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ABSTRACT

The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is
driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is

traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be

conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes: NBODY-

6 (direct summation without softening), NBODY-2 (direct summation with softening) and GADGET-2 (tree code
with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon

entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor and EnBiD. For all

simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent

relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be

described by a kinetic equation other than the Vlasov-Poisson, even for N as large as that of astronomical structures.
This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the

so-called “fundamental paradox of stellar dynamics”. The long-term evolution is well described by the orbit-averaged

Fokker-Planck model, with Coulomb logarithm values in the expected range 10 − 12. By means of NBODY-2, we

also study the dependence of the 2-body relaxation time-scale on the softening length. The approach presented in
the current work can potentially provide a general method for testing any kinetic equation intended to describe the

macroscopic evolution of N-body systems.
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1. INTRODUCTION

The derivation of reduced dynamical descriptions of

large systems composed of many particles is a central

issue in Statistical Mechanics. In such systems, the ef-

fect of each individual particle is weak, but the collective
action of the particle ensemble generates a nontrivial po-

tential field acting on each and every particle. One thus

expects that the state of a system with a large number

of identical particles is reflected in the statistical behav-

ior of one typical particle in the system. The large scale
dynamics is then governed by a set of autonomous equa-

tions describing the evolution of the state of this typical

particle1. In some cases, the effective dynamics emerges

in a mathematically rigorous fashion through a scaling
limit. One important point to be noted is that the effec-

tive macroscopic dynamical equations strongly depend

on the particular scaling or regime which is considered:

the same (large) system appears differently on different

scales. For instance, by considering the same system of
Newtonian particles interacting via some well-behaved

inter-particle potential, one can arrive at the Boltzmann,

Landau, or Vlasov equation, as the effective equation for

the “macroscopic” dynamics, depending on the time and
space scales, as well as the interaction strength regime

considered (Spohn 2011).

The Boltzmann equation is based on the assumption

that particles interactions are short range, instantaneous

and involve only two particles at a time (binary colli-
sions). The Vlasov equation is intended to describe the

action of smooth collective effects, without considering

two-body interactions. The Landau equation is intended

to treat binary collisions mediated by the Coulomb inter-
action. It represents a long-range limit of the Boltzmann

equation, and it is based on the idea that the relaxation

is produced by the cumulative effects of a large number

of weak scatterings (in this way, the Landau equation is

also a kind of Fokker-Planck equation), while the “field”
particles (the scatterers) are assumed to follow rectilin-

ear trajectories. The Landau equation can also be seen

as a long-time correction to the Vlasov equation – see

Chavanis (2013) for further discussions relating these
equations.

In this context, one of the deepest and most de-

bated questions in Physics since the early development

of Statistical Mechanics is the emergence of the arrow

of time in the evolution of macroscopic systems and
how to reconciliate it with the time-reversible micro-

1 The typical particle can also be called the test particle, al-
though we prefer the former, meaning that it represents the be-
haviour of the vast majority of the particles.

scopic laws, being them classical, quantum or relativis-

tic (e.g. Ehrenfest & Ehrenfest 1959; Lebowitz 1993a,b;

Goldstein 2001). In other words: how to explain, start-

ing from the time-reversible equations of motion for the
constituent particles, the irreversibility expressed by the

second law of Thermodynamics for the evolution of the

system as a whole?

The first to try to solve this problem was L. Boltz-

mann at the end of the nineteenth century, introducing
the equation which now bears his name and the so-called

H-theorem, which is intended to prove the entropy in-

crease frommechanical considerations plus statistical as-

sumptions (Brush 1976). The Boltzmann equation is a
particular example of a general class of equations, the

transport (or kinetic) equations, which describe the time

evolution of the distribution function f(~r, ~v, t), the prob-

ability for a typical particle to be at position ~r and ve-

locity ~v (Lifshitz & Pitaevskii 1980).
The basic format of a transport equation is

df

dt
= Γ[f ], (1)

where the right-hand side represents the physical pro-

cess relaxing the system, i.e. driving it to equilibrium,

introducing the arrow of time. The main hypothesis be-

hind the use of a transport equation of this form is that

the state of the system only depends on its immediately
previous state, having no long-term “memory” effects,

i.e. that the evolution is Markovian – see Balescu (1975).

In the case of a molecular gas, the process responsible

for driving the system to equilibrium is represented by
the collisions between molecules. For this reason, Γ[f ]

is traditionally called the collisional term. However, for

systems evolving through non-collisional processes, this

name can be misleading: relaxation can in principle also

be produced by collective, collisionless processes. Hence-
forth, whenever we refer to the right-hand side of the

transport equation, we call it generically the relaxation

term, which can be associated to collisional or collision-

less relaxation processes.
When deriving the relaxation term, one has to intro-

duce statistical hypotheses related to the type of inter-

actions between the constituent particles. In the case

of a neutral molecular gas, as mentioned above, one can

assume that the interactions are short-range and that
each interaction is a instantaneous binary collision.

Although this discussion has appeared firstly in the

study of molecular gases, it applies to any system com-

posed of many interacting particles. In particular, to
the process of collapse of self-gravitating systems and

the formation of structures in the universe. A self-

gravitating system is composed of N gravitationally

bound particles moving in the presence of the gravi-
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tational potential created by themselves (Spitzer 1987;

Binney & Tremaine 2008; Saslaw 1987; Heggie & Hut

2003). They range from globular clusters, composed of

N ≈ 105 stars, to galaxies (N ≈ 1011 stars) and dark
matter halos, composed of a giant number of dark mat-

ter particles, whose nature is yet unknown. The study

of the macroscopic evolution of these systems is of fun-

damental importance for many reasons, e.g.: they rep-

resent the prototype for any long-range interacting sys-
tem; understanding their macroscopic evolution helps

us to theoretically model (beyond the parametrization

of the results from numerical simulations) the quasi-

stationary state achieved after the relaxation processes
and the main functions characterizing this state, namely

the density profile and velocity distribution; these func-

tions, besides their intrinsic importance as dynamical

diagnostics, are also key ingredients for other analyses

such as those of dark matter direct and indirect detec-
tion experiments.

The main difference between a self-gravitating system

and a neutral molecular gas is that gravity is a long-

range interaction, thus invalidating all of the assump-
tions involved in the derivation of the Boltzmann equa-

tion for molecular gases2 (Prigogine & Severne 1966;

Padmanabhan 1990). On the other hand, it is still pos-

sible to estimate the time-scale for relaxation of a self-

gravitating system due to 2-body processes (long-range
“collisions”). A general expression is (see Spitzer 1987;

Binney & Tremaine 2008)

τcol = k
N

ln Λ
· τcr, (2)

where k ≈ 0.1, Λ = bmax/b0. Here, bmax is the maxi-

mum impact parameter of the gravitational scatterings,

i.e. it plays the role of an effective screening length. The
parameter b0 is associated to a 90◦ scattering angle. –

see §6.6 – and τcr is the time scale for a typical particle to

cross the system, the crossing time, which is also of the

same order of the dynamical time scale τdyn = 1/
√
ρ̄G,

where ρ̄ is the mean density and G is the gravitational
constant.

In the case of a globular cluster, the collisional relax-

ation time scale is τcol ≈ 109 yr, shorter than its age

(≈ 1010 yr) and we conclude that the apparent equi-
librium of these objects has the 2-body relaxation as

a plausible mechanism, whose relaxation term can be

modeled with the Fokker-Planck approximation, which

is based on the weak coupling assumption, i.e. that the

2 In the case of plasmas, the particles also interact via long-
range forces (Coulomb interaction). However, the presence of op-
posite charges produces an screening effect, the Debye shielding,
effectively shortening the interaction range.

deflection angle produced by each “collision” is small.

Also, it neglects any kind of collective relaxation effect

– see §6.2.
For galaxies and dark matter halos, given the large

number of particles it is possible to show that the 2-

body relaxation time-scale is τcol & 1017 yr, many or-

ders of magnitude larger than their ages, and therefore

this process is not a plausible mechanism to explain the

apparent (both observationally and in N -body simula-
tions) near equilibrium state that can be achieved by

these systems. They are thus called collisionless self-

gravitating systems and are the main focus of this work

(we do not consider any dissipative component such as
gas or dust).

The process generally accepted as the driver of a col-

lisionless self-gravitating system to a quasi-stationary

state is the interaction of the typical particle with the

time-changing collective gravitational potential during
the first stages of the collapse of the system (King 1962;

Hénon 1964; Lynden-Bell 1967). It is therefore a collec-

tive effect, in contrast to 2-body relaxation. The time-

scale for that relaxation process, according to some the-
oretical arguments (Lynden-Bell 1967; Kandrup 1990)

and to results from N -body simulations, is the dynam-

ical time scale, which is orders of magnitude smaller

than the age of any self-gravitating system. This pro-

cess is called violent relaxation (Lynden-Bell 1967; Shu
1978; Madsen 1987; Shu 1987; Efthymiopoulos et al.

2007; Bindoni & Secco 2008; Levin et al. 2014). Consid-

ering the N-body problem itself, Gurzadian & Savvidy

(1986) have derived, based on the Ergodic theory, an-
other relaxation time-scale associated to collective ef-

fects, namely τ ∝ N1/3τcr, which is still orders of mag-

nitude smaller than Eq. (2).

It is interesting to remember that the relaxation pro-

cess of a general N -body problem is usually related to
the presence of stochastic motions that allow the par-

ticles to occupy large regions of phase space and the

system to forget the initial conditions, the so-called

chaotic mixing (Merritt & Valluri 1996). In fact, N -
body simulations of galaxy formation have shown ev-

idence of very complex motions in phase space and

the fast achievement (in a dynamical time-scale) of a

quasi-stationary state – see Merritt (1999) and refer-

ences therein (see also Kandrup et al. (2003) on the role
of chaotic mixing in violent relaxation). This seems to

indicate that violent relaxation is a real relaxation pro-

cess, in the sense that it drives the system irreversibly

towards the equilibrium state (see also Kandrup 1990),
even though violent relaxation is known to be incom-

plete, ending before the achievement of thermodynami-

cal equilibrium, which would be described by a Maxwell-
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Boltzmann distribution (Merritt 1999; Kandrup et al.

1993; Efthymiopoulos et al. 2007). Consequently, the

system keeps some correlation with the initial condi-

tions. Thus, when we refer to the equilibrium state gen-
erated by violent relaxation, we are actually considering

this incompletely relaxed, quasi-stationary state, which

generally does not correspond to the full thermodynam-

ical equilibrium.

