of Mechanics by laws of Physics above.

6.3.2 Geodesics

K′ frame: freely-falling coordinates ξα,
K frame: coordinates xβ .

d2ξα

dτ2
= 0 (6.52)

Change ξα → xβ :

d2xγ

dτ2
+ Γγ

µν

dxµ

dτ

dxν

dτ
= 0 (6.53)

where the affine connection Γγ
µν

Γγ
µν =

∂xγ

∂ξβ
∂2ξβ

∂xµ∂xν
(6.54)

Similarly, the metric tensor gµν in coordinates xµ:

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ (6.55)

6.3.3 Metric and Connection

Differentiating Eq. 1.142, changing indices and adding:

Γσ
µλ =

gσν

2

(
∂gµν
∂xλ

− ∂gλµ
∂xν

+
∂gνλ
∂xµ

)

(6.56)

One can show that in the Newtonian limit with

gαβ = ηαβ + hαβ(x), with hαβ(x) ≪ ηαβ (6.57)

the geodesics equation gives

d2x

dt2
=

c2

2
∇h00 = −∇φ (6.58)

and with appropriate boundary conditions

g00 = −(1 + 2φ) (6.59)
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6.3.4 Time Dilation and Gravitational Redshift

Therefore, the ratio of times between 1 and 2 is

dt2
dt1

=

(
g00(x2)

g00(x1)

)−1/2

(6.60)

i.e. the ratio of frequencies ν ∝ 1/dt will be

ν2
ν1

=

(
g00(x2)

g00(x1)

)1/2

(6.61)

Weak field regime: g00 = −(1 + 2φ) and

δν

ν1
=

ν2 − ν1
ν1

≈ φ(x2)− φ(x1) (6.62)

6.3.5 General Covariance

Equivalence Principle: Gravitational effects can be obtained by writing equations for general
gravitational fields in a locally inertial frame where gravitational effects disappear (e.g. dξ2/dτ2 =
0) and transforming to the Laboratory coordinates to find the equation in the Lab. frame.

Principle of General Covariance: alternative to the Equivalence Principle (same physical content).

Principle of General Covariance: A physical equation holds in general gravitational fields (i.e.
in general relativity) if:

a) the equation holds in the absence of gravitation; i.e. it agrees with special relativity when
gµν = ηµν and Γα

µν = 0.
b) the equation is generally covariant, i.e. it preserves its form under a general coordinate

transformation.

Volume Element

Define the determinant of the metric:

g = Det gµν (6.63)

from which we can show that
√

−g′ d4x′ =
√−g d4x (6.64)

i.e.
√−g d4x is an invariant (scalar) volume element.

6.3.6 Transformation of the Affine Connection

The affine connection was defined as

Γλ
µν =

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(6.65)

and is not a tensor as it transforms as

Γ′λ
µν =

∂x′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρ
τσ − ∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ
(6.66)
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6.3.7 Covariant Differentiation

For a contravariant vector:

V ′µ =
∂x′µ

∂xν
V ν , (6.67)

and its derivative is

∂V ′µ

∂x′λ
=

∂x′µ

∂xν
∂xρ

∂x′λ
∂V ν

∂xρ
+

∂2x′µ

∂xν∂xρ
∂xρ

∂x′λ
V ν . (6.68)

Combining the transformations for Γλ
µν and V ν we have

Γ′µ
λκV

′κ =
∂x′µ

∂xν
∂xρ

∂x′λ
Γν
ρσV

σ − ∂2x′µ

∂xρ∂xσ
∂xρ

∂x′λ
V σ

︸ ︷︷ ︸

∂2x′µ

∂xρ∂xν
∂xρ

∂x′λ
V ν

(6.69)

Adding the two equations above, the inhomogeneous terms cancel out and we get

∂V ′µ

∂x′λ
+ Γ′µ

λκV
′κ =

∂x′µ

∂xν
∂xρ

∂x′λ

(
∂V ν

∂xρ
+ Γν

ρσV
σ

)

