PGF5292: Physical Cosmology I

Problem Set 12

(Due June 10, 2015)

1) Spherically Symmetric Lens: Recall that the reduced deflection angle vector $\hat{\vec{\alpha}} = (\alpha_1, \alpha_2)$ is given by

$$\hat{\vec{\alpha}}(\vec{r}_{\perp}) = 2 \int_{-\infty}^{\infty} \vec{\nabla}_{\perp} \Phi(r_{\parallel}, \vec{r}_{\perp}) \ dr_{\parallel} \tag{1}$$

For a point lens with mass M, the potential is $\Phi(r_{\parallel}, \vec{r}_{\perp}) = GM/(r_{\parallel}^2 + r_{\perp}^2)^{1/2}$. Therefore, for a vector $\vec{\xi} = \vec{r}_{\perp}$ on the lens plane at a distance ξ away from M, the deflection becomes

$$\vec{\alpha}(\vec{\xi}) = 4GM \frac{\vec{\xi}}{\xi^2} \tag{2}$$

For a more general lens, we can consider the lens made up of point masses on the lens plane, each one at a distance ξ_i from an origin so that at ξ the reduced deflection is

$$\hat{\vec{\alpha}}(\vec{\xi}) = \sum_{i} \alpha_{i} (\vec{\xi} - \vec{\xi}_{i}) = 4G \sum_{i} M_{i} \frac{\vec{\xi} - \vec{\xi}_{i}}{|\vec{\xi} - \vec{\xi}_{i}|^{2}} = 4G \int d^{2}\xi' \underbrace{\int dz \ \rho(r)}_{\Sigma(\xi')} \frac{\vec{\xi} - \vec{\xi'}}{|\vec{\xi} - \vec{\xi'}|^{2}}$$

$$= 4G \int d^{2}\xi' \frac{\Sigma(\xi')(\vec{\xi} - \vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^{2}} \tag{3}$$

or in terms of $\vec{\theta} = \vec{\xi}/D_L$, the deflection $\vec{\alpha}(\vec{\xi}) = \hat{\vec{\alpha}}(\vec{\xi})D_{LS}/D_S$ (in wich $\vec{\theta} = \vec{\beta} + \vec{\alpha}$)

$$\vec{\alpha}(\vec{\theta}) = \frac{D_{LS}}{D_S} 4G \int d^2\theta' \frac{D_L \Sigma(D_L \theta')(\vec{\theta} - \vec{\theta'})}{|\vec{\theta} - \vec{\theta'}|^2} = \frac{1}{\pi} \int d^2\theta' \Sigma(D_L \theta') \frac{4\pi G D_{LS} D_L}{D_S} \frac{(\vec{\theta} - \vec{\theta'})}{|\vec{\theta} - \vec{\theta'}|^2}$$

$$= \frac{1}{\pi} \int d^2\theta' \kappa(\theta') \frac{(\vec{\theta} - \vec{\theta'})}{|\vec{\theta} - \vec{\theta'}|^2}$$
(4)

where the convergence $\kappa(\theta) = \Sigma(D_L \vec{\theta})/\Sigma_{crit}$ and $\Sigma_{crit}^{-1} = 4\pi G D_L D_{LS}/D_S$

a) For a spherically symmetric lens, argue that the deflection must point towards the lens center (i.e. $\vec{\alpha} = \alpha(\theta)\vec{\theta}/\theta$) and show that its magnitude is

$$\alpha(\theta) = \frac{M(<\theta)}{\pi D_L^2 \Sigma_{crit}} \frac{1}{\theta} = \frac{m(\theta)}{\theta}$$
 (5)

where $M(<\theta)$ is the mass contained within θ and $m(\theta)$ is an average surface density normalized by the critical surface density.

- b) Since $\vec{\alpha} = \alpha(\theta)\vec{\theta}/\theta$ and $\theta = (\theta_1^2 + \theta_2^2)^{1/2}$, compute $\partial \alpha_i/\partial \theta_j$, for i, j = 1, 2. Express the results in terms of $\alpha(\theta)$ and $d\alpha/d\theta$.
 - c) Use the previous relations to compute $\kappa(\theta)$, $\gamma_1(\vec{\theta})$, $\gamma_2(\vec{\theta})$ in terms of $\alpha(\theta)$ and $d\alpha/d\theta$.
 - d) Compute the shear amplitude $\gamma(\theta)=(\gamma_1^2+\gamma_2^2)^{1/2}$ and the average convergence $\bar{\kappa}(\theta)$

$$\bar{\kappa}(\theta) = \frac{1}{\pi \theta^2} \int 2\pi \theta' \ d\theta' \kappa(\theta') \tag{6}$$

and show that

$$\gamma(\theta) = \bar{\kappa}(\theta) - \kappa(\theta) \tag{7}$$

2) NFW Profile: Recall the spherical NFW halo profile is given by:

$$\rho(r|M_{vir},z) = \frac{\rho_s}{cr/r_{vir}(1+cr/r_{vir})^2}$$
(8)

a) Show analytically that the mass contained within the virial radius of this halo is

$$M_{vir} = \int_0^{r_{vir}} dr \ 4\pi r^2 \rho(r) = 4\pi \rho_s \frac{r_{vir}^3}{c^3} f^{-1}$$
 (9)

where
$$f(c) = \left[\ln(1+c) - \frac{c}{1+c}\right]^{-1}$$
 (10)

b) Using $r = |\vec{r}|$ with $\vec{r} = (r_{\parallel}, \vec{r}_{\perp})$ and $\vec{r}_{\perp} = D_L \vec{\theta}$, compute either analytically or numerically the projected surface density profile

$$\Sigma(\theta) = \int_{-r_{vir}}^{r_{vir}} dr_{\parallel} \ \rho(r) \tag{11}$$

and plot the convergence $\kappa(\theta) = \Sigma(\theta)/\Sigma_{\rm crit}$ versus θ induced by a halo of mass $M_{vir} = 14.0$ at $z_l = 0.5$ on a source galaxy at $z_s = 2.0$.

Note: Look at Takada and Jain 2003.