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ABSTRACT
Non-linear bias measurements require a great level of control of potential systematic
effects in galaxy redshift surveys. Our goal is to demonstrate the viability of using
Counts-in-Cells (CiC), a statistical measure of the galaxy distribution, as a compet-
itive method to determine linear and higher-order galaxy bias and assess clustering
systematics. We measure the galaxy bias by comparing the first four moments of the
galaxy density distribution with those of the dark matter distribution. We use data
from the MICE simulation to evaluate the performance of this method, and subse-
quently perform measurements on the public Science Verification (SV) data from the
Dark Energy Survey (DES). We find that the linear bias obtained with CiC is consis-
tent with measurements of the bias performed using galaxy-galaxy clustering, galaxy-
galaxy lensing, CMB lensing, and shear+clustering measurements. Furthermore, we
compute the projected (2D) non-linear bias using the expansion δg =

∑3
k=0(bk/k!)δk,

finding a non-zero value for b2 at the 3σ level. We also check a non-local bias model
and show that the linear bias measurements are robust to the addition of new param-
eters. We compare our 2D results to the 3D prediction and find compatibility in the
large scale regime (> 30 Mpc h−1).

Key words: data analysis – cosmological parameters – dark energy – large-scale
structure of the universe – bias – clustering systematics

1 INTRODUCTION

In recent years, photometric redshift galaxy surveys such
as the Sloan Digital Sky Survey (SDSS) (Kollmeier et al.
2017), the Dark Energy Survey (DES) (Dark Energy Sur-

? Email:ana.salvador@uam.es
† Email:francs1@uci.edu

vey Collaboration et al. 2016), and the future Large Synop-
tic Survey Telescope (LSST) (Ivezić et al. 2008) and Euclid
(Amiaux et al. 2012), have arisen as powerful probes of the
Large Scale Structure (LSS) of the universe and of dark en-
ergy. The main advantage of these surveys is their ability to
retrieve information from a vast number of objects, yield-
ing unprecedented statistics for different observables in the
study of LSS. Their biggest drawback is the lack of line-of-
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sight precision and the systematic effects associated with it.
Thus, well constrained systematic effects and robust observ-
ables are required in order to maximize the performance of
such surveys. In this context, simple observables such as the
galaxy number counts serve an important role in proving the
robustness of a survey. In particular, the galaxy Counts-in-
Cells (CiC), a method that consists of counting the number
of galaxies in a given three-dimensional or angular aperture,
has been shown to provide valuable information about the
LSS (Peebles 1980; Gaztañaga 1994; Bernardeau 1994) and
gives an estimate of how different systematic effects can af-
fect measurements. CiC can provide insights to higher-order
statistical moments of the galaxy counts without requir-
ing the computation resources of other methods (Gil-Maŕın
et al. 2015), such as the three- or four-point correlation func-
tions.

Understanding the relation between galaxies and matter
(galaxy bias) is essential for the measurements of cosmolog-
ical parameters (Gaztanaga et al. 2011). The uncertainties
in this relation strongly increase the errors in the dark en-
ergy equation of state or gravitational growth index (Eriksen
& Gaztanaga 2015). Thus, having a wide variety of com-
plementary methods to determine galaxy biasing can help
break degeneracies and improve the overall sensitivity for a
given galaxy survey.

In this paper we present a method to extract information
from the galaxy CiC. Using this method, we measure the
projected (angular) galaxy bias (linear and non-linear) in
both simulations and observational data from DES, we com-
pare the measured and predicted linear and non-linear bias,
and we test for the presence of systematic effects. This
dataset is ideal for this study since it has been already used
for CiC in Clerkin et al. (2016) where the authors found
that the galaxy density distribution and the weak lensing
convergence (κWL) are well described by a lognormal distri-
bution. The main difference between our study and Clerkin
et al. (2016) is that our main goal is to provide a measure-
ment of the galaxy bias, whereas Clerkin et al. (2016) study
convergence maps.

The authors in Gruen et al. (2017) also perform CiC in
DES data. Combining gravitational lensing information and
CiC, they measure the galaxy density probability distribu-
tion function (PDF) and obtain cosmological constraints us-
ing the redMaGiC selected galaxies (Rozo et al. 2016) in DES
Y1A1 photometric data (Drlica-Wagner et al. 2018). In our
case we measure the moments of the galaxy density contrast
PDF and compare them to the matter density contrast PDF
from simulations (with the same redshift distributions) to
study different biasing models, in a different galaxy sample
(DES-SV).

Throughout the paper, we assume a fiducial flat ΛCDM+ν
(one massive neutrino) cosmological model based on Planck
2013 + WMAP polarization + ACT/SPT + BAO, with
parameters (Ade et al. 2014) ωb = 0.0222, ωc = 0.119, ων =
0.00064, h = 0.678, τ = 0.0952, ns = 0.961 and As = 2.21×
10−9 at a pivot scale k = 0.05Mpc−1 (yielding σ8 = 0.829
at z = 0), where h ≡ H0/100km s−1Mpc−1 and ωi ≡ Ωih

2

for each species i.

The paper is organized as follows: in Section 2, we present
the data sample used for our analysis. First, we present the
simulations used to test and validate the method and after-
wards, the dataset in which we perform our measurements.

In Section 3, we present the CiC theoretical framework and
detail our method to obtain the linear and non-linear bias.
Section 4 and 5 present the CiC moments and bias calcula-
tions for the MICE simulation and DES-SV dataset, respec-
tively. In Section 6, we study the systematic uncertainties in
our method. Finally, in Section 7, we include some conclud-
ing remarks about this work.

2 DATA SAMPLE

2.1 Simulations

In order to test and validate the methodology presented in
this paper, we use the MICE simulation (Fosalba et al. 2008;
Crocce et al. 2010). MICE is an N-body simulation with
cosmological parameters following a flat ΛCDM model with
Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044, ns = 0.95, and σ8 = 0.8.
The simulation covers an octant of the sky, with redshift
z, between 0 and 1.4 and contains 55 million galaxies in
the lightcone. The simulation has a comoving size Lbox =
3072h−1Mpc and more than 8 · 109 particles (Crocce et al.
2015). The galaxies in the MICE simulation are selected
following the procedure in Crocce et al. (2016), imposing
the threshold ievol < 22.5. The MICE simulation has been
extensively studied in the literature (Sánchez et al. 2011;
Crocce et al. 2016; Hoffmann et al. 2015; Pujol et al. 2017;
Garcia-Fernandez et al. 2018), including measurements of
the higher-order moments in the dark matter field (Fosalba
et al. 2008), providing an ideal validation sample.