On the other hand, since the 2-body relaxation of
a collisionless self-gravitating system during the early

stages of the collapse is by definition negligible, it is

usually assumed that the relaxation term associated to

violent relaxation is zero. In this case, the system’s evo-
lution is described by Eq. (1) with Γ [f ] = 0:

df

dt
≡ ∂f

∂t
+ ~v · ∂f

∂~r
− ∂φ

∂~r
· ∂f
∂~v

= 0, (3)

where φ(~r, t) is the gravitational potential associated to

the system as a whole, considered as an external po-

tential for the typical particle: d~v/dt = −∇φ. This
equation is generically called the Vlasov equation, which

can encompass many different equations, depending on

the two-body potential involved. For the specific prob-

lem discussed in this work, namely the evolution of self-

gravitating systems, the two-body potential is Coulom-
bian, i.e. ∝ 1/r, and the global potential φ is self-

consistently related to the distribution function f by

means of the Poisson equation

∇2φ = 4πG

∫
d3~v f(~r, ~v, t). (4)

Eq. (3), coupled to Eq. (4), is then called the Vlasov-
Poisson equation.

Note that, despite the formal similarity of the Vlasov-

Poisson equation with the Liouville equation

df (N)

dt
= 0, (5)

where f (N)(~r1, ~v1, ..., ~rN , ~vN , t) is the N -particle distri-
bution function, in general they represent different de-

scriptions for the system’s evolution. Eq. (5), whose

validity is based on mechanical considerations only, de-

scribes the evolution of the total system and must be

valid under very general conditions (for instance, if the
system is subject to external Hamiltonian influences, i.e.

if it is described by a time-dependent Hamiltonian).

On the other hand, Eq. (3) refers to the coordinates

of one single typical particle while it is also intended
to describe the evolution of the system as whole, and

thus is clearly based on mechanical plus statistical con-

siderations, what is made explicit in the construction

of the BBGKY hierarchy: as pointed out e.g. by

Beraldo e Silva et al. (2014), to reduce the full hierar-

chy of N -body evolution equations to an (effective) one-

body problem one needs to assume the molecular-chaos

hypothesis, i.e. that f (N)(~r1, ~v1, ..., ~rN , ~vN ) can be writ-
ten as aN -fold product of one-particle distribution func-

tions. Such an assumption is also behind the derivation

of other, more general, effective equations.

Additionally, to derive the Vlasov-Poisson from the

N -body problem, it is usually assumed (see Kandrup
1998) that the gravitational N -body problem converges

to the continuous limit for N → ∞, in some sense. Now

define a system as being composed of only one typical

particle moving under the influence of the continuous
collective potential, this system being thus described

by a Hamiltonian, which is time-dependent during vi-

olent relaxation. Since Liouville equation is valid even

with a time-dependent Hamiltonian, as stressed above,

it should be valid in this case, and the Vlasov-Poisson
equation is interpreted as the Liouville equation applied

to this one-particle system. In this way, the statistical

considerations under the Vlasov-Poisson equation are

apparently erased and the description becomes purely
mechanical. In our opinion, nevertheless, the continuum

limit hypothesis only refers to the mean-field approach

to the N -body problem, which corresponds to the use of

self-consistent conditions, in the limit of large N , which

could depend on many-point correlations. In order to
justify the effectiveness of the corresponding one-body,

self-consistent, problem, the statistical independence of

typical particles is still required. In other words: even if

one can consider the Liouville equation applied to any
1-particle phase-space density f , associated with the po-

tential generated by the large system, it is not clear from

the beginning that such a density f exists for a typical

particle representing the system as a whole, unless some

justifiable statistical assumption is made.
In addition, it has been already shown (see Valluri & Merritt

2000; Kandrup & Sideris 2001; Hemsendorf & Merritt

2002) that the gravitational N -body problem does not

converge to the continuous limit for N → ∞, at least
when using Lyapunov exponents as a diagnostic. Note

that being a discrete sample with N bodies (stars or

dark matter particles), as opposed to the continuous

limit, is not a feature of N -body simulations only. Most

importantly, it is a feature of Nature. Even in the
continuous limit, the description of a collisionless self-

gravitating system’s evolution in terms of a transport

equation is not trivial, specially in the presence of non-

integrable potentials generating stochastic orbits – see
Binney (1982); Kandrup (1998); Merritt (1999, 2005)

for critical discussions relating the presence of stochas-
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tic orbits, the N -body problem and the Vlasov-Poisson

equation.

Furthermore, the main problem in describing the sys-

tem’s evolution with the Vlasov-Poisson equation is that
this equation is time reversible, while it is intended to

describe the irreversible evolution driven by violent re-

laxation. This has been already called the “fundamen-

tal paradox of stellar dynamics” (Ogorodnikov 1965;

Ossipkov 2006).
In fact, this uncomfortable situation can be seen in

several works. According to Madsen (1987), “to reach

the predicted most probable final state, the system may

have to break Liouville’s theorem [Vlasov-Poisson equa-
tion]”. Shu (1987) argues that “while Liouville’s theorem

[Vlasov-Poisson equation] does apply on a microscopic

level, it must necessarily be violated on a macroscopic

level if the concept of violent relaxation is to have sen-

sible meaning”. According to Kandrup (1998), “the N-
body problem appears to be chaotic on a time scale τcr,

but the flow associated with the CBE [Vlasov-Poisson

equation] is often integrable or near-integrable in the

sense that many or all of the characteristics are reg-
ular, i.e., non chaotic. So what do the (often near-

integrable) CBE characteristics have to do with the true

(chaotic) N-body problem? (...) The correct answer to

the question raised above (...) is not completely clear.

What does, however, seem apparent from the preced-
ing is that, even for very large N, true N -body trajec-

tories could differ significantly from CBE characteris-

tics”. Hemsendorf & Merritt (2002) claim that “if the

rate of growth of small perturbations remains substantial
even for large N, there would be an important sense in

which the CBE does not correctly describe the behavior

of N -body systems”. Finally, Bindoni & Secco (2008)

say that: “any further relaxation of the system should

be therefore considered in terms of the coarse-grained
phase-space density which, as we have seen, would yield

results different from the predictions based on the initial

fine-grained phase-space density. This is a worrying as-

pect of these theories (...). The predictions of the theory,
based on the fine-grained density, will then give a wrong

result”.

The standard solution to this apparent paradox is to

advocate a coarse-grain interpretation to the evolution,

according to which the irreversibility is introduced by
our inability to follow the phase-space density evolu-

tion with absolute precision. In this picture, the trans-

port equation, supposedly the Vlasov-Poisson equation,

refers to the fine-grained distribution function, while the
irreversible evolution is described by the coarse-grained

distribution function. Thus, in this standard picture,

it is difficult to see any relation between the assumed

transport equation (which refers to the fine-grained dis-

tribution function) and the physical phenomenon it is

intended to describe. Furthermore, in our view (see also

Jaynes 1965, and §8), this interpretation introduces an
undesired subjective element, making the system evolu-

tion dependent on observations.

In defense of that standard solution, some authors ar-

gue that in the fine-grain level (in the continuous limit),

the system develops phase-space structures that are too
fine to be followed by any estimator using a finite num-

ber of particles, and then in practice we always deal

with the coarse-grained distribution function – see e.g.

Lynden-Bell (1967). Let us stress once more that real
self-gravitating systems always display a finite number

of particles, such that one can hardly provide a meaning-

ful interpretation to continuous densities having struc-

tures finer than the typical nearest neighbor (phase-

space) distance for the given N -body system. Globular
clusters, for example, which are also expected to vio-

lently relax in their early evolution, are composed of

N ≈ 106 stars, which is the number of particles in the

largest N -body simulation used in our analysis. In this
sense, any coarse graining operating in our results due

to the use of a finite N is expected to be the same as

that operating in real self-gravitating systems.

In this work, we argue that the apparent paradox dis-

appears once we abandon the assumption of validity of
the Vlasov-Poisson equation during violent relaxation.

This assumption seems to be due to an oversimplifying

treatment of the very singular gravitational (Coulomb)

potential and also to a neglect of the proper statistical
content of the distribution function regarding the dis-

crete nature of the physical system.

Let us remind that there is no mathematically rigorous

proof of the validity of the Vlasov-Poisson equation for

self-gravitating systems. In Appendix A we give a sum-
mary of recent mathematical results on the derivation

of this equation from the N -body problem. These sug-

gest that interactions involving impact parameters up

to scales that are large compared to the mean neighbor-
ing particle distance d̄ could prevent the Vlasov-Poisson

equation from being the effective macroscopic equation

governing the evolution of large gravitational systems.

As discussed below, the numerical results obtained here

point in the same direction and moreover suggest that
violent relaxation does not involve scales much smaller

than d̄.

Interestingly, studies based on the numerical integra-

tion of the Vlasov-Poisson equation sometimes obtain
results comparable to those obtained from N -body sim-

ulations (although frequently simulating situations and

scales different from those associated to the violent re-



6

laxation process), attributing any difference to N -body

codes limitations (Yoshikawa et al. 2013; Colombi et al.

2015; Hahn & Angulo 2016).

As is well known, if the Vlasov-Poisson equation
is valid, then the entropy must be conserved (see

Tremaine et al. 1986) – see §2. In the present work

we use N -body simulations, which are described in §3,
to estimate the entropy of the system at each snapshot,

following its time evolution. The estimators involved
in the entropy estimate are presented in § 4. In §5 we

show our main results, focusing in the short-term en-

tropy production during violent relaxation. Then, in § 6
we analyze the long-term entropy evolution and its de-
scription in terms of a Fokker-Planck equation. Finally

we conclude in §7, with further comments in §8.

2. TESTING VLASOV-POISSON EQUATION

Going back to the general form of the transport equa-

tion, we have

df

dt
≡ ∂f

∂t
+ ~v · ∂f

∂~r
− ∂φ

∂~r
· ∂f
∂~v

= Γ[f ]. (6)

As for any good relaxation process, the relaxation

term is responsible for entropy increase. In fact, fol-
lowing Tremaine et al. (1986), let

S = −
∫

s[f ] d3~r d3~v, (7)

where s[f ] is some functional of the distribution function

f . For example, if s[f ] = f ln f then S is the well-

known Shannon entropy associated to the distribution

f . Accordingly,

dS

dt
= −

∫
ds

df

∂f

∂t
d3~r d3~v (8)

and using the transport equation (6):

dS

dt
= −

∫
ds

df

[
Γ[f ]− ~v · ∂f

∂~r
+

∂φ

∂~r
· ∂f
∂~v

]
d3~r d3~v

= −
∫

ds

df
Γ[f ] d3~r d3~v+

+

∫ [
~v · ∂s

∂~r
− ∂φ

∂~r
· ∂s
∂~v

]
d3~r d3~v

= −
∫

ds

df
Γ[f ] d3~r d3~v.

