PGF5292: Physical Cosmology I

Problem Set 2

(Due March 25, 2015)

1) Experimental Time-Dilation: Consider the same experiment with cesium clocks on jet flights around the world from Problem Set 1. Considering now only the general relativistic (dynamical) effect, compute how much time the clock moving eastward should have lost/gained relative to the reference clocks on Earth. Repeat for the clock moving westward.

Suggestion: Read (again!) J. Hafele, R. Keating, Science, Vol 177, No 4044 (1972), pp. 166-168

2) Dodelson 2.3

3) Dodelson 2.15

4) Bianchi Identities: Use the definition of the Riemann tensor in terms of the affine connection, and the definition of the affine connection in terms of the metric, to show that, in a locally inertial frame (in which $\Gamma_{\mu \nu}^{\alpha}=0$, but not its derivatives) the covariant derivative of the Riemann Tensor is

$$
\begin{equation*}
R_{\lambda \mu \nu \kappa ; \eta}=\frac{1}{2} \frac{\partial}{\partial x^{\eta}}\left(\frac{\partial^{2} g_{\lambda \nu}}{\partial x^{\kappa} \partial x^{\mu}}-\frac{\partial^{2} g_{\mu \nu}}{\partial x^{\kappa} \partial x^{\lambda}}-\frac{\partial^{2} g_{\lambda \kappa}}{\partial x^{\mu} \partial x^{\nu}}+\frac{\partial^{2} g_{\mu \kappa}}{\partial x^{\nu} \partial x^{\lambda}}\right) \tag{1}
\end{equation*}
$$

Then permute indices ν, κ and η cyclically to obtain the Bianchi identities:

$$
\begin{equation*}
R_{\lambda \mu \nu \kappa ; \eta}+R_{\lambda \mu \eta \nu ; \kappa}+R_{\lambda \mu \kappa \eta ; \nu}=0 \tag{2}
\end{equation*}
$$

Next, contract indices λ and ν in the above equation to obtain

$$
\begin{equation*}
R_{\mu \kappa ; \eta}-R_{\mu \eta ; \kappa}+R_{\mu \kappa \eta ; \nu}^{\nu}=0 \tag{3}
\end{equation*}
$$

and contract indices once more to finally obtain

$$
\begin{equation*}
\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)_{; \mu}=0 \tag{4}
\end{equation*}
$$

5) Einstein Equations from Action: The Einstein-Hilbert action is given by

$$
\begin{equation*}
S=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} R \tag{5}
\end{equation*}
$$

where R is the Ricci scalar and $g=\operatorname{det} g_{\mu \nu}$. Show that variation of this action with respect to the metric $g_{\mu \nu}$ and the requirement that $\delta S=0$ leads to the Einstein Equations in vacuum, i.e.

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0 \tag{6}
\end{equation*}
$$