2.2 The DES SV Benchmark Data Sample

In this paper we perform measurements of the density con-
trast distribution and its moments on the DES Science Ver-
ification (SV) photometric sample 1 (Figure 1). The DES
Science Verification observations were taken using DECam
on the Blanco 4m Telescope near La Serena, Chile, cover-
ing over 250 deg2 at close to DES nominal depth. From this
sample we make selection cuts in order to recover the LSS
Benchmark sample (Crocce et al. 2016). By doing this we
minimize the possible two-point systematic effects and we
ensure completeness. We focus on the SPT-E field, since it
is the largest contiguous field and the best analyzed, with
60◦ < RA < 95◦, and −60◦ < Dec < −40◦ considering only
objects with 18 < i < 22.5 where i is MAG AUTO as measured
by SExtractor (Bertin & Arnouts 1996) in the i-band. The
star-galaxy separation is performed by selecting objects such
that WAVG SPREAD MODEL > 0.003. The total area considered
for our study is then 116.2 deg2 with approximately 2.3 mil-
lion objects and a number density ng = 5.6 arcmin−2. Sev-
eral photo-z estimates are available for these data. We will
focus on the TPZ catalog (Carrasco Kind & Brunner 2013)
and use the same 5 redshift bins used in Crocce et al. (2016)
with the redshift distribution depicted in Figure 2.
Several measurements of the linear bias have been performed
using this field (Crocce et al. 2016; Giannantonio et al. 2016;
Prat et al. 2018), making it ideal for this study.

1 This sample is available at https://des.ncsa.illinois.edu/

releases/sva1
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Measuring galaxy bias with CiC 3

Figure 1. Footprint of the DES SV benchmark sample (Crocce

et al. 2016). We use approximately 2.3 million objects contained

within this area for our studies.

Figure 2. Redshift distribution of the galaxies in each photomet-
ric redshift bin using TPZ (solid line) and BPZ (dashed line) in
DES-SV benchmark data from Crocce et al. (2016).

3 THEORETICAL FRAMEWORK AND
METHODOLOGY

3.1 Counts-in-cells

Counts-in-Cells (Peebles 1980) is a method used to analyze
the LSS and is based on dividing a galaxy survey into cells
of equal volume (Vpix) and counting the number of galaxies
in each cell, (Ngal). It is particularly useful to work with the
density contrast, δi in each pixel, i, defined as:

δi ≡
ρi
〈ρ〉 − 1 (1)

where ρi ≡
Ni,gal

Vi,pix
is galaxy density in the pixel and 〈ρ〉 is the

mean density. Given this definition, it follows that 〈δ〉 = 0.
The information that we are interested in is encoded in the

statistical moments of the density contrast distribution:

mj>1 ≡ 〈δj〉 =
1

Npix

∑
i

(δi − 〈δ〉)j (2)

where Npix is the number of pixels inside the survey.
The connected moments of the smoothed density field are
the average of the J-point correlation functions in a cell of
volume V (Gaztañaga 1994):

ξJ(V ) ≡ 〈δJ〉 ≡

≡ 1

V J

∫
...

∫
d3r1...d

3rJξJ(r1, ..., rJ)W (r1)...W (rJ) (3)

with W (rJ) window functions. Averaging over spheres of
radius R, the rescaled connected moments SJ can be defined
as:

SJ(R) ≡ ξJ(R)

[ξ2(R)]J−1
, J > 2 (4)

With S2(R) = ξ̄2(R). In practice, what we measure are the
central moments mJ of the angular counts. But because we
ultimately want to obtain the connected moments, we need
to subtract the lower order contributions. Due to the dis-
creteness of CiC statistics, we also have to take into ac-
count the shot noise δSN. We assume that the galaxies and
the matter density field follow a Poissonian distribution and
compute the shot-noise corrections and connected moments
that can be found in Appendix A. These definitions can
easily be generalized for angular aperture cells. This kind of
cell is more suitable for photometric redshift galaxy surveys
like DES given the relative lack of precision in the deter-
mination of distances along the line-of-sight compared to
spectroscopic surveys. For the area-averaged angular corre-
lations wJ(θ) :

SJ ≡
wJ(θ)

[w2(θ)]J−1
, J > 2 (5)

In the angular case the moments are the average of the
J-point angular correlation functions in a cell of area A
(Gaztañaga 1994):

wJ(θ) =
1

AJ

∫
A

dA1...dAJwJ(θ1, ..., θJ) (6)

To obtain the second order moment, S2(θ), we can integrate
the angular two point correlation function w2(θ):

w2(θ) =

∫
dz1

∫
dz2 φ(z1)φ(z2)ξ(r(z1, z2)) (7)

where θ = arccos(Ω1 · Ω2) is the cell aperture, φ(z) is the
redshift distribution of the sample, and ξ(r(z1, z2)) the cor-
relation function. Integrating over one pixel:

w2(θ) =
1

A2
pix

∫
w2(θ)dΩ1dΩ2 (8)

In most previous studies, the cells considered were spheres
with radii of varying apertures (Peebles (1980), Bernardeau
(1994)). We perform our measurements of the projected (an-
gular) density contrast by dividing the celestial sphere into
HEALpix pixels (Górski et al. 2005). For our study we vary
the HEALPix parameter Nside from 32 to 4096 (i.e. apertures
ranging from 1.83◦ to 0.014◦). The angular aperture, θ, is
estimated as the square root of the pixel area. According to
equation (3) there is a dependence on the boundaries of the
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Figure 3. Moments of the density contrast distribution as a func-
tion of cell scale in the MICE simulation for the redshift bin

0.2 < z < 0.4, with jackknife errors (red) and bootstrap errors

(blue). The results for a given scale θ have been separated in the
figure for visualization purposes, being the blue triangles the ones

shown at the nominal measured scale.

cell and thus on the shape that we choose for the pixels. In
Gaztañaga (1994), the authors estimate CiC for square cells
of side l in a range l = 0.03◦− 20◦ and compare to the aver-
age correlation functions w2(θ). The agreement between the
two estimates indicates that square cells give very similar
results to circular cells when the sizes of the cells are scaled
to θ = l/

√
π. Using data from MICE, we perform several

tests to see that the concrete shape of the pixel, when it is
close to a regular polygon, does not affect the measured mo-
ments despite boundary effects (Appendix B). Furthermore,
when working with the acquired observational data, the ge-
ometry of the survey becomes complicated. A discussion of
how we deal with this is found in Appendix C. The error
bars throughout this paper, are estimated using the boot-
strap method (Efron 1979; Ivezić et al. 2014). This choice
is mainly due to the lack of number of samples for large
pixel sizes that might limit the precision of other methods
such as jack-knife, given that the latter depends highly on
the number of samples as pointed out in (Norberg et al.
2009). Figure 3 shows agreement between the uncertainties
computed using the jackknife and bootstrap methods for a
randomly chosen redshift bin in the MICE simulation.