(9)

In the last passage, we integrate the term ~v ·∂s/∂~r firstly
in d3~r and the term ∂φ/∂~r · ∂s/∂~v firstly in d3~v, using
the fact that s[f ] → 0 for ~r, ~v → ∞.

Thus, if the Vlasov-Poisson equation is valid, i.e. if

Γ[f ] = 0, then S, and particularly the Shannon entropy,

is conserved (see Shu 1978; Tremaine et al. 1986). This

is to be expected, since the Vlasov-Poisson equation is

time-reversible and reversible processes keep the entropy

constant. On the other hand, if the quantity defined by

Eq. (7) is not conserved, this is a clear evidence for the
non-validity of the Vlasov-Poisson equation and of the

emergence of the arrow of time.

The main objective of this work is to test the valid-

ity of the Vlasov-Poisson equation during the violent

relaxation of collisionless self-gravitating systems. We
do this using N -body simulations to estimate the en-

tropy of the system at each time, verifying whether

it is conserved. While interesting works on the relax-

ation of self-gravitating systems focus on characteriz-
ing the mixing properties of the evolution by means of

e.g. calculating Lyapunov exponents or fundamental

frequencies (Merritt & Valluri 1996; Valluri & Merritt

1998; Kandrup & Sideris 2001; Kandrup et al. 2003),

the key quantity for the relaxation concept, which may
be considered to define it, is the entropy. In this sense,

this work go straight to the relaxation concept, with no

regards to its explanation in terms of mixing.

In what follows, we will set s[f ] = f ln f , i.e. we will
only consider the Shannon entropy

S = −
∫

f ln f d3~r d3~v. (10)

3. N -BODY SIMULATIONS

We use the code NBODY-6 accelerated with a graph-

ics processing unit (GPU) – see Nitadori & Aarseth

(2012), which is the result of a long development since
its first version NBODY-1 (Aarseth 1999). It is a di-

rect summation code and the integration is based on

the scheme of Ahmad & Cohen (1973) using the forth-

order Hermite method (Makino & Aarseth 1992). The

code does not make use of a softening in the Newtonian
force law, as commonly done to avoid close encounters

(see below). Instead, it implements regularization pro-

cedures in order to deal with the possible close encoun-

ters, binaries and higher-order objects etc. For a general
discussion about these techniques, see Aarseth (2003).

We use NBODY-6 to simulate an isolated self-

gravitating system with N particles of equal mass m,

with an initial Maxwellian velocity distribution with

velocity dispersion determined by the initial virial ratio
Q0, which is defined as the ratio of kinetic energy T

and potential energy W , Q = T/|W |. For our fiducial

simulation run, we use N = 105 particles with a top-

hat initial condition, i.e. a spherically symmetric and
spatially homogeneous system, with Q0 = 0.5, the value

expected at equilibrium.

We also run simulations with different numbers of par-

ticles and different initial conditions: setting Q0 = 0.25
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or Q0 = 0.6 (the “cold” and “hot” initial conditions,

respectively) for the top-hat configuration. Addition-

ally we run a simulation with the initial condition set to

the self-consistent Plummer model which is a stationary
state – see §5.1. In all simulation runs, the number of

escaping particles, when it occurs, is completely negli-

gible. The maximum allowed energy relative error was

set to 5× 10−5.

Ideally, a N -body simulation code intended to sim-
ulate collisionless systems need to run with a (possi-

bly impracticable) large number of particles in order to

suppress 2-body relaxation, at least for the time-scales

of interest – see Eq. (2). A widely used strategy is to
introduce the softening length parameter ε, modifying

the Newtonian gravitational potential to the Plummer-

softened one

φ(r) = − Gm√
r2 + ε2

,

and thus avoiding close encounters and suppressing the
2-body relaxation. In order to study the role of the

softening length in the relaxation process, we also run

the simulation code NBODY-2 (Aarseth 2001) that, dif-

ferently from NBODY-6, does make use of a softening
length. This code is also of direct summation type, but

the use of the softening length simplifies the treatment

of close encounters in comparison to NBODY-6. Un-

fortunately, there is no parallelized or GPU accelerated

version of NBODY-2, what restricts the possibility of
using large numbers of particles.

With the aim of testing the universality of our

NBODY-2 and NBODY-6 entropy estimation, we also

run the publicly available GADGET-2 code (Springel
2005). GADGET-2 is a hybrid N-body code that com-

bines the traditional evolution of self-gravitating col-

lisionless particles, with the smoothed particle hydro-

dynamics (SPH) treatment for collisional gas. In our
case, we run GADGET-2 using the same initial con-

ditions that were used for NBODY-2 and NBODY-6

simulations, i. e., an isolated set of self-gravitating col-

lisionless particles, within a Newtonian space (without

Hubble expansion), and without the presence of any
collisional gas. In addition, we run GADGET-2 using

its tree configuration, i. e., without using the Fourier

techniques to compute long-distance forces.

In order to suppress large-angle scattering during 2-
body encounters, the GADGET-2 code uses the spline-

softened gravitational potential:

φ(r) =
Gm

h
W (r/h) ,

Figure 1. Comparison between the spline-softened
GADGET-2, the Plummer-softened and the Newtonian
gravitational potentials of a point mass. It was used here
h = 1.0 and ε = h/2.8.

where

W (u) =





16

3
u2 −

48

5
u4 +

32

5
u5 −

14

5
, 0 6 u < 1

2 ,

1

15 u
+

32

3
u2 − 16 u3

+
48

5
u4 −

32

15
u5 −

16

5
, 1

2 6 u < 1 ,

−
1

u
, 1 6 u ,

is based on the Monaghan & Lattanzio (1985) SPH

modelling, which was constructed guided by the ac-

curacy, smoothness, and computational efficiency cri-
teria. This spline-softened potential is equal to the

Newtonian gravitational potential for distances greater

than the softening length h, unlike the Plummer-

softened potential used by NBODY-2, which converges

slowly to the Newtonian one for long distances – see
Fig. 1. In addition, we will refer to εeq ≡ h/2.8 as the

Plummer-equivalent softening length for a given h set

in GADGET-2. With this choice, the minimum of the

GADGET-2 and the Plummer-softened gravitational
potentials have the same depth at r = 0, as shown in

Fig. 1.

All units adopted here are the same as those used

internally and prompted by the simulation code, the

Hénon units (see Hénon 1964), also called N -body units,
where the gravitational constant is G = 1, total mass

M = 1, and total energy E = −1/4 – see Appendix

B. In virial equilibrium, this corresponds to a virial ra-

dius Rvir = 1 and rms velocity
√
〈v2〉 =

√
2/2, and thus

the mean crossing time τcr = 2Rvir/
√
〈v2〉 = 2

√
2 – see

Aarseth (2001) and Appendix B. Importantly, in N -

body units, positions and velocities are dimensionless

quantities and have values of similar magnitudes.

4. ENTROPY ESTIMATORS



8

The entropy given by Eq. (10) is estimated using the

data from the N -body simulation and translating the

integral over phase space into a sum over the N parti-

cles of the system (see Joe 1989; Hall & Morton 1993;
Beirlant et al. 1997). The heuristics behind entropy es-

timators is as follows: having an estimate f̂i = f̂(~ri, ~vi, t)

for the distribution function f at the phase space posi-

tion of each particle i, we estimate the entropy at each

time as

Ŝ(t) = − 1

N

N∑

i=1

ln f̂i. (11)

The meaning and adequacy of this estimator becomes

clear when we interpret Eq. (10) as the phase space

average of ln f . Assuming that the positions (~ri, ~vi) of

the particles in phase space are independently distributed

with distribution f , for particular choices of f̂i (e.g.,
the kernel and nearest-neighbors methods discussed be-

low), it has been shown that this estimator converges in

probability3 to the Shannon entropy given by Eq. (10)

in the limit N → ∞ (Joe 1989; Hall & Morton 1993;
Beirlant et al. 1997). We remark here that the question

whether f̂i is a good estimator for the distribution func-

tion f itself, is not explicitly addressed by Joe (1989);

Hall & Morton (1993); Beirlant et al. (1997) and related

works: instead, the expression in the r.h.s. of (11) is
directly proven to be a good entropy estimator for cer-

tain technically convenient choices of f̂i. Note that as-

suming the validity of any dynamical equation for one

typical particle as the effective equation for the macro-
scopic dynamics includes the assumption that the many-

particle correlations do not participate in the effective

dynamics, i.e., different particles typically evolve inde-

pendently. Hence, seeing the phase space coordinates

of particles as independent random variables is part of
the hypothesis we are testing, namely, the validity of the

Vlasov-Poisson equation. Fig. 2 shows the early (i.e. in

a few dynamical time-scales) evolution of this estima-

tion, with the following estimator for the distribution
function.

We estimate the entropy of the distribution function f

by means of three different methods: the Kernel method,

the Nearest Neighbor method (see Silverman 1986) and

the EnBiD method developed by Sharma & Steinmetz
(2006). This last method has the advantage that it is

fast and metric free, i.e. it does not need to define dis-

tances in 6-D phase-space, for which we need to put po-

sitions and velocities in the same units, which involves

3 This means that, given any fixed error ε > 0, the probability
for the estimator to make an error larger than ε for the entropy
associated to f tends to zero, as N → ∞.

some arbitrary choice – see Eq. (13) and the comments

below. On the other hand, mathematical results show-

ing the convergence of Eq. (11) to the real entropy when

f̂i is the EnBiD estimator do not exist, as far as we know.
Also, in contrast to the Kernel method, the convergence

of the Nearest Neighbor is only well-understood at di-

mension less than 3. Note that Beirlant et al. (1997)

only mention the derivation of a rate of convergence for

one-dimensional systems, whereas in the case of Kernel
estimators explicit bounds are known at any dimension

– see Joe (1989); Hall & Morton (1993). For these rea-

sons, the analyses in this work are generally based on

the Kernel estimator and in § 5.3 we explain the Near-
est Neighbor and EnBiD methods and show the qualita-

tive agreement between the different methods and their

apparent convergence for increasing N.

