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The statistical properties of dark matter halos, the building blocks of cosmological observables
associated with structure in the universe, offer many opportunities to test models for cosmic accel-
eration, especially those that seek to modify gravitational forces. We study the abundance, bias and
profiles of halos in cosmological simulations for one such model: the modified action f(R) theory.
In the large field regime that is accessible to current observations, enhanced gravitational forces
raise the abundance of rare massive halos and decrease their bias but leave their (lensing) mass
profiles largely unchanged. This regime is well described by scaling relations based on a modifi-
cation of spherical collapse calculations. In the small field regime, enhanced forces are suppressed
inside halos and the effects on halo properties are substantially reduced for the most massive halos.
Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing
conservative upper limits on the modification to gravity.

I. INTRODUCTION

In the so-called f(R) class of models (see [1, 2] and
references therein) cosmic acceleration arises not from an
exotic form of energy with negative pressure but from a
modification of gravity that replaces the Einstein-Hilbert
action by a function of the Ricci or curvature scalar R
[3–5].

Cosmological simulations are crucial for exposing the
phenomenology of f(R) models. In order to satisfy lo-
cal tests of gravity, f(R) models have a non-linear pro-
cess, called the chameleon mechanism, to suppress force
modifications in the deep potential wells of cosmologi-
cal structure [6–10]. Upcoming tests of cosmic acceler-
ation from gravitational lensing, galaxy and cluster sur-
veys have most of their statistical weight in the weak to
fully non-linear regime.

In the previous papers in this series, we have estab-
lished the methodology for cosmological f(R) simulations
[11] and conducted a suite of simulations that uncover
the chameleon mechanism and its effect on the matter
power spectrum [12]. In this paper, we continue our ex-
ploration of the non-linear aspects of the f(R) model by
examining the properties of the basic building blocks of
cosmological structure: dark matter halos. Specifically,
we quantify their abundance, i.e. the halo mass function,
clustering properties, i.e. the linear bias, and profiles, to
see how each are modified from the standard cosmological
constant, cold dark matter model ΛCDM.

We begin in §II with a brief review of the important
properties of f(R) models and a discussion of the simu-
lation and analysis methodology. We present our results

∗Electronic address: fabians@uchicago.edu

on halo statistics in §III and discuss them in §IV. In the
Appendix, we derive modifications to spherical collapse
that are used to help interpret the simulations.

II. METHODS

We begin in §II A by briefly reviewing the basic prop-
erties of the f(R) model that are important for under-
standing the cosmological simulations described in §II B.
We refer the reader to [12] for a more detailed treatment.
In §II C, we discuss the methods used in identifying the
halos and measuring their abundance, bias and profiles.
Finally in §II D, we review the scaling relations and fit-
ting functions used to interpret the simulation results.

A. f(R) Gravity

The f(R) model generalizes the Einstein-Hilbert action
to include an arbitrary function of the scalar curvature
R

S =

∫

d4x
√−g

[

R + f(R)

16πG
+ Lm

]

. (1)

Here Lm is the Lagrangian of the ordinary matter and
throughout c = ~ = 1. Force modifications are associated
with an additional scalar degree of freedom fR ≡ df/dR.
For definiteness, we choose a functional form for f(R)
which for |fR| ≪ 1 can be approximated as [10]

f(R) ≈ −16πGρΛ − fR0

R̄2
0

R
. (2)

Here we define R̄0 = R̄(z = 0) and fR0 = fR(R̄0),
where overbars denote spatially averaged quantities. For
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|fR0| ≪ 1 the background expansion history mimics
ΛCDM with ΩΛ = ρΛ/ρcrit.

Variation of Eq. (1) with respect to the metric yields
the modified Einstein equations. In the quasistatic limit
where time derivatives may be neglected compared with
spatial derivatives, they reduce to the fR field equation

∇2δfR =
a2

3
[δR(fR) − 8πGδρm] , (3)

where coordinates are comoving, δfR = fR(R) − fR(R̄),
δR = R − R̄, δρm = ρm − ρ̄m, and the modified Poisson
equation

∇2Ψ =
16πG

3
a2δρm − a2

6
δR(fR) . (4)

Here Ψ is the Newtonian potential or time-time metric
perturbation 2Ψ = δg00/g00 in the longitudinal gauge.
These two equations define a closed system for the New-
tonian potential given the density field. The matter falls
in the Newtonian potential as usual and so the modifica-
tions to gravity are completely contained in the equations
for Ψ.

The field equation (3) is a non-linear Poisson-type
equation, where the non-linearity is determined by
δR(fR). If the field fluctuations are small, δR ≈
(dR/dfR)|R̄ δfR and it is straightforward to show that
in Fourier space, the solution to Eqs. (3) and (4) is

k2Ψ(k) = −4πG

(

4

3
− 1

3

µ2a2

k2 + µ2a2

)

a2δρm(k) , (5)

with µ = (3dfR/dR)−1/2. Hence, gravitational forces are
enhanced by a factor of 4/3 on scales below µ−1, the
Compton wavelength of the field. Since the field fluctua-
tions are relatively small for a large background field, we
will call this case the large field limit. Because of the grav-
itational force enhancement, the masses described in this
paper correspond observationally to gravitational lensing
masses and not dynamical masses (see Appendix).

A relatively large change in the field can break the
linearity assumption making δR ≫ (dR/dfR)δfR which
causes the Compton wavelength to shrink. The field
equation (3) then requires δR ≈ 8πGδρm which drives
the Poisson equation (4) back to its usual form. This is
the so-called chameleon mechanism and it occurs when
the background field is small compared with the depth
of the gravitational potential. Hence force law deviations
are hidden in the deepest gravitational potentials, i.e. the
high overdensities of collapsed dark matter halos. We call
this case the small field limit.

