
DES 2015-0144
FERMILAB-PUB-17-433-E

DRAFT VERSION OCTOBER 17, 2017
Preprint typeset using LATEX style emulateapj v. 12/16/11

GALAXIES IN X-RAY SELECTED CLUSTERS AND GROUPS IN DARK ENERGY SURVEY DATA II:
HIERARCHICAL BAYESIAN MODELING OF RED-SEQUENCE GALAXY LUMINOSITY FUNCTION

Y. ZHANG1 ,† , C. J. MILLER2,3 , P. ROONEY4 , A. BERMEO4 , A. K. ROMER4 , C. VERGARA CERVANTES4 , E. S. RYKOFF5,6 , C. HENNIG7,8 ,
R. DAS3 , T. MCKAY3 , J. SONG9 , H. WILCOX10 , D. BACON10 , S. L. BRIDLE11 , C. COLLINS12 , C. CONSELICE13 , M. HILTON14 ,

B. HOYLE15 , S. KAY16 , A. R. LIDDLE17 , R. G. MANN18 , N. MEHRTENS19 , J. MAYERS4 , R. C. NICHOL10 , M. SAHLÉN20 , J. STOTT21 ,
P. T. P. VIANA22,23 , R. H. WECHSLER24,5,6 , T. ABBOTT25 , F. B. ABDALLA26,27 , S. ALLAM1 , A. BENOIT-LÉVY28,26,29 , D. BROOKS26 ,
E. BUCKLEY-GEER1 , D. L. BURKE5,6 , A. CARNERO ROSELL30,31 , M. CARRASCO KIND32,33 , J. CARRETERO34 , F. J. CASTANDER35 ,

M. CROCCE35 , C. E. CUNHA5 , C. B. D’ANDREA36 , L. N. DA COSTA30,31 , H. T. DIEHL1 , J. P. DIETRICH7,8 , T. F. EIFLER37,38 ,
B. FLAUGHER1 , P. FOSALBA35 , J. GARCÍA-BELLIDO39 , E. GAZTANAGA35 , D. W. GERDES2,3 , D. GRUEN5,6 , R. A. GRUENDL32,33 ,

J. GSCHWEND30,31 , G. GUTIERREZ1 , K. HONSCHEID40,41 , D. J. JAMES42 , T. JELTEMA43 , K. KUEHN44 , N. KUROPATKIN1 , M. LIMA45,30 ,
H. LIN1 , M. A. G. MAIA30,31 , M. MARCH36 , J. L. MARSHALL19 , P. MELCHIOR46 , F. MENANTEAU32,33 , R. MIQUEL47,34 ,

R. L. C. OGANDO30,31 , A. A. PLAZAS38 , E. SANCHEZ48 , M. SCHUBNELL3 , I. SEVILLA-NOARBE48 , M. SMITH49 , M. SOARES-SANTOS1 ,
F. SOBREIRA50,30 , E. SUCHYTA51 , M. E. C. SWANSON33 , G. TARLE3 , A. R. WALKER25

(DES COLLABORATION)
1 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
2 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

3 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
4 Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK

5 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
6 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

7 Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany
8 Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

9 Taejon Christian International School, Yuseong, Daejeon, 34035, South Korea
10 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK

11 Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
12 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK

13 University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD, UK
14 Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZuluNatal, Westville Campus,

Durban 4000, South Africa
15 Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, 81679 München, Germany
16 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

17 Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
18 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom

19 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M
University, College Station, TX 77843, USA

20 BIPAC, Department of Physics, University of Oxford,Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH, UK
21 Physics Department, Lancaster University, Lancaster LA1 4YB, UK

22 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
23 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

24 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
25 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

26 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
27 Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa

28 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
29 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France

30 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
31 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

32 Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
33 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

34 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
35 Institute of Space Sciences, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain

36 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
37 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA

38 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
39 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain

40 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
41 Department of Physics, The Ohio State University, Columbus, OH 43210, USA

42 Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA
43 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

44 Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
45 Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil

46 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
47 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

48 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
49 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

ar
X

iv
:1

71
0.

05
90

8v
1 

 [
as

tr
o-

ph
.C

O
] 

 1
6 

O
ct

 2
01

7



2

50 Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil
51 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Draft version October 17, 2017

ABSTRACT
Using ∼ 100 X-ray selected clusters in the Dark Energy Survey Science Verification data, we constrain the

luminosity function of cluster red sequence galaxies in the redshift range of 0.1 < z < 1.05. We develop a
hierarchical Bayesian method that simultaneously models redshift evolution and cluster mass dependence. The
results from this method are tested by red sequence luminosity function parameters derived in cluster redshift
or mass bins. We find a hint that the faint end slope of a Schechter function fit may evolve with redshift at
a significance level of ∼ 1.9σ. Faint cluster red sequence galaxies possibly become more abundant at lower
redshift, indicating a different formation time from the bright red sequence galaxies. Optical cluster cosmology
analyses may wish to consider this effect when deriving mass proxies. We also constrain the amplitude of the
luminosity function with the hierarchical Bayesian method, which strongly correlates with cluster mass and
provides an improved estimate of cluster masses. This technique can be applied to a larger sample of X-ray or
optically selected clusters from the Dark Energy Survey, significantly improving the sensitivity of the analysis.
Subject headings: galaxies: evolution - galaxies: clusters: general

1. INTRODUCTION

Galaxy clusters are special for both cosmology and astro-
physics studies. As the structures that correspond to the mas-
sive end of halo mass function, they are sensitive probes of
the ΛCDM cosmological model (see reviews in Allen et al.
2011; Weinberg et al. 2013). As the most massive virialized
structures in the universe, they provide the sites for studying
astrophysical processes in dense environments.

Galaxy clusters are known to harbor red sequence (RS)
galaxies, so named because these galaxies rest on a tight re-
lation in the color-magnitude space (Bower et al. 1992). The
phenomenon has been employed in finding clusters from op-
tical data (e.g., Gladders & Yee 2000; Miller et al. 2005;
Koester et al. 2007; Rykoff et al. 2016; Oguri et al. 2017)
and developing cluster mass proxies (e.g., Rykoff et al. 2012).
Red sequence galaxies also attract attention in astrophysics
studies as they exhibit little star formation activity. Their
formation and evolution provide clues to how quenching of
galaxy star formation occurs in the cluster environment.

It is well-established that the massive red sequence galax-
ies form at an early epoch (e.g., Mullis et al. 2005; Stanford
et al. 2005; Mei et al. 2006; Eisenhardt et al. 2008; Kurk et al.
2009; Hilton et al. 2009; Papovich et al. 2010; Gobat et al.
2011; Jaffé et al. 2011; Grützbauch et al. 2012; Tanaka et al.
2013), but the formation of faint red sequence galaxies can
be better characterized. The latter could be examined through
inspecting the luminosity distribution of cluster galaxies, ei-
ther with the dwarf-to-giant ratio approach (De Lucia et al.
2007), or as adopted in this paper, with a luminosity function
(LF) analysis. Results from these analyses are controversial
to date, and have been extensively reviewed in literature (e.g.,
Faber et al. 2007; Crawford et al. 2009; Boselli & Gavazzi
2014; Wen & Han 2015).

To summarize, a few studies have reported a deficit of faint
red sequence galaxies with increasing redshift (De Lucia et al.
2007; Stott et al. 2007; Gilbank et al. 2008; Rudnick et al.
2009; Capozzi et al. 2010; de Filippis et al. 2011; Martinet
et al. 2015; Lin et al. 2017), indicating later formation of faint
red sequence galaxies compared to the bright (and massive)
ones. Yet, many other works observe little evolution in the
red sequence luminosity distribution up to redshift 1.5 (An-
dreon 2008; Crawford et al. 2009; De Propris et al. 2013),
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suggesting an early formation of both faint and bright red se-
quence galaxies. Differences in these results are hard to inter-
pret given the different methods (see the discussion in Craw-
ford et al. 2009), sample selections and possible dependence
on cluster mass (Gilbank et al. 2008; Hansen et al. 2009; Lan
et al. 2015), dynamical states (Wen & Han 2015; De Propris
et al. 2013), and whether or not the clusters are fossils (Zarat-
tini et al. 2015). Carrying out more detailed analyses, espe-
cially in the 0.5 to 1.0 redshift range, may help resolve the
differences.