3.2 Galaxy bias

One of the most important applications of the CiC observ-
able is the determination of the galaxy bias. We observe
the galaxy distribution and use it as a proxy to the under-
lying matter distribution. Both baryons and dark matter
structures grow around primordial overdensities via gravi-
tational interaction, so these distributions should be highly
correlated. This relationship is called the galaxy bias, which
measures how well galaxies trace the dark matter. Galaxy
biasing was seen for the first time analyzing the clustering of
different populations of galaxies (Davis et al. 1978; Dressler
1980). The theoretical relation between galaxy and mass dis-
tributions was suggested by Kaiser (1984) and developed
by Bardeen et al. (1986). Since then, many different pre-
scriptions have arisen (Fry & Gaztañaga 1993; Bernardeau
1996; Mo & White 1996; Sheth & Tormen 1999; Manera
et al. 2010; Manera & Gaztañaga 2011). However, there is
no generally accepted framework for galaxy biasing. While
the galaxy and dark matter distribution are related, the ex-
act relation depends on galaxy formation (Press & Schechter
1974), galaxy evolution (Nusser & Davis 1994; Tegmark &
Peebles 1998; Blanton et al. 2000), and selection effects. Bias
depends strongly on the environment. Using dark matter
simulations, the authors in Pujol et al. (2017) show how
the halo bias is determined by local density and not by halo
mass. Several studies have demonstrated the different behav-
iors of early-type and late-type galaxies at both small and
large scales (Ross et al. 2006; Willmer et al. 1999; Zehavi
et al. 2002; Norberg et al. 2002). To have a good estimate of
the real matter distribution, it is convenient to use a galaxy
sample as homogeneous as possible. With the linear bias
b(z) approximation, we can relate the matter fluctuations
δm with the fluctuations in the galaxy distribution δg:

δg = bδm (9)

In the linear approximation, up to scalings, all statistical
properties are preserved by the biasing and the observed
galaxy properties reflect the matter distribution on large
scales, as long as we consider only two-point statistics. How-
ever, in the general case, it is highly unlikely that the rela-
tion is both local and linear. Non-local dependencies might
come from some properties such as the local velocity field
or derivatives of the local gravitational potential (Fry &
Gaztañaga 1993; Scherrer & Weinberg 1998). Bias also de-
pends on redshift (Fry 1996; Tegmark & Peebles 1998).
When non-Gaussianities are taken into account, linear bias
fails to be a good description. If we want to measure higher
orders we can assume that the (smoothed) galaxy density
can be written as a function of the mass density and expand
it as a Taylor series (assuming a local relation) (Frieman &
Gaztañaga 1999; Fry & Gaztañaga 1993):

δg = f(δ) =

∞∑
k=0

bk
k!
δkm (10)

The linear term b1 = b is the usual linear bias. Using this
expansion we can relate the dark matter and the galaxy den-
sity contrast moments using the following relationships (Fry
& Gaztañaga 1993):

S2 = b2S2m (11)

S3 = b−1(S3m + 3c2) (12)

c© 2018 RAS, MNRAS 000, –



Measuring galaxy bias with CiC 5

S4 = b−2(S4m + 12c2S3m + 4c3 + 12c22) (13)

where ck = bk/b for k > 2. We will refer to this model as
local.

The authors in Bel et al. (2015) point out that ignoring
the contribution from the non-local bias can affect the linear
and non-linear bias results. As a consequence, we analyze the
case when the non-local contribution is included. To do so,
we substitute c2 by c′2 = c2 − 2

3
γ2, where γ2 is the so-called

non-local bias parameter (Bel et al. 2015). We will refer to
this model as non-local.

Note that we omit the terms higher than 3rd order be-
cause, as we will show later, we have very limited sensitivity
to b3, and expect to have no sensitivity to b4.

3.3 Estimating the projected linear and
non-linear bias

The relations in equations (11-13) refer to the three-
dimensional case and connect an observed galaxy distribu-
tion with its underlying dark matter distribution, both trac-
ing the same redshift range and cosmological parameters.
We assume that this bias model is also valid for the pro-
jected moments (we will check the validity of this assump-
tion later). Moreover, given the measurements in a dark mat-
ter simulation with the same redshift distribution and an-
gular footprint as our galaxy dataset, we estimate the linear
and non-linear bias of these galaxies using equations (11-13).
Note that these relations apply when we are comparing two
datasets with the same value for σ8 parameter. In the case
that σ8 6= σ8,m we will have to correct the resulting bias so,

bcorr = buncorr
σ8,m

σ8
. (14)

We will use this correction in Section 6.3. We also take ad-
vantage of the fact that the skewness and kurtosis depend
weakly with the cosmological parameters (Bouchet et al.
1992). In particular, a 5% variation choosing Ωm = 0.25
translates to a variation of 0.2% in the measured S3m, which
is much smaller than the statistical fluctuations that we ex-
pect from our samples. In the case of S4m our sensitivity
is even lower, making it safe to use a simulation with the
same footprint and redshift distribution, as long as the vari-
ation in the cosmological parameters is small. However, this
is not necessarily true for the case of S2m, where the depen-
dency on the cosmological parameters is higher. We check
this using equation (8) to compute the projected S2m for two
different sets of cosmological parameters: our fiducial Planck
cosmology (Ade et al. 2014) and a model with Ωm = 0.2. We
use a Gaussian selection function φ(z) with σz = 0.05(1+z)
since this is representative of the datasets that we analyze
in this work. After this, we check the ratio:

δpij(z, θ) =
S2m,i(z, θ)

S2m,j(z, θ)