B. Simulations

To solve the system of equations defined by the modi-
fied Poisson equation (4) and the fR field equation (3) in
the context of cosmological structure formation, we em-
ploy the methodology described in [11] and implemented

TABLE I: Simulation type and number of runs per box size.

Lbox (h−1 Mpc)
|fR0| 400 256 128 64

# of 10−4 6 6 6 6

boxes 10−5 6 6 6 6

10−6 6 6 6 6

0 (ΛCDM) 6 6 6 6

Mh,min (1012h−1M⊙) 204 53.7 6.61 0.83

kfun = π/Lbox (h Mpc−1) 0.008 0.012 0.025 0.049

rcell (h−1 Mpc) 0.78 0.50 0.25 0.125

in [12]. Briefly, the field equation for fR is solved on a
regular grid using relaxation techniques and multigrid it-
eration [13, 14]. The potential Ψ is computed from the
density and fR fields using the fast Fourier transform
method. The dark matter particles are then moved ac-
cording to the gradient of the computed potential, −∇Ψ,
using a second order accurate leap-frog integrator.

We choose a range of background field values |fR0| =
10−6 − 10−4 to expose the impact of the chameleon
mechanism. Since cosmological potentials range from
10−6 − 10−5, we expect the chameleon mechanism to be
operative in the small field limit of this range but ab-
sent in the large field limit. We also include |fR0| = 0
which is equivalent to ΛCDM. Note that the background
expansion history for all runs are indistinguishable from
ΛCDM to O(fR0). More specifically, we take a flat back-
ground cosmology defined by ΩΛ = 0.76, Ωb = 0.04181,
H0 = 73 km/s/Mpc and initial power in curvature fluc-
tuations As = (4.73 × 10−5)2 at k = 0.05Mpc−1 with a
tilt of ns = 0.958.

To more directly assess the impact of the chameleon
mechanism, we also carry out linearized fR simulations in
which the gravitational potential, Ψ, is evaluated accord-
ing to Eq. (5). In the linearized treatment, the Compton
wavelength is assumed to be fixed by the background field
and thus chameleon effects are not present. Therefore,
the difference between the full fR simulations and the lin-
earized fR simulations are wholly due to the chameleon
effects. To avoid confusion with linearization of the den-
sity field, we will call these runs the “no-chameleon” sim-
ulations.

Table I lists the properties of the simulations used in
the analysis below. All simulations possess 512 grid cells
in each direction and Np = 2563 particles.

C. Halo Properties

We identify halos and measure their masses in sim-
ulations with a spherical overdensity algorithm similar
to [15]. We use cloud-in-cell interpolation to assign the
particles to the grid. Starting at the highest overdensity
grid point, we then count the particles within a grow-
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ing sphere centered on the center of mass, until the de-
sired overdensity with respect to the mean matter density
∆th = ρm/ρ̄m is reached. Here, we take ∆th = 300 for
definiteness. The mass M300 of the halo is then defined
by the mass of all particles enclosed within this radius
r300. We move onto the next highest density grid cell and
repeat the procedure until all halos have been identified.
We implicitly take M = M300 below unless otherwise
specified.

In our final results we only keep halos with at least
Nmin dark matter particles, and since our simulations
are not of high-resolution, we conservatively take Nmin =
800. We verified that a lower minimum particle number
of Nmin = 400 provides results consistent with statisti-
cal uncertainties for all our quoted halo properties. The
corresponding minimum masses of halos are listed in Ta-
ble I.

For each simulation run, we determine the halo mass
function by binning halos in logarithmic mass intervals,
and dividing by the comoving volume of the simulation
box. We then combine different runs and box sizes us-
ing a bootstrap procedure to produce the estimate of the
mass function and its errors. We weight each box by
volume and use only those boxes whose minimum halo
mass is below the mass bin considered. When measur-
ing differences between ΛCDM and f(R), we average the
differences between simulations with the same initial con-
ditions to reduce the sample variance.

Next we extract the linear halo bias bL(M) from our
simulations. For halos of a given logarithmic mass range
in a box of size Lbox, we first obtain the halo bias b(k, M)
by dividing the halo-mass cross spectrum by the matter
power spectrum for each simulation

b(k, M) =
Phm(k, M)

Pmm(k)
=

〈δ∗h(k, M)δ(k)〉k
〈δ∗(k)δ(k)〉k

, (6)

where δh(k, M) is the halo number density contrast
whereas δ(k) is the matter mass density contrast. The
average is over the k-modes in a k-bin. For each box
we employ the modes k ≥ kmin = 2kfun, where kfun

is the fundamental mode of the box (see Table I) and
thus the smallest boxes barely probe the linear regime.
For the larger mass bins, we probe more of the linear
regime but we are more limited by small statistical sam-
ples. Note that the definition of bias adopted will differ
from alternate choices such as (Phh/Pmm)1/2 or Phh/Phm

in the non-linear regime where the correlation coefficient
between halos and matter can differ from unity.

In order to remove trends from the non-linearity of the
bias, we fit a linear relation to b(k, M) = a0(M)+a1(M)k
between kmin and 10kmin, where b(k, M) is the combined
measurement from all boxes. The linear halo bias in
this mass range is then extrapolated as bL(M) = b(k =
0, M) = a0(M). When considering the modifications in
the f(R) simulations, the same bootstrap and linear fit
procedure is applied but to the quantity ∆b/b.

