Capítulo 10

Equações de Maxwell

10.1 Fluxo Magnético

- Lei de Gauss: relaciona fluxo elétrico com carga elétrica.
- O equivalente para campos magnéticos também é uma equação fundamental do eletromagnetismo:

$$\Phi_B^S = \oint_S \vec{B} \cdot d\vec{s} = 0 \quad \text{Lei de Gauss, Magnetismo}$$
(10.1)

- Expressa a inexistência de cargas magnéticas, também chamadas monopolos magnéticos.
- Campos elétricos são gerados pela simples presença de cargas elétricas, ou pela variação temporal de campos magnéticos. Já os campos magnéticos podem ser produzidos por correntes, i.e. cargas em *movimento*, ou, como veremos adiante, por variação temporal do campo elétrico.
- Apenas configurações *dipolares*, como e.g. ímas com polos norte e sul, podem gerar campos magnéticos. Tais configurações surgem de movimentos internos de cargas dentro dos corpos magnéticos.
- Paul Dirac mostrou que, se monopolos magnéticos existissem, isso explicaria a quantização da carga elétrica. Infelizmente, cargas magnéticas nunca foram observados.

10.2 Corrente de Deslocamento: Lei de Ampere-Maxwell

Considere um capacitor de placas paralelas sendo carregado. Pela Lei de Gauss, a carga em um determinado instante é dada por

$$q = \epsilon_0 \Phi_E^S \tag{10.2}$$

onde Φ^S_E é o fluxo por uma superfíci
eSque contém q. A corrente no circuito associado é

$$i = \frac{dq}{dt} = \epsilon_0 \frac{d\Phi_E^S}{dt} \tag{10.3}$$

Entretanto, entre as placas, não há movimento de cargas e não há, portanto, corrente de condução.

Para impor uma "continuidade" da corrente, Maxwell propôs a idéia de uma corrente de *deslo*camento i_d entre as placas igual à corrente de condução no circuito:

$$i_d = i = \epsilon_0 \frac{d\Phi_E^S}{dt} \tag{10.4}$$

O nome não é apropriado, pois não há movimento de cargas que crie corrente entre as placas. A idéia, no entanto, é que a variação temporal do fluxo elétrico faz o papel de uma corrente imaginária entre as placas.

Em outras palavras, da mesma forma que no circuito existe um campo elétrico empurrando as cargas e criando a corrente de condução, entre as placas também existe um campo elétrico; ele simplesmente não tem cargas para criar uma corrente de condução, mas ele está associado a uma corrente de deslocamento.

De fato, entre as placas do capacitor $E = \sigma/\epsilon_0$ e o fluxo na superfície S de área A do capacitor é $\Phi_E^S = EA = \sigma A/\epsilon_0 = q/\epsilon_0$. Portanto, pela Eq. 10.4, i_d fica

$$i_d = \epsilon_0 \frac{d\Phi_E^S}{dt} = \epsilon_0 \frac{d}{dt} \left(\frac{q}{\epsilon_0}\right) = \frac{dq}{dt} = i$$
(10.5)

Maxwell propôs então que esta corrente de deslocamento deve ser adicionada à corrente de condução na Lei de Ampere

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 (i_{\text{cond}} + i_d)$$
(10.6)

ou seja

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 i_{\text{cond}} + \mu_0 \epsilon_0 \frac{d\Phi_E^S}{dt} \quad \text{(Lei de Ampere - Maxwell)}$$
(10.7)

Note que, com essa adição, se estabelece uma simetria com a Lei de Faraday: da mesma forma que a variação do fluxo magnético gera um campo elétrico, agora vemos que a variação do fluxo elétrico gera um campo magnético.

De fato, a Lei de Ampere não faria sentido sem o termo extra de Maxwell. Uma maneira simples de ver isso é imaginar uma superfície aberta S_1 definindo uma curva C, atravessada pela corrente de condução, como na Fig 10.1. Pode-se usar a Lei de Ampere para obter o campo magnético circulante nesse caminho. Entretanto, se mantivermos a curva C mas deformarmos a superfície de tal forma que ela passe entre as placas do capacitor e nunca seja atravessada pela corrente (e.g. a superfície S_2), a Lei de Ampere original diria que a circulação do campo em C é nula. Obviamente, o campo magnético real não pode depender da configuração de uma superfície imaginária (Feynman). Isso indica que algo está faltando na equação original: a corrente de deslocamento de Maxwell.