The luminosity distribution of cluster galaxies has also been
modeled to connect galaxies with the underlying dark mat-
ter distribution. The luminosity function of galaxies in a
halo/cluster of fixed mass, entitled the conditional luminosity
function (CLF) in the literature (Yang et al. 2003), statistically
models how galaxies occupy dark matter halos. Modeling
the Halo Occupation Distribution (HOD, Peacock & Smith
2000; Berlind & Weinberg 2002; Bullock et al. 2002) pro-
vides another popular yet closely-related approach. Given a
dark matter halo distribution, these models (HOD & CLF)
can be linked with several galaxy distribution and evolution
properties (e.g., Popesso et al. 2005; Cooray 2006; Popesso
et al. 2007; Zheng et al. 2007; van den Bosch et al. 2007;
Zehavi et al. 2011; Leauthaud et al. 2012; Reddick et al.
2013), including galaxy correlation functions (e.g., Jing et al.
1998; Peacock & Smith 2000; Seljak 2000), galaxy luminos-
ity/stellar mass functions (e.g., Yang et al. 2009), global star
formation rate (e.g., Behroozi et al. 2013) and galaxy-galaxy
lensing signals (e.g., Mandelbaum et al. 2006).

Furthermore, LF & HOD analyses improve our understand-
ing of the cluster galaxy population. The number of cluster
galaxies, especially the number of cluster red sequence galax-
ies, is a useful mass proxy for cluster abundance cosmology.
Deep optical surveys like the Dark Energy Survey (DES1,
DES Collaboration 2005) demand refined understanding of
the evolution of cluster galaxies to z = 1.0 (Melchior et al.
2016) .

The Sloan Digital Sky Survey (SDSS2) has enabled detailed
analysis of the cluster LFs (or CLFs) with the identification
of tens of thousands of clusters to redshift 0.5 (Yang et al.
2008; Hansen et al. 2009). Above redshift 0.5, studies are
still limited to small samples containing a handful of clusters

1 https://www.darkenergysurvey.org
2 http://www.sdss.org
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or groups (Andreon 2008; Rudnick et al. 2009; Crawford et al.
2009; De Propris et al. 2013; Martinet et al. 2015; De Propris
2017). However, recent developments of wide field surveys
that are more sensitive than SDSS provide an opportunity to
reinvigorate such analyses.

In this paper, we constrain the (conditional) red sequence
luminosity function (RSLF) with an X-ray selected cluster
sample detected in the DES Science Verification (DES-SV)
data. Clusters selected with the same approach are used in a
cluster central galaxy study in Zhang et al. (2016). The sam-
ple contains ∼ 100 clusters and groups in the mass range of
3×1013 M� to 2×1015 M�, and the redshift range of 0.1 to
1.05. As the clusters are not selected by their red sequence
properties, studying RSLF with the sample is not subject to
red sequence selection biases. Similar analyses can also be
applied to SZ-selected clusters (e.g., clusters discovered from
the South Pole Telescope survey: Bleem et al. 2015; Hennig
et al. 2017) and clusters selected from optical data. Our paper
focuses on cluster red members. The luminosity function of
blue galaxies generally deviates from that of the red, but the
red cluster members are easier to select photometrically due
to the tightness of the color-magnitude relation.

The number of member galaxies in low mass clusters is of-
ten too low to study LFs for individual systems. It is a com-
mon approach to stack the member galaxy luminosity distri-
butions for an ensemble of clusters (e.g., Yang et al. 2009;
Hansen et al. 2009). However in this paper, in order to dis-
entangle possible mass dependence and redshift evolution ef-
fects, we develop a hierarchical Bayesian modeling technique
that simultaneously models these effects. In the rest of the
paper, we first introduce our data sets in Section 2 and then
describe the methods in Section 3. The results are presented
in Section 4. Discussions of the methods and results as well
as a summary of the paper are presented in Section 5.

2. DATA

2.1. Dark Energy Survey Science Verification Data
We use the DES Science Verification (DES-SV) data taken

in late 2012 and early 2013. The DES collaboration collected
this data set with the newly mounted Dark Energy Camera
(DECam, Flaugher et al. 2015) for science verification pur-
poses before the main survey began (for details on DES Year 1
operations, see Diehl et al. 2014). In total, the data set covers
∼ 400 deg2 of the sky. For about 200 deg2, data are available3

in all of the g, r, i, z and Y bands, and the total exposure time
in each band fulfills DES full depth requirement (23 to 24 mag
in i and 22 to 23 mag in z, see more details in Sánchez et al.
2014). A pilot supernovae survey (see Papadopoulos et al.
2015, for an overview) of 30 deg2 sky in g, r, i, z was con-
ducted at the same time, reaching deeper depth after image
coaddition (∼ 25 mag in i and ∼24 mag in z).

The DES-SV data are processed with the official DES data
reduction pipeline (Sevilla et al. 2011; Mohr et al. 2012). In
this pipeline, single exposure images are assessed, detrended,
calibrated and coadded. The coadded images are then fed to
the SExtractor software (Bertin & Arnouts 1996; Bertin 2011)
for object detection and photometry measurement.

2.2. The DES Photometric Data
We use a DES value-added catalog, the “gold” data set (see

the review in Rykoff et al. 2016; Drlica-Wagner et al. 2017)4,
3 http://des.ncsa.illinois.edu/releases/sva1
4 https://opensource.ncsa.illinois.edu/confluence/display/DESDM/SVA1+GOLD+Catalog

FIG. 1.— The XCS-SV clusters: redshifts, masses, and mass uncertainties.
The upper and right histograms respectively show the cluster redshift and
mass distribution.

based on catalogs produced from the SExtractor software.
The detection threshold is set at 1.5σ ( DETECT_THRESH =
1.5) with the default SExtractor convolution filter. The min-
imum detection area is set at 6pixels5 (DETECT_MINAREA
=6). The SExtractor runs were performed in dual mode, using
the linear addition of r, i and z band images as the detection
image.

The “gold” data set is subsequently derived with the initial
detections, keeping only regions that are available in all of the
g, r, i, z bands. Regions with a high density of outlier col-
ors due to the impact of scattered light, satellite or airplane
trails, and regions with low density of galaxies near the edge
of the survey are removed. Objects near bright stars selected
from the Two Micron All Sky Survey (2MASS Skrutskie et al.
2006) are masked. The masking radius scales with stellar
brightness in J as Rmask = 150−10J (arcseconds) with a maxi-
mum of 120 arcseconds. Stars of nominal masking radius less
than 30 arcseconds are not masked to avoid excessive mask-
ing. Coverage of the sample is recorded with the HEALPix6

software (Górski et al. 2005) gridded by N = 4096. Photome-
try are re-calibrated and extinction-corrected using the Stellar
Locus Regression technique (SLR: Kelly et al. 2014).

We make use of the SExtractor Kron magnitudes
(mag_auto, Kron 1980) for all detected objects. Since
the SExtractor run was performed in dual mode, the Kron
aperture and the centroid for different filters are the same,
which are determined from the detection images. The lu-
minosity functions are derived with DES z−band photometry,
based on objects > 5σ (which corresponds to magerr_auto_z<
2.5/ln10/5=0.218mag).

We derive completeness limits for the selected > 5σ ob-
jects. Details of the completeness analyses are provided in
Appendix A. In general, the completeness limits are∼0.5mag
brighter than the sample’s 10σ depth magnitudes. The se-
lected > 5σ objects are >99.8% complete above the limits.
Because of this high completeness level, we do not correct for
incompleteness in this paper.

2.3. The XCS-SV cluster sample

5 DECam pixel scale 0.263”
6 http://healpix.sourceforge.net
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FIG. 2.— Observer-frame g − r (panel a), r − i (panel b) and i − z (panel
c) colors of the cluster red sequence candidates (red data points) and the red
sequence model (black solid lines). Note that the color distributions of cluster
foreground/background objects are not subtracted. We also show the 2σ color
ranges of red sequence cluster members (member probability > 50% ) from
the redMaPPer DES-SV cluster sample (Rykoff et al. 2016) for comparison,
which appear to agree with our color models.