(6.70)

The combination in brackets is the covariant derivative, which transforms as a tensor:

∇λV
µ = V µ

;λ =
∂V

∂xλ
+ Γµ

λκV
κ (6.71)

Extended to a general tensor:

Tµσ
λ;ρ =

∂Tµσ
λ

∂xρ
+ Γµ

ρνT
νσ

λ + Γσ
ρνT

µν
λ − Γκ

λρT
µσ

κ (6.72)

The covariant derivative of the metric is zero, as can be checked, using Eq. 1.151:

gµν;λ =
∂gµν
∂xλ

− Γρ
λµgρν − Γρ

λνgµρ = 0 (6.73)

Importance of covariant derivatives for forming covariant equations:

1) They transform tensors into tensors, i.e. if Aµν is a tensor, so is ∇λA
µν .

2) They reduce to ordinary derivatives in the absence of gravity (when gµν = ηµν and Γλ
µν = 0).

Therefore, the principle of general covariance allows us to apply the following algorithm to
obtain equations that are generally covariant and true in the presence of gravity:

a) Write the equation in special relativity (which holds in the absence of gravitation)

b) Replace ηµν → gµν
c) Replace ∂/∂xµ → ∇µ.
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6.4 Curvature

The connection is not a tensor, but the combination defined as the Riemann curvature tensor

Rλ
µνκ =

∂Γλ
µν

∂xκ
−

∂Γλ
µκ

∂xν
+ Γη

µνΓ
λ
κη − Γη

µκΓ
λ
νη (Riemman Tensor) (6.74)

is indeed a tensor:

R′τ
ρση =

∂x′τ

∂xλ
∂xµ

∂x′ρ
∂xν

∂x′σ
∂xκ

∂x′η
Rλ

µνκ (6.75)

Tensors of lower rank by contracting the Riemann Tensor. Ricci tensor:

Rµν = gλκRλµκν = Rκ
µκν (Ricci Tensor) (6.76)

Ricci scalar:

R = gµνRµν = Rµ
µ (Ricci Scalar) (6.77)

It can also be shown that these are the only tensor and scalar that can be formed from the Riemann
tensor and the metric.

6.4.1 Commutation of Covariant Derivatives

Covariant derivative to a covariant vector Vµ twice in reverse order leads to

Vµ;ν;κ − Vµ;κ;ν = −Rσ
µνκVσ (6.78)

Therefore, if the Riemann tensor vanishes, covariant derivatives commute (as they should in flat
space). For a space-time with curvature, covariant derivatives do not commute.

One can show a number of properties of the Riemann Tensor, these lead to the Bianchi Identities,
which imply:

(Rµν − 1

2
gµνR);µ = 0 (6.79)

6.5 Einstein Equations

Finally, imposing that the gravitational field equations must satisfy certain conditions, such as
being tensorial, containing at most 2 derivatives of the metric, being consistent with the Bianchi
identities, and reducing to Newtonian gravity in the appropriate limit, one finds that

Gµν = 8πGTµν (Einstein Equations) (6.80)

where

Gµν = Rµν − 1

2
gµνR (6.81)

This result can also be obtained by the Einstein-Hilbert action:

SEH,vac =

∫

d4x
√−g R . (6.82)

if we require this action to be stationary under variations with respect to the metric gµν .
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Figure 6.1: Scale factor and expansion. Comoving coordinates do not change, but physical coordianates
expand with the scale factor a(t). (Dodelson).

6.6 Expansion of the Universe

Cosmological Principle: Assumption that the Universe is homogeneous (same at every point,
therefore symmetric under translations) and isotropic (same in all directions, therefore symmetric
under rotations).

Expanding universe: useful to define comoving coordinates x: do not change with the expansion,
parametrized in terms of the scale factor a(t) (see Fig. 6.1.