Figura 10.1: Corrente de deslocamento em um capacitor de placas paralelas e carga q. O campo magnético no caminho C não depende da superfície Amperiana escolhida, o que implica a necessidade da corrente de deslocamento entre as placas. (Serway)

10.3 Equações de Maxwell: Forma Integral

As equações de Maxwell descrevem como cargas e correntes dão origem a campos elétricos e magnéticos. Essas equações são dadas, em sua forma integral, por

$$\Phi_E^S \equiv \oint_S \vec{E} \cdot d\vec{S} = \frac{q_{\rm in}}{\epsilon_0} \quad \text{(Lei de Gauss)}$$
(10.8)

$$\Phi_B^S \equiv \oint_S \vec{B} \cdot d\vec{S} = 0 \quad \text{(Lei de Gauss, Magnetismo)}$$
(10.9)

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B^C}{dt} \quad \text{(Lei de Faraday)} \tag{10.10}$$

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 i_{\rm in} + \mu_0 \epsilon_0 \frac{d\Phi_E^C}{dt} \quad \text{(Lei de Ampere)}$$
(10.11)

onde:

- ${\cal S}$ é uma superfície fechada,
- $d\vec{S}$ é um vetor perpendicular a S;
- ${\cal C}$ é uma curva fechada,
- $d\vec{l}$ é um vetor paralelo (tangencial) a C;
- \vec{E} é o campo elétrico;
- \vec{B} é o campo magnético;
- Φ^S_E é o fluxo elétrico que atravessa S;
- $\Phi_B^{\overline{S}}$ é o fluxo magnético que atravessa S;

 $q_{\rm in}$ é a carga elétrica dentro de S;

 $i_{\rm in} = dq/dt$ é a corrente elétrica que atravessa C;

 Φ^C_E é o fluxo elétrico na superfície *aberta* apoiada emC;

 $\Phi_B^{\widetilde{C}}$ é o fluxo magnético na superfície *aberta* apoiada em C;

 $\epsilon_0 = 8.85 \times 10^{-12} \ {\rm C}^2 / {\rm Nm}^2$ é a permissividade elétrica no vácuo;

 $\mu_0 = 4\pi \times 10^{-7} = 1.26 \times 10^{-6}$ T.m/A é a permeabilidade magnética no vácuo.

- Lei de Gauss: indica como cargas elétricas criam campos elétricos; note que somente as cargas dentro da superfície Gaussiana contribuem para o fluxo elétrico.
- Lei de Gauss do magnetismo: formaliza a inexistência de monopólos magnéticos (cargas magnéticas).
- Lei de indução de Faraday: indica que um fluxo magnético variável pode induzir a formação de um campo elétrico circulante e, por conseguinte, uma diferença de potencial e uma corrente elétrica. O sinal negativo garante que a corrente induzida produz um campo magnético que se opõe a variação que lhe deu origem (Lei de Lenz). Caso contrário, o feedback positivo seria incompatível com conservação de energia.
- A Lei de Ampere descreve duas maneiras de gerar um campo magnético circulante:
 - i) através de correntes elétricas,
 - ii) por variação temporal do fluxo elétrico.

• Por outro lado, cargas testes q com velocidade v na presença destes campos sofrem forças eletromagnéticas, descritas pela força de Lorentz:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} \tag{10.12}$$

• Juntas, essas equações descrevem todos os fenômenos eletromagnéticos conhecidos.

10.4 Operadores Diferenciais

Definindo um operador diferencial $\vec{\nabla}$

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right), \qquad (10.13)$$

visualizado como um vetor comum, e usando operações de cálculo vetorial, como produto escalar e produto vetorial, podemos definir operadores convenientes para cálculos eletromagnéticos.

10.4.1 Gradiente

Seja ϕ um campo escalar. Seu gradiente é um vetor, denotado por $\vec{\nabla}\phi$, e definido por

$$\vec{\nabla}\phi = \left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right) \tag{10.14}$$

10.4.2 Divergente

Seja $\vec{E} = (E_x, E_y, E_z)$ um campo vetorial. Seu divergente é um escalar, denotado por $\vec{\nabla} \cdot \vec{E}$ e definido por

$$\vec{\nabla} \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$
(10.15)

10.4.3 Rotacional

Seja $\vec{E} = (E_x, E_y, E_z)$ um campo vetorial. Seu rotacional é um vetor, denotado por $\vec{\nabla} \times \vec{E}$ e definido por

$$\vec{\nabla} \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}, \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right)$$
(10.16)

10.4.4 Laplaciano

Seja ϕ um campo escalar. Seu Laplaciano é um escalar, denotado por $\nabla^2 \phi$ e definido como $\vec{\nabla} \cdot \vec{\nabla} \phi$, i.e. o divergente do gradiente de ϕ :

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$
(10.17)

Pode-se ainda definir o Laplaciano de um vetor \vec{E} como um vetor cujas componentes são Laplacianos das componentes de \vec{E} :

$$\nabla^2 \vec{E} = \left(\nabla^2 E_x, \nabla^2 E_y, \nabla^2 E_z\right) \tag{10.18}$$

10.4.5 Relações entre Operadores

Exercício 1

Mostre que

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

$$\vec{\nabla} \times (\vec{\nabla} \phi) = 0$$
(10.19)
(10.20)

para quaisquer
$$\phi \in \vec{A}$$
.