The XCS-SV cluster sample is a product from the XMM
Cluster Survey (Lloyd-Davies et al. 2011; Mehrtens et al.
2012; Viana et al. 2013), which searches for cluster candi-
dates in the XMM-Newton archival data. The XCS-SV sam-
ple refers to the confirmed clusters from the DES-SV optical
observations. The sample contains galaxy groups, low mass
clusters and clusters as massive as 1015M� to beyond red-
shift 1. Selection and confirmation methods of the sample, as
well as the cluster photometric redshift measurements are re-
viewed in Zhang et al. (2016, henceforth referenced as Z16).
The sample used in this paper are expanded from that in Z16
after finalizing the input data and selection methods.

Since this paper evaluates luminosity function with the z-
band photometry, we eliminate clusters above redshift 1.05
for which the rest-frame 4000Å break of RS galaxies have
shifted out of DES z−band coverage (sensitive to ∼8500 Å).
We only use clusters located in DES-SV regions with the anal-
ysis magnitude ranges (above characteristic magnitude + 2
mag) above the completeness limits (Section 2.2). The paper
works with 94 clusters in total, which are listed in Appen-
dex B, Table 3. In Figure 1, we show the redshifts, masses,
and mass uncertainties of the analyzed clusters.

The cluster masses and uncertainties are derived with X-ray
temperature based on a literature TX −M relation (Kettula et al.
2013) (see details also in Z16). R200 is derived from M200.

2.4. Red Sequence Galaxy Selection
The definition of cluster member galaxies in projected

datasets is a difficult challenge. Our method is based on sim-
ple color cuts around the cluster red sequence (De Lucia et al.
2007; Stott et al. 2007; Gilbank et al. 2008; Crawford et al.
2009; Martinet et al. 2015). To account for the shifting of the
4000 Å break, we select red sequence galaxies according to
g − r color at z < 0.375, r − i color at 0.375 <= z < 0.775 and
i − z color at 0.775<= z< 1.1

For a cluster at redshift z, we first apply a K-correction term
(Blanton & Roweis 2007) to all the objects in the cluster field.
These objects are band-shifted to a reference redshift (depend-
ing on the color choice), assuming the cluster redshift to be
their original redshifts. We compare the corrected colors to a
model color with the following standard:

|(g − r)z=0.25 − (g − r)model at z=0.25|<
√
δ2

g−r +∆2
g−r, or

|(r − i)z=0.55 − (r − i)model at z=0.55|<
√
δ2

r−i +∆2
r−i, or

|(i − z)z=0.9 − (r − i)model at z=0.9|<
√
δ2

i−z +∆2
i−z.

(1)

In these equations, the model colors (g−r, r − i, or i−z, details
explained below) are the mid-points of a selection window at
a reference redshift. δg−r, δr−i and δi−zare the photometry un-
certainties. ∆g−r, ∆r−i and ∆i−z are the widths of the selection
windows.

We set ∆g−r to be 0.2mag. The clipping width is chosen to
be larger than the combination of the intrinsic scatter and the
slope of red sequence color-magnitude relations, while avoid-
ing a significant amount of blue galaxies. ∆r−i is adjusted
to be 0.15 through matching the number of selected cluster
galaxies (after background subtraction, see Section 3.2 for
details) to fiducial g − r selections at 0.3 ≤ z < 0.5. ∆i−z is
adjusted to be 0.12 through matching the number of selected
cluster galaxies (after background subtraction, see Section 3.2
for details) to fiducial r − i selections at z≥ 0.7.

The model colors of g − r at z = 0.25, r − i at z = 0.55 and
i − z at z = 0.9 are based on a simple stellar population tem-
plate from Bruzual & Charlot (2003), assuming a single star
burst of metallicity Z = 0.008 at z = 3.0, computed with the
EZGal package 7 (Mancone & Gonzalez 2012). In Figure 2,
we show the red sequence model, over-plotting the observer
frame colors of the selected objects. Overall, the colors of the
selected RS candidates match template well. The template
also matches the colors of cluster red sequence defined by the
RedMaPPer method (Rykoff et al. 2016).

For RS candidates selected with the above criteria, we em-
ploy a statistical background subtraction approach (see details
in Section 3) to eliminate background objects, which on aver-
age constitute 50% of the cluster region galaxies brighter than
m∗+2 mag.

The performance of star-galaxy classifiers applied to the
DES SVA1 “gold" sample (Section 2.2) depends on the ob-
ject’s apparent magnitude. The classifiers become indefinite
for objects fainter than ∼22 mag in z−band. Since it is possi-
ble to eliminate the stellar contamination with the background
subtraction procedure (we estimate the background locally as-
suming a constant Galactic stellar density), we do not attempt
to separate stars and galaxies among the RS candidates (above
21 mag in z, stars make up ∼10% of the sample). We never-
theless refer to all objects as “galaxies”.

3. METHODS

The main results in this paper are derived with a hierar-
chical Bayesian method (application examples to cosmology
can be found in Loredo & Hendry 2010). We constrain the
RSLF with a single Schechter function (Schechter 1976) to
the magnitude limit of m∗ + 2 mag, and simultaneously model
the mass and redshift dependence of parameters (Section 3.1:
a hierarchical Bayesian method). To test the method, we com-
pare the constraints to results derived from stacking cluster
galaxy number counts in luminosity bins (Section 3.2: alter-
native histogram method).

Generally, the input to both methods includes the observed
magnitudes, {mi}, of objects inside clusters or in a "field"

7 http://www.baryons.org/ezgal/
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region (mi is the apparent magnitude of the ith object). We
define the cluster region as enclosed within 0.6 R200 of the
cluster centers (X-ray centers). The contrast between cluster
and background object densities (about 1:1 for most of the
clusters) is large with this choice, and the amount of retained
cluster galaxies is reasonable. We choose the field region to be
annular, centered on the cluster, with the inner and outer radii
being 3 R200 and 8 R200 respectively. The choice helps elimi-
nating RSLF contributions from cluster-correlated large scale
structures along the line-of-sight. The cluster central galaxies
selected according to the criteria in Z16 are eliminated from
the analysis. Central galaxies are known to be outliers to a
Schechter function distribution. Their properties and halo oc-
cupation statistics are investigated in Z16.

The area of these regions are traced with random points that
cover the “gold" sample footprint. For each cluster, we gener-
ate ∼ 1.5 million random points within 10 R200. The number
density is high enough that the resulting uncertainty is neg-
ligible (∼ 1% in the luminosity distribution measurements).
We ignore the uncertainties from using random points.

3.1. A Hierarchical Bayesian Method
Given a model with a set of parameters Ω that describe the

distribution of observables, Bayesian theory provides a frame-
work for inferring Ω with a set of observed quantities {x}.
In this sub-section, we describe methods developed in this
framework.

Denoting the probability of observing {x} in model Ω to be
P({x}|Ω), and the prior knowledge about the model parame-
ters to be P(Ω), after observations of {x}, the Bayes’ theorem
updates the knowledge about model parameters, namely the
posterior distribution, to be:

P(Ω|{x})∝ P({x}|Ω)P(Ω). (2)

The above equation uses a proportional sign instead of an
equal sign as a probability function needs to be normalized
to 1. The normalization factor is un-interesting when the pos-
terior probability is sampled with Markov Chain Monte Carlo.

In our application, the observables include the observed
magnitudes of objects in the cluster or field region. A major
component of our model is the Schechter function. The pa-
rameters of the Schechter function vary for clusters of differ-
ent masses and redshifts. Our model, called the hierarchical
model, assumes redshift and mass dependences for the faint
end slope and the characteristic magnitude.

3.1.1. Basic Components of the Model

For one cluster galaxy, we assume that the probability of
observing it with magnitude m follows a Schechter function:

f (x) = ψ f (0.4ln10)100.4(m∗
−x)(α+1)exp(−100.4(m∗

−x)) (3)

In this equation, ψ f is the normalization parameter that nor-
malizes f (x) to 1. α and m∗ are the faint end slope and the
characteristic magnitude, treated as free parameters of the
model.

For one object in the cluster region, it can be either a clus-
ter galaxy or a field object. For a field object, we denote the
probability of observing it with magnitude m to be g(m). g(m)
is approximated with a normalized histogram of the object
magnitude distribution in the field region.