Then physical distances r change with change such that

physical distance = a(t)× comoving distance. (6.83)

or

r(t) = a(t)x (6.84)

6.7 The Friedmann-Robertson-Walker metric

Generalizes Minkowski metric to include expansion on the spatial hypersurfaces, maintaining spatial
isotropy and homogeneity. Flat Universe it is given by

ds2 = −dt2 + a2(t)dl2 (6.85)

where

dl2 = dx2 + dy2 + dz2 = dD2 +D2dα2 (6.86)

and

dα2 = dθ2 + sin2 θdφ2 (6.87)
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For universes with curvature k, generalize

dl2 = R2
[
dD2 + f2

k (D)dα2
]

(6.88)

= R2

[
dD2

A

1− kD2
A

+D2
Adα

2

]

(3d curved space) (6.89)

such that:

DA = fk(D) =
sin(

√
kD)√
k

=







sinh(D), k = −1, Negative Curvature, Open Universe
D, k = 0, Zero Curvature, Flat Universe
sin(D), k = +1, Positive Curvature, Closed Universe

(6.90)

6.8 The Friedmann Equations

(FRW metric + Einstein Equations) → Friedmann Equations:
(
ȧ

a

)2

=
8πG

3
ρ (6.91)

ä

a
= −4πG

3
(ρ+ 3P ) (6.92)

with curvature, generalizes to
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(6.93)

ä

a
= −4πG

3
(ρ+ 3P ) (6.94)

In a universe with no curvature, the density is called critical

ρcrit(t) =
3H2(t)

8πG
(6.95)

Define the density parameter

Ωi(t) =
ρi(t)

ρcrit(t)
(6.96)

and the Friedmann equation becomes

E2(t) =
H2(t)

H2
0

=
[
Ωk a−2 +Ωm a−3 +Ωr a

−4 +ΩΛ

]
(6.97)

where

Ωk = −k/H2
0 = 1− (Ωm +Ωr +ΩΛ) (6.98)

For a Universe with both matter and cosmological constant, we have

a(t) =

(
Ωm

ΩΛ

)1/3

sinh2/3
(
3
√
ΩΛH0

2
t

)

(Matter + Cosmological Constant) (6.99)

In the context of an expanding universe, the gravitational (dynamical) redshift is due to the
stretch of space-time itself and relates to the scale factor

1 + z =
1

a
(6.100)
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6.9 Cosmological Distances

6.9.1 Comoving Radial Distance

The comoving radial distance D can be obtained by considering the a radial path of photons, in
which we have dα2 = 0 (radial) and ds2 = −dt2 + a2(t)dD2 = 0 (photons), so that D can be
expressed as

D =

∫

dD =

∫ age

t

dt

a(t)
=

∫ 1

a

da

ȧa
= −

∫ 0

z

dz

H(z)

=

∫ z

0

dz

H(z)
(6.101)

where we used da = −a2dz and H(z) = ȧ/a. Notice that D depends on the curvature only via the
Hubble parameter from the Friedmann’s equations. We may also define a physical radial distance
dp = a(t)D.

6.9.2 Comoving Horizon

The comoving horizon DH is similar to D, but instead of integrating from z = 0 to a certain redshift
z, we integrate from z to z = ∞, effectivelly finding the comoving size of the universe at z:

DH =

∫ t

0

dt

a(t)
=

∫ a

0

da

ȧa
=

∫ ∞

z

dz

H(z)
(6.102)

We may also define a physical horizon dH = a(t)DH .

6.9.3 Angular Diameter Distance

The comoving angular diameter distance DA is defined such that it gives an object’s comoving size
dl when it is multiplied by the object angular size dα

dl = DAdα (6.103)

From the metric definition, with dD = 0 we can see that it is given in terms of D by

DA = fk(D) =
sin(

√
kD)√
k

=







sinh(D), k = −1, Negative Curvature, Open Universe
D, k = 0, Zero Curvature, Flat Universe
sin(D), k = +1, Positive Curvature, Closed Universe

(6.104)

or similarly, with k = −H2
0Ωk:

DA = fk(D) =
sin[

√−ΩkH0D]√−ΩkH0
=







sinh[
√
ΩkH0D]√

ΩkH0D
, Ωk > 0, Negative Curvature, Open Universe

D, Ωk = 0, Zero Curvature, Flat Universe
sin[

√
−ΩkH0D]√

−ΩkH0D
, Ωk < 0, Positive Curvature, Closed Universe

(6.105)
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6.9.4 Luminosity Distance

The physical luminosity distance dL is defined such that the Euclidean relation remains valid for
the comoving flux, i.e.