Solução:

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = \vec{\nabla} \cdot \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \\ = \frac{\partial^2 A_z}{\partial x \partial y} - \frac{\partial^2 A_y}{\partial x \partial z} + \frac{\partial^2 A_x}{\partial y \partial z} - \frac{\partial^2 A_z}{\partial y \partial x} + \frac{\partial^2 A_y}{\partial z \partial x} - \frac{\partial^2 A_x}{\partial z \partial y} \\ = 0$$
(10.21)

Е

$$\vec{\nabla} \times (\vec{\nabla}\phi) = \vec{\nabla} \times \left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}\right) \\ = \left(\frac{\partial^2\phi}{\partial y\partial z} - \frac{\partial^2\phi}{\partial z\partial y}, \frac{\partial^2\phi}{\partial z\partial x} - \frac{\partial^2\phi}{\partial x\partial z}, \frac{\partial^2\phi}{\partial x\partial y} - \frac{\partial^2\phi}{\partial y\partial x}\right) \\ = \vec{0}$$
(10.22)

Essas relações implicam: i) $\vec{\nabla} \cdot \vec{E} = 0 \Rightarrow \exists \vec{A} : \vec{E} = \vec{\nabla} \times \vec{A}$ ii) $\vec{\nabla} \times \vec{E} = 0 \Rightarrow \exists \phi : \vec{E} = \vec{\nabla} \phi$

Exercício 2

Mostre que

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$
(10.23)

Solução:

$$\vec{\nabla} \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

Para e.g. a componente x do operador, temos

$$\begin{bmatrix} \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) \end{bmatrix}_{x} = \frac{\partial (\vec{\nabla} \times A)_{z}}{\partial y} - \frac{\partial (\vec{\nabla} \times A)_{y}}{\partial z} \\ = \frac{\partial}{\partial y} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) - \frac{\partial}{\partial z} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) \\ = \frac{\partial^{2} A_{y}}{\partial y \partial x} - \frac{\partial^{2} A_{x}}{\partial y^{2}} - \frac{\partial^{2} A_{x}}{\partial z^{2}} + \frac{\partial^{2} A_{z}}{\partial z \partial x} \\ = \frac{\partial^{2} A_{x}}{\partial x^{2}} + \frac{\partial^{2} A_{y}}{\partial y \partial x} + \frac{\partial^{2} A_{z}}{\partial z \partial x} - \frac{\partial^{2} A_{x}}{\partial x^{2}} - \frac{\partial^{2} A_{x}}{\partial y^{2}} - \frac{\partial^{2} A_{x}}{\partial z^{2}} \\ = \frac{\partial}{\partial x} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right) - \nabla^{2} A_{x} \\ = \vec{\nabla}_{x} (\vec{\nabla} \cdot \vec{A}) - \nabla^{2} A_{x} \tag{10.24}$$

Mostrando-se similarmente para as componentes $y \in z$, chega-se à expressão vetorial.

10.5 Fluxo e Circulação

Vamos calcular fluxo e circulação de elementos infinitesimais e mostrar que divergente é fluxo por unidade de volume e rotacional é circulação por unidade de área.

Figura 10.2: Fluxo de $\vec{F}(x, y, z)$ em um cubo infinitesimal. Os elementos de area

mostrados tem magnitude $\Delta A = \Delta x \Delta z$, mas apontam em sentidos opostos em y e

em $y + \Delta y$. (Adaptado de Griffiths)

Considere o fluxo de um campo $\vec{F}(x, y, z)$ através de um elemento de volume infinitesimal em (x, y, z) e lados $(\Delta x, \Delta y, \Delta z)$. A contribuição das duas faces cinzas perpendiculares ao eixo y, mostradas na Fig. 10.2, é

$$\Phi_F^y = \int \vec{F} \cdot d\vec{A} = F_y(x, y + \Delta y, z) \Delta x \Delta z - F_y(x, y, z) \Delta x \Delta z$$

Usando a aproximação em primeira ordem

$$F_y(x, y + \Delta y, z) = F_y(x, y, z) + \frac{\partial F_y}{\partial y} \Delta y$$

essa contribuição fica

$$\Phi_F^y = \frac{\partial F_y}{\partial y} \Delta x \Delta y \Delta z$$

O fluxo total sobre o cubo fica então

$$\Phi_F^S = \Phi_E^x + \Phi_E^y + \Phi_E^z
= \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}\right) \Delta x \Delta y \Delta z
= (\vec{\nabla} \cdot \vec{F}) \Delta v$$
(10.25)

onde $\Delta v = \Delta x \Delta y \Delta z$ é o volume do cubo. Assim, vemos que o divergente pode ser interpretado como o fluxo por unidade de volume.