The probability of observing one object in the cluster re-
gion is the combination of observing it as a field object and

observing it as a cluster galaxy. The probability writes

h(m) = ψh[Ncl f (m) + Nbgg(m)] (4)

In this equation, Ncl is the number of cluster galaxies in the
cluster region, and Nbg is the number of field galaxies in the
cluster region. Again, there exists a normalization factor ψh
that normalizes the probability function to 1.

We treat the sum of Nbg and Ncl as a Poisson distribution.
The expected value of Nbg can be extrapolated from the field
region and the area ratio between the cluster and the field re-
gions. Equation 4 introduces one free parameter, Ncl, which
controls the relative density between cluster and field galax-
ies in the cluster region. Ncl can be further related to the am-
plitude of the Schechter function, φ∗ (in unit of total galaxy
count), as the integration of the Schechter function over the
interested magnitude range, written as

Ncl =
∫
φ∗ f (m)
ψ f

dm

=
φ∗

ψ f

∫
f (m)dm.

(5)

Thus far, the free parameters in our models are α, m∗ from
Equation 3 and φ∗. Note that, in this section, we only perform
analyses with galaxies brighter than the completeness mag-
nitude limit (galaxies are considered to be more than 99.8%
complete throughout the analyzed magnitude range, accord-
ing to Section A).

We constrain φ∗ with the number count of observed objects
in the cluster region (N), assuming a Poisson distribution:

N ∼ Poisson(Ncl + Nbg). (6)

The log-likelihood is explicitly written as:

logP(N)∝ Nlog(Ncl + Nbg) − (Ncl + Nbg). (7)

For one cluster, we take the observables to be the observed
magnitudes of cluster region objects, {mi}, the object number
count and N and the background object number count. Nbg is
treated as a known quantity. The log-likelihood of observing
these quantities is:

logP({mi},N|α,m∗,φ∗)

∝ logP(N|φ∗,α,m∗) +

∑
i

logP({mi}|α,m∗,φ∗)

∝ logP(N) +

∑
i

logh(mi).

(8)

3.1.2. Hierarchical Model

The Bayesian approach makes it possible to add depen-
dences to α and m∗ . We rewrite α and m∗ with redshift or
mass dependences:

α j = Aαlog(1 + z j) + Bα(logMtrue, j − 14) +Cα

m∗
z=0.4, j = Bm(logMtrue, j − 14) +Cm.

(9)

Here, we distinguish between true and observed M200 of clus-
ters. logMtrue, j represents the true M200 mass of the jth clus-
ter, while we use logMobs, j to represent the M200 mass de-
rived from X-ray temperature for the jth cluster. logMtrue, j
for different clusters are treated as free parameters in the
analysis, but we use observational constraints on logM200
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from X-ray data as priors (Gaussian distributions): logMtrue, j

∼ N (logMobs, j,σ
2
M). σM is the measurement uncertainty of

logMobs, j from X-ray data. The assumption about logMtrue, j
allows us to incorporate mass uncertainties into the analysis.
Furthermore, we constrain m∗ at z = 0.4, but for each cluster,
we extrapolate the m∗ at its observed z from z = 0.4 assuming a
simple stellar population from Bruzual & Charlot (2003) with
a single star burst of metallicity Z = 0.008 at z = 3.0 (the red
sequence galaxy template used in Section 2.4).
φ∗ for each cluster is constrained separately. We assume a

Gaussian distribution of {logφ∗j } given the values predicted
by the relation: φ∗j ∼ N (logφ∗mean, j,σ

2
logφ). σlogφ is the intrin-

sic scatter of the relation, fixed at 0.5 (Allowing the parameter
to vary gives a scatter of ∼0.2 to 0.3) to reduce the number of
free parameters. We further assume a power law relation be-
tween Mtrue, j and φ∗mean, j:

logφ∗mean, j = Bφ× logMtrue, j +Cφ. (10)

The log likelihood of having φ∗j given Mtrue, j writes:

g j(φ∗j )∝ −

(
φ∗j − (Bφ× logMtrue, j +Cφ)

)2

2σ2
logφ

(11)

The free parameters of this model are Aα, Bα, Cα, Bm,
Cm, Bφ, Cφ, {φ∗j } and {Mtrue, j}. The observed quantities are
{mi, j} and {N j} of all clusters. {logMobs, j} are treated as pri-
ors for {logMtrue, j}. {z j} as well as Nbg, j are treated as known
quantities for each of the clusters. We summarize the model
dependences with a schematic diagram in Figure 3. The log-
likelihood of observing these quantities is:

logL({mi, j},{N j}|Aα,Bα,Cα,Bm,Cm,Bφ,Cφ,{φ∗j },{Mtrue, j})
= logL({mi, j},{N j}|α j,m∗

j ,{φ∗j }) + logL({φ∗j }|{Mtrue, j})

∝
∑

j

[logP(N j|φ∗j ,α j,m∗
j ) +

∑
i

logP({mi, j}|α j,m∗
j ,φ

∗
j )]

+

∑
j

logL(φ∗j |Mtrue, j)

∝
∑

j

[logP j(N j) +

∑
i

logh j(mi, j) + g j(φ∗j )].

(12)

Finally, the parameter posterior likelihood is

logL(Aα,Bα,Cα,Bm,Cm,Bφ,Cφ,{φ∗j },{Mtrue, j}|{mi, j},{N j})
= logL({mi, j},{N j}|α j,m∗

j ,{φ∗j }) + logL({φ∗j }|{Mtrue, j})

∝
∑

j

[logP(N j|φ∗j ,α j,m∗
j ) +

∑
i

logP({mi, j}|α j,m∗
j ,φ

∗
j )]

+

∑
j

logL(φ∗j |Mtrue, j)

+ logLprior(Aα,Bα,Cα,Bm,Cm,Bφ,Cφ,{φ∗j },{Mtrue, j})

∝
∑

j

[logP j(N j) +

∑
i

logh j(mi, j) + g j(φ∗j )]

+ logLprior(Aα,Bα,Cα,Bm,Cm,Bφ,Cφ,{φ∗j },{Mtrue, j}).
(13)

We assume flat priors for most of the model parameters ex-
cept Cm. For Cm, we assume a Gaussian distribution as the

Deterministic relationship 

Stochastic relationship 

Model parameter 

“Pseudo” model parameter 
or known quantity 

Observable 

For cluster j For  
galaxy i 

in  
cluster j

FIG. 3.— Schematic diagram of the hierarchical Bayesian method, as de-
scribed in Section 3.1. Note that Schechter function parameters like α j ,
m∗z=0.4, j and φ∗j are not directly constrained in the model. Such “parame-
ters” (called pseudo parameters in the diagram), as well as known quantities
are indicated by dashed line circles.

FIG. 4.— RSLFs derived in two redshift bins display possible redshift evo-
lution feature. Uncertainties with the data points are estimated through as-
suming Poisson distributions. The shaded bands show the fitted Schechter
functions including 1σ fitting uncertainties (with the method from Sec-
tion 3.2). Note that the data points have been rebinned from the input to
the fitting method.

prior, with the measurement from Hansen et al. (2009) as the
mean, and 1 mag2 as the variance. These priors are listed in
Table 1. Sampling from the parameter posterior likelihood is
performed with the PYMC package (Fonnesbeck et al. 2015).

3.2. Alternative Histogram Method
We develop a separate method to test the fore-mentioned

technique. This method starts with counting galaxies in mag-
nitude bins. We use 150 bins from 15mag to 30mag spaced by
0.1mag. We do not see change of the results when adjusting
the bin size from 0.2mag to 0.05mag.

The histogram counting is performed for the cluster region,
N(m), and the field region, N(m)background. To estimate the con-
tribution of field galaxies to the cluster histogram, we weight
the number count of objects in the field region, with the ran-
dom number ratio:

Nbg(m) = N(m)background×
Nrandom, cluster

Nrandom, background
. (14)
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FIG. 5.— RSLFs derived in two cluster mass bins appear to be consistent.
Uncertainties with the data points are estimated through assuming Poisson
distributions. The shaded bands show the fitted Schechter functions including
1σ fitting uncertainties (with the method from Section 3.2). Note that the data
points have been rebined from the input to the fitting method.