D2
+,j(z̄)

D2
+,i(z̄)

(15)

for the different redshift slices considered in our analysis,
where the subscripts i and j correspond to two different sets
of cosmological parameters and D+(z̄) is the linear growth
factor (Peebles 1980; Heath 1977) evaluated at the mean
redshift of the considered slice. This gives us an upper limit
to the expected variation in S2m to consider in our analysis.
In Figure 4 we can see that the variation is within 12%
of the linear prediction, thus, we conservatively assign 12%
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Figure 4. Effect of the variation of Ωm within Planck priors

in S2m. We see that the variation is within 12% of the linear

prediction.

systematic error to S2m due to this variation. Under these
conditions we perform a simultaneous fit to b, b2, b3 and γ2.
In order to do so, we consider the likelihood:

logL = −1

2

4∑
k=2

∑
i,j

[Sk,g(θi)− Sk,mod(θi)]

C−1
k,ij [Sk,g(θj)− Sk,mod(θj)] = −χ

2

2
(16)

where Sk,g are the measured galaxy moments and Sk,mod are
the models in equations (11), (12), and (13). We checked
that the measured Sk follow a Gaussian distribution. The
covariances Ck,ij are computed as follows:

Ck,ij =
Nu,pix(θi)

Nu,pix(θj)
22(j−i)σk(θi)σk(θj) (17)

with Nu,pix(θi) being the number of pixels used in an aper-
ture, θi. Note that, since we are using HEALPix, and we are
not displacing the field, we are re-using the same galaxies

for different scales, so the factor
Nu,pix(θi)

Nu,pix(θj)
22(j−i) accounts

for the induced correlation due this reuse. We assume that
the errors in the dark matter moments and the errors in the
galaxy moments are not correlated and add them in quadra-
ture, so:

σk(θi) =
√
σ2
k,gal(θi) + σ2

k,m(θi) (18)

where σk,gal/m(θi) is the standard deviation of the k-th
(galaxy or matter) moment in an aperture θi computed us-
ing bootstrapping.

We use the following flat priors:

• 0 < b < 10.
• −10 < b2 < 10.
• −10 < b3 < 10.
• γ2 = 0 (or in the case of non-local model −10 < γ2 <

10).

These priors have been chosen to prevent unphysical results.
We evaluate the likelihood and obtain the best fit values and
their uncertainties by performing a MCMC using the soft-
ware package emcee (Foreman-Mackey et al. 2013). Summa-
rizing, the method works as follows:

c© 2018 RAS, MNRAS 000, –



6 A. I. Salvador, F. J. Sánchez et al.

(i) Measure CiC moments using HEALPix pixels in the
galaxy sample.

(ii) Measure CiC moments using the same pixels and se-
lection function in a dark matter simulation with compara-
ble cosmological parameters.

(iii) Evaluate statistical and systematic uncertainties in
the measured moments.

(iv) Obtain best fit b, b2, b3, (and γ2 in the non-local
model) using MCMC with the models from equations (11-
13).

In summary, in the local model we fit 3 free parameters,
whereas in the non-local model we fit 4.

In Hoffmann et al. (2015), the authors present a predic-
tion for the non-linear bias as a function of the linear bias
in the three-dimensional case:

b2 = b2 − 2.45b+ 1.03 (19)

b3 = b3 − 7.32b2 + 10.79b− 3.90 (20)

We will use these predictions to test the compatibility be-
tween the 3D and the measured projected values for the
non-linear bias.

4 RESULTS IN SIMULATIONS

In order to validate this method, we first compute the
CiC moments in the MICE simulation (in both galax-
ies and DM) using a Gaussian selection function φ(z)
with σz = 0.05(1 + z). This σz is similar to the pho-
tometric redshifts found in the data using TPZ (Car-
rasco Kind & Brunner 2013) and BPZ (Benitez 2000).
We split our sample into 5 photometric redshift bins: z ∈
[0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0], [1.0, 1.2], mirroring the
choice in (Crocce et al. 2016). Then we do the same with
the SV data sample presented in Section 2.2 with TPZ pho-
tometric redshifts.

4.1 Angular moments for MICE

Figure 5 shows the moments of the density contrast distri-
bution as a function of the cell scale for the different pho-
tometric redshift bins. We observe that the moments follow
the expected trend, that is, lower redshift bins have higher
values for the higher-order moments since non-linear grav-
itational collapse has a larger effect on these. This is true
for all measurements except for the last two redshift bins
of the variance, S2. This can be due to the magnitude cuts,
since the galaxy populations are different at different red-
shifts. We also see that the larger the cell scale, the smaller
the variance S2, since larger cell scales should be more ho-
mogeneous. The skewness and the kurtosis in linear scales
(θ > 0.1◦) are constant and of the same order of magni-
tude as the expected values (S3 ≈ 34/7, S4 ≈ 60712/1323)
(Bernardeau 1994). The behavior at non-linear scales is due
to the non-linearities of the MICE simulation.

4.2 Projected galaxy bias in MICE simulation

We smear the true redshift with the proper selection func-
tion in the MICE dark matter field, obtained from a dilu-
tion of the dark matter particles (taking 1/700 of the parti-
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Figure 5. Moments of the density contrast distribution as a func-
tion of cell scale in the MICE simulation with Gaussian photo-

metric redshift (∆z = 0.2 σz = 0.05(1 + z)) for different redshift

bins. The results for a given scale θ have been separated in the
figure for visualization purposes.