10.6. TEOREMAS DO CÁLCULO VETORIAL

Considere a circulação de um campo $\vec{F}(x, y, z)$ através de um circuito infinitesimal em (x, y, z) no plano (y, z) e com lados/projeções $(\Delta y, \Delta z)$. A contribuição dos dois comprimentos verticais mostrados na Fig. 10.3 é dada por

$$C_F^y = \int \vec{F} \cdot d\vec{l}$$

= $F_z(x, y + \Delta y, z)\Delta z - F_z(x, y, z)\Delta z$

e, similarmente, a dos dois comprimentos horizontais

$$C_F^z = F_y(x, y, z)\Delta y - F_y(x, y, z + \Delta z)\Delta y$$

Usando as expansões em primeira ordem, temos

C

$$C_F^y = \frac{\partial F_z}{\partial y} \Delta y \Delta z$$
$$C_F^z = -\frac{\partial F_y}{\partial z} \Delta z \Delta y$$

A circulação total é dada então por :

onde $\Delta a_x = \Delta y \Delta z$, e a componente x na verdade significa a componente perpendicular ao plano do circuito (y, z). Generalizando para circuitos em direções quaisquer temos

$$C_F = = \vec{\nabla} \times \vec{F} \cdot \Delta \vec{a} \tag{10.27}$$

Portanto, o rotacional é a circulação por unidade de area.

10.6 Teoremas do Cálculo Vetorial

10.6.1 Teorema Fundamental do Cálculo

O principal resultado do cálculo *unidimensional* é o *Teorema Fun*damental do Cálculo, que diz que a integral da derivada de uma função f(x) é simplesmente a diferença da própria função calculada nos limites de integração

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a) \quad \text{(Teorema Fundamental)} \quad (10.28)$$

i.e. a integral *desfaz* a derivada da função, deixando apenas o efeito dos pontos limites da função no intervalo considerado.

Figura 10.4: Teorema fundamental do cálculo unidimensional. (Griffiths)

Figura 10.3: Circulação de $\vec{F}(x, y, z)$

em um circuito infinitesimal. (Adap-

tado de Griffiths)

Pensando na integral como o limite da soma de intervalos infinitesimais, obtemos:

$$\int_{a}^{b} \frac{df}{dx} dx = \sum_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \Delta x = \sum_{i=1}^{N} \frac{(f_{i+1} - f_i)}{\Delta x_i} \Delta x_i = \sum_{i=1}^{N} (f_{i+1} - f_i)$$

= $(f_2 - f_1) + (f_3 - f_2) + (f_4 - f_3) + \dots + f_{N-1} - f_{N-2} + f_N - f_{N-1}$
= $-f_1 + f_N = f(b) - f(a)$ (10.29)

10.6.2 Teorema Fundamental Multidimensional

O Teorema Fundamental pode ser facilmente estendido para a integral em um caminho de um gradiente:

$$\int_{a}^{b} \vec{\nabla} V \cdot d\vec{l} = V(b) - V(a) \quad \text{(Gradiente)} \tag{10.30}$$

Esse resultado pode ser mostrado de forma similar ao Teorema Fundamental unidimensional usando o fato de que

$$dV = \vec{\nabla}V \cdot d\vec{l} \tag{10.31}$$

Figura 10.5: Teorema fundamental multidimensional. A integral de um gradiente em um caminho. (Griffiths)

Novamente, somente os valores nas bordas sobrevivem aos cancelamentos internos na integração.

10.6.3 Teorema de Gauss

Esses resultados podem ser generalizados para integrais de superfície e de volume pelos teoremas de Stokes e Gauss, respectivamente.

Figura 10.6: Teorema de Gauss. Um volume qualquer preenchido com cubos. Após cancelamentos internos, somente a contribuição do fluxo na superfície externa sobrevive. (Griffiths)

O Teorema de Gauss diz que a integral tripla do divergente de \vec{E} no volume V definido pela superfície S é a integral de superfície de \vec{E} na superfície S:

$$\int_{V} \vec{\nabla} \cdot \vec{E} \ dV = \oint_{S} \vec{E} \cdot d\vec{S} \quad \text{(Teorema de Gauss)} \qquad (10.32)$$

