PGF5292: Physical Cosmology I

Problem Set 3

(Due April 01, 2015)

1) Scale Factor Evolution: In this problem, you will solve the Friedmann equation numerically.

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}[\underbrace{\Omega_{k} a^{-2}}_{\text {Curvature }}+\underbrace{\Omega_{\mathrm{m}} a^{-3}}_{\text {Matter }}+\underbrace{\Omega_{\mathrm{r}} a^{-4}}_{\text {Radiation }}+\underbrace{\Omega_{\mathrm{DE}} a^{-3(1+w)}}_{\text {Dark Energy }}] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad \Omega_{k}=1-\left(\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}-\Omega_{\mathrm{DE}}\right) \tag{2}
\end{equation*}
$$

For that, you must write a numerical program that uses a differential equation solver (e.g. Runge-Kutta or better). I highly suggest you use something like $\mathrm{C} / \mathrm{C}++$, Fortran or Python, since it will make it easier to integrate with other cosmological codes in the future. If you don't know any of these languages, it is a good time to learn. You can then try to find free efficient numerical solvers for differential equations to include into your program.

In each case below, set up appropriate initial conditions using the dominant component at early times. For instance, for a universe with matter and radiation, at early times radiation dominates and you may find the analytical solutions $a(t)$ to set the correct value of $a_{0}=a\left(t_{0}\right)$ at the initial time t_{0}.

Note that the only quantity with units here is H_{0} (units of time ${ }^{-1}$). Use H_{0} such that you present your results with time in Gigayears (Gyr). For all cases, fix $h=0.72$.
a) First do the single-component cases. Leave one Ω_{i} at a time, and set all others equal to zero. For the dark energy, choose a cosmological constant, i.e. $w=-1$. For each case, plot the numerically derived scale factor as a function of time and compare your numerical solution to the analytical solution, plotting also the analytical solution.
b) Now do an intermediate two-component case, containing matter + cosmological constant. In this case you can also find an analytical solution to compare.
c) Now do the complete case with all terms. Use fiducial values: $\Omega_{k}=0$ (flat universe), $\Omega_{\mathrm{m}}=0.25, \Omega_{\mathrm{DE}}=0.75, w=-1, \Omega_{\mathrm{r}}=8.2 \times 10^{-5}$. Compute the age of the Universe, by finding the time t_{0} that corresponds to today, i.e. the time when $a\left(t_{0}\right)=1$. Change the parameter values one at a time (Ω 's and w for cases below) and plot the corresponding $a(t)$ for each variation set. See also the impact on the age of the Universe.
i) $\Omega_{\mathrm{m}}=0.1,0.25,0.5,1.0$ (with all other parameters equal to fiducial)
ii) $\Omega_{\mathrm{DE}}=0.5,0.75,1.0$ (with all other parameters equal to fiducial)
iii) $w=-0.8,-1.0,-1.2$ (with all other parameters equal to fiducial)
iv) $\Omega_{\mathrm{r}}=(6,8,10) \times 10^{-5}$ (with all other parameters equal to fiducial)
v) Flat cases: $\left(\Omega_{\mathrm{m}}, \Omega_{\mathrm{DE}}\right)=(0.0,1.0),(0.1,0.9),(0.25,0.75),(0.75,0.25),(1.0,0.0)$.

Indicate clearly in the plots, the cases you are showing.
2) Distance-Redshift relation: In this problem, you will compute distances as a function of redshift numerically. For the comoving radial distance $D(z)$ you will need to compute numerically the integral

$$
\begin{align*}
D(z) & =\int_{0}^{z} \frac{d z}{H(z)} \tag{3}\\
H(z) & =H_{0} \sqrt{\Omega_{k}(1+z)^{2}+\Omega_{\mathrm{m}}(1+z)^{3}+\Omega_{\mathrm{r}}(1+z)^{4}+\Omega_{\mathrm{DE}}(1+z)^{3(1+w)}} \tag{4}\\
\Omega_{k} & =1-\left(\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\Omega_{\mathrm{DE}}\right) \tag{5}
\end{align*}
$$

From $D(z)$ you can obtain other distance definitions. I highly suggest you write a program in $\mathrm{C} / \mathrm{C}++$ or Fortran so you can easily combine with other cosmological codes later. You can then find a free numerical integrator (e.g. Simpson, Romberg, etc) to incorporate to your program. Plot the 3 distances (radial, angular-diameter and luminosity) as a function of redshift z for the fiducial case and cosmology variations indicated in problem 1).