The Kernel method (Silverman 1986) models the dis-

tribution at a specified point i as a sum of “bumps”
centered at each one of all the other particles j:

f̂i = f̂(~ri, ~vi, t) =
A

N

N∑

j=1

1

h6
j

K

(
Dij

hj

)
, (12)

where Dij is the phase-space distance (6-D) between
particles i and j

Dij =
√
(~ri − ~rj)2 + (~vi − ~vj)2 (13)

(using the dimensionless coordinates and velocities pro-

vided by Hénon units – see § 3 and Appendix B) and

K
(

Dij

hj

)
is the kernel function, which determines the

shape of the bumps. Note that in principle the dis-

tance estimator in phase-space Dij would involve co-

ordinates of different units and some metric is neces-

sary to make them compatible (see Ascasibar & Binney
2005; Sharma & Steinmetz 2006). One important thing

about this metric is that it should produce coordinates

with the same covariance along all dimensions, which is

approximately provided by the use of Hénon units.
The parameter hj, here allowed to vary for different

particles (the variable kernel method), is the window

width, and it determines the width of the bumps. This

parameter introduces a certain degree of arbitrariness,

analogous to that associated to the bin definitions of a
histogram: it cannot be too small, thus introducing spu-

rious and noisy substructures, nor too large, what would

erase important information of the distribution. Choos-

ing this parameters optimally corresponds to improving
the convergence rate of the estimator. Here, we take hj

to be the phase space distance Djn from particle j to its

nearest neighbor (see §5.3), which is a standard choice

(see Silverman 1986, sec. 2.6). Let us emphasize that
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this does not mean that we only consider the contribu-

tion of the nearest neighbor. Instead, the window width

just determines the narrowness of the Kernel function at

the position of particle j, and the contributions (tails)
of all particles are important, because the kernels used

are heavy-tailed. Note, additionally, that in the current

study the radius of the system is approximately one. In

particular, Djn is typically N−1/6. As in our simula-

tions N ranges between 104 and 106, in this case Djn

lies between circa 0.1 and 0.21.

The normalization constant A is defined by the con-

dition

A =
1∫

K(x) d6x
, (14)

x being a vector in 6-D, and we use the kernel

K

(
Dij

hj

)
=

1

(Dij/hj)
8
+ 1

, (15)

which implies A = 8/(
√
2π4) ≈ 5.807 × 10−2. Observe

that entropy estimators of the form (12), whose kernelK

has a “heavy tail” (i.e., decays slowly in space, without

destroying integrability) are known to have good con-

vergence properties. See, for instance, Hall & Morton
(1993), sec. 3. The particular (heavy-tail) kernel, Eq.

(15), was chosen because it has many symmetries in

phase space and a simple, explicit normalization con-

stant A.
Let us emphasize that there is no need to advocate

any coarse-grain interpretation to our estimation of the

distribution function besides that present in real sys-

tems with finite N , since our estimators are not based

on phase-space averages of regions containing large num-
bers of particles. Instead, the distribution function at

each phase-space position is estimated directly from the

phase-space coordinates of each particle, and the esti-

mators used have been shown to converge to the true
entropy in the limit N → ∞ (Beirlant et al. 1997).

Moreover, as shown in § 6, we are able to describe the

observed long-term entropy evolution by means of the

Fokker-Planck equation. In that case also, there is no

need to advocate any extra coarse-grain interpretation.

5. RESULTS: EARLY EVOLUTION AND VIOLENT

RELAXATION

Let us remember that for our fiducial simulation run,

we use N = 105 particles with a top-hat initial con-

dition, i.e. a spherically symmetric and spatially ho-
mogeneous system, with an initial Maxwellian velocity

distribution with velocity dispersion determined by the

initial virial ratio set to Q0 = 0.5, the value expected at

equilibrium.

Fig. 2 shows the initial evolution of the entropy pro-

duction Ŝ(t)− Ŝ(0), as estimated by Eq. (11), with the

help of Eqs. (12) to (15). In this and other plots shown

below, time is in units of initial mean crossing time
τcr = 2

√
2 – see Appendix B. The uncertainties were

calculated as the standard deviation of 50 runs starting

with different seeds for the random number generator.

We clearly see that the entropy has a significant increase,

accompanied by damping oscillations, in the dynamical
time-scale, which corresponds to the time-scale during

which the violent relaxation process is expected to occur

– see § 1.

These oscillations could, naively, be interpreted as a
violation of the second law of Thermodynamics, which

predicts that the entropy must necessarily increase or

be conserved. However, the observed global entropy in-

crease is in accordance to this. What is apparently vio-

lated is the so-called H theorem, which predicts a mono-
tonic increase of the H function if the system’s evolution

is described by the Boltzmann equation. This apparent

violation of the H theorem is, however, a common fea-

ture of any system with an appreciable potential energy,
as argued by Prigogine & Severne (1966); Jaynes (1971)

– see also Romero-Rochin & González-Tovar (1997). As

pointed out by those authors, these characteristic oscil-

lations are the consequence of the conversion of kinetic

to potential energy and vice-versa, a phenomenon which
is known to occur during the collapse of self-gravitating

systems. In fact, if we assume as a toy-model that the

entropy of these systems has some similarity with that

of ideal gases, depending on the volume V as ∝ lnV , the
behavior seen in Fig. 2 can be associated to the system’s

macroscopic oscillations with collapse followed by some

diffusive process and the correspondent expansion form-

ing the external halo. Such entropy oscillations are also

well-known in presence of memory terms in the effective
dynamics.

Fig. 2 is the main result of this work. It shows that

during violent relaxation of a N -body self-gravitating

system the entropy has a significant increase, while the
prediction of Vlasov-Poisson equation is entropy conser-

vation, what shows that this equation does not seem to

be valid during violent relaxation. In what follows, we

explore other aspects of the problem, namely the role

of the initial conditions, the dependence on the number
of particles, the comparison of different N-body simula-

tors and different distribution function estimators and

finally the role of the softening length in the codes where

it is used. After that we study the long-term evolution
of the entropy, investigating all these aspects in relation

to the two-body relaxation modelled by means of the

orbit-averaged Fokker-Planck equation.
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Figure 2. Entropy production estimation Ŝ(t)− Ŝ(0), Eq. (11), for N = 105 particles starting with a homogeneous sphere and
a Maxwellian velocity distribution, with initial virial ratio Q0 = 0.5, i.e. with the value expected at equilibrium. Time in units
of initial mean crossing time τcr = 2

√
2, the expected time-scale for violent relaxation. Uncertainties were calculated as the

standard deviation of 50 runs starting with different seeds for the random number generator. The significant entropy increase
contrasts with the entropy conservation predicted by the Vlasov-Poisson equation.

5.1. Changing initial conditions

In this section we study what are the consequences of

different initial conditions for the entropy evolution in

two different ways. First, we run the same N -body sim-
ulations as before, with N = 105 particles and a top-hat

initial spatial distribution with a Maxwellian velocity

distribution, but now changing the initial virial ratioQ0.

Remembering that the expected value at equilibrium is
Q = 0.5 (the value used in the previous analyses), now

we set Q0 = 0.25 in one run, which we call “cold” ini-

tial condition, and Q0 = 0.6 in the other (“hot”). And

second, in another run, we start the simulation with a

self-consistent Plummer model (see Aarseth et al. 1974),
whose density profile is given by

ρ(r) =
3M

4πa3
1

[
1 + (r/a)

2
]5/2 ,

where M is total mass and a is a scale factor. In this

way, this simulation run already starts with a steady-

state, for which we would expect no entropy increase.

Fig. 3 shows the early entropy evolution for these

configurations. We see that all three curves with a top-
hat initial density profile and varying Q0 show the same

qualitative behaviour: a high entropy increase followed

by damping oscillations, in the dynamical time-scale.

On the other hand, this early entropy increase is signifi-
cantly smaller (virtually negligible) for the initial Plum-

mer model. In Fig. 3, time is again in units of the initial

mean crossing time. Note that this quantity depends on

Q (see Appendix B), which also changes in time, oscil-

lating around and converging to the value expected at

equilibrium, Q = 0.5. For Q0 = 0.25 and Q0 = 0.6

the initial mean crossing time would be τcr ≈ 7.35 and
τcr ≈ 1.85, respectively. However, in order to avoid con-

fusion, we normalize all curves by the same constant

value τcr(Q = 0.5) = 2
√
2. If we had normalized by

the respective τcr values, the blue (cold) curve would be

slightly compressed to the left and the red (hot) curve
would be slightly stretched out to the right.

The most striking feature of this plot is the fact that

when we start with initial conditions farther from equi-

librium the entropy increase is higher, as we would ex-
pect based on the second law of Thermodynamics. For

the simulation starting with the self-consistent Plummer

model, the entropy production is almost zero. There-

fore, the large entropy increase observed in the other

curves probably cannot be attributed to any artificial
numerical effect. Instead, as in the general idea of the

entropy increase in any macroscopic system, it is the

consequence of the choice of a particular initial state,

very unlikely in comparison to the near-equilibrium
state.

5.2. Dependence on the number of particles

The distribution function estimation is expected to

represent the true distribution function and, for signifi-
cantly large N , the distribution function of a collision-

less system. One concern then is whether the number

of particles used is enough for achieving convergence to

this limit.
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Figure 3. Entropy estimation for N = 105 particles and different initial conditions. Blue triangles: initial virial ratio Q0 = 0.25
(“cold” initial condition). Red squares: Q0 = 0.6 (“hot” initial condition). Black dots: the same as in Fig. 2, the case Q0 = 0.5
(the value expected at equilibrium). Black stars: initial self-consistent Plummer model, which is a steady-state. Time in units
of initial mean crossing time τcr = 2

√
2, the time-scale expected for violent relaxation. All these curves are consistent with the

expectation that the farther from the equilibrium, the larger the entropy production.

Fig. 4 shows the early entropy evolution for different

numbers of particles (blue triangles for N = 104, black

dots for N = 105 and red squares for N = 106). We
see that the three curves have the same qualitative be-

haviour: a fast entropy increase, followed by damping

oscillations. For N = 104, we still have significant noise

deforming the oscillatory pattern, while for N = 105 and

N = 106 the curves are smoother. Also, the curves for
N = 105 and N = 106 are very similar and achieve the

same value at t ≈ 75, what seems to indicate the conver-

gence for this early evolution. This convergence is also

important because it indicates that the high entropy in-
crease during violent relaxation is not due to two-body

relaxation associated to the use of a finite number of

particles.

5.3. Comparison of distribution function estimators

The second method we use to estimate the distribution

function f(~r, ~v, t) is the Nearest Neighbor method (see

Silverman 1986), which is based on the following idea:
sitting on particle i, we use Eq. (13) to calculate the

(6-D) phase space distance Din to particle n, its nearest

neighbor, i.e. the smallest of the distances to all the

other particles j, Eq. (13).
This distance is used to define a hyper-sphere of vol-

ume ∝ D6
in centered on particle i. The estimation of

the distribution function at the phase-space position of

particle i is then

f̂(~ri, ~vi, t) =
1

D6
in

, (16)

i.e., it is the number of particles inside the sphere di-

vided by its volume. In principle, this estimation must

be normalized, but we use it just to estimate the entropy
production S(t)−S(0), for which additive constants, i.e.

multiplicative factors in f , cancel out. Note that, dif-

ferently from the Kernel method, Eq. (12), the Nearest

Neighbor estimation does not involve a sum over parti-

cles. Instead, it only considers the distance to the near-
est neighbor, thus being more prone, at least in princi-

ple, to larger Poisson errors.