Finally, we stack the halos in each mass interval and
measure the average density profile and mass correlations

of the halos. To reduce scatter within the mass bin we
scale each density profile to its own r300 before stacking,
i.e. we measure

δρ(r/r300) ≡
〈

ρh(r/r300)

ρ̄m

− 1

〉

h

. (7)

The spatial resolution of our particle-mesh simulations is
limited by the fixed size of grid cells rcell (see Tab. I). We
measure halo profiles down to the grid scale, though we
expect that profiles have converged only at scales larger
than several grid cells. When the resolution becomes too
low, the inner profile flattens leading to a misestimation
of both the mass enclosed at r300 and the shape of the
halo profiles. We therefore use only the highest resolu-
tion boxes for our comparisons with the f(R) simulations.
The maximum radius for each profile is set to 0.4 Lbox.

In order to avoid biases from incompleteness effects,
we further limit the range of the stacked profile to radii
where more than 90% of the halos in the mass bin con-
tribute. We then bootstrap over all halos in the given
mass range in order to determine the average profile and
its error.

D. Scaling Relations

For reference, we compare our simulation results to
scaling relations that are motivated by spherical collapse
calculations, the Press-Schechter prescription and find-
ings from simulations of ΛCDM.

For the mass function we use the Sheth-Tormen (ST)
prescription [16]. Though other, potentially more accu-
rate, descriptions for ΛCDM exist (e.g. [17]), this choice
enables us to explore the changes expected in the f(R)
simulations from spherical collapse (see Appendix). We
also found a good match to the ST mass function in our
ΛCDM simulations (§ III A).

The ST description for the comoving number density
of halos per logarithmic interval in the virial mass Mv is
given by

nlnMv
≡ dn

d lnMv

=
ρ̄m

Mv

f(ν)
dν

d ln Mv

, (8)

where the peak threshold ν = δc/σ(Mv) and

νf(ν) = A

√

2

π
aν2[1 + (aν2)−p] exp[−aν2/2] . (9)

Here σ(M) is the variance of the linear density field con-
volved with a top hat of radius r that encloses M =
4πr3ρ̄m/3 at the background density

σ2(r) =

∫

d3k

(2π)3
|W̃ (kr)|2PL(k) , (10)

where PL(k) is the linear power spectrum and W̃ is the
Fourier transform of the top hat window. The normal-
ization constant A is chosen such that

∫

dνf(ν) = 1. The
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parameter values of p = 0.3, a = 0.75, and δc = 1.673
for the spherical collapse threshold have previously been
shown to match simulations of ΛCDM at the 10 − 20%
level. The virial mass is defined as the mass enclosed
at the virial radius rv, where ∆v = 390 in the ΛCDM
model. We discuss modifications to these parameters for
the f(R) model in §III.

The peak-background split for halos predicts that the
linear bias of halos should be consistent with the mass
function. For the ST mass function, the bias is given by
[16]

bL(Mv) ≡ b(k = 0, Mv)

= 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]
. (11)

For the halo profiles, we take an NFW form [18],

ρNFW(r) =
ρs

r/rs(1 + r/rs)2
, (12)

where rs is the scale radius of the halo and the normal-
ization ρs is given by the virial mass Mv. We parametrize
rs via the concentration cv ≡ rv/rs given by [19]:

cv(Mv, z = 0) = 9

(

Mv

M∗

)−0.13

, (13)

where M∗ is defined via σ(M∗) = δc. By assuming an
NFW form, we can also rescale mass definitions from the
virial mass Mv to M300 as outlined in [20]. We use this
approach to compare these scaling relation predictions
to the simulations in §III since the definition of the virial
mass varies with cosmological parameters and f(R) mod-
ifications. For a given halo in ΛCDM, M300 is slightly
larger than Mv. Given that we generally rescale to M300,
when no specific overdensity is given we implicitly take
M = M300, e.g.

nln M ≡ dn

dln M300

= nln Mv

dlnMv

dlnM300

. (14)

These properties are combined together in the halo
model which treats cosmological statistics associated
with structures through the halos that form them (see
[21] for a review). For example, the matter power spec-
trum can be decomposed into 1-halo and 2-halo terms,

Pmm(k) = I2(k)PL(k) + P 1h(k) ,

P 1h(k) =

∫

d lnMv nln Mv

M2
v

ρ̄2
m

|y(k, Mv)|2 , (15)

where

I(k) =

∫

d lnMv nlnMv

Mv

ρ̄m

y(k, Mv)bL(Mv) . (16)

Here, y(k, M) is the Fourier transform of an NFW density
profile truncated at rv, unless otherwise specified, and
normalized so that y(k, M) → 1 as k → 0. Note that
with the ST mass function and bias, limk→0 I(k) = 1.

Likewise the halo-mass cross spectrum Phm for an in-
finitesimally narrow mass bin around Mv is given by

Phm = bL(Mv)I(k)PL(k) +
Mv

ρ̄m

y(k, Mv) . (17)

Note that the Fourier transform of this quantity is the
halo-mass correlation function, or average mass profile

ξhm(r) ≡ 〈ρh(r)〉
ρ̄m

− 1 =

∫

d3k

(2π)3
Phme−ik·x ,

= bL(Mv)

∫

d3k

(2π)3
I(k)PL(k)e−ik·x

+
ρNFW(r)

ρ̄m

. (18)

For comparison with simulations, we show the ρNFW term
with and without the truncation at the virial radius in
§III C. Both the overly simplistic treatment of halo pro-
files and the use of linear halo correlations make our sim-
ple model inaccurate in the region where the one and two
halo pieces are comparable.