We add up the histograms of clusters binned by redshift or
cluster mass, and also record the number count of clusters in
each magnitude bin, C(m). During the summing process, we
shift m by the apparent magnitude difference beween the clus-
ter redshift and a reference redshift (depending on the clus-
ter redshift and mass binning) of a simple passively-evolving
stellar population from Bruzual & Charlot (2003) with a sin-
gle star burst of metallicity Z = 0.008 at z = 3.0 (the same
red sequence galaxy template used in Section 2.4 and 3.1.2).
The histograms are then averaged for both the cluster region
and the field region to obtain N̄(m) and N̄bg(m). Subtracting
N̄bg(m) from N̄(m) yields the luminosity distribution of cluster
galaxies (Figure 4 in redshift bins and Figure 5 in mass bins).

We assume a Schechter function distribution for cluster
galaxies:

S(m) = φ(0.4ln10)100.4(m∗
−m)(α+1)exp(−100.4(m∗

−m)), (15)

therefore the expected number of galaxies in each magntiude
bin in the cluster region is

E(m) = S(m) + Nbg(m). (16)

Assuming Poisson distributions for the number of galaxies
in each bin, we sample from the following likelihood:

logL ∝
∑

m

N̄(m)C(m)log[E(m)C(m)] − E(m)C(m). (17)

Sampling from the likelihood is performed with the EMCEE
package (Foreman-Mackey et al. 2013).

4. RESULTS

4.1. Results from Hierarchical Bayesian Modeling
The Hierarchical Bayes model (Section 3.1.2) simultane-

ously constrains the redshift evolution and mass dependence
of α and m∗:

α = Aαlog(1 + z) + Bα(logM200 − 14) +Cα

m∗
z=0.4 = Bm(logM200 − 14) +Cm.

(18)

For each cluster, we only make use of the [m∗-2, m∗+2]
magnitude range. Galaxy members of the analyzed clusters
are complete within this range by selection (see details in Sec-
tion 2.3). The constraints of the α and m∗

z relations are listed
in Table 1. The model posterior distributions are Gaussian-
like according to visual checks. In Figure 6 , we plot the

TABLE 1
PRIOR AND POSTERIOR DISTRIBUTIONS OF PARAMETERS (SEE

EQUATIONS 9,10 AND 10) IN THE HIERARCHICAL BAYES MODEL

Prior Posterior
Aα [-5, 10] 1.30±0.70
Bα [-4, 4] −0.17±0.19
Cα [-2, 2] −0.77±0.16
Bm [-10, 10] −0.31±0.31
Cm N (−22.13,1.0) −22.19±0.19

at z = 0.4 N (19.69,1.0) 19.63±0.19
Bφ [-5, 5] 0.73±0.13
Cφ [-10, 10] 0.85±0.08

TABLE 2
FITTED SCHECHTER FUNCTION PARAMETERS IN REDSHIFT/MASS BINS

Cluster Selection α m∗
0.1≤ z < 0.4 −0.80±0.12 18.17±0.18

K-corrected to z = 0.25

0.4≤ z < 1.05 −0.55±0.18 19.96±0.23
K-corrected to z = 0.49

13.2≤ logM200 < 14.4 −0.67±0.12 19.48±0.17
K-corrected to z = 0.4

14.4≤ logM200 < 15.1 −0.73±0.14 19.34±0.22
K-corrected to z = 0.4

α and m∗
z relations as well as their uncertainties. For com-

parison, we show constraints from the alternative histogram
approach (discussed in the following section).

The RSLF faint end slope, α, displays a weak evidence of
redshift evolution. The Aα parameter that controls the red-
shift evolution effect deviates from 0 at a significance level
of 1.9σ. For clusters of logM200 = 14.1 (median mass of the
cluster sample), α is constrained to be −0.69±0.13 at z = 0.2,
rising to −0.52± 0.14 at z = 0.6. The mass dependence of α
is ambiguous. The Bα parameter that controls this feature de-
viates from 0 by 0.9σ. The effect is likely degenerate with
the mass dependence of m∗. When removing m∗ mass depen-
dence from the method (setting Bm to be 0), Bα is consistent
with 0.

We assume passive evolution to the RSLF characteristic
magnitude m∗

z . We do not notice deviations of m∗ from the
assumption (the m∗ results in redshift and mass bins agree
with the model). Although the method models m∗ as mass-
dependent, the effect appears to be insignificant (Bm deviates
from 0 by 1.0σ).

The hierarchical Bayesian method also constrains the RSLF
amplitudes, φ∗, and the relations between φ∗ and logM200. φ∗
scales with the total number of cluster galaxies. Our result
shows a strong correlation between φ∗ and cluster mass (Fig-
ure 7).

4.2. Results in Redshift/Mass Bins
We divide the clusters into two redshift bins: 0.1 ≤ z <

0.4 and 0.4 ≤ z < 1.05 and apply the alternative histogram
method (Section 3.2). The median cluster masses in each of
the bins are 1014.1M� and 1014.16M� respectively. The fitted
parameters are listed in Table 2. Results are also shown in
Figure 4 and 6. Again, the RSLF faint end slope, α, displays
a hint of redshift evolution. The measurements in two redshift
bins differ by ∼ 1.2σ.

We divide the clusters into two mass bins: 13.2 ≤
logM200 < 14.4, 14.4≤ logM200 < 15.1 and apply the alterna-
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FIG. 6.— (Panels a and b) Redshift evolution of the faint end slope, α, and the characteristic magnitude, m∗ (assuming passive redshift evolution of a simple
stellar population from Bruzual & Charlot (2003) with a single star burst of metallicity Z = 0.008 at z = 3.0). (Panels c and d) Mass dependence of the faint end
slope, α, and the characteristic magnitude, m∗ (assuming passive redshift evolution). Solid red lines and shades indicate results derived with the hierarchical
Bayesian method (Section 3.1). Solid red circles indicate results derived with the alternative histogram method (Section 3.2). Literature reports of the α and m∗
parameters are over-plotted.

tive histogram method. The median cluster redshifts in each
of the bins are 0.35 and 0.34 respectively. To reduce uncer-
tainties from band-shifting, we K-correct the RSLFs to z = 0.4
(based on the red sequence model in Section 2.4). Results are
presented in Table 2, Figure 5 and Figure 6. No mass depen-
dence of either α or m∗ is noted.

As shown in Figure 6, the results in cluster redshift/mass
bins agree with the extrapolations from the hierarchical
Bayesian model (Section 4.1) within 1σ.

4.3. Comparison to Literature
In Figure 6, we over-plot literature measurements of the

RSLF α and m∗ parameters.
At low redshift, RSLF analyses based on SDSS data are

available from Hansen et al. (2009, z ∼ 0.25) and Lan et al.
(2015, z < 0.05). The SDSS faint end slope measurements
(Hansen et al. 2009) appear to be consistent with our results.
The SDSS characteristic magnitudes appears to be slightly
fainter than the values constrained in this paper, but still con-
sistent within this paper’s 1σ uncertainties (M∗

z at redshift 0.4

is −22.0 from Lan et al. or −22.13 from Hansen et al., com-
paring to −22.19± 0.19 in this paper). Note that the SDSS
results are derived with r (Lan et al. 2015, z< 0.05) or i (Lan
et al. 2015, z< 0.05) band data and we assume a red sequence
model in Section 2.4 when comparing the characteristic mag-
nitudes.

In terms of parameter mass dependence, the α and m∗ mea-
surements from Lan et al. (2015, z< 0.05) in different cluster
mass ranges match well with our constraints. In Hansen et al.
(2009), the mass dependence results for cluster RS galaxies
are not explicitly listed, but there is a trend of α steepening
in the mass range of [1013M�, 1014M�], and then stabilizing
beyond 1014M�. The quantity m∗ displays a trend of bright-
ening in the mass range of [1013M�, 5× 1014M�], and then
stabilizing beyond 5×1014M�. These measurements qualita-
tively agree to our result.

At intermediate to high redshift, measurements of RSLF are
still scarce. Sample sizes used in previous works are much
smaller than those in SDSS-based studies. Any mass depen-
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FIG. 7.— Constraints of the RSLF amplitudes for individual clusters (black
points). We model the RSLF amplitudes as mass dependent in the hierar-
chical Bayesian method (Section3.1.2). The solid line and shade show the
constrained linear relation between logφ∗ and logM200 as well as the 1σ un-
certainty (intrinsic scatter of the relations is not constrained and hence not
included in the uncertainty estimation).

dent effect of α would make it difficult to make a direct com-
parison in Figure 6.