Figs. 5 and 6 compare the early entropy evolu-

tion obtained with the different estimator methods, for
N = 105 and N = 106 respectively. Results obtained

with Nearest Neighbor method are represented by black

triangles. We see that for N = 105, this method is al-

ready very close to the Kernel method estimation (black

dots), although showing larger amplitude oscillations.
For N = 106, Fig. 6, the differences are smaller and the

oscillation amplitudes are very close to those obtained

with the Kernel method.

The third distribution function estimator method we
use is EnBiD (Sharma & Steinmetz 2006) which is based

on the general idea of binary space partitioning tree, and

consists of three steps: first the phase space is tessel-

lated into mutually disjoint hyper-cubes containing one

particle each. Here, the phase-space density could al-
ready be estimated as 1/Vi, where Vi is the volume of

hyper-cube i, similarly to the Nearest Neighbor method.

Then, boundary corrections are applied to consider the

arbitrary shape of the volume with the data. Finally,
in order to reduce noise, that first density estimation is
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Figure 4. Entropy estimation for different numbers of particles as a function of time. Blue triangles for N = 104, black dots
for N = 105 and red squares for N = 106. The similarity between the curves for N = 105 and N = 106 suggests the convergence
for significantly large N .
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Ŝ
(0
)

N=105

Nearest Neighbor
Kernel
EnBiD - Anisotropic Kernel
EnBiD - Isotropic Kernel

Figure 5. Entropy estimation for N = 105 with different methods. Black dots (triangles) show the entropy estimation obtained
with Kernel (Nearest Neighbor) method, Eqs. (12) and (16). Red squares (stars) represent the entropy evolution obtained
with EnBiD method with anisotropic (isotropic) kernel smoothing. Despite some differences, mainly the higher initial entropy
production obtained with EnBiD in comparison to the other methods, the overall behavior of the estimation does not change
for different estimators: entropy increases accompanied by damping oscillations.

smoothed by a number of different techniques, mainly

the Kernel method. Also, different kernels can be cho-
sen. In this smoothing procedure, EnBiD sums the con-

tribution of a fixed number of neighbors. Note that this

is different from what we do in the Kernel estimator,

where we sum over all systems’s particles – see § 4. As a
generalization, EnBiD also allows the use of Anisotropic

Kernels, what can improve the estimation in regions

with large density variations, such as the borders of the

system – see Maciejewski et al. (2009).

EnBiD has been shown to accurately recover the dis-

tribution function used as input – Sharma & Steinmetz
(2006); Maciejewski et al. (2009). Here we use EnBiD

method with the Epanechnikov Kernel smoothing, tak-

ing into account the contribution of 25 neighbors. For

comparison, we also use EnBiD with the anisotropic ker-
nel option. In Figs. 5 and 6, the EnBiD estimates are

represented by red squares and stars, for the Anisotropic

and Isotropic kernels, respectively. For N = 105, we see

important deviations in respect to the other two meth-
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Figure 6. Same as Fig. 5 but now for N = 106 particles. The larger initial entropy production obtained with EnBiD in
comparison to the other methods is not present anymore and the oscillation amplitudes of all methods are closer. Qualitative
changes of EnBiD from N = 105 to N = 106 are larger than for the other methods, suggesting a faster convergence of Nearest
Neighbor and Kernel methods. The similarity of all curves also suggests convergence for significantly large N .

ods, mainly in the initial entropy increase and in the

oscillation amplitudes, although the differences being
smaller for the Anisotropic version, which we consider to

be more accurate. For N = 106, the EnBiD estimators,

mainly with the Anisotropic kernel, are very close to

what is obtained with the Nearest Neighbor and Kernel
methods: that high discrepancy in the initial entropy

production is not present and the oscillation amplitudes

are smaller and similar to those of the other methods.

It is interesting to note that the qualitative changes in

EnBiD estimate from N = 105 to N = 106 are larger
than that of the Nearest Neighbor and Kernel methods,

suggesting a faster convergence of the latters.

The important point here is that all the different

methods show the same qualitative behavior for the en-
tropy evolution: a fast monotonic increase up to the dy-

namical time-scale, followed by an increase with damp-

ing oscillations up to, at least, t/τcr ≈ 25. The similar-

ity and smoothness of the curves obtained with different

methods indicate that the features observed really rep-
resent the behaviour of the entropy during the evolution

of the simulated system, and are not spurious effects as-

sociated to a particular method. It is interesting to note

the similarity of all the methods for N = 106. Both the
Kernel and the Nearest Neighbor estimators are known

to converge, independently of each other, to the same

value (namely, the entropy of the considered distribu-

tion) for sufficiently large N , and the same is expected

for EnBiD. Thus, this agreement suggests that this con-
vergence has already been achieved with N = 106 par-

ticles.

5.4. Comparison of N-body simulators and the role of

the softening length

As mentioned in § 3, we also run simulations with the
code NBODY-2, which makes use of a softening length in

order to avoid close encounters and suppress 2-body re-

laxation. Varying that parameter allows us to study the

characteristic scales for different relaxation processes.
Some particularly important scales in this respect are

the system’s size R ≈ 1 and the mean neighboring par-

ticle distance d̄ = R/N1/3.

Fig. 7 shows the early evolution of the entropy for a

simulation with N = 105 and the fiducial initial con-
ditions, i.e. a top-hat with Maxwell velocity distribu-

tion and initial virial ratio Q0 = 0.5, for different values

of the NBODY-2 softening length ε. Black stars repre-

sent the entropy evolution obtained with NBODY-6, i.e.
without any softening (ε = 0). We firstly note the simi-

larity of this curve with the entropy evolution obtained

with NBODY-2 for the smallest softening length used

ε = 10−3 (red dots).

It is possible to see that the initial entropy increase is
essentially the same for all runs with ε ≤ 0.1, suggest-

ing that violent relaxation do not involve scales much

smaller than the mean neighboring particle distance

d̄ ≈ R/N1/3 ≈ 0.02. On the other hand, for ε = 0.5
and ε = 1.0, we observe an important suppression in

the early entropy production, suggesting that the violent

relaxation process involves scales larger than d̄. We no-

tice that this is in accordance with recent mathematical
results on effective dynamical equations for large New-

tonian systems, i.e. that interactions involving scales
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around d̄ could prevent Vlasov-Poisson equation to be

valid – see Appendix A.

The delayed entropy increase for these large values of ε

can be interpreted as follows: with such high values of ε,
the system starts evolving almost as if it was composed

of non-interacting particles, for which we would expect

the entropy to be constant or to evolve slowly due to

phase-mixing finite-N coarse graining. However, once

the system expands, the typical distance between par-
ticles increases, “turning on” the interactions between

particles with distances larger than ε, thus increasing

the entropy production rate.

We also simulate the evolution of one halo with the
tree code GADGET-2, starting with exactly the same

initial conditions as those of the previous simulations,

and with a softening length h = 2.8 × 10−2, i.e. with

a Plummer-equivalent softening length εeq = 10−2 – see

§3. The entropy evolution is shown as the blue open
triangles in Fig. 7 and we see that it is very similar

to that obtained with NBODY-2 and the same value

of the softening length (blue dots). Since these codes

are based on very different integration techniques, this
weakens the possibility of the entropy evolution observed

being due to an artificial numerical relaxation, unless it

is present in exactly the same way in both codes.

6. LONG-TERM EVOLUTION AND TWO-BODY

RELAXATION

Taking into account the collisional relaxation time

scale, Eq. (2), in the limit N → ∞ the system becomes

collisionless, i.e. the 2-body relaxation is expected to
be negligible in this limit. The study of this limit is

the main goal of this work, as discussed in the previ-

ous section. However, in N-body simulations we nec-

essarily deal with a limited number of particles, and
some 2-body relaxation is always present. In this sec-

tion, we model the effects of 2-body relaxation by means

of the orbit-averaged Fokker-Planck equation, assum-

ing that the potential is static and that the distribution

function is a function of energy only. Thus, this ap-
proach applies to the long-term evolution, after violent

relaxation. The terms involved in the Fokker-Planck

relaxation term are estimated with the Agama library

(Vasiliev 2017 - submitted), as explained below.

6.1. Entropy production of a general process

Given the entropy definition Eq. (10), we have, ac-

cording to Eq. (9),

dS

dt
= −

∫
(1 + ln f)Γ[f ] d3~r d3~v, (17)

which we can estimate as

d̂S

dt
= − 1

N

N∑

i=1

(1 + ln f̂i)

f̂i
Γ[f̂i]. (18)

Thus, the theoretical prediction for the entropy pro-
duced by any model through the relaxation term Γ[f ]

can be estimated with the simulation data, then inte-

grating d̂S/dt as

Ŝ(t+∆t) = Ŝ(t) + a · d̂S
dt

(t)∆t (19)

and fitting to the simulation data with 2 free parameters,

S0 = S(0) and a. This can be compared to the entropy

production obtained with the same data, Eq. (11), con-

figuring a general method to test any theoretical trans-
port equation, in particular the Fokker-Planck equation.

6.2. Fokker-Planck relaxation term

The Fokker-Planck relaxation term is used below to

estimate the 2-body relaxation contribution to entropy

production. This model considers the relaxation of the
system as a result of cumulative effects of many 2-body

weak encounters, with the energy change and deflec-

tion angle in each encounter being small, neglecting any

possible collective relaxation effect, i.e. assuming that

encounters are independent on each other. Following
standard procedures (Spitzer 1987; Binney & Tremaine

2008; Heggie & Hut 2003), we only consider diffusion

in the velocity field. In the local approximation, the

diffusion coefficients are considered to depend only on
the velocity of the test particle, but not on its position,

which is valid for systems with a constant potential. For

more realistic systems, in which the potential does have

a spatial dependence, we resort to the orbit-averaged

Fokker-Planck equation, in which case the diffusion co-
efficients are averaged over the volume V accessible to

the test particle. For a spherically symmetric static po-

tential and assuming that the distribution function de-

pends only on energy, the orbit-averaged Fokker-Planck
relaxation term is given by

Γ[f ]FP =
1

g(E)

{
− d

dE
[f(E)g(E)〈∆E〉V ] +

+
1

2

d2

dE2

[
f(E)g(E)〈(∆E)2〉V

]}
, (20)

where g(E) is the density of states:

g(E) = 16π2

∫ rm(E)

0

drr2v, (21)

with v =
√
2[E − φ(r)]. The diffusion coefficients 〈∆E〉

and 〈(∆E)2〉 are given by

〈∆E〉 = γ(I0 − I1/2), (22)
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Figure 7. Entropy estimation (Kernel method) for N = 105 particles obtained with NBODY-2 for different values of softening
length ε. Entropy production is suppressed for ε values considerably larger than d̄ ≈ R/N1/3 ≈ 0.02. Black stars represent the
entropy obtained with NBODY-6 (same as in Fig. 2), i.e. with ε = 0. Also shown the entropy obtained with GADGET-2 (blue
open triangles) for a softening length h = 2.8×10−2 , i.e. with a Plummer-equivalent εeq = 10−2, whose evolution is very similar
to that of NBODY-2 with same ε (blue dots).