F =
L

4πd2L
(6.106)

and comparing with the previous equation, we conclude that

dL =
DA

a
=

dA
a2

(6.107)

In the case of a flat universe we have

dL =
D

a
=

d

a2
(Flat) (6.108)

In any case, the relation a2dL = dA is always true for FRW cosmologies, independent of curvature
and/or cosmology. It provides a consistency check for the homogeneity and isotropy of the Universe.

Finally, the comoving luminosity distance is

DL =
dL
a

=
DA

a2
=

fk(D)

a2
(6.109)

6.9.5 Comoving Volume

the comoving volume element in spherical coordinates is given by

dV (z) = (DAdθ)(DA sin θdφ)dD =
D2

A(z)

H(z)
dzdΩ, (6.110)

6.9.6 Comoving versus Physical

physical and comoving version. The physical distance d is always obtained by multiplying the
comoving distance D by the scale factor a(t). This holds also for the luminosity and angular-
diameter distances such that:

dp = a(t)D (6.111)

dH = a(t)DH (6.112)

dA = a(t)DA (6.113)

dL = a(t)DL (6.114)

and the physical volume is

dVphys = (dAdθ)(dA sin θdφ)d(dp) = a3(t)
D2

A(z)

H(z)
dzdΩ = a3(t)dV (6.115)
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6.10 Energy Evolution

The Bianchi identity says that the covariant derivative of the Einstein Tensor is zero:

∇µG
µν = 0 (6.116)

which, through the Einstein equations, automatically imply that the Energy-Momentum tensor is
covariantly conseved:

∇µT
µν = 0 (6.117)

the ν = 0 equation implies (T 00 = g00T 0
0 = ρ and T ij = gikT i

k = −δik/a
2(−δikP ) = δijP/a

2):

∇µT
µ0 = ∂µT

µ0 + Γµ
µλT

λ0 + Γ0
µλT

µλ

= ∂0T
00 + Γ0

0λT
λ0 + Γi

iλT
λ0 + Γ0

0λT
0λ + Γ0

iλT
iλ

= ∂0T
00 + Γi

iλT
λ0 + Γ0

iλT
iλ

= ∂0T
00 + Γi

i0T
00 + Γ0

ijT
ij

= ∂0ρ+ δii
ȧ

a
ρ+ (δijaȧ)

(
δijP

a2

)

=
∂ρ

∂t
+ 3

ȧ

a
ρ+ 3

ȧ

a
P = 0 (6.118)

or with P = wρ:

∂ρ

∂t
+ 3H(1 + w)ρ = 0 (6.119)

the general solution to this equation as

dρ

dt
= −3

da/dt

a
ρ[1 + w(t)]

dρ

ρ
= −3[1 + w(t)]

da

a

d ln ρ = −3[1 + w(t)]d ln a

ln ρ = −3

∫

[1 + w(a)]d ln a+ const.