5. DISCUSSION AND SUMMARY

This paper constrains the evolution of the red sequence lu-
minosity function (RSLF). Typically, the cluster luminosity
function has been studied using clusters with well-sampled
data (i.e., deep observations) or through stacking/averaging
clusters (Yang et al. 2008; Hansen et al. 2009; Andreon 2008;
Rudnick et al. 2009; Crawford et al. 2009; De Propris et al.
2013; Martinet et al. 2015). While our DES observations are
fairly deep, we utilize stringent completeness limits in order
to avoid any complications with modeling the faint end slope.
This means that the data on any individual cluster may not be
good enough to measure the RSLF with traditional statistical
techniques, especially at high z. At the same time, stacking
has its own concerns. Crawford et al. (2009) discussed pos-
sible caveats when interpreting stacked luminosity functions.
For instance, cluster luminosity function stacks could be bi-
ased by clusters that have brighter m∗ or more negative α.
Thus, the interpretation of the stacked m∗ and α is compli-
cated.

In this paper, we bridge the gap between the above two stan-
dard RSLF techniques by employing a hierarchical Bayesian
model. This models allows us to use the sparse and noisy
data from the individual clusters, while at the same time in-
corporating prior information (e.g., from the X-ray inferred
cluster masses). We develop a model which allows the faint-
end slope of the RSLF (parametrized as α) to be a function of
the log of both the cluster mass and redshift. The model also
allows m∗ and the overall RSLF amplitude φ∗ to vary linearly
with the log of the cluster cluster mass.

Using this hierarchical Bayesian model on a sample of 94
X-ray select clusters to a z = 1.05, we find weak (1.9σ) evi-
dence of redshift evolution for the RSLF faint end slope. Red-
shift evolution in the shape of the RSLF could indicate a ris-
ing abundance of faint RS galaxies over time. The result is
consistent with observations of an increasing fraction of clus-
ter red galaxies (Butcher-Oemler Effect: Butcher & Oemler
1984). For consistency, we bin the clusters according to red-

shift and mass and stack the red sequence galaxies to increase
the signal-to-noise of the RSLF. The stacked RSLF parame-
ters are consistent with the Bayesian results. Our work rep-
resents the largest RSLF study to date that goes to redshift
∼1.0.

A particularly interesting by-product of this study is that
our model allows us to improve cluster mass estimation. This
is because our Bayesian model constrains cluster masses,
logMtrue, from the correlation between φ∗ and logMtrue, us-
ing priors inferred from X-ray measurements, logMobs. While
the posterior values of logMtrue agree to the values of logMobs
(top panel of Figure 8), the uncertainties of logMtrue appear
to be improved. The improvements are especially noticeable
when the uncertainties of logMobs is higher than 0.3 dex (mid-
dle panel of Figure 8).

Based on the improved uncertainties of logMtrue, and as-
suming φ∗ and X-ray measurements contribute independent
Gaussian-like uncertainties to logMtrue, we estimate the un-
certainties of inferring logMtrue from only φ∗ as:

σ(logMtrue) from φ∗ =
σ(logMtrue)√
1.0 −

σ2(logMtrue)
σ2(logMobs)

(19)

These estimations are shown in the bottom panel of Figure 8,
which range from 0.2 to 0.4, with an average of 0.34. Com-
paratively, optical mass proxies derived from the numbers of
cluster galaxies have intrinsic mass scatters between 0.2 to 0.5
dex (Rozo et al. 2009; Saro et al. 2015). This analysis demon-
strates the potential of φ∗ as a cluster mass proxy.

Since the redshift evolution of the RSLF is only detected
at a significance level of 1.9σ, it is worthwhile to apply the
analysis to a larger cluster sample. We expect the XCS to
find over 1000 clusters within the DES final data release.
We may also utilize new and large optical cluster catalogs
such as RedMaPPer. However, optically characterized clus-
ters will add new challenges from the covariance between the
richness-inferred cluster masses and the red-sequence lumi-
nosity functions. An evolving abundance of faint RS galaxies
will also introduce a redshift evolution component into the
cluster mass-richness scaling relation. Assuming the α evolu-
tion reported in this paper, we expect the number of RS galax-
ies above m∗ + 2 mag to decrease by ∼ 20% from z = 0 to
z = 1.0. Using the parameterization of cluster mass-richness
scaling relation in Melchior et al. (2016), we expect the mass-
to-richness ratio to change with redshift as (1 + z)0.26 (con-
strained as (1 + z)0.18±0.75(stat)±0.24(sys) in the fore-mentioned
weak lensing study). Of course there could be additional ef-
fects on the mass-richness relation if there is redshift evolu-
tion in m∗ and φ∗ or if the mass dependence of the RSLF is
not properly accounted.

Regardless, we expect to increase the X-ray cluster sam-
ple size by at least a factor of 10 by the end of DES. Us-
ing catalog-level simulations of RSLF similar to the ones ob-
served here, we expect to increase our sensitivity on the evo-
lution of α by a factor of three.

If there is redshift evolution in the faint-end slope of the
red sequence galaxies, we can explain it through formation
times and growth histories of galaxies. For instance, bright
and faint cluster red sequence galaxies may have different for-
mation times. It is possible that fainter galaxies are quenched
during, rather than before, the cluster infall process. Hence
the fraction of faint red sequence galaxies gradually increase
with time. Astrophysical processes that slowly shut down
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FIG. 8.— In the hierarchical Bayesian method, we constrain cluster masses
using X-ray temperature-inferred measurements as priors. (Panel a) The pos-
terior estimations of cluster masses, logMtrue, agree with the priors logMobs.
(Panel b) The assumption in the hierarchical Bayes model that cluster masses
scale with RSLF amplitudes, φ∗, helps improving the accuracy of clus-
ter mass estimations. The posterior uncertainties of the mass estimations,
σ(logMtrue), appear to be decreased, especially when the prior uncertainties,
σ(logMobs), are higher than 0.2 dex. (Panel c) Based on the improved mass
uncertainties, we estimate the uncertainties of inferring cluster masses from
only φ∗, which range from 0.2 to 0.4 dex (see details in Section 4.1).

galaxy star formation activities, e.g., strangulation (some-
times called starvation) (Larson et al. 1980; Balogh & Morris
2000; Balogh et al. 2000; Peng et al. 2015) and hence gradu-
ally increase the fraction of faint red sequence galaxies, will
be preferred over more rapid processes such as ram pressure
stripping (Gunn & Gott 1972; Quilis et al. 2000). Combining
the observational constraints on the evolution of the faint-end
slope together with the cluster accretion history in simulations
should help us place good constraints on the formation and
transition times of cluster red sequence galaxies (McGee et al.
2009).

In summary, we constrain the relation between RSLF am-
plitudes and cluster masses, and the correlation improves the
estimation of cluster masses. We find a hint that the Schechter
function faint-end slope becomes less negative for clusters at
higher redshifts, indicating a rising abundance of faint red se-
quence galaxies with time. The redshift evolution of RSLF
parameters may also impact the accuracy of optical cluster
cosmology analyses.
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FIG. 9.— This figure demonstrates our procedure for evaluating completeness function with the UFIG simulation. We model the difference between the
observed magnitude distribution (black squares in the upper panel) of observed objects and the true magnitude distribution of all truth objects (solid blue line in
the top panel). We model the ratio between the observed magnitude distribution and the truth magnitude distribution (black squares in the lower panel) with a
complementary error function (black dashed line). For comparison, we also show ratios between the truth magnitude distributions of the observed and the truth
objects (red circles) and the complementary error function fitted model (red dashed line).
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APPENDIX

A. COMPLETENESS FUNCTION

A.1. The Completeness Function Model
The completeness function models the detection probability of objects in terms of their apparent magnitude. In this paper, the

completeness function is defined as the ratio between the numbers of observed and true objects at magnitude m.
We model the completeness function with a complementary error function of three parameters:

p(m) = λ
1
2

erfc(
m − m50√

2w
). (A1)

In the above equation, m50 is the 50% completeness magnitude, w controls the steepness of the detection drop-out rate and λ is
the overall amplitude of the completeness function. We further assume linear dependence of m50 and w on the depth of the image,
which is characterized by the 10 σ limiting magnitude8. In this paper, we evaluate the z-band completeness function, which is
related to image depth in z.