cles). The authors in Chang et al. (2016) demonstrate that
the dilution of the dark matter field does not impact their
statistics and using the measured moments from the previ-
ous section we proceed to perform a simultaneous fit for b,
b2, and b3 using the local, non-linear bias model from equa-
tions (11,12,13). The fit results are summarized in Figure
6. We can see the impact of changing the range of θ con-
sidered in the fit. In this case we see that including scales
smaller than 0.1◦, where non-linear clustering has a large
impact, affects the b2 results. This, together with the fact
that the reduced χ2 minimum value doubles when includ-
ing θ = 0.05◦ clearly shows that we should not consider
scales smaller than θ = 0.1◦. We can see as well that b3 is
compatible with zero and that we have a limited sensitiv-
ity to it, given the area used. Thus, the choice of ignoring
terms of orders higher than b3 becomes a good approxima-
tion. However, for b2 we are able to measure a significant
non-zero contribution. We can also see that the predicted
values for the 3D non-linear bias parameter b2 are not in
good agreement at small scales, while there is an indica-
tion of better agreement at larger scales. This suggests that
the 2D and 3D values for b2 might be compatible at larger
scales, in agreement with Manera & Gaztañaga (2011) who
show that the local bias is consistent for scales larger than
R > 30 − 60 Mpc/h. They also show that the values of b1
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Figure 6. Linear and non-linear bias results as a function of red-

shift for MICE data with Gaussian photo-z. The different colors

represent the best-fit results considering different ranges of the
aperture angle θ. In red (solid triangles) we consider the range

from 0.05◦ to 0.92◦, green (open circles) is our fiducial case with
0.11◦ < θ < 0.92◦, in blue (solid circles) we take out the smallest

scale in our fiducial case and in cyan (open triangles) we take out

the largest scale. The top panel shows the projected linear bias b
as a function of redshift, the middle panel shows the best-fit re-
sults for the projected b2, and b3 is shown in the lower panel. The

shaded region corresponds to the 3D predicted values using equa-
tions (20). The results for a given redshift z have been separated

in the figure for visualization purposes.

and b2 vary with the scale and converge to a constant value
around R > 30 − 60 Mpc/h, which means that the values
that we measure here have not yet fully converged. The pre-
diction for b3 seems to be compatible with the estimated
values given the size of the error bars. These results show
that we should consider b2 as a first order (small) correc-
tion to the linear bias model at these scales for projected
(angular) measurements. The individual fits can be seen in
Appendix D.

4.3 Verification and biasing model comparison

In order to verify this method and check if the local non-
linear model considered induces certain systematic biases
on the results, we check that the measured linear bias is
compatible with corresponding measurements from the two
point correlation function (Figure 7). In particular, we use
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Figure 7. (Top) Comparison between the MICE simulation bias

obtained using CiC with different biasing models: non-local (solid

triangles), and local (open triangles). We also show the best-fit
from Crocce et al. (2016) (Figure 17) as reference. The middle

panel shows the equivalent results for b2. This is done for Gaussian
photo-z with σz = 0.05(1 + z). (Bottom) total reduced chi-square

for each of the models when fitting the moments to obtain the

bias.

the best fit parametrization from Crocce et al. (2016):

bbest(z) = 0.98 + 1.24z − 1.72z2 + 1.28z3 (21)

In Figure 7, we can see that the local and non-local bias
are in agreement, most likely due to the scale range that we
are dealing with and the projection effects due to the size of
the redshift slices. We can also see that the simplest model
(local) has the lowest reduced chi square.

5 RESULTS IN DES-SV DATA

5.1 Angular moments for DES - SV

Using the same footprint, selection cuts, and redshift bins as
in Crocce et al. (2016), we compute the moments of the den-
sity contrast distribution for the SV data. These results are
depicted in Figure 8 as a function of cell scale for different
redshift bins. Here, as in the case of MICE, the variance de-
creases with the scale. The skewness and the kurtosis are also
constant and of the same order of magnitude as the theoret-
ical values within errors. The largest differences when com-
pared with the simulation are in the non-linear regime due
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Figure 8. Moments of the density contrast distribution of the
DES SV benchmark sample as a function of cell scale, for five

different redshift bins and different scales. The results for a given

scale θ have been separated in the figure for visualization pur-
poses. We compare with the results from Wolk et al. (2013) for

CFHTLS marked with solid lines of different colors for the differ-

ent redshift bins: navy (0.2 < z < 0.4), cyan (0.4 < z < 0.6), lime
(0.6 < z < 0.8), yellow (0.8 < z < 1.0).

to the different way non-linearities are induced in the simu-
lation and in real data. We also compare to the results from
CFHTLS found in Wolk et al. (2013). We find a similar gen-
eral behavior, as well as the same order of magnitude in the
measured S3 and S4. However, we do not expect the same
exact results since the redshift distributions from CFHTLS
do not match exactly the corresponding distributions in the
DES-SV data.

5.2 Projected galaxy bias in DES - SV

Repeating the procedure that we used for the MICE galaxy
simulation, we analyze the DES - SV data and the MICE
dark matter simulation, and compare their moments. In Fig-
ure 9 we can see the results of simultaneously fitting for b, b2
and b3. The measurements in this figure include the system-
atic uncertainties are introduced in Section 6. The resulting
b is corrected by the ratio of σ8 between MICE and our
adopted fiducial cosmology using equation (14). The fit re-
sults can be seen in Figure D2. In this case, we detect a
non-zero value for b2. We check the probability of b2 being
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Figure 9. Linear and non-linear bias results as a function of

redshift for DES-SV data. Systematic uncertainties from Section

6 are already included in these results, excluding the uncertain-
ties associated to the modeling. The different colors represent the

best-fit results considering different ranges of aperture angle θ.
In red (solid triangle) we consider the range from 0.05◦ to 0.92◦,
green (open circle) is our fiducial case with 0.11◦ < θ < 0.92◦,
in blue (solid circle) we take out the smallest scale in our fiducial
case and in cyan we take out the largest scale (open triangle).
The shadowed region corresponds to the 3D predicted values us-

ing equations (20). The top panel shows the projected linear bias
b as a function of redshift, the middle panel shows the best-fit re-

sults for the projected b2 and b3 is shown in the lower panel. The

results for a given redshift z have been separated in the figure for
visualization purposes.

zero by computing:

χ2
z =

∑
i,j=1,Nzbins

b̂2,iC−1
2,ij(z)b̂2,j (22)

The sum runs for all the redshift bins. b̂2 is the weighted
average of the fit results with the different fitting ranges and
C2,ij(z) is the covariance matrix for b2. Taking into account
the correlations between different redshift bins:

C2,ij(z) =
NijNji
NiiNjj

∆b̂2,i∆b̂2,j (23)

with Nij is the number of galaxies observed in the photo-z
bin i from the true-z bin j and ∆b̂2,i is the weighted uncer-
tainty in b̂2,i for the photo-z bin i. The value of χ2

z = 64.75
with 4 degrees of freedom, so the probability is essentially
0, making clear that the overall value of b2 is non-zero for

c© 2018 RAS, MNRAS 000, –



Measuring galaxy bias with CiC 9

0.2 0.4 0.6 0.8 1.0 1.2
z

0.5

1.0

1.5

2.0

2.5

b

g-g clustering
g-g lensing
CMB lensing
shear+density
This work

Figure 10. Bias obtained from second order CiC, including sys-

tematic uncertainties from Section 6, compared with the 2-point
correlation study (Crocce et al. 2016), the CMB-galaxy cross-

correlations study (Giannantonio et al. 2016), galaxy-galaxy lens-

ing (Prat et al. 2018), and the shear+density analysis (Chang
et al. 2016). The points for the same z have been separated in the

horizontal axis for visualization purposes.