〈(∆E)2〉 = 2

3
γv2(I0 + I3/2), (23)

where γ = 16π2G2m ln Λ and

I0(E) =

∫ 0

E

f(E′)dE′ =

∫
∞

v

f(r, v′)v′dv′, (24)

In/2(E, r) =

∫ E

φ(r)

(
E′ − φ(r′)

E − φ(r)

)n/2

f(E′)dE′

= v

∫ v

0

(
v′

v

)n+1

f(r, v′)dv′.

(25)

Finally, the orbit-average operation is defined as

〈...〉V =
16π2

g(E)

∫ rm(E)

0

drr2v〈...〉 (26)

– see Vasiliev (2015) for similar expressions. After some

algebra, we have

Γ[f ]FP = γ

{[
〈I0(E)〉V + 〈I1/2(E, r)〉V

] df

dE
+

+
1

3

[
〈v2I0(E)〉V + 〈v2I3/2(E, r)〉V

] d2f
dE2

+ f2(E)

}

(27)

We estimate all quantities involved in the orbit-

averaged Fokker-Planck relaxation term using the

Agama library (Vasiliev 2017 - submitted), which works

in the following steps: for the N−body sample at a

given snapshot, the library determines a smooth global
potential φ(r) and the density of states g(E), Eq. (21).

Given the sample energy distributionN(E) = f(E)g(E)

the code calculates smooth functions f(E), df/dE and

d2f/dE2. The Agama library also provides accurate

estimates for the orbit-average of the integrals involved
in the calculation of the diffusion coefficients, Eqs. (22)-

(25).

Substituting these expressions into Eq. (27), we esti-

mate at each snapshot the contribution of the Fokker-
Planck relaxation term to the entropy increase, Eq. (18).

This is then integrated with Eq. (19) and fit to the sim-

ulation data, with the free parameter a being associated

to the value of the Coulomb logarithm lnΛ.

Note that, in principle, it is possible to estimate all
quantities involved in Eq. (27) with the same kind of

estimators used here for the entropy. For example, it

is possible to estimate the orbit-averaged diffusion co-

efficients and, given the estimator for f(r, v), Eq. (12),
to calculate ∂f̂/∂v and ∂2f̂/∂v2. However, when trying

this we observed that, although our estimates for the dif-

fusion coefficients seem very accurate, being essentially

identical to what we get with the Agama library, our

estimates for the derivatives of f are noisy, producing
unsatisfactory results. Note also that, even though we

are able to get expressions for terms like ∂f̂/∂v, i.e. for
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the derivative of the estimator, in reality what we need

are terms like ∂̂f/∂v, i.e. the estimator of the deriva-

tive. In other words, it is not clear if the estimators

commute with the derivatives, and a detailed study of
these properties is out of the scope of this work. In

future works, it would be interesting to better under-

stand these operators and how to accurately estimate

these derivatives, opening the possibility of testing any

theoretical transport equation.

6.3. Main results on two-body relaxation

Fig. 8 shows the entropy production estimation

Ŝ(t)− Ŝ(0) in the long-term evolution (t/τcr up to 700)

for the fiducial simulation. After the fast increase at

early times, as shown in Fig. 2, the entropy growth

becomes slower and almost linear. The dashed curve
shows the fit of the Fokker-Planck model when we con-

sider all the data points. Since in the early evolution the

hypotheses behind the Fokker-Planck model, namely a

static potential and f = f(E) are not valid, it is not
surprising that the model cannot describe the data in

this regime. On the other hand, if we restrict the fit

to later times, say for t/τcr & 26.5, we see an excel-

lent agreement with data, as shown by the solid line.

Thus this long-term evolution can clearly be attributed
to 2-body relaxation. Note that the smooth, almost

linear behaviour of the Fokker-Planck prediction is not

put by hand, but it is a consequence of the non-trivial

combination of several terms in Eq. (27).

6.4. Changing initial conditions

Fig. 9 shows the long-term entropy evolution for the
simulations with different initial conditions discussed in

§ 5.1, namely: top-hat with Q0 = 0.25 (blue triangles),

Q0 = 0.5 (black dots) and Q0 = 0.6 (red squares); and

also starting with a Plummer model (black stars). As in
the fiducial case, the Fokker-Planck model (continuous

lines) can reproduce the almost linear entropy increase

for t/τcr & 26.5, but not for early times. While the

entropy increase at early times depends crucially on the

initial conditions, it is basically the same for the long-
term evolution (same slope of Ŝ(t)). In other words,

collisional relaxation seems to depend just on N , but

not on the initial conditions, while violent relaxation

strongly depends on the initial conditions. Here again
we have time normalized by τcr = 2

√
2 in all curves

(normalizing by the respective initial values of τcr would

give the false impression that the long-term relaxation

rate, i.e. the slope of Ŝ(t), is different for the different

initial conditions.)

6.5. Comparison of distribution function estimators

Here we compare the long-term entropy evolution ob-

tained with the three different distribution function es-

timator methods, as explained in § 5.3. Figs. 10 and 11

show the results for N = 105 and N = 5 × 105, respec-
tively. In these figures, we can see that the long-term

evolution obtained with all methods are very similar al-

ready for N = 105 particles, with only a slightly smaller

slope for the EnBiD estimate. For N = 5× 105, Fig.11,

the agreement of the methods is even better, mainly
the Kernel and EnBiD with anisotropic smoothing ker-

nel methods. This indicates again that the estimates,

which involve different techniques from each other, are

capturing real physical effects, and are not produced by
numerical features.

6.6. Dependence on the number of particles

In Fig. 12 we compare the long-term entropy evolu-
tion for three different numbers of particles: N = 104

(blue triangles), N = 105 (black dots) and N = 5× 105

(red squares), as well as the fit of the orbit-averaged

Fokker-Planck equation for t/τcr & 26.5. We see that
the prediction for N = 104 is a little bit noisy. In prin-

ciple, this can be attributed to two causes: shot noise

due to a relatively small number of particles or non-

validity of some hypotheses on which our Fokker-Planck

model is based. In §6.7 we present arguments in favour
of this second option. More specifically, it seems that

when N is small we still have a substantial number of

almost close encounters (b & b0), producing scattering

angles . 90◦, which can be enough to violate the weak
coupling assumption on the basis of the Fokker-Planck

treatment – see Binney & Tremaine (2008), sec. 7.4.4..

However, again we see that in general the Fokker-Planck

equation is able to explain the long-term entropy evo-

lution. Taking into account the estimate of the 2-body
relaxation time-scale, Eq. (2), the fact that the slope of

S(t) is larger for decreasing number of particles shows

that the 2-body relaxation is in fact more effective for

a smaller number of particles, in agreement with the
theoretical expectation: in the limit N → ∞ we would

have a collisionless system and thus the slope of S(t)

predicted by the Fokker-Planck equation would be zero.

With this long-term entropy evolution for differ-

ent numbers of particles, we can also study the N -
dependence of the 2-body relaxation time-scale, Eq. (2).

More specifically, we study the N -dependence of the

Coulomb logarithm lnΛ obtained with the fit to this

long-term evolution. This is represented by the black
dots in Fig. 13. From the theoretical point of view, the

Coulomb logarithm is given by lnΛ = ln bmax/b0, where

bmax is usually assumed to be of order of the system’s

size (although some authors support the idea that bmax
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Figure 8. Entropy estimation for N = 105 particles (dots) and Fokker-Planck (F-P) prediction estimated by Agama (curves).
Note the difference in the range of the x-axis compared to Fig. 2. Dashed line: fit of F-P equation, Eqs. (27) and (18), taking
into account all the data points. The high entropy production during violent relaxation at early stages cannot be described by
2-body relaxation as modeled by F-P equation. Solid line: fit of the same model, but taking into account just data points for
t/τcr > 26.5. The model can fit the entropy evolution in this regime.
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Ŝ
(t
)
−
Ŝ
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Figure 9. Long-term entropy evolution for different initial conditions: top-hat with Q0 = 0.25 (blue triangles), Q0 = 0.5
(black dots) and Q0 = 0.6 (red squares); and also an initial Plummer model (black stars) – see Fig. 3. The orbit-averaged
Fokker-Planck equation (curves) can describe the long-term entropy evolution (for t/τcr & 26.5), but not the early evolution
driven by violent relaxation. Two-body relaxation rate seems to be insensitive to initial conditions.

should be equal to the mean interparticle distance, i.e.

bmax ∝ N−1/3 – see Chandrasekhar & von Neumann

(1942); Kandrup (1980); Farouki & Salpeter (1982);

Smith (1992); Farouki & Salpeter (1994); Theis (1998)).
In what follows, we set bmax = Rhm, the half-mass ra-

dius (see Spitzer 1987). The impact parameter associ-

ated to a 90◦ scatter is given by:

b0 = 2
Gm

V 2
, (28)

where V is the relative velocity between the test and

field particles (here again assumed to have equal mass

m).

The virial radius Rvir is defined by (see Appendix B)

〈v2〉 = GM

2Rvir
.
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Figure 10. Same as Fig. 5, but now showing the long-term evolution of the entropy. We see that all estimators provide the
same behavior for the entropy, which increases almost linearly in the 2-body relaxation time-scale. Continuous curves represent
the orbit-averaged Fokker-Planck fit, estimated with Agama library.
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Figure 11. Same as Fig. 10, but now for N = 5 × 105 particles. The agreement between Kernel method and EnBiD with
anisotropic smoothing kernel is almost perfect.

Substituting in Eq. (28) we obtain

Rvir

b0
=

N

2

V 2

2〈v2〉 . (29)

Assuming a Plummer density profile, the half-mass ra-
dius is given by Rhm ≈ 0.8Rvir and with 〈V 2〉 = 2〈v2〉
and assuming the system is virialized (see Appendix B),

we finally have

Λ =
Rhm

b0
≈ 0.4N. (30)

In Fig. 13, this relation is shown as the black straight

line. We see that despite some discrepancy for small

N , the data points show a reasonable agreement with

Eq. (30).