III. RESULTS

In this section we present the results obtained from
N-body simulations of the f(R) models for the halo
mass function (§III A), halo bias (§III B), density pro-
files (§III C) and matter power spectrum (§III D). In all
cases, we compare the simulation results with predictions
from spherical collapse.

Since spherical collapse predictions depend on the
gravitational force modification, we give a range of pre-
dictions in each case. The extremes are given by collapse
with standard gravity and with enhanced forces through-
out. The former follows the ΛCDM expectation of a lin-
ear density extrapolated to collapse of δc = 1.673 and a
virial overdensity of ∆v = 390; the latter modifies these
parameters to δc = 1.692 and ∆v = 309 as detailed in
the Appendix.

Neither assumption for the nonlinear collapse is com-
pletely valid given the evolving Compton wavelength and
the chameleon mechanism. Moreover, the evolution of
linear density perturbations used as the reference for the
scaling relations in Eqs. (8), (11), (15), and (17) as-
sumes in both cases the full linear growth of the f(R)
model through σ(M), including the effects of the evolving
background Compton wavelength but not the chameleon
mechanism. Thus unmodified spherical collapse parame-
ters do not equate to unmodified spherical collapse pre-
dictions.

A. Mass Function

In Fig. 1, we show the halo mass function measured
from our suite of ΛCDM simulations along with the boot-
strap errors described in §II C. For reference, we compare
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FIG. 1: The halo mass function as a function of M300 measured
in ΛCDM simulations with bootstrap errors on the mean. The
upper panel combines different box sizes from 64 to 400Mpc/h and
compares results with the Sheth-Tormen prediction rescaled from
Mv to M300 as described in the text. The lower panel shows the
relative deviations from this prediction separately for different box
sizes.

the simulations to the Sheth-Tormen (ST) mass function
of Eq. (8). The ST formula gives the mass function in
terms of the virial mass and we rescale it to M300 assum-
ing an NFW profile (see §II D). Our ΛCDM simulations
are consistent with the 10-20% level of accuracy expected
of the ST formula and internally between boxes of differ-
ing resolution.

Next, we compare the f(R) and ΛCDM simulations.
Our measurement of the halo mass function itself is lim-
ited by statistics and to a lesser extent, resolution (see
Fig. 1). However, we can reduce the impact of both ef-
fects by considering the relative difference between the
halo mass functions measured in f(R) and ΛCDM simu-
lations with the same initial conditions and resolution.

Fig. 2 shows this relative enhancement of the halo
mass-function in the f(R) simulations for different values
of the background field today fR0, combining different
box sizes as described in section II C. In the small field
limit, the departure from ΛCDM becomes very small,
so that individual high-mass halos change only slightly
in mass. Due to the limited statistics in our simulation
sample, we are not able to reliably estimate the uncer-
tainties on the mass function deviation for the highest
mass bin in case of the smallest field value. However, the
mean deviation in this mass bin is consistent with zero.

We show results for the full simulations as well as the

FIG. 2: Relative deviations of the f(R) halo mass functions from
ΛCDM, with |fR0| = 10−4 (top panel), 10−5 (middle panel), and
10−6 (lower panel). In each case, blue squares denote the full
simulations, while red triangles (displaced horizontally for visibil-
ity) denote the no chameleon simulations. The shaded band shows
the range of enhancement expected from spherical collapse rescaled
from Mv to M300.

no-chameleon simulations to help highlight the impact of
the chameleon mechanism. For the large field value of
|fR0| = 10−4, the number of halos increases significantly,
especially at the high mass end, by up to 50−150% for
cluster-sized halos. The chameleon effect slightly sup-
presses the abundance in the high mass end. A similar
effect occurs for the power spectrum [12] and arises due
to the appearance of the chameleon effect in deep poten-
tials at high redshifts where the background field values
are smaller. These trends are captured by the spherical
collapse predictions (shaded band in Fig. 2). The upper
limit corresponds to unmodified forces, whereas the lower
limit corresponds to enhanced forces during the entirety
of the collapse. The enhancement of the linear σ(M)
in f(R) effectively makes objects of the same mass less
rare and causes the increase in the ST predictions for
the exponentially suppressed high-mass end of the mass
function (ν ≡ δc/σ > 1). Compared to this effect, that of
modifying spherical collapse parameters is much smaller.
It mainly arises from the increase in virial mass with re-
spect to M300 making the same M300 correspond to rarer
virialized objects. In this large field limit, all but the
most massive halos are better described by the modified
collapse parameters. Moreover, for the purposes of estab-
lishing upper limits on |fR0| using the halo mass function,
use of this prediction would only err on the conservative
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FIG. 3: The halo bias as a function of wavenumber k in ΛCDM.
The upper panel combines different box sizes and runs for halos
with mass M300 = 1013 − 1013.5h−1M⊙. The black solid line
indicates a linear fit, whose extrapolation to k = 0 gives bL (dotted
red line). Error bars denote bootstrap errors on the mean. The
lower panel shows the relative deviations from the fit separately
for each box contributing in this mass range.

side.

When the value of the fR field becomes comparable
to the cosmological potential wells, the chameleon effect
starts to operate. This can be seen in the mass func-
tion deviations for |fR0| = 10−5 and 10−6 (see Fig. 2).
The no-chameleon simulations show a behavior of in-
creasing deviations at high masses similar to the large-
field case, while the full f(R) simulations deviate signif-
icantly from this trend, especially at high masses. For
|fR0| = 10−6 the excess almost entirely disappears at the
highest masses leaving a pile-up of halos at intermediate
masses. As in the power spectrum [12], the chameleon
mechanism qualitatively changes the predictions for the
mass function for |fR0| . 10−5.