Para mostrar o teorema de Gauss, nós imaginamos o volume arbitrário subdividido em cubos infinitesimais, como na Fig 10.6. A integral no volume é obtida somando as contribuições dos vários cubos, cada uma das quais é dada pela Eq. 10.25:

$$\int_{V} \vec{\nabla} \cdot \vec{E} \, dV = \sum_{\Delta v \to 0} \vec{\nabla} \cdot \vec{E} \, \Delta v_{\text{cubo}} = \sum \Phi_{E}^{\text{cubos}} \tag{10.33}$$

Na soma dos fluxos nos cubos, as contribuições de superfícies internas se cancelam, pois vem sempre em pares de sinais opostos. Sobra apenas a contribuição das faces externas:

$$\int_{V} \vec{\nabla} \cdot \vec{E} \, dV = \sum \Phi_{E}^{\text{cubos}} = \sum \int \vec{E} \cdot d\vec{S} = \oint_{S} \vec{E} \cdot d\vec{S}$$

Figura 10.7: Teorema de Stokes. A superfície arbitrária é preenchida por circuitos quadrados infinitesimais. Após cancelamentos internos somente a circulação na curva externa sobrevive. (Griffiths).

10.6.4 Teorema de Stokes

O Teorema de Stokes diz que a integral dupla do rotacional de um campo vetorial \vec{E} na superfície aberta S definida pela curva fechada C é a integral de linha de \vec{E} na curva C:

$$\int_{S} \vec{\nabla} \times \vec{E} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l} \quad \text{(Teorema de Stokes)} \tag{10.34}$$

Para mostrar o teorema de Stokes, nós imaginamos a superfície arbitrária subdividida em circuitos infinitesimais, como na Fig 10.7. A integral na superfície é obtida somando as contribuições dos vários circuitos quadrados, cada uma dada pela Eq. 10.27:

$$\int_{S} \vec{\nabla} \times \vec{E} \cdot d\vec{S} = \sum_{\Delta S \to 0} \vec{\nabla} \times \vec{E} \ \Delta S_{\text{quadrado}} = \sum C_{E}^{\text{quadrados}} \tag{10.35}$$

Na soma das circulações dos quadrados, as contribuições de lados internos se cancelam, pois vem sempre em pares de sinais opostos. Sobra apenas a contribuição da curva externa delimitando a superfície:

$$\int_{S} \vec{\nabla} \times \vec{E} \cdot d\vec{S} = \sum C_{E}^{\text{quadrados}} = \sum \int \vec{E} \cdot d\vec{l} = \oint_{C} \vec{E} \cdot d\vec{l}$$

Note que todos esses casos correspondem esquematicamente a

$$\int_{A} \tilde{\partial}\tilde{f} = \left[\tilde{f}\right]_{\partial A} \tag{10.36}$$

onde $\tilde{\partial}$ denota derivadas generalizadas (em 1, 2 ou 3 dimensões), \tilde{f} denota um campo generalizado (escalar ou vetorial), A denota uma região generalizada (intervalo, superfície ou volume) e ∂A denota a fronteira de A (ponto, curva ou superfície).

Equações de Maxwell: Forma Diferencial 10.7

Usando o teorema de Gauss e o teorema de Stokes nas Equações de Maxwell na forma integral, e, notando que essas equações são válidas para volumes, superfícies e curvas gerais, obtém-se as equações de Maxwell na forma diferencial.

Por exemplo, partindo da Lei de Gauss, podemos usar o teorema de Gauss no lado esquerdo e expressar a carga como integral da densidade de carga no lado direito, obtendo:

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{q_{\rm in}}{\epsilon_{0}}$$

$$\rightarrow \int_{V} \vec{\nabla} \cdot \vec{E} \, dV = \frac{1}{\epsilon_{0}} \int_{V} \rho \, dV, \, \forall V \rightarrow \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_{0}}$$
(10.37)

Outro exemplo seria partir da Lei de Ampere, usar o teorema de Stokes e expressar a corrente como integral da densidade de corrente, obtendo:

$$\oint_{C} \vec{B} \cdot d\vec{l} = \mu_{0} i_{\rm in} + \mu_{0} \epsilon_{0} \frac{d}{dt} \int_{S} \vec{E} \cdot d\vec{S}$$

$$\rightarrow \int_{S} \vec{\nabla} \times \vec{B} \cdot d\vec{S} = \mu_{0} \int_{S} \vec{j} \cdot d\vec{S} + \mu_{0} \epsilon_{0} \int_{S} \frac{\partial \vec{E}}{\partial t} \cdot d\vec{S}, \ \forall \ S \rightarrow \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j} + \mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \ (10.38)$$

Procedendo de forma similar para as outras equações, obtemos:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
 (Lei de Gauss) (10.39)

$$\vec{\nabla} \cdot \vec{B} = 0$$
 (Lei de Gauss do Magnetismo) (10.40)

$$\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$$
 (Lei de Faraday) (10.41)

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$
 (Lei de Ampere) (10.42)

onde ρ é a densidade de carga elétrica $(q = \int \rho dV)$ e \vec{j} é a densidade de corrente elétrica $(i = \int \vec{j} \cdot d\vec{S})$.