the local model. However, we lack the sensitivity necessary
to detect a non-zero b3.
We also check the measurement of linear bias obtained in
this work and compare it with previous measurements on
the same dataset Figure 10. The measurements are generally
in good agreement with each other showing the robustness
of the method.
Future DES data will have a considerably larger area and,
as previous MICE measurements show, these measurements
will improve. Here we also use the skewness and the kurtosis
of dark matter from the MICE dark matter simulation, as
those quantities hardly depend on the cosmology (Bouchet
et al. 1992). We also find that our results are similar to those
in Ross et al. (2006). We do not expect them to be equal as
the samples are different and the bias depends strongly on
the population sample.

6 SYSTEMATIC ERRORS

In this section, we explore the effects that several poten-
tial sources of systematic uncertainty have on our moment
measurements. Since our main observable is related to the
number of galaxy-counts in a given redshift interval, we are
interested in observational effects that can affect this num-
ber. The main potential sources of systematic uncertainties
are changes in airmass, seeing, sky brightness, star-galaxy
separation, galactic extinction, and the possible errors in
the determination of the photometric redshift. In order to
evaluate their effects, we use the maps introduced in Leist-
edt et al. (2016). To account for the stellar abundance in
our field we proceed as in Crocce et al. (2016) and use the

USNO-B1 catalog (Monet et al. 2003). We also use the SFD
dust maps (Schlegel et al. 1998). What follows is a detailed
step-by-step guide to our systematic analysis: we select one
of the aforementioned maps and locate the pixels where the
value of the systematic is below the percentile level t. We
compute the moments of the density contrast distribution in
these pixels and their respective errors using bootstrap. We
change the threshold to t+ 5, repeat the process, and evalu-
ate the difference between the moments calculated using this
threshold divided by the moments in the original footprint
∆Si(t)/〈Si〉. An example of the results of this procedure can
be found in Figure 11.
We consider that a systematic effect is present if the average
of ∆Si(t)/〈Si〉 is different from zero at a 2σ confidence level
or above for the different values of t from the 50th tile to the
100th tile. Then, we assign a systematic uncertainty equal
to the value of this average. To be conservative, we consider
these effects as independent, so we add them in quadrature.
We summarize the main systematic effects observed in each
redshift bin of our sample:

• Bin 0.2 < z < 0.4:

– Seeing in i-band: we assign a 3% systematic uncer-
tainty in S4.

– Seeing in z-band: we assign a 2.5% systematic uncer-
tainty in S4.

– Sky-brightness r-band: we assign a 1% systematic un-
certainty in S4.

– Sky-brightness i-band: we assign a 1% systematic un-
certainty in S4.

– Airmass in g-band: we assign a 1% uncertainty in S4.
– Airmass in r-band: we assign a 1% uncertainty in S4.
– Airmass in i-band: we assign a 1% uncertainty in S4.
– USNO-B stars: We assign a 4% uncertainty to S2, 7%

uncertainty to S3, and 9% to S4.

• Bin 0.4 < z < 0.6:

– Seeing in z-band: We assign a 1.5% uncertainty to S4.
– USNO-B stars: We assign a 4% uncertainty to S2, 3%

uncertainty to S3, and 4% to S4.

• Bin 0.6 < z < 0.8:

– Seeing in g-band: We assign a 2% to S4.
– Seeing in r-band: We assign a 2% to S4.
– Sky-brightness i-band: We assign a 1.5% uncertainty

to S3, and 3% systematic uncertainty to S4.
– Airmass in g-band: We assign a 2.5% uncertainty to

S4.
– Airmass in r-band: We assign a 2% uncertainty to S4.
– Airmass in z-band: We assign a 1.5% uncertainty to

S3, and 3% uncertainty to S4.
– USNO-B stars: We assign a 3% uncertainty to S3,

and 5% uncertainty to S4.

• Bin 0.8 < z < 1.0:

– Seeing in g-band: We assign a 2% uncertainty to S4.
– Sky-brightness in i-band: We assign a 2% uncertainty

to S3, and a 3.5% uncertainty to S4.
– Airmass in g-band: We assign a 2% uncertainty to

S4.
– Airmass in r-band: We assign a 3% uncertainty to S4.
– USNO-B stars: We assign a 3% uncertainty to S4.
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Figure 11. Dependence of the moments Si with the variation in the value of potential systematic effects. We show an example for

Nside = 2048 in the redshift bin 0.2 < z < 0.4 using TPZ. The left column shows the behavior for S2, the middle column shows S3,
and the last column shows the results for S4. The first row corresponds to the results for the seeing in i-band, the second row shows the

results for seeing in g-band, the third shows the sky-brightness in i-band. Finally the last row shows the evolution of the moments with

the variation in the number of stars per pixel.

• Bin 1.0 < z < 1.2:

– The measurement of S4 in this bin is dominated by
systematics.

– Sky-brightness i-band: We assign 2% to S3.

– Sky-brightness z-band: We assign 3% to S3.

– USNO-B stars: We assign a 4.5% uncertainty to S3.

The estimated systematic errors for the bias are propagated
from the estimation of the systematics in S2, S3, and S4.
Their behavior is compatible with the systematics found in
Crocce et al. (2016). We use the same data masking, exclud-
ing regions with large systematic values to recover w(θ). The
linear bias is more robust using CiC since the variance, S2,
is less affected by the small scale power induced by the sys-
tematics given that these scales are smoothed out. On the
other hand, the non-linear bias is more sensitive to the pres-
ence of systematics because they can induce asymmetries in
the density contrast distribution.

6.1 Photometric redshift

Photometric redshift is one of the main potential sources for
systematic effects in photometric surveys like DES. We have
repeated the analysis in DES-SV data for a second estimate
of the photometric redshift using BPZ (Benitez 2000). In
Figure 12 we compare the results for the two photometric
redshift codes and we see that they are in good agreement.
The linear bias seems to be the most affected by the choice of
a photometric redshift estimator but the results do not show
any potential systematic biases. For the non-linear bias we
get remarkably consistent results, showing the robustness of
this method.