It is also apparent from Fig. 2 (lower panel) that the
spherical collapse predictions are less accurate for the
small field limit. The range of predictions encompasses a
deficit of high mass halos that is not seen in the simula-
tions. Since σ(M) is calculated from the linear prediction
at a radius that encloses the mass M at the background
density, there would be no predicted enhancement of lin-
ear fluctuations if this radius is larger than the Compton
scale in the background. This is in spite of the fact that
in the no-chameleon simulations forces are still enhanced
once the perturbation collapses to smaller scales. Com-
bined with the rescaling of the virial mass, this can pro-

FIG. 4: The linear halo bias as a function of M300 extrapolated
from the ΛCDM simulations with bootstrap errors on the mean.
The upper panel combines different box sizes and runs and com-
pares the result to the Sheth-Tormen prediction rescaling masses
from Mv to M300. The lower panel shows the relative deviations
from this prediction.

duce a deficit of predicted objects at a fixed overdensity.
This problem highlights the difficulties in applying scal-
ing relations between the linear and non-linear regime
developed for the scale-free ΛCDM type models to mod-
ified gravity theories.

In the case of the full f(R) simulations, the prob-
lem is partially compensated by the appearance of the
chameleon mechanism which also reduces the abundance
of the highest mass objects by eliminating the extra force
during the collapse. While the full simulation results lie
within the range of spherical collapse predictions at the
high mass end, spherical collapse fails to predict the pile
up of halos at intermediate masses.

Still, the ST mass function predictions can be used
to conservatively place upper limits on |fR0| from the
abundance of halos with M > 1014M⊙/h. Employing
the modified collapse prescription for the enhancement or
zero, whichever is greater, will always underestimate the
true enhancement in the suite of models we have tested.
This underestimate becomes a small fraction of the total
enhancement for |fR0| > 10−5.

B. Halo Bias

The halo bias computed from Eq. (6) in the ΛCDM
simulations is shown in Fig. 3 for halos with masses in the
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FIG. 5: Relative deviations in the halo bias as a function of
wavenumber k between |fR0| = 10−4 and ΛCDM for M300 =
1013 − 1013.5h−1M⊙. The black solid line indicates a linear fit
to the bootstrap means and errors of the combined boxes, whose
extrapolation to k = 0 gives ∆bL/bL (dotted red line).

range M300 = 1013 − 1013.5 h−1M⊙ as an example. The
points and error bars are bootstrap averages and errors of
individual bias computations from the various boxes and
runs. In this case, only boxes with size Lbox = 64 and
128 h−1Mpc have halos in the mass range and contribute
to the bias calculation (see Tab. I). In the lower panel
of Fig. 3 we show the variation of the bias measurements
with box size. In the regime of mutual applicability, the
bias measurements between boxes are consistent within
the statistical uncertainties.

In Fig. 4, we show the linear halo bias in our ΛCDM
simulations as a function of halo mass, measured as de-
scribed in §II C. We compare these results to the ST
bias prediction of Eq. (11). We again remap the virial
mass Mv to M300 and plot the prediction for bL(M300).
The simulation results are consistent within ∼ 20% of
the prediction.

Whereas the abundance of halos can be significantly
changed in f(R), their clustering properties are relatively
less affected compared with ΛCDM. In Fig. 5 we show the
relative difference between the halo bias in f(R) simula-
tions with |fR0| = 10−4 and ΛCDM for the same mass
bin of Fig. 3. For each box and run contribution, we sub-
tracted the f(R) simulation bias from that of the corre-
sponding ΛCDM simulation with same initial conditions
to form ∆b(k, M)/b(k, M). The averages and error dis-
played are again obtained by bootstrap of the individual
differences. The same linear fit procedure is applied and

FIG. 6: Relative deviations in the f(R) linear halo bias from
ΛCDM, with |fR0| = 10−4 (top panel), 10−5 (middle panel) and
10−6 (lower panel). The no chameleon simulations are again dis-
placed horizontally for better visibility. The shaded bands show
the range of deviations of halo bias in f(R) expected from spherical
collapse with the upper limit corresponding to modified spherical
collapse parameters.

evaluated at k = 0 to estimate the relative difference in
the linear bias ∆bL(M)/bL(M) ≡ ∆b/b(k, M)|k=0.

In Fig. 6 we compare the linear bias from f(R) and
ΛCDM simulations, computed as above, and the range
of predictions from spherical collapse. The bias decreases
with increasing |fR0| since halos of a fixed mass become
less rare and thus less highly biased. The chameleon
effect in the full simulations decreases the difference in
bias versus the no chameleon simulations as expected.
As with the mass function, the spherical collapse range
adequately describes the high mass halos even for the
small-field chameleon cases due to a fortuitous cancella-
tion of modeling errors.