A.2. Relations between Model parameters and Image Depth
The m50 - m10σ and w - m10σ relations are evaluated with simulated DES images and real data. The relations used in this paper

are derived from the UFIG simulation (Bergé et al. 2013; Chang et al. 2015)(also see Leistedt et al. 2016, for an application),
which is a sky simulation that is further based on an N-body dark matter simulation. The dark matter simulation is populated
with galaxies from the Adding Density Determined GAlaxies to Lightcone Simulations (ADDGALS) algorithm (Wechsler et al.
in prep., also see Lin et al. 2010; Busha et al. 2013; Dietrich et al. 2014).

We use the UFIG product that matches the footprint of the “gold" sample in Section 2.2. The simulation is divided into fields
of 0.53 deg2, with characteristic quantities like the image depth and seeing matching those of the DES-SV patches. SExtractor
is applied to the simulated images with identical DES-SV settings. We select objects with magerr_auto < 0.218 mag in z (5σ
significance), derive their observed magnitude distribution, and compare it to the truth magnitude distribution of all input truth
objects (see illustration about the procedure in Figure 9). The ratio between the two is well described by Equation A1. The
derived m50 and w are tightly related to the depth of the image as shown in Figure 10.

8 Magnitude with magerr_auto = 0.108. For a flux measurement at
a significance level of 10 σ, the corresponding magnitude uncertainty is
2.5/ln10/10 = 0.108.
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FIG. 10.— This figure shows the relations between completeness function parameters and the image depth, characterized by the 10 σ limiting magnitude. Panel
(a) shows the dependences of m50, the 50% completeness magnitude, on image depth from the UFIG (black points), BALROG (red triangles) simulations and the
SN restack data (blue circles). Panel (b) shows the m50 residuals of the three data sets from the UFIG relation. The relation derived with the UFIG simulation
generally agrees with the data from the BALROG simulation. The m50 values evaluated from re-stacking deep supernovae data appear to be 0.1-0.2 mag deeper,
but the differences can be explained by the Kron magnitude bias shown in Z16. Panel (c) shows the dependences of w, the steepness of the detection drop-out rate,
on image depth. We use the UFIG simulation relations for both m50 and w in this paper. We notice that the completeness function amplitudes from simulations
appear to be lower than 1 as shown in panel (d), but it is mostly caused by the differences between observed and truth magnitudes (see a discussion in Section
A.2).

We also perform the analysis with the BALROG simulation (Suchyta et al. 2015), which inserts simulated objects into real
DES-SV images. The results are similar.

To further verify the derived relations, we stack high quality images from the DES Supernovae survey (with a total exposure
time of ∼ 1000 s) to mimic main survey depth. The z-band depth of the stacks ranges from 21.5 mag to 22.5 mag, comparing to
> 24 mag coadding all eligible exposures. We compare the object counts in this set of coadds and the full coadds to evaluate m50
and w (also shown in Figure 10).

The m50 appears to be 0.1 - 0.4 mag deeper than the simulation relations. The effect is consistent with the mag_auto biases
shown in Z16. In this test, we compare to the observed Kron magnitudes rather than the "truth" magnitudes (which is not known)
from the deeper stack. Z16 shows that the observed Kron magnitudes are fainter by 0.1 to 0.4 mag comparing to the "truth"
magnitudes at < 24 mag.

Figure 10 indicates that the amplitude of the complementary error function is lower than 1 in UFIG and BALROG. This is
mostly caused by the same photometry measurement bias discussed above (another effect is the blending of truth objects, which
causes incompleteness at a < 2% level). Objects are measured fainter by the Kron magnitude. Compared to the truth magnitude
distribution, the observed magnitude distribution is systematically shifted to the fainter side (see this effect in Figure 9). The result
is that the observed magnitude distribution is always lower than the truth distribution, and the amplitude of the fitted completeness
function is below 1. This shift and the resulting amplitudes of the completeness function are not of interest in this paper. We
explicitly assumes the amplitudes of the completeness function to be 1.

We notice hints that the completeness function in galaxy clusters are different from that of the fields, possibly because of
blending and larger galaxy sizes. We test the effect with simulated objects (BALROG simulation, Suchyta et al. 2015) inserted
into RedMaPPer clusters (Rykoff et al. 2016) selected in DES-SV data. We see evidence that the m50 inside galaxy clusters shift
by ∼ 0.1 mag comparing to fields of equivalent depth (Figure 11). As the sample of simulated galaxies is small, we are unable to
characterize the distribution of the shifts and hence do not attempt to correct m50 in this paper.

A.3. Completeness Limits of the RSLF Analyses
We determine the magnitude limits of the RSLF analyses according to the completeness functions. We perform the analyses

only with galaxies brighter than the following limit: mlim = m50 − 2
√

2w. The cut ensures detection probability above 99.8% ×λ
for the selected galaxies.
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FIG. 11.— We evaluate the m50 parameters (50% completeness magnitudes) for cluster and for field regions of the same depth with the BALROG simulation.
The m50 of a cluster region is potentially shallower by ∼ 0.1 mag compared to a same-depth field region potentially because of blending in the cluster region.
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FIG. 12.— For each cluster, we derive a completeness limit, mlim from the completeness function. At z < 0.4 , all of the DES XCS-SV clusters are complete
to m∗z + 2 mag and beyond. This is also true for more than 2/3 of the clusters at z > 0.4. Incomplete clusters of mlim below m∗z + 2 mag are not included in this
paper’s analyses. The scatters of mlim are caused by DES depth variations in different parts of the sky.

If the cluster region completeness functions follow different relations as discussed above, the magnitude cut still ensures high
detection probability (lower limit of 99%×λ instead of 99.8%×λ).

For all of the z < 0.4 clusters, mlim is more than 2 mag fainter than the characteristic magnitude measured in Hansen et al.
(2009). This is also true for more than 2/3 of the clusters at z > 0.4. The cluster sample size drops steeply above redshift 0.7,
and most of the complete clusters are located in the DES deep supernovae fields. As the galaxy samples are highly complete, we
do not correct detection probability in this paper.

Because the g, r, i, z-band observations are performed independently, one may wonder if the image depth in the bluer bands
is sufficient for computing colors. For example, the i-band band observation of an object detected in z may be too shallow
that it does not have valid i-band photometry measurement. We confirm that after applying the z-band magnitude limit cut
(mag_auto_z < mlim), 99.5% and 99.6% of the cluster region objects are detected in r and i respectively. 98.3% or 99.2% of the
objects have good r or i-band photometry measurement (magerr_auto above 3 σ, i.e., magerr_auto< 2.5/ln10/3). We conclude
that the DES multi-band data are sufficiently deep for red galaxy selection.

B. CLUSTER INFORMATION

TABLE 3

Cluster Name R.A. Decl. log(M200/M�) Cluster Redshift
XCSJ003248.5-431407.0 8.202084 -43.235279 14.02 ± 0.16 0.3923a

XCSJ003321.0-433737.1 8.337500 -43.626972 14.08 ± 0.31 0.3809a

XCSJ003346.3-431729.7 8.442917 -43.291584 14.23 ± 0.12 0.2199a

XCSJ003407.6-432236.2 8.531667 -43.376720 13.89 ± 0.19 0.3928a

XCSJ003428.0-431854.2 8.616667 -43.315056 14.37 ± 0.10 0.3977a

XCSJ003429.6-434715.7 8.623333 -43.787693 13.47 ± 0.14 0.2042a

XCSJ003518.1-433402.4 8.825417 -43.567333 14.00 ± 0.12 0.4400a

XCSJ003545.5-431756.0 8.939584 -43.298889 13.48 ± 0.19 0.4109a

XCSJ003548.1-432232.8 8.950417 -43.375778 14.25 ± 0.16 0.6280a

XCSJ003627.6-432830.3 9.115000 -43.475082 13.94 ± 0.18 0.42
XCSJ004157.8-442026.5 10.490833 -44.340694 13.94 ± 0.21 0.36
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TABLE 3

XCSJ021433.4-042909.9 33.639168 -4.486084 14.77 ± 0.12 0.1401a

XCSJ021441.2-043313.8 33.671665 -4.553833 14.70 ± 0.11 0.1416a

XCSJ021529.0-044052.8 33.870834 -4.681334 14.31 ± 0.16 0.34
XCSJ021612.5-041426.2 34.052082 -4.240611 14.32 ± 0.15 0.1543a