6.7. Comparison of different N-body codes and the role
of the softening length

Similarly to § 5.4, we now compare the long-term

entropy evolution obtained with the three different N-

body simulation codes used (NBODY-6, NBODY-2

and GADGET-2) with different values of the soften-
ing length, when it applies. Fig. 14 shows the long-

term entropy evolution and the fit of the Fokker-Planck

model for different values of ε obtained with NBODY-2,

now fixing N = 104. The stars and the black dashed
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Figure 12. Entropy estimation for N = 104 (blue triangles), N = 105 (black dots) and N = 5× 105 (red squares). Similarly
to Fig. 8 but now comparing different number of particles. The entropy increase during violent relaxation is similarly high for
the three data sets. However, for the long-term evolution, during which we expect the 2-body relaxation to be significant, the
slope of S(t) is larger for a smaller number of particles N , in agreement with the theoretical expectation that 2-body relaxation
rate is larger for smaller N – see Eq. (2).
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Figure 13. Coulomb logarithm obtained fitting Agama modelling of orbit-averaged Fokker-Planck equation to the long-term
entropy evolution for different numbers of particles (black dots). We can see a reasonable agreement with the theoretical
expression ln Λ = 0.4N shown as the black straight line.

line represent the case obtained with NBODY-6, i.e.

without softening length. Firstly, we can see that for
ε = 10−4 ≈ R/N ≈ b0 (see Eq. (30)), the entropy evo-

lution is very similar to that without softening length,

i.e. encounters with impact parameter b . b0, i.e.

close encounters, do not seem to contribute signifi-

cantly to the relaxation, confirming earlier results from
Farouki & Salpeter (1982).

On the other hand, we clearly see that larger values

of the softening length increasingly suppress the 2-body

relaxation, decreasing the slope of Ŝ(t), even for ε >

d̄ = R/N1/3 ≈ 0.05. This indicates that scatterings
involving distances > d̄ seem to be important for the

2-body relaxation, an indication in favor of bmax ≈ R,

in contrast to bmax = d̄ as predicted by some authors

(see Farouki & Salpeter 1994), although more detailed

analysis, with larger N , would be necessary.
In Fig. 14 the blue open triangles represent the en-

tropy evolution obtained from GADGET-2 with N =

104, the same initial conditions as before and with a
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softening length h = 2.8 × 10−2, i.e. with a Plummer-

equivalent softening length εeq = 10−2 – see §3. Also

shown is the fit of the Fokker-Planck model (dashed

blue line), from which we see that the 2-body relax-
ation is slightly more suppressed with GADGET-2 than

with NBODY-2 with equivalent softening lengths, but

their overall evolutions are very similar. These results

confirm that, even though codes such as GADGET-2

are frequently called collisionless, they can still present
significant collisional relaxation in the long-term evo-

lution. Furthermore, this collisional relaxation is simi-

lar to that obtained with other techniques and equiv-

alent softening lengths, as already demonstrated by
Hernquist & Barnes (1990); Sellwood (2015).

Regarding the discussion raised in §6.6 about the

noisier appearance of the Fokker-Planck prediction for

N = 104 in comparison to larger N , it is interesting

to see that for increasing ε the prediction rapidly be-
comes smoother, even though the number of particles is

fixed. This seems to indicate that the noise is not di-

rectly due to Poisson fluctuations of a small number of

particles. Instead, since the introduction of a softening
length suppresses encounters producing large scattering

angles (even though not strictly close encounters, for

which b < b0, as shown above), the noise seems to be

associated with the presence of a substantial number of

such almost close encounters (b & b0, producing scatter-
ing angles . 90◦), what is expected for small N .

In Fig. 15 we show the Coulomb logarithm obtained

fitting the Fokker-Planck equation to the entropy evolu-

tion for different ε values (dots). The effect of suppres-
sion on 2-body relaxation for increasing softening length

ε can be parametrized in lnΛ substituting b0 in Eq. (30)

by an effective impact parameter beff = bmin + ε, where

bmin is expected to be of order of b0 ≈ R/N , as sug-

gested by Spinnato et al. (2003). The red curve shows
the fit of lnΛ = ln [bmax/(bmin + ε)], where bmax and

bmin are free parameters, for which we get bmax = 0.52

and bmin ≈ 0.0. The value obtained for bmax agrees

with the assumption made in § 6.6, where we used
bmax = Rhm. On the other hand, the value for bmin

is significantly smaller than expected, being compatible

with zero. This seems to be associated to the fact that

the first data point (smallest ε) is significantly higher

than the expected trend of Λ ≈ const in this region.

7. CONCLUSIONS

As discussed in §1, the validity of the Vlasov-Poisson
equation implies the conservation of quantities defined

by Eq. (7), for any functional s[f ] – see Tremaine et al.

(1986). Conversely, non-conservation of any such quan-

tity, like the Shannon entropy, implies non-validity of

Vlasov-Poisson equation. In this paper, through the use

of N -body simulations, we estimate the entropy at each

time step, following its time evolution in order to test the

validity of the Vlasov-Poisson equation for a collisionless
self-gravitating system during violent relaxation.

Our results show a clear separation between the two

relevant time scales: the dynamical time scale and the

2-body relaxation time scale. During the early stages,

in the dynamical time scale, the entropy has a signifi-
cant increase accompanied by damping oscillations – see

Fig. 2. This is the time scale in which the violent relax-

ation process is known to operate, the relaxation being

associated to the typical particle interaction with the
time-changing collective gravitational potential. This is

the main result of this work, indicating that the Vlasov-

Poisson equation does not seem to be valid during vio-

lent relaxation. This conclusion provides a natural so-

lution to the so-called “fundamental paradox of stellar
dynamics” (Ogorodnikov 1965; Ossipkov 2006). Several

tests, changing the N -body simulation setups and esti-

mators, as discussed in the preceding sections and com-

mented below, lead to the same conclusion.
Instead of representing an exceptional situation,

the entropy oscillations observed reinforce the reli-

ability of our results, since they are typical of sys-

tems with considerable potential energy, as pointed

out by Prigogine & Severne (1966); Jaynes (1971);
Romero-Rochin & González-Tovar (1997). Moreover,

Jaynes (1971) argues that the fact the “H” function is

not monotonic can be associated to the non-validity of

the hypothesis of molecular chaos, which is of fundamen-
tal importance in the derivation of the Vlasov-Poisson

equation through the BBGKY hierarchy, a possibility

also suggested by Beraldo e Silva et al. (2014).

Studying the impact of different initial conditions,

the general conclusion is that entropy increase is higher
for initial conditions farther from equilibrium. In par-

ticular, starting the simulation with the self-consistent

Plummer model, which is a steady state, we see prac-

tically no entropy increase. This is in agreement with
the general idea behind the statistical interpretation of

the second law of Thermodynamics: that the systems

evolve to the most probable state and that the entropy

increase is due to the particular choice of a initial state

which is very unlikely in comparison to the equilibrium
state. The fact that we observe a negligible entropy in-

crease in the case of initial Plummer model also weakens

the possibility that the entropy increase observed in the

other runs is being produced by some artificial, numer-
ical relaxation.

Regarding the number of particles, we see in Fig. 4

that the early evolution of the entropy is qualitatively
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Ŝ
(0
)

N=104

ε=10−4

ε=10−3

ε=10−2

ε=10−1

ε=0. 5

NBODY-6 - ε=0

GADGET - εeq =10−2

Figure 14. Long-term evolution of entropy estimation for N = 104 particles obtained with NBODY-2 for different values of the
softening length ε. As expected, suppression of collisional relaxation is larger for larger ε, saturating just at scales larger than
d̄. This favours bmax = R – see § 6.2. For ε = 10−4 ≈ R/N , the entropy evolution is identical to that without softening length
(stars and black dashed line) obtained with NBODY-6, confirming that close encounters, i.e. those involving impact parameters
b . b0 ≈ R/N , do not contribute significantly to relaxation. Also shown the entropy obtained with GADGET-2 (blue open
triangles) for a softening length h = 2.8× 10−2, i.e. with a Plummer-equivalent softening length εeq = 10−2, whose evolution is
very similar to that of NBODY-2 with the same ε (blue dots).

−10 −8 −6 −4 −2 0
lnε

0

1

2

3

4

5

6

7

8

9

ln
Λ

N=104

Agama F-P fit after viol. relax.
Λ= 0. 52

ε

Figure 15. Coulomb logarithm from the fit of orbit-averaged Fokker-Planck equation to the entropy evolution obtained with
NBODY-2 for N = 104 as a function of the softening length ε.

similar for N = 104, N = 105 and N = 106. The more

irregular appearance of the data points for N = 104 can

be attributed to shot noise due to the relatively small

number of particles, while for N = 105 and N = 106 the
curves are pretty smooth.

We note that oscillation amplitudes are larger for

N = 106 in comparison to N = 105. This can be inter-

preted as follows: the 2-body relaxation, although glob-
ally negligible for entropy increase already for N = 105,

can still act to destroy the coherent oscillatory pattern,

smoothing out the curve, while for N = 106 the 2-body

relaxation has even less effect, allowing the presence of

coherent oscillations for a longer time period. This also
reinforces the idea that convergence to significantly large

N , i.e. to the collisionless regime, has been achieved for

the time-scale of violent relaxation.

We also tested three different methods for estimat-
ing the distribution function: the Kernel method, Near-
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est Neighbor method and EnBiD (Sharma & Steinmetz

2006). For N = 105, Fig. 5 shows that Kernel and

Nearest Neighbor have a general agreement with each

other, but EnBiD shows some differences in respect to
those methods, mainly a larger initial entropy produc-

tion. Nevertheless, the general qualitative behaviour is

similar for all these methods: a high entropy increase

followed by damping oscillations in the dynamical time-

scale. For N = 106, Fig. 6 shows a much better agree-
ment of all the methods, mainly between Kernel method

and EnBiD with anisotropic kernel smoothing. This

agreement suggests that the entropy evolution observed

is not being produced by numerical artifacts but repre-
sents a good estimator for the true entropy evolution.

We also observe a good agreement for the entropy evo-

lution obtained with the three different N-body simula-

tion codes NBODY-6, NBODY-2 and GADGET-2 de-

spite the fact the these codes involve different integra-
tion techniques. This reinforces the idea that the en-

tropy evolution observed is not a numerical effect, but

a real physical effect. Therefore, the results obtained

from NBODY-2 with different values of the softening
length ε suggest that violent relaxation involves spatial

scales around the mean neighboring particle distance, in

agreement with the mathematical results summarized in

Appendix A.