ρ(a) = ρ(1) exp

[

−3

∫ a

1

(1 + w(a))

a
da

]

(6.120)

In terms of redshift z, a = (1 + z)−1, da = −(1 + z)−2dz, so that da/a = −dz/(1 + z) and:

ρ(z) = ρ(0) exp

[

3

∫ z

0

[1 + w(z)]

1 + z
dz

]

(6.121)
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Solutions for constant w

We can find solutions for cases when the universe content is dominated by different species with
constant w:

ρ(z) = ρ(0) exp

[

3(1 + w)

∫ z

0

dz

1 + z

]

= ρ(0) exp [3(1 + w) ln(1 + z)] (6.122)

or

ρ(z) = ρ(0)(1 + z)3(1+w) (6.123)

6.11 Equilibrium Thermodynamics

distribution function f(x,p, t) of a species in phase space (x,p) and time t, defined such that

N = f(x,p, t)d3xd3p (6.124)

is the number of particles in phase space element d3xd3p.
In thermodynamical equilibrium, the distribution function is independent of position angular

direction, and given by

f(x,p, t) = f(p, t) =
1

e(E−µ)/T ± 1

{
+ Fermi-Dirac
− Bose-Einstein

(6.125)

where E =
√

p2 +m2, and both cases reduce to the Maxwell-Boltzmann distribution in the classical
limit (high temperatures and low densitites):

f(p, t) ∝ e−(E−µ)/T Classical (6.126)

number density, energy density and pressure, respectively:

n(x, t) = g

∫
d3p

(2π)3
f(x,p, t) (6.127)

ρ(x, t) = g

∫
d3p

(2π)3
Ef(x,p, t) (6.128)

P (x, t) = g

∫
d3p

(2π)3
p2

3E
f(x,p, t) (6.129)

The Boltzmann equation then implies

T ∝ 1

a
(6.130)

6.12 Boltzmann Equations

df

dt
=

∂f

∂t
+

dxi
dt

∂f

∂xi
+

dp

dt

∂f

∂p
+

dp̂i
dt

∂f

∂p̂i
=

(
∂f

∂t

)

C

(6.131)
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In equilibrium, the distribution f(x,p, t) = f0(p, t) is either the BE or FD distribution, and the
collision term is zero (collisions/reactions in one direction cancelled by terms in opposite direction)
such that the collisionless Boltzmann is satisfied and

df0
dt

=
∂f0
∂t

+
dxi

dt

∂f0
∂xi
︸︷︷︸

0

+
dp

dt

∂f0
∂p

+
dp̂i

dt

∂f

∂p̂i
︸︷︷︸

0

= 0 (6.132)

→ ∂f0
∂t

+
dp

dt

∂f0
∂p

= 0 (6.133)

For photons

P 2 = gµνP
µP ν = 0 → P 0 = p (6.134)

and the Geodesics equation gives

dp

dt
= −Hp (6.135)

For matter

P 2 = gµνP
µP ν = −m2 → E2 = p2 +m2 (6.136)

and the Boltzmann equation leads to

ρ ∝ 1

a3
(6.137)

6.13 Thermal History

The Boltzmann equation may be written as

∂f

∂t
−Hp

∂f

∂p
=

1

E

(
∂f

∂t

)

C

(6.138)

or, similarly, integrating over momentum

a−3d(na
3)

dt
= g

∫
d3p

(2π)3
1

E

(
∂f

∂t

)

C

(6.139)

For a general process

1 + 2 ↔ 3 + 4 (6.140)

we may evaluate the collision term and obtain for particle 1

a−3d(n1a
3)

dt
= n

(0)
1 n

(0)
2 〈σv〉

[

n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]

(6.141)

In chemical equilibrium the collision term is zero and we have the Saha equation

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

(6.142)
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More generally, we must solve the differential equation while only kinetic equilibrium holds.

We used this equation to study a number of processes in the early universe, namely

* Neutrino decoupling

* Freeze out of neutrons,

* Big Bang nucleosynthesis: formation of light element nuclei.

* Recombination of electrons and protons allowing the decoupling of electrons and photons

* Production of relic dark matter particles.