10.7.1 Decomposição de Campos Vetoriais

Vamos provar dois fatos interessantes de um campo vetorial \vec{V} que decai a zero no infinito de forma suficientemente rápida (e.g. $|\vec{V}(\vec{x})| \propto 1/r^n$, com n > 1)¹:

1) \vec{V} pode ser decomposto na soma de um gradiente $\vec{\nabla}\phi$ e de um rotacional $\vec{\nabla} \times \vec{A}$. 2) $\vec{\nabla} \cdot \vec{V}$ e $\vec{\nabla} \times \vec{V}$ são suficientes para determinar o campo \vec{V} expandido da maneira acima.

O primeiro fato segue da identidade (veja Eq. 10.23)

$$\nabla^2 \vec{Z} = \vec{\nabla} (\vec{\nabla} \cdot \vec{Z}) - \vec{\nabla} \times (\vec{\nabla} \times \vec{Z}).$$
(10.43)

Identificando

$$\vec{V} = \nabla^2 \vec{Z} \tag{10.44}$$

$$\vec{\nabla} \cdot \vec{Z} = \phi \tag{10.45}$$

$$-\vec{\nabla} \times \vec{Z} = \vec{A} \tag{10.46}$$

¹Este é o caso para $\vec{E} \in \vec{B}$ devido a elementos infinitesimais de carga e corrente: ambos decaem com $1/r^2$.

temos

$$\vec{V} = \vec{\nabla}\phi + \vec{\nabla} \times \vec{A} \tag{10.47}$$

e é sempre possível fazer tal decomposição, pois dado o vetor \vec{V} , mostra-se que podemos sempre achar \vec{Z} resolvendo a Eq. (10.44). Esta equação é denotada Equação de Poisson (ver Apêndice I), e aparece com frequência no Eletromagnetismo e na Gravitação. Sua solução pode ser obtida pelo método da Função de Green (ver Apêndice L), e o resultado é

$$\vec{Z} = \int d^3x' \frac{1}{4\pi} \frac{\vec{V}(\vec{x'})}{|\vec{x} - \vec{x'}|} \,. \tag{10.48}$$

Uma vez determinado \vec{Z} , pode-se então determinar $\phi \in \vec{A}$ pelas Eqs. (10.45) e (10.46). Essa decomposição permite afirmar que:

i) Se $\vec{\nabla} \cdot \vec{V} = 0$, então $\vec{V} = \vec{\nabla} \times \vec{A}$ (rotacional puro). ii) Se $\vec{\nabla} \times \vec{V} = 0$, então $\vec{V} = \vec{\nabla}\phi$ (gradiente puro).

Usando a decomposição da Eq. (10.47), temos que

$$\vec{\nabla} \cdot \vec{V} = \nabla^2 \phi + \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = \nabla^2 \phi \tag{10.49}$$

e portanto

$$\phi = \int d^3x' \frac{1}{4\pi} \frac{\vec{\nabla'} \cdot \vec{V}(\vec{x'})}{|\vec{x} - \vec{x'}|}$$
(10.50)

Outra forma de obter esse resultado é via (Use $\vec{\nabla} \cdot (\alpha \vec{V}) = \vec{V} \cdot \vec{\nabla} \alpha + \alpha \vec{\nabla} \cdot \vec{V}$)

$$\phi = \vec{\nabla} \cdot \vec{Z} = \int d^3 x' \frac{1}{4\pi} \vec{V}(\vec{x'}) \cdot \vec{\nabla} \frac{1}{|\vec{x} - \vec{x'}|} = -\int d^3 x' \frac{1}{4\pi} \vec{V}(\vec{x'}) \cdot \vec{\nabla}' \frac{1}{|\vec{x} - \vec{x'}|} \\
= -\underbrace{\int d^3 x' \frac{1}{4\pi} \vec{\nabla}' \cdot \left(\frac{\vec{V}(\vec{x'})}{|\vec{x} - \vec{x'}|}\right)}_{=0 \text{ se } r^2[\vec{V}(r)/r] \to 0 \text{ quando } r \to \infty} + \int d^3 x' \frac{1}{4\pi} \frac{\vec{\nabla}' \cdot \vec{V}(\vec{x'})}{|\vec{x} - \vec{x'}|} \tag{10.51}$$