6.2 Biasing models

Apart from the terms that we considered in our model, the
authors in Bel et al. (2015) found that non-local bias terms
are responsible for the overestimation of the linear bias from
the three-point correlation in Pollack et al. (2014); Hoff-
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Figure 12. Bias obtained in the SV data from second order CiC

for TPZ (solid blue circles) and BPZ (green crosses). The results

for a given redshift z have been separated in the figure for visu-
alization purposes.

mann et al. (2015); Manera & Gaztañaga (2011) but that
they should not significantly affect second-order statistics.
As we mentioned previously in Section 5, we do not expect
these terms to have a significant impact on our estimations
because we analyze projected quantities over considerable
volumes (note that we integrate in the cell and in the red-
shift slice). Having said that, we test the local and non-local
models and find the results depicted in Figure 13. We can
see, as in the case of the simulation, that both models are
consistent within errors. This means that choosing the lo-
cal model does not introduce any systematic uncertainties
in our linear bias measurements. However, it affects the b2
measurements and their uncertainty since the new param-
eters introduced with these more complicated models are
correlated with them. We check the probability of b2 being
zero for the different models and obtain the results in table
1. We find b2 to be different from zero at a 3-σ level in the
worst case (non-local). We also can see that in the first bin,
none of the models fit the data well, which is not surpris-

Bias model χ2 p-value ndof

Local 64.75 3× 10−13 4

Non-local 12.63 0.013 4

Table 1. Comparison on the null hypothesis for b2 in DES-SV
data for the different bias models considered in this work.
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Figure 13. (Top) Comparison between the linear bias results

obtained with CiC for SV using different biasing models: non-

local (solid triangles), and local (open triangles) using the TPZ
sample. (Middle) Comparison between b2 results for the same

models as above. (Bottom) total reduced chi square for each of

the models.

ing, given that the range of (comoving) scales is very small
(∼ 1− 20 Mpc h−1) and non-linear clustering dominates.

Finally, we are not considering stochastic models and
we are assuming a Poisson shot-noise (see appendix A).
This means that our measured b2 could be entangled with
stochasticity (Pen 1998; Sato & Matsubara 2013). We leave
the study of stochasticity to future works.

6.3 Value of σ8

As mentioned in previous sections, our bias estimation de-
pends linearly on the value of σ8. Thus, if the actual value
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of σ8 is different from our assumed fiducial value, our results
will be biased, and we have to correct for the difference using
equation 14. This is why, we introduce a systematic uncer-
tainty of 1.4% (the uncertainty level in σ8 from Ade et al.
(2014)) that we add in quadrature to the statistical errors
in the final estimation of the bias.

7 CONCLUSIONS

CiC is a simple but effective method to obtain the linear and
non-linear bias. A good measurement of the galaxy bias is
essential to maximize the performance of photometric red-
shift surveys because it can introduce a systematic effect on
the determination of cosmological parameters. The galaxy
bias is highly degenerate with other cosmological parame-
ters and an independent method to determine it can break
these degeneracies and improve the overall sensitivity to the
underlying cosmology. In this paper we have developed a
method to extract the bias from CiC. We use the MICE
simulation to test our method and then perform measure-
ments on the public Science Verification data from the Dark
Energy Survey. The strength of this method is that it is
based on a simple observable, the galaxy number counts,
and is not demanding computationally.

We check that our linear bias measurement from CiC
agrees with the real bias in the MICE simulation. Figure 7
shows an agreement between our measurement and the one
obtained using the angular two-point correlation function.
We then obtain the linear bias in the SV data and find that
it is in agreement with previous bias measurements from
other DES analyses. In Figure 10, we see that the CiC values
are compatible with the two-point correlation study (Crocce
et al. 2016), the CMB-galaxy cross-correlations study (Gi-
annantonio et al. 2016), and the galaxy-galaxy lensing (Prat
et al. 2018), and we demonstrate that these results are ro-
bust to the addition of new parameters in the biasing model,
such as the non-local bias. Finally, we compute the non-
linear bias parameters up to third order. We detect a sig-
nificant non-zero b2 component. It appears that the 2D and
3D predictions of the non-linear bias are in better agreement
at larger scales, as expected. However, given the uncertain-
ties associated with these quantities, it is difficult to draw
any conclusions from b3 despite its compatibility with the
expected 3D prediction. When more data is available, we
plan to check if we can improve our constraints on b3 and
whether the agreement with the 3D prediction improves as
well. The systematic errors are in general lower than the sta-
tistical errors, in agreement with the systematic study done
by (Crocce et al. 2016).

APPENDIX A: SHOT NOISE CORRECTION

Usually, in the analysis what we estimate are the central
moments of the angular counts:

mJ(θ) ≡
∞∑
i=0

(i−N)JPi(θ) (A1)

where Pi(θ) is the probability of finding i galaxies in a ran-
domly selected cell of solid angle A and N ≡

∑
i iPi is the

average number of galaxies per cell. The galaxy density fluc-
tuation in the cell is:

δg =
(i−N)

N
(A2)

and therefore:

mJ = N
J〈δJg 〉 (A3)

Ultimately, we want to obtain to estimate the averaged cor-
relation functions wJ(θ) are the connected moments:

µJ ≡ N
J〈δJg 〉c (A4)

We have to correct what we measure, which is 〈δJg 〉, sub-
tracting the lower order contributions. Up to third order
we do not have any contributions but at J = 4 we do.
The connected part is the contribution to 〈δ1, ..., δj〉 which
does not include any conditional probability of lower order.
To estimate the connected graphs we introduce a moment-
generating function:

M(t) =

∞∑
j=0

mj

j!
= 〈eiδ〉 (A5)

where mj =
[
dj

dtj
M(t)

]
t=0

and the connected moments are:

µj =

[
dj

dtj
logM(t)

]
t=0

(A6)

Up to J = 4 (Gaztañaga 1994):

µ2 = m2

µ3 = m3

µ4 = m4 − 3m2
2

(A7)