C. Halo Profiles

The final ingredient in a basic understanding of ha-
los and cosmological statistics that are built out of them
is their average profiles. We plot the fractional density
contrast δρ(r/r300) defined in Eq. (7) and measured in
the ΛCDM simulations for the largest and hence best
resolved mass bin in Fig. 7 (upper panel), for different
box sizes of the ΛCDM simulations. For reference we
compare these with the corresponding halo model pre-
diction (shaded) from the halo-mass correlation function
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FIG. 7: Halo density profile, expressed as the fractional over-
density δρ, for M = 1014 − 1015 M⊙/h measured in the ΛCDM
simulations (upper panel). The halo-mass correlation predictions
(shaded) represent the range with to without (dotted) profile trun-
cation [Eq. (18)] averaged over the same mass bin. The lower panel
shows the relative deviation and bootstrap errors measured in the
different boxes from the prediction without truncation.

of Eq. (18), consisting of an NFW profile plus a 2-halo
term describing the surrounding mass, averaged over the
same mass bin as the simulations. The range of predic-
tions shown is bounded from above by a continued NFW
profile, and bounded from below by an NFW profile trun-
cated at rv = r390 as used in the halo model description of
power spectra, Eq. (15). In the lower panel of Fig. 7, we
show the same profiles relative to the halo model predic-
tion with continued profiles. Removing the overall trend
with the halo model better reveals the internal consis-
tency of our simulations. The agreement between the
smallest box and the larger boxes with coarser resolu-
tion and smaller particle number is . 20% in case of the
128Mpc/h boxes, and . 40% for the 256Mpc/h boxes. In
the following, we show results from the 128Mpc/h boxes
for the largest mass halos, in order to increase halo statis-
tics, and from the 64 Mpc/h boxes for all other masses.

Fig. 8, top panel, shows the stacked halo profiles for
three mass bins, for ΛCDM and full f(R) simulations
with |fR0| = 10−4. The lower panel of Fig. 8 shows the
relative deviation between ΛCDM and f(R) halo pro-
files. When scaled to the same overdensity radius, halos
in ΛCDM and f(R) apparently have very similar profiles,
especially in the inner part of the halo. Although a pre-
cise measurement of the NFW scale radius is not possible
with our limited resolution, it is apparent that there are
no dramatic effects of modified gravity on the halo con-
centration c300 ≡ r300/rs. Moreover the deviations are

FIG. 8: Halo density profile δρ in the full f(R) (|fR0| = 10−4,
colored) and ΛCDM simulations (black), for different halo masses
(upper panel). Profiles for 1013 − 1014 and 1014 − 1015 M⊙/h
have been multiplied by 10 and 100, respectively. The profiles
of the highest mass halos were obtained from 128 Mpc/h boxes,
while the lower mass profiles are from 64 Mpc/h boxes. The lower
panel shows the relative deviation of the f(R) profiles from those
of ΛCDM, with bootstrap error bars.

consistent with zero well within r300. The same holds for
the no-chameleon f(R) simulations.

For the intermediate and larger halo masses, there is
an enhancement of the halo profile at r/r300 ∼ few, i.e.
in the transition region between one-halo and two-halo
contributions. The smallness of the enhancement of ξhm

can be explained by a partial cancellation between the
increased linear power spectrum and reduced linear bias
in f(R) (§ II D and § III B). However, a quantitative un-
derstanding of the behavior of the halo-mass correlation
at these radii is not possible with the simple halo model
adopted here, as it fails in the transition region between
one and two-halo terms (see Fig. 7). In the small field
simulations, the deviations in the halo profiles are too
small to be measured with our current suite of simula-
tions.

Given the relative smallness of the modified gravity
effects on halo profiles, the main effect of enhanced forces
in the large field simulations is to change the mass and
hence the abundance and bias of halos.

D. Halo Model Power Spectrum

We can now put the halo properties together and dis-
cuss statistics that can be interpreted under the halo
model paradigm outlined in §II D. The matter power
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FIG. 9: Power spectrum enhancement relative to ΛCDM for full
and no-chameleon simulation and different fR0 field strengths. The
shaded band shows the predictions from the halo model using pa-
rameters derived from spherical collapse (see text).

spectrum Pmm is especially interesting in that the en-
hancement in the large field f(R) simulations found in
[12] was not well described by standard linear to nonlin-
ear scaling relations [22]. Without an adequate descrip-
tion of the large field regime, robust upper limits on |fR|,
which should be available from current observations, are
difficult to obtain.

The halo model provides a somewhat more physically
motivated scaling relation between the linear and non-
linear power spectra [23]. Specifically we use the same
range of ST predictions for the mass function and linear
bias discussed in the previous sections in Eq. (15). In ad-
dition, we vary the concentration parameter of the halos,
using either an unmodified cv(Mv) relation [Eq. (13)], or
an unmodified c300(M300) ≡ r300/rs. The latter relation
is motivated by our finding that the inner parts of halo
profiles are unmodified in f(R) when referred to the same
overdensity radius (§ III C). Converting c300 to the virial
concentration, we obtain a ∼10% higher cv, which in-
creases the power spectrum enhancement at k & 1h/Mpc
through the 1-halo term [Eq. (15)].

The range of halo model predictions is shown in Fig. 9
for different values of fR0, together with the simulation
results from [12]. The upper boundary of each shaded
band corresponds to unmodified spherical collapse pa-
rameters and unchanged c300, while the lower boundary
is using the modified spherical collapse parameters, as-
suming enhanced forces throughout in the f(R) predic-
tion, and unchanged cv.

The halo model provides a reasonable approximation

to the relative deviations in the large field regime out to
the k ∼ 1 − 3 h/Mpc scales that can be resolved by the
simulations. The modified collapse provide a somewhat
better and more conservative approximation for the pur-
poses of establishing upper limits for |fR0| & 10−4.

The halo model still fails to capture the chameleon sup-
pression in the small field regime. Its failure is apparent
even at |fR0| = 10−5 for 0.1 . k(h/Mpc) . 1 and is rel-
atively larger than the error in the mass function, linear
bias and halo profiles themselves. This range also corre-
sponds to the regime where the one halo and two halo
terms are comparable, i.e. where our simple prescription
of linear clustering of halos with density profiles trun-
cated at the virial radius cannot be expected to apply.