Além disso

$$\vec{\nabla} \times \vec{V} = \vec{\nabla} \times (\vec{\nabla}\phi) + \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) - \vec{\nabla}(\vec{\nabla} \cdot \vec{A}) - \vec{\nabla}^2 \vec{A}$$
(10.52)

$$= \vec{\nabla} [\vec{\nabla} \cdot (\vec{\nabla} \times \vec{Z})] - \nabla^2 \vec{A}$$
(10.52)
$$= \vec{\nabla} [\vec{\nabla} \cdot (\vec{\nabla} \times \vec{Z})] - \nabla^2 \vec{A}$$
(10.53)

$$\nabla^2 \vec{t} \qquad (10.59)$$

$$= -\nabla^2 A \tag{10.54}$$

e portanto

$$\vec{A} = -\int d^3x' \frac{1}{4\pi} \frac{\vec{\nabla}' \times \vec{V}(\vec{x}')}{|\vec{x} - \vec{x'}|}$$
(10.55)

Desta forma, basta saber $\vec{\nabla} \cdot \vec{V}$ e $\vec{\nabla} \times \vec{V}$ para determinar ϕ e \vec{A} e, assim, o próprio campo \vec{V} pela decomposição acima. É por isso que é suficiente as Equações de Maxwell lidarem com divergentes e rotacionais dos campos elétrico e magnético: eles determinam os campos unicamente, desde que estes decaiam a zero de forma suficientemente rápida no infinito.

10.8 Conservação da Carga

A carga elétrica é conservada, ou seja cargas não são criadas nem destruídas. Além disso, se e.g. a carga em um ponto está diminuindo, é porque parte da carga está se deslocando a outro ponto na forma corrente elétrica. Matematicamente, a conservação da carga é expressa como :

$$\frac{dq}{dt} = -i \tag{10.56}$$

i.e. a variação da carga em um ponto balanceia exatamente a corrente que sae deste ponto. Se a corrente for positiva, a carga no ponto está diminuindo, e por isso o sinal negativo. Considerando esta igualdade dentro de um volume V com borda superficial S, temos

$$\frac{d}{dt} \int_{V} \rho \, dV = -\int_{S} \vec{j} \cdot \vec{dS}$$

$$\int_{V} \frac{\partial \rho}{\partial t} \, dV = -\int_{V} \nabla \cdot \vec{j} \, dV \qquad (10.57)$$

como essa igualdade vale para qualquer volume V arbitrário, temos

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0 \qquad \text{(Eq. da continuidade)} \qquad (10.58)$$

Esta equação é chamada de Eq. da continuidade e diz simplesmente que, se a densidade de carga varia no tempo em certo ponto do espaço, é porque a densidade de corrente diverge naquele ponto, ou seja cargas não são criadas nem destruídas, apenas se movem de um lugar a outro.

Por outro lado, tomando o divergente da Lei de Ampere-Maxwell, temos:

$$0 = \vec{\nabla} \cdot \vec{\nabla} \times \vec{B} = \vec{\nabla} \cdot \left(\mu_0 \vec{j} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$
$$= \mu_0 \vec{\nabla} \cdot \vec{j} + \mu_0 \epsilon_0 \frac{\partial (\vec{\nabla} \cdot \vec{E})}{\partial t}$$
$$= \mu_0 \vec{\nabla} \cdot \vec{j} + \mu_0 \epsilon_0 \frac{\partial (\rho/\epsilon_0)}{\partial t}$$
$$= \mu_0 \left(\vec{\nabla} \cdot \vec{j} + \frac{\partial \rho}{\partial t} \right).$$

ou seja, obtemos novamente a Eq. da continuidade:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0 \tag{10.59}$$

Portanto, as Equações de Maxwell automaticamente garantem que cargas são conservadas, não sendo necessário postular isso adicionalmente.

10.9 Potenciais Eletromagnéticos

É conveniente definir potenciais relacionados aos campos elétrico e magnético. Esses potenciais são definidos das Eqs. de Maxwell sem fontes (cargas e correntes). Primeiramente, como

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{10.60}$$

segue que \vec{B} deve ser o rotacional de algum campo vetorial $\vec{A},$ conhecido como o potencial vetor magnético

$$\vec{B} = \vec{\nabla} \times \vec{A} \tag{10.61}$$

Usando essa expressão na outra equação para \vec{E} , temos

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{\nabla} \times \vec{A}}{\partial t} = \vec{\nabla} \times \left(-\frac{\partial \vec{A}}{\partial t}\right)$$
 (10.62)

Portanto

$$\vec{\nabla} \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$
 (10.63)

e segue que o termo entre parêntes es deve ser o gradiente de algum campo escalar $\phi,$ conhecido como o potencial escalar elétrico.