6.14 Linear Perturbations in the Universe

Gravitational dynamics → space-time perturbations in the metric and in the energy-momentum
tensor components:

δgµν(x, t) : Ψ(x, t),Φ(x, t) (6.143)

δTµν(x, t) : δρ(x, t), vi(x, t), δP (x, t),Πij(x, t) (6.144)

Fourier transform

δ(k, t) =

∫

d3x e−ik·xδ(x, t) (6.145)

and inverse

δ(x, t) =

∫
d3k

(2π)3
eik·xδ(k, t) (6.146)

lead to

δ(x) → δ(k) (6.147)

∂

∂xi
δ(x) → ikiδ(k) (6.148)

∇2δ(x) → −k2δ(k) (6.149)
∫

d3x′δ(x′)W (x− x′) → δ(k)W (k) (6.150)

Metric perturbations (Conformal Newtonian Gauge):

ds2 = gµνdx
µdxν = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2 (6.151)

Ψ(x, t): Newtonian potential (time-time metric perturbation)
Φ(x, t) curvature potential (space-space metric perturbation).

This metric leads, in Fourier space to the connection symbols:

Γ0
00 = Ψ̇ , Γ0

0i = Γ0
i0 = ikiΨ , Γ0

ij = δija
2
[

H + 2H(Φ−Ψ) + Φ̇
]

(6.152)
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Γi
00 =

iki
a2

Ψ , Γi
0j = Γi

j0 = δij

(

H + Φ̇
)

, Γi
jk = iΦ(δkikj − δjkki + δijkk) (6.153)

Ricci tensor:

R00 = −3
ä

a
− k2

a2
Ψ+ 3H(Ψ̇− 2Φ̇)− 3Φ̈ (6.154)

R0i = −2iki(Φ̇−HΨ) (6.155)

Rij = δij

[

(aä+ 2a2H2)[1 + 2(Φ−Ψ)] + a2H
(

6Φ̇− Ψ̇
)

+ a2Φ̈ + k2Φ
]

+ kikj(Φ + Ψ) (6.156)

Ricci scalar:

R = 6

(
ä

a
+H2

)

+
2k2

a2
(Ψ + 2Φ)− 6H(Ψ̇− 4Φ̇) + 6Φ̈− 12Ψ

(
ä

a
+H2

)

(6.157)

6.15 Perturbed Boltzmann Equations

FRW metric with perturbations in the Newtonian gauge → Bolzmann equation:

df

dt
=

∂f

∂t
+

p̂i

a

p

E

∂f

∂xi
− ∂f

∂E

[
p2

E
Φ̇ +

∂Ψ

∂xi
pp̂i

a
+

p2

E
H

]

=

(
∂f

∂t

)

C

.

(6.158)

6.15.1 Photons

For photons, E = p and

df

dt
=

∂f

∂t
+

p̂i

a

∂f

∂xi
− p

∂f

∂p

[

H + Φ̇ +
∂Ψ

∂xi
p̂i

a

]

(6.159)

Perturbation in the distribution function around equilibrium Planck distribution f0(p, t):

f(x,p, t) = f0(p, t) + δf(x,p, t) (6.160)

or similarly in terms of perturbations in the temperature field

T (x, p̂, t) = T (t) + δT (x, p̂, t) = T (t) [1 + Θ(x, p̂, t)] (6.161)

where Θ(x, p̂, t) = δT (x, p̂, t)/T (t), so that

f(x,p, t) =

{

exp

[
p

T (x, p̂, t)

]

− 1

}−1

= f0(p, t)− p
∂f0

∂p
Θ (6.162)

or

δf(x,p, t) = −p
∂f0

∂p
Θ (6.163)
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Keeping only first-order terms, we have

df

dt

∣
∣
∣
∣
1st order

= −p
∂f0

∂p

[

Θ̇ +
p̂i
a

∂Θ

∂xi
+ Φ̇ +

p̂i
a

∂Ψ

∂xi

]

(6.164)

Compton scattering of photon off electrons is the main interaction:

e−(q) + γ(p) ↔ e−(q′) + γ(p′) (6.165)

with amplitude

|M|2 ≈ 8πσTm
2
e (6.166)

and the collision term is given by

(
∂f(p)

∂t

)