A prescription that seeks to interpolate between mod-
ified and unmodified force law predictions [23] and a bet-
ter treatment of the transition regime that includes non-
linear halo clustering and halo exclusion could potentially
provide a better description but is beyond the scope of
this study.

IV. DISCUSSION

Dark matter halos are the building blocks of cosmolog-
ical observables associated with structure in the universe.
Their statistical properties provide many interesting tests
of cosmic acceleration, especially of those that seek to
modify gravitational forces.

Here we have examined the abundance, clustering and
profiles of dark matter halos in f(R) modified gravity
models. In these models, gravitational forces are en-
hanced below the local Compton scale of an extra scalar
degree of freedom fR. Generically, this extra force leads
to an enhanced abundance of massive halos and a de-
crease in the bias of such halos, but relatively little
change to the density profile or mass correlation around
halos of fixed mass.

The extent of these effects on halo statistics depends
strongly on whether the background scalar field is in the
large or small field regime. In the large field regime,
forces are modified everywhere below the background
Compton scale. This regime is relatively well described
by the usual scaling relations for halo statistics. By
modifying spherical collapse parameters to include the
enhanced forces, we have shown that the mass function
and linear halo bias can be described well by the Sheth-
Tormen prescription. The halo-mass correlation and av-
erage density profiles are little changed from ΛCDM due
to a cancellation of effects from the enhanced forces and
decreased bias.

Together these provide a description of the enhanced
matter power spectrum that corresponds to a relatively
small overestimate of |fR0| by ∼ 50% or less. This level
of accuracy more than suffices for an order of magnitude
constraint on field values. Moreover, the overestimate de-
pends only weakly on |fR0| and can largely be corrected.
In this prescription, concentration uncertainties which
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are unresolved in our simulations should be marginalized.
Concentration uncertainties also arise from baryonic ef-
fects in ΛCDM [24] and marginalization over these leaves
only the more unique intermediate scale deviations to dis-
tinguish modifications of gravity [25].

Given that the large field regime encompasses the
range that current cosmological observations can test,
these scaling relations should already enable strong tests
of the model. In the small field regime, potential wells
of dark matter halos are deep enough that the local
Compton wavelength decreases substantially from the
background value. Modifications to gravitational forces
then decrease in the interior of halos by the so-called
chameleon mechanism. This decrease has the effect of
bringing deviations in all of the halo statistics down at
the high mass end. At intermediate masses, the excess
in the halo abundance can actually increase further due
to a pile up of halos which also suppresses the change in
the bias.

Scaling relations are not as easily modified to include
the chameleon effect but do still have limited applicabil-
ity. Due to a fortuitous cancellation of problems associ-
ated with a small background Compton wavelength and
the chameleon mechanism, the modified Sheth-Tormen
mass function can still be used to provide upper limits
on the field values that err only on the conservative side.
Likewise the bias description is reasonably accurate for
intermediate to high mass halos.

We caution that this fortuitous cancellation does not
apply to all quantities that can be built out of halo statis-
tics. For example the halo model for the power spectrum
overpredicts the enhancement in the weakly non-linear
regime. More work in calibrating these deviations will be
required when cosmological observations reach the per-
cent level precision required to test the small field regime
of f(R) modified gravity.
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APPENDIX A: SPHERICAL COLLAPSE

In this Appendix, we examine the modifications to
spherical collapse induced by the enhanced forces of the
f(R) model and in particular, derive the collapse thresh-
old δc and the virial overdensity ∆v used in the main
text.

We begin with the nonlinear continuity and Euler
equation for a pressureless fluid of non-relativistic mat-
ter. When expressed in terms of the gravitational poten-
tial Ψ, these equations are unaltered by the modification
to gravity that remains a metric theory (e.g. [26])

∂δ

∂t
+

1

a
∇ · (1 + δ)v = 0 ,

∂v

∂t
+

1

a
(v · ∇)v + Hv = −1

a
∇Ψ , (A1)

where δ = δρm/ρ̄m and spatial coordinates are comoving.
These can be combined to a second order equation for δ

∂2δ

∂t2
+ 2H

∂δ

∂t
− 1

a2

∂2(1 + δ)vivj

∂xi∂xj
=

∇ · (1 + δ)∇Ψ

a2
(A2)

but require further information about the velocity and
potential fields to form a closed system.

The potential is given by the field equation (3) and
modified Poisson equation (4) in terms of the density
fluctuation. For the velocity field, we will take an initial
top hat density perturbation and make the approxima-
tion that it remains a top hat throughout the evolution.
This approximation is valid in the limiting cases that the
Compton radius is either much larger or much smaller
than the perturbation.

Given the top hat assumption for the density, the ve-
locity field in the interior takes the form v = A(t)r to
have a spatially constant divergence. Its amplitude is
related to the top hat density perturbation through the
continuity equation (A1)

δ̇ +
3

a
(1 + δ)A = 0 . (A3)

With the relation

∂2vivj

∂xi∂xj
= 12A2 =

4

3
a2 δ̇2

(1 + δ)2
, (A4)

the spherical collapse equation in the top hat approxima-
tion becomes

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
∇2Ψ , (A5)

which along with Eqs. (3) and (4) (§ II A) complete the
system.

We can bring this equation to its more usual form for
the radius of the top hat by using mass conservation

M = (4π/3)r3ρ̄m(1 + δ) = const. (A6)

Therefore the evolution of r and δ may be related as

r̈

r
= H2 + Ḣ − 1

3(1 + δ)
(δ̈ + 2δ̇H − 4

3

δ̇2

1 + δ
) . (A7)

Combining this relation with the top hat density equation
(A5), we obtain

r̈

r
= −4πG

3
[ρ̄m + (1 + 3w)ρ̄eff ] − 1

3a2
∇2Ψ , (A8)
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where we have expressed the background expansion in
terms of an effective dark energy contribution. Note that
this set of equations also applies to any smooth dark en-
ergy contribution as long as we take δR = 8πGδρm in
the Poisson equation.