On the other hand, in the long-term, i.e. in the colli-
sional relaxation time scale the entropy increases almost

linearly. In order to verify if this entropy increase can be

produced by 2-body relaxation, we estimate the contri-

bution of the orbit-averaged Fokker-Planck model to the
entropy increase, Eqs. (18) and (27). Fig. 8 shows that

this is the case indeed: if we restrict the fit to points

after the early stages, say for t/τcr & 26.5, the Fokker-

Planck model can reproduce quite accurately the almost

linear entropy increase. However, not surprisingly, the
orbit-averaged Fokker-Planck model cannot fit the early

entropy evolution, during violent relaxation, where the

potential is time-changing and the assumption f = f(E)

does not apply.
An interesting observation is that while the effective-

ness of violent relaxation, i.e. the slope of S(t), depends

crucially on the initial conditions, the 2-body relaxation

seem to depend only on the number of particles N .

The variation of the softening length ε in the long-
term simulations generated with NBODY-2 also allowed

us to study the characteristic scales for 2-body relax-

ation. Our results seem to confirm that this relaxation

process involve scales within the interval R/N ≤ b ≤ R.
In conclusion, our results show that during violent re-

laxation there is a significant entropy increase despite

the prediction of the Vlasov-Poisson equation of entropy

conservation. Under the assumption that the conver-

gence for significantly large N has been achieved (which

seems to be the case), this early entropy increase can-

not be attributed to any 2-body relaxation process, and
must be associated to a collective effect, which is the

original idea behind violent relaxation.

These results indicate that the Vlasov-Poisson equa-

tion is not valid for collisionless self-gravitating systems

during violent relaxation, resurrecting the arrow of time
in the collapse of these systems.

Finally, the fact that the early regime with fast en-

tropy changes extends up to t ≈ 25τcr, i.e. times

substantially larger than τcr but still substantially
smaller than τcol, can possibly support the collec-

tive relaxation time scale τ ∝ N1/3τcr predicted by

Gurzadian & Savvidy (1986). However, due to the rea-

sonably weak N -dependence, a more rigorous test would

require significantly larger numbers of particles.

8. FINAL REMARKS

The second law of Thermodynamics refers to the

macroscopic evolution of any physical system, and does
not depend on its on a description in terms of its mi-

croscopic constituents. Therefore, whenever a macro-

scopically irreversible evolution takes place, entropy is

expected to increase. All results discussed in this work
are in accordance with this idea.

On the other hand, when trying to explain the en-

tropy evolution by means of a transport equation, it is

important to keep in mind that even though the equa-

tion refers to the coordinates of one particle, it is not
an equation of motion for some specific, randomly cho-

sen, particle or fluid element. Instead, it statistically

expresses the evolution of the system as a whole, refer-

ring to the coordinates of a statistical entity, the typical
(or test) particle. As a result, it captures the influence

of collective effects, which cannot be achieved using the

equations of motion for a single particle. In this respect,

any “transport equation” whose derivation is based only

on mechanical considerations cannot describe the evolu-
tion of the system as a whole, but merely reassert the

Hamiltonian evolution of each particle individually.

We should also mention that the right hand side of

a transport equation is associated to any process re-
laxing the system, which only in the case of a molec-

ular gas is necessarily realized by collisions, i.e. 2-body

interactions. This point is particularly important for

a system with long-range interactions, which can relax

even if it is collisionless4. In fact, taking the presence

4 This is the reason why we prefer not to call Eq. (3) the “colli-
sionless Boltzmann equation” as recommended by Hénon (1982).
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of chaotic motions as a diagnostic of relaxation, it is in-

teresting to remember that N -body self-gravitating sys-

tems can exhibit large (and increasing as lnN) rates of

growth of small perturbations, even for large N – see
Hemsendorf & Merritt (2002). In other words: these

systems seem to be more chaotic for larger N , i.e.

when they approach the collisionless regime – see also

Kandrup & Sideris (2003).

The original statistical meaning of the distribution
function seems to be frequently neglected, and in our

opinion, the standard view of the necessity of a coarse-

grain interpretation for the macroscopic evolution of

the system serves to introduce this statistical mean-
ing. This coarse-grain interpretation also seems to be

reminiscent of discussions regarding the difference be-

tween Gibbs’s and Boltzmann’s definitions of entropy

(Lebowitz 1993a,b; Jaynes 1965; Goldstein 2001), which

is in the heart of the opposition between the microscopic
and macroscopic descriptions of the evolution of any sys-

tem, not being restricted to the gravitational N -body

problem. While Gibb’s entropy makes reference to the

N-particle distribution function f (N), whose content is
exclusively mechanical and is subject to Liouville’s equa-

tion df (N)/dt = 0, thus being conserved, Boltzmann’s

entropy is defined in terms of the one-particle distri-

bution function f , which has a statistical content and

evolves in time. According to Jaynes (1965), “since the

Gibbs H is dynamically constant, one has resorted to
some kind of coarse-graining operation, resulting in a

new quantity H̄, which tends to decrease (...). Mathe-

matically, the decrease in H̄ is due only to the artificial

coarse-graining operation and it cannot, therefore have

any physical significance (...). The difference between H
and H̄ is characteristic, not of the macroscopic state, but

of the particular way in which we choose to coarse-grain.

Any really satisfactory demonstration of the second law

must therefore be based on a different approach than
coarse-graining”. As we can see, the standard coarse-

grain interpretation is only necessary (though subject

to criticism) when we adopt Gibbs’s entropy definition,

i.e. in terms of f (N). However, if we adopt Boltzmann’s

definition in terms of f , as done in this work, any possi-
ble coarse-grain interpretation is intrinsically there and

any extra coarse graining is not necessary once we rec-

ognize the statistical content of the distribution function

and abandon the assumption of validity of the Vlasov-
Poisson equation during violent relaxation.

APPENDIX

A. SUMMARY OF MATHEMATICAL RESULTS ON THE VLASOV-POISSON EQUATION

For the Vlasov-Poisson initial value problem itself, there are various results (Pfaffelmoser 1992; Schaeffer 1991;

Lions & Perthame 1991; Horst 1993) ensuring global existence and uniqueness of weak and strong solutions under

fairly general conditions on the initial configuration. The first mathematically rigorous derivations of the Vlasov
equation5 from a many-body problem can be found, e.g., in Neunzert & Wick (1974); Braun & Hepp (1977); Dobrushin

(1979); Neunzert (1984). Rather than the Vlasov-Poisson equation, Neunzert & Wick (1974); Braun & Hepp (1977);

Dobrushin (1979); Neunzert (1984); Spohn (2011) consider models with continuous and bounded forces. In particular,

these forces are not diverging at small inter-particle distances D, in contrast to gravitational (Coulomb) forces. In the

last few years progress has been made in treating mean field limits for forces which are singular at small distances up
to but not including the Coulomb case. Hauray & Jabin (2015) discusses forces diverging as ∼ D−α with α < d − 1

in d ≥ 3 dimensions. More precisely, in the case 1 < α < d − 1, a softening length of order N−
1

2d is assumed in the

derivation of the Vlasov equation from the N -body problem (Hauray & Jabin 2015). If α < 1 no positive softening

length is needed in the proof. Kiessling (2014) managed to prove a result including the Coulomb singularity under
the assumption of an (uniform in N) a priori bound on the microscopic forces. However, whether it is satisfied for

generic initial data or not, remains an open problem (Kiessling 2014). Boers & Pickl (2016) improved the result of

Hauray & Jabin (2015) in the sense that the softening length used is of order N−
1

d , but still α has to be strictly

smaller than d − 1 (and the Coulomb case is again not included). Recently, Lazarovici (2016); Lazarovici & Pickl

(2017) extended the method of Boers & Pickl (2016) to include the Coulomb singularity, in 3 dimensions, aiming at
a microscopic derivation of the Vlasov-Poisson dynamics. As in Hauray & Jabin (2015), a strictly positive softening

length is needed, at fixed N . It can be chosen, as shown in Lazarovici & Pickl (2017), of order N−β with β < 1
3 .

These analyses suggest that inter-particle interactions taking place up to distances d0 that are large compared to the

mean neighboring particle distance d̄, but small compared to the size of the whole system (i.e., scattering processes
at impact parameters b with b . d0 and d̄ ≪ d0 ≪ 1), could prevent Vlasov-Poisson equation from being the effective

5 For a general overview of the topic, we refer the reader to the monograph Spohn (2011).
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macroscopic equation governing the evolution of collisionless self-gravitating systems. Note also that the long-range

character of potentials is harmless in the mathematical derivation of Vlasov equations for N -body systems, as soon as

their gradients (forces) are uniformly bounded at large distances. From this, we would not expect the emergence of

the arrow of time in collisionless self-gravitating systems to be a consequence of scattering processes at large impact
parameters.

B. SOME USEFUL QUANTITIES AND THE HÉNON UNITS

The virial ratio is defined as

Q = − T

W
, (B1)

where T is total kinetic energy and W is total potential energy. A convenient scale length is the virial radius Rvir

defined by

W = −GM2

2Rvir
, (B2)

where G is the gravitational constant and M is system’s total mass. The rms velocity is defined by

〈v2〉 = 2T

M
=

2(E −W )

M
, (B3)

where E is system’s total energy. The mean crossing time τcr is defined by

τcr =
2Rvir√
〈v2〉

. (B4)

The Hénon units (see Hénon 1964), also called N-body units, are defined making G = 1, M = 1 and E = −1/4.
Substituting in the above expressions, we obtain

Rvir = 2(1−Q), (B5)

√
〈v2〉 =

√
Q

2(1−Q)
(B6)

and thus

τcr = 4
√
2

√
(1 −Q)3

Q
. (B7)

In virial equilibrium, the total kinetic and potential energies respect

W = −2T, (B8)

i.e. Q = 1/2. Thus, in virial equilibrium, we have Rvir = 1, 〈v2〉 = 1/2 and finally τcr = 2
√
2.

Regarding the definition of the Plummer model, its density profile is given by

ρ(r) =
3M

4πa3
1

[
1 + (r/a)

2
]5/2 , (B9)

where M is total mass and a is a scale parameter. Thus, the radius containing half of the total mass is Rhm ≈ 1.3a, and

the total potential energy isW = −3πGM2/(32a). Substituting the Rvir definition, Eq. (B2), we haveRvir = 16a/(3π).

Thus, in the Plummer model Rhm ≈ 0.8Rvir, and if the system is virialized, Rhm ≈ 0.8 in Hénon units.

Regarding the impact parameter associated to a 90◦ scattering angle,

b0 =
G(m+mf )

V 2
, (B10)

the relative velocity between the test and field particle is ~V = ~v − ~vf . Thus, V 2 = v2 + v2f − 2~v · ~vf . Averaging over

all particles of the system, we have 〈V 2〉 = 〈v2〉+ 〈v2f 〉. And if m = mf , we have 〈V 2〉 = 2〈v2〉. Thus, for a virialized

system composed of equal mass particles, we have

Λ =
Rhm

b0
≈ 0.4N. (B11)
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