XCSJ021653.2-041723.7 34.221668 -4.289917 13.36 ± 0.17 0.1527a

XCSJ021734.7-051327.6 34.394585 -5.224333 14.08 ± 0.23 0.6467a

XCSJ021741.6-045148.0 34.423332 -4.863333 13.74 ± 0.26 0.5187a

XCSJ021755.3-052708.0 34.480415 -5.452222 13.74 ± 0.18 0.2495a

XCSJ021803.4-055526.5 34.514168 -5.924028 14.11 ± 0.26 0.3893a

XCSJ021843.7-053257.6 34.682083 -5.549333 13.73 ± 0.21 0.40
XCSJ021946.1-050748.2 34.942081 -5.130055 14.44 ± 0.37 0.4902a

XCSJ022024.7-050232.0 35.102917 -5.042222 14.39 ± 0.16 0.12
XCSJ022034.4-054348.7 35.143333 -5.730195 14.21 ± 0.26 0.20
XCSJ022042.7-052550.0 35.177917 -5.430555 13.90 ± 0.21 0.5477a

XCSJ022156.8-054521.9 35.486668 -5.756083 14.08 ± 0.11 0.2591a

XCSJ022204.5-043239.4 35.518749 -4.544278 14.17 ± 0.29 0.3150a

XCSJ022234.0-045759.8 35.641666 -4.966611 13.77 ± 0.24 0.92
XCSJ022258.7-040637.9 35.744583 -4.110528 14.01 ± 0.33 0.2893a

XCSJ022307.9-041257.2 35.782917 -4.215889 13.74 ± 0.31 0.6300a

XCSJ022318.6-052708.2 35.827499 -5.452278 13.61 ± 0.14 0.2106a

XCSJ022342.3-050200.9 35.926250 -5.033583 13.72 ± 0.18 0.8568a

XCSJ022347.6-025127.1 35.948334 -2.857528 14.10 ± 0.18 0.17
XCSJ022357.5-043520.7 35.989582 -4.589083 14.16 ± 0.32 0.4974a

XCSJ022401.9-050528.4 36.007915 -5.091222 13.99 ± 0.15 0.3265a

XCSJ022405.8-035505.5 36.024166 -3.918195 14.32 ± 0.36 0.44
XCSJ022433.9-041432.7 36.141251 -4.242417 13.91 ± 0.13 0.2619a

XCSJ022457.9-034849.4 36.241249 -3.813722 14.35 ± 0.15 0.6189a

XCSJ022509.7-040137.9 36.290417 -4.027194 13.89 ± 0.17 0.1732a

XCSJ022512.2-062305.1 36.300835 -6.384750 14.56 ± 0.15 0.2031a

XCSJ022524.8-044043.4 36.353333 -4.678722 14.26 ± 0.15 0.2647a

XCSJ022530.8-041421.1 36.378334 -4.239194 14.20 ± 0.12 0.1429a

XCSJ022532.0-035509.5 36.383335 -3.919306 14.30 ± 0.25 0.7712a

XCSJ022808.6-053543.6 37.035831 -5.595445 13.71 ± 0.13 0.21
XCSJ023037.2-045929.5 37.654999 -4.991528 14.10 ± 0.21 0.31
XCSJ023052.4-045123.5 37.718334 -4.856528 14.01 ± 0.15 0.31
XCSJ023142.2-045253.1 37.925835 -4.881417 14.66 ± 0.11 0.20
XCSJ033150.1-273946.1 52.958752 -27.662806 13.66 ± 0.18 1.0213a

XCSJ034106.0-284132.2 55.275002 -28.692278 14.60 ± 0.39 0.51
XCSJ041328.7-585844.3 63.369583 -58.978973 13.64 ± 0.14 0.14
XCSJ041644.8-552506.6 64.186668 -55.418499 14.24 ± 0.20 0.41
XCSJ042017.5-503153.9 65.072914 -50.531639 14.17 ± 0.11 0.45
XCSJ043750.2-541940.8 69.459167 -54.327999 13.83 ± 0.13 0.21
XCSJ043818.3-541916.5 69.576248 -54.321251 14.94 ± 0.12 0.42
XCSJ065744.2-560817.0 104.434166 -56.138054 14.14 ± 0.14 0.32
XCSJ065900.5-560927.5 104.752083 -56.157639 14.08 ± 0.25 0.33
XCSJ095823.4+024850.9 149.597504 2.814139 14.56 ± 0.15 0.41
XCSJ095901.2+024740.4 149.755005 2.794556 13.90 ± 0.18 0.4900a

XCSJ095902.7+025544.9 149.761246 2.929139 14.44 ± 0.13 0.3487a

XCSJ095924.7+014614.1 149.852921 1.770583 13.96 ± 0.15 0.1243a

XCSJ095932.1+022634.6 149.883743 2.442945 14.24 ± 0.25 0.42
XCSJ095940.7+023110.8 149.919586 2.519667 14.67 ± 0.15 0.7297a

XCSJ095951.2+014045.8 149.963333 1.679389 14.11 ± 0.15 0.3702a

XCSJ100023.1+022358.0 150.096252 2.399444 13.86 ± 0.13 0.22
XCSJ100027.1+022131.7 150.112915 2.358806 14.01 ± 0.16 0.2207a

XCSJ100043.0+014559.2 150.179169 1.766444 14.30 ± 0.18 0.3464a

XCSJ100047.3+013927.8 150.197083 1.657722 14.39 ± 0.11 0.2200a

XCSJ224857.4-443013.6 342.239166 -44.503777 15.08 ± 0.14 0.36
XCSJ232447.6-552443.3 351.198334 -55.412029 13.91 ± 0.17 0.30
XCSJ232632.7-563054.5 351.636261 -56.515141 13.73 ± 0.14 0.17
XCSJ232633.3-550116.3 351.638763 -55.021194 14.41 ± 0.17 0.43
XCSJ232645.9-534839.3 351.691254 -53.810917 13.55 ± 0.13 0.20
XCSJ232804.7-563004.5 352.019592 -56.501251 14.15 ± 0.18 0.19
XCSJ232940.9-544715.3 352.420410 -54.787582 13.71 ± 0.19 0.14
XCSJ232956.6-560808.0 352.485840 -56.135555 14.32 ± 0.14 0.44
XCSJ233000.5-543706.3 352.502075 -54.618416 14.34 ± 0.12 0.1763a

XCSJ233037.2-554340.2 352.654999 -55.727833 14.23 ± 0.28 0.33
XCSJ233132.2-531104.3 352.884155 -53.184528 13.79 ± 0.17 0.41
XCSJ233133.8-562804.6 352.890839 -56.467945 14.01 ± 0.29 0.18
XCSJ233204.9-551242.9 353.020416 -55.211918 13.73 ± 0.16 0.34
XCSJ233216.0-544205.5 353.066681 -54.701527 14.37 ± 0.19 0.32
XCSJ233225.7-560237.5 353.107086 -56.043751 14.14 ± 0.18 0.28
XCSJ233403.8-554903.9 353.515839 -55.817749 14.35 ± 0.35 0.34
XCSJ233706.9-541909.8 354.278748 -54.319389 13.81 ± 0.31 0.53
XCSJ233835.2-543729.5 354.646667 -54.624863 14.67 ± 0.28 0.38
XCSJ233955.1-561519.6 354.979584 -56.255444 14.06 ± 0.39 0.37
XCSJ234054.4-554256.6 355.226654 -55.715721 13.43 ± 0.15 0.17
XCSJ234142.9-555748.9 355.428741 -55.963585 14.35 ± 0.16 0.20
XCSJ234231.5-562105.9 355.631256 -56.351639 14.37 ± 0.14 0.35
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TABLE 3

XCSJ234311.1-555249.8 355.796265 -55.880501 13.84 ± 0.20 0.23
XCSJ234600.9-561104.8 356.503754 -56.184666 13.52 ± 0.14 0.1014a

XCSJ234806.2-560121.1 357.025848 -56.022530 14.79 ± 0.32 0.39
XCSJ235810.2-552550.1 359.542511 -55.430584 14.57 ± 0.16 0.25

a Archive spectroscopic redshift.
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