For the f(R) system, there are two limiting cases worth
noting and these both fall into the class of top hat pre-
serving evolution. In the large field case the Compton
wavelength is so long that fR ignores the collapse. In this
case δR ≪ 8πGδρm in the interior. In the opposite small
field case, the Compton wavelength in the background is
always smaller than the scale of the perturbation. In this
case δR = 8πGδρm as in ordinary gravity with smooth
dark energy. The two limits for the top hat equation
(A5) can be parameterized as

r̈

r
= −4πG

3
[ρm + (1 + 3w)ρ̄eff ] − 4πG

3
Fδρm (A9)

with F = 1/3 corresponding to the large field limit and
F = 0 corresponding to the small field limit or smooth
dark energy. Note that ρm in the first term on the right
hand side stands for the total matter overdensity, so that
for F = 0 the top-hat overdensity follows the same equa-
tion of motion as the background expansion in a smooth
dark energy model.

We now specialize this equation for a background ex-
pansion that is close to ΛCDM, w = −1 and ρ̄eff = ρΛ.
Rewriting the time derivatives in term of ′ = d/d ln a, a
ΛCDM background and with y = [r − ria/ai]/ri

y′′ +
H ′

H
y′ = −1

2

Ωma−3 − 2ΩΛ

Ωma−3 + ΩΛ

y (A10)

−1

2

Ωma−3

Ωma−3 + ΩΛ

(1 + F )(
a

ai
+ y)δ

with

δ =

(

1

yai/a + 1

)3

(1 + δi) − 1 (A11)

and δi as the initial density perturbation at ai. Turn
around occurs when r′ = 0 or y′ = −a/ai and collapse
occurs when r = 0 or y = −a/ai.

Under the assumption that the initial conditions are
set during matter domination when δ ≪ 1, linear theory
says that δ ∝ a1+p where

p = −5

4
+

5

4

√

1 +
24

25
F . (A12)

The initial conditions are then y = 0 and y′ = −δi(1 +
p)/3. More generally, the linearization of the continuity
and Euler equations imply

δ′′ + 3
H ′

H
δ′ =

4πGρm

H2
Fδ . (A13)

The linear overdensity extrapolated to the collapse epoch
is then a function of F . For collapse during matter dom-
ination δc = 1.686 for F = 0 as usual and δc = 1.706 for

FIG. 10: Spherical collapse parameters. The linear overdensity
extrapolated to the collapse epoch δc and the virial overdensity ∆v

are modified from the flat ΛCDM values (F = 0) by the enhanced
forces during collapse (F = 1/3).

F = 1/3. In Fig. 10 (lower panel), we show the threshold
for collapse at z = 0 as a function of Ωm. In particular
for Ωm = 0.24, δc = 1.673 for F = 0 and δc = 1.692 for
F = 1/3.

To relate spherical collapse with virialized halos, one
also has to modify the virial theorem for f(R). All the
steps in the usual derivation of the tensor virial theorem
from the Boltzmann equation still apply to f(R) since the
Boltzmann equation (energy momentum conservation in
the metric) is unchanged (see e.g. [27]). The only change
is in relating the potential energy to the matter in the
top hat

W = −3

5
(1 + F )

GM2

r
. (A14)

The implications for spherical collapse then remain
largely unchanged when expressed in terms of the turn
around radius. During matter domination the scalar
virial theorem still reads W = −2T and W (rmax) =
W (rv) + T (rv) = W (rv)/2 and so rv = rmax/2. The dif-
ference is in the density evolution in spherical collapse.
The traditional way of expressing the virial overdensity
∆v is to take the overdensity at rv during the collapse
ρm(rv) and divide by the average density at the end of
collapse ρ̄m(r = 0). For collapse in the matter dominated
limit F = 0 gives the usual ∆v = 177.6 and F = 1/3 gives
∆v = 143.1.

These conditions are modified by the acceleration of
the expansion at low redshifts. Following [28], the met-
ric effect of Λ can be considered as providing a poten-
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tial energy per unit mass of wΛ = −4πGρ̄effr2/3. In-
tegrating this up through the top hat we get WΛ =
−(4πGρ̄eff/5)Mr2. The virial theorem with the com-
bined potential energy gives

T = −1

2
W + WΛ . (A15)

The different dependence on r changes the virialization
radius to the extent that WΛ is important. Let us define
the ratio at turnaround

η =
2ρeff

(1 + F )ρm

=
2ΩΛ

(1 + F )Ωma−3(1 + δ)
. (A16)

The relationship between the virial radius and the
turnaround radius s = rv/rmax can then be obtained
from inverting

η =
2s − 1

2s3 − s
. (A17)

Note that as η → 0, s → 1/2 as expected. The effect of
F is to make the Λ term less important.

In Fig. 10 (lower panel), we show the virial overdensity
for collapse at z = 0 as a function of Ωm. In particular,
for F = 0 the virial overdensity is ∆v = 390 for collapse
today and for F = 1/3 it is lowered to ∆v = 309.

These modifications also imply that the virial temper-
ature of halos of a fixed virial mass is proportional to

(1 + F )∆
1/3
v and hence increases for F = 1/3. Likewise,

hydrostatic equilibrium masses or any masses defined dy-
namically by the velocity dispersion of the matter would
be larger than lensing masses by a factor of (1 + F ).
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