C

= −p
∂f0

∂p
neσT [Θ0 −Θ+ p̂ · vb] (6.167)

where

ne =

∫
d3q

(2π)3
fe(q) (6.168)

nevb =

∫
d3q

(2π)3
fe(q)

q

me
(6.169)

Θl =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ) Θ (6.170)

The full equation becomes

Θ̇ +
p̂i
a

∂Θ

∂xi
+ Φ̇ +

p̂i
a

∂Ψ

∂xi
= neσT [Θ0 −Θ+ p̂ · vb] (6.171)

Then,

* Change t → η,

* Change to Fourier space,

* use µ = cos(θ) = k·p̂
k = kip̂i

k → p̂iki = µk

* Define optical depth: τ ′ ≡ dτ
dη = −neσTa

and finally

Θ′ + ikµΘ+Φ′ + ikµΨ′ = −τ ′ [Θ0 −Θ+ µvb] (6.172)
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6.15.2 Dark matter

For cold dark matter it is easier to simply use energy-momentum conservation. But following the
Boltzmann equations we also obtain

δ′c + ikiv
i
c + 3Φ′ = 0 (6.173)

(vic)
′ +

(
a′

a

)

vic + ikiΨ = 0 (6.174)

or in terms of θc(x, t) = ∇ · vc(x, t) = ikvc

δ′c + θc + 3Φ′ = 0 (6.175)

θ′c +

(
a′

a

)

θc − k2Ψ = 0 (6.176)

The 2 equations may be combined to give

δ′′c +

(
a′

a

)

δ′ + 3

[

Φ′′ +

(
a′

a

)

Φ′
]

= −k2Ψ (6.177)

6.15.3 Baryons

For baryons, need to consider the interactions

e(q) + p(Q) → e(q′) + p(Q′) (6.178)

e(q) + γ(p) → e(q′) + γ(p′) (6.179)

to obtain

δ′b + ikvb + 3Φ′ = 0 (6.180)

v′b +

(
a′

a

)

vc + ikΨ = τ ′
4ργ
3ρb

[3iΘ1 + vb] (6.181)

6.15.4 Neutrinos

Massless neutrinos: similar to photons, but different temperature T ν and no collision term. Define
N = δTν/Tν , such that

N ′ + ikµN +Φ′ + ikµΨ′ = 0 (6.182)

Massive neutrinos: evolution starts as massless neutrinos while they are relativistic. Transition
to transition to that of dark matter once they become non-relativistic.

See Ma & Bertschinger 1995 for a careful description of:
1) linear perturbations for all components above and Einstein Equations in both Conformal New-
tonian Gauge and Synchronous Gauge.

2) a technique to solve the equations for photons and neutrinos in terms of a multipole expansion
in Legendre polynomials.
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6.16 Perturbed Einstein Equations

FRW metric with Newtonian perturbations + Einstein Equations:

−k2Φ− 3H
(

Φ̇−HΨ
)

= −4πGδρ (6.183)

−k2(Φ̇−HΨ) = 4πG(ρ+ P )(ikivi) (6.184)

Φ̈−H(Ψ̇− 3Φ̇)−
(

2
ä

a
+H2

)

Ψ+
k2

3a2
(Ψ + Φ) = −4πGδP (6.185)

−k2(Ψ + Φ) = 32πGρΘ2 (6.186)

Consider first and third equation in a non-expanding universe and static fields:

−k2Φ = −4πGδρ (6.187)

k2

3a2
(Ψ + Φ) = −4πGδP (6.188)

(6.189)

so adding the first and 3 times the second we have

∇2Ψ = 4πG(δρ+ 3δP ) (6.190)

In General Relativity, pressure perturbation is also a source to the gravitational potential Ψ .

Finally, we saw initial conditions from the Boltzmann/Einstein equations themselves.

We ended the semester looking at the Inflation model as a solution to a number of problems
in the Big Bang scenario (horizon problem, flatness problem, unwanted relics), as well as a means
of producing and magnifying quantum perturbations in the early Universe, and its implementation
with a slowly-rolling scalar field.
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