Also due to discreteness, 〈δJg 〉c is not a good estimator
unless N � 1. We have to subtract the shot noise which af-
fects measurements from J = 2 on. We use a Poisson model
with generating function MPoisson(t) = M(et− 1) to obtain
better estimators (Gaztañaga 1994):

k2 = µ2 −N
k3 = µ3 − 3k2 −N
k4 = µ4 − 7k2 −N

(A8)

where terms to the right of µJ are the shot-noise
correction. Then in our case, we subtract the shot noise
from what we measure 〈δJg 〉 = mJ

N
J :

〈δ2〉c =
k2

N
2 = 〈δ2

g〉 −
1

N

〈δ3〉c =
k3

N
3 = 〈δ3

g〉 −
3

N
〈δ2〉c −

1

N
2

〈δ4〉c = 〈δ4
g〉 − 3〈δ2

g〉2 −
7

N
2 〈δ

2〉c −
6

N
〈δ3〉c −

1

N
3

(A9)

where N is N =
Ntot

gal ∗Apix

Atot
, being N tot

gal the total number
of galaxies, Atot the total area, and Apix the area of the pixel.
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Then the final moments would be:

S2 = 〈δ2〉c

S3 =
〈δ3〉c
〈δ2〉2c

S4 =
〈δ4〉c
〈δ2〉3c

(A10)

APPENDIX B: DIFFERENT PIXEL SHAPES

We check with the MICE simulation in a thin redshift bin
(0.95 < z < 1.05) that as long as we have regular poly-
gon pixels the difference in the moments of the density con-
trast is negligible. In Figure B1 we see that the difference
is negligible for the more symmetrical pixels and higher
for less symmetrical ones. The angular aperture, θ, is es-
timated as the square root of the pixel area. We compare
rectangular pixels with HEALpix pixels. We divide the sphere
into rectangular pixels taking nra parts in right ascension,
and nct parts in sin dec where the number of pixels is
npix=nra ·nct = 12·Nside ·Nside. We have taken six different
pixel shapes numbered from 1 to 6. Pixels number 3 (nra =
3Nside, nct = 4Nside), 4 (nra = 4Nside, nct = 3Nside) and
6 (nra = 6Nside, nct = 2Nside) are close to being squares,
but pixels number 1 (nra = 12Nside, nct = 1Nside), 2
(nra = 1Nside, nct = 12Nside) and 5 (nra = 2Nside, nct =
6Nside) are far from being regular polygons. When we com-
pare square and HEALpix pixels we see that the measured
moments are in perfect agreement.

APPENDIX C: BOUNDARY EFFECTS

To deal with the boundary effects of an irregularly shaped
area, we use the mask and degrade its resolution to match
each of the pixel scales being used. However, degrading
the mask (or increasing the scale) results in an increas-
ing number of partially filled pixels. Only a fraction rA =
Afilled/Apixel remain completely inside the footprint. This
means that, if we assign the same scale to all the pixels of a
given Nside value, some pixels will be effectively mapping a
different scale. To solve this problem we can either require a
minimum fraction of the pixel to be full, rA > X, or we can
compute the fraction of full pixels and perform CiC for that
scale. We prefer to use the former because we consider that
the scales where we perform the study appropriately map
the variations of the density field in which we are interested.
This approach also helps to avoid certain boundary effects.
For small pixel sizes (similar to the size in the mask), given
the large number of pixels, we can safely choose rA = 1.
For bigger pixels we try to find a compromise between the
amount of area that we lose and the boundary effects. In
Figures C1 and C2 we show the area loss using data from
MICE in the redshift bin 0.95 < z < 1.05 with the SV
mask for different thresholds in rA and in Figure C3 the
change in the moments for these different area cuts. We see
that if we choose pixels that are completely contained in-
side the mask (rA = 1.0), we lose a lot of area for smaller
values of Nside, however, very little area is lost for large val-
ues of Nside. It can be seen that results are consistent for
the different threshold values for rA. We also see that if we
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Figure B1. Moments of the density contrast distribution as a

function of the cell scale using data from MICE in the redshift
slice 0.95 < z < 1.05 for different pixel shapes. Pixels number 3

(nra = 3Nside, nct = 4Nside), 4 (nra = 4Nside, nct = 3Nside)

and 6 (nra = 6Nside, nct = 2Nside) are close to being squares,
but pixels number 1 (nra = 12Nside, nct = 1Nside), 2 (nra =

1Nside, nct = 12Nside) and 5 (nra = 2Nside, nct = 6Nside) are

far from being regular polygons.

take all the pixels (rA > 0), the difference in the moments
is considerable in some cases, and we cannot take just all
the pixels inside the mask (rA = 1) because we run out of
them for large scales. We set a threshold rA > 0.9 to en-
sure that the pixels are almost completely embedded in the
footprint. This prevents us from mixing scales even for the
largest pixel sizes. This can be noted in Figure C1 where a
large drop in area occurs between rA = 0.8 and rA = 0.9
for Nside 6 1024, setting this threshold naturally. For most
scales this threshold does not change the errors. By choosing
rA > 0.9 the effective cell sizes are well determined and the
errors are reasonably small.

APPENDIX D: SIMULTANEOUS FITS
RESULTS

In this section we show the fitting results for the simulta-
neous fits in MICE. In Figures D1 and D2, the red line
corresponds to the mean value of the samples and the grey
lines are the different models evaluated by the MCMC.
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Figure C1. Area covered by different HEALpix pixelation resolu-

tions as a function of the minimum fraction of pixel coverage of
said resolution with respect to the Nside = 4096 footprint (larger

pixels from lower Nside will be partially filled at times). This test

is done using the MICE simulation considering the same footprint
as the SV dataset.

Figure C2. DES SV mask for different Nside (64, 256) and dif-

ferent area cuts rA = 0.6, 0.9. The pixels that we discard are

blue and the ones that we keep are red. The bigger the pixel, the
larger the amount of data we lose.
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Figure D1. Fit results for the non-linear bias simultaneous fits method using MICE with Gaussian photo-z. The points are the measured

moments and the error bars are calculated by adding in quadrature the uncertainties from the moments in the dark matter and the
galaxies. The red line is the best-fit curve corresponding to the mean of the posterior distribution. The gray lines are the different models

evaluated by the MCMC. The top row corresponds to the first redshift bin (0.2 < z < 0.4), the second row corresponds to the second

redshift bin, and so on.
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Figure D2. Non-linear bias fits for DES-SV data. See caption in Figure D1 for more details.
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33 Institució Catalana de Recerca i Estudis Avançats,
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