O potencial elétrico ϕ e o potencial vetor magnético \vec{A} são portanto definidos por

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} \tag{10.64}$$

$$\vec{B} = \vec{\nabla} \times \vec{A} \tag{10.65}$$

Note que, no caso eletrostático $\partial \vec{A}/\partial t = 0$ e $\vec{E} = -\vec{\nabla}\phi$, como no Cap. 3. Com essas definições, as duas Eqs. de Maxwell sem fonte obviamente são automaticamente satisfeitas:

$$\vec{\nabla} \cdot \vec{B} = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0 \tag{10.66}$$

e

$$\vec{\nabla} \times \vec{E} = \vec{\nabla} \times (-\vec{\nabla}\phi - \frac{\partial A}{\partial t})$$
 (10.67)

$$= -\vec{\nabla} \times \vec{\nabla}\phi - \frac{\partial(\vec{\nabla} \times A)}{\partial t}$$
(10.68)

$$= -\frac{\partial B}{\partial t} \tag{10.69}$$

As equações com fonte podem então ser usadas para descrever a dinâmica dos potenciais, ou dos campos.

10.9.1 Transformação de Calibre

Os campos não são determinados unicamente pelos potenciais eletromagnéticos definidos acima. Se $\phi \in \vec{A}$ são soluções das Eqs. de Maxwell, os potenciais $\phi' \in \vec{A'}$ definidos por

$$\phi' = \phi - \frac{\partial f}{\partial t} \tag{10.70}$$

$$\vec{A}' = \vec{A} + \vec{\nabla}f \tag{10.71}$$

para uma função $f(\vec{x},t)$ qualquer, também são solução, pois

$$\vec{E}' = -\vec{\nabla}\phi' - \frac{\partial\vec{A}'}{\partial t}$$
(10.72)

$$= -\vec{\nabla}\phi + \vec{\nabla}\frac{\partial f}{\partial t} - \frac{\partial \vec{A}}{\partial t} - \frac{\partial (\vec{\nabla}f)}{\partial t}$$
(10.73)

$$= -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} = \vec{E}$$
(10.74)

e similarmente

$$\vec{B}' = \vec{\nabla} \times \vec{A}' = \vec{\nabla} \times \vec{A} + \vec{\nabla} \times (\vec{\nabla}f) = \vec{B}$$
(10.75)

Portanto, temos a liberdade de escolher a função f convenientemente sem alterar os campos. A escolha de f implica a determinação de um calibre. Um calibre interessante na magnetostática é o Calibre de Coulomb

$$\vec{\nabla} \cdot \vec{A} = 0$$
 (Calibre de Coulomb) (10.76)

Caso o campo A nao satisfaça este calibre, basta definir A' que satisfaça, o que requer

$$\vec{\nabla} \cdot \vec{A'} = \vec{\nabla} \cdot \vec{A} + \nabla^2 f = 0 \tag{10.77}$$

ou seja, basta resolver a equação $\nabla^2 f = -\vec{\nabla} \cdot \vec{A}$ para f, que sempre tem solução.

Outro calibre interessante, usado nas soluções de ondas eletromagnéticas, é o Calibre de Lorenz

$$\vec{\nabla} \cdot \vec{A} + \mu_0 \epsilon_0 \frac{\partial \phi}{\partial t} = 0$$
 (Calibre de Lorenz) (10.78)

Das Eqs. 10.70 e 10.71, temos

$$\mu_0 \epsilon_0 \frac{\partial \phi'}{\partial t} = \mu_0 \epsilon_0 \frac{\partial \phi}{\partial t} - \mu_0 \epsilon_0 \frac{\partial^2 f}{\partial t^2}$$
(10.79)

$$\vec{\nabla} \cdot \vec{A}' = \vec{\nabla} \cdot \vec{A} + \nabla^2 f \tag{10.80}$$

e para ϕ' e A' satisfazerem o calibre de Lorenz, devemos requerer

$$\nabla^2 f - \mu_0 \epsilon_0 \frac{\partial^2 f}{\partial t^2} = -(\vec{\nabla} \cdot \vec{A} + \mu_0 \epsilon_0 \frac{\partial \phi}{\partial t})$$
(10.81)

que também sempre tem solução para f.

Note que, mesmo após especificar o calibre, os potenciais ainda não são únicos. Por exemplo, se os potenciais já satisfazem o calibre especificado, por exemplo, o calibre de Lorenz, o lado direito da equação acima é zero, e outra função g satisfazendo a equação de onda homogênea

$$\nabla^2 g - \mu_0 \epsilon_0 \frac{\partial^2 g}{\partial t^2} = 0 \tag{10.82}$$

ainda pode ser adicionada aos potenciais com uma transformação de calibre extra, novamente sem alterar os campos.