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ABSTRACT
Luminous tracers of large-scale structure are not entirely representative of the distribution of
mass in our Universe. As they arise from the highest peaks in the matter density field, the
spatial distribution of luminous objects is biased towards those peaks. On large scales, where
density fluctuations are mild, this bias simply amounts to a constant offset in the clustering
amplitude of the tracer, known as linear bias. In this work we focus on the relative bias be-
tween galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids,
extended regions of relatively low density in the large-scale structure of the Universe. With the
help of hydro-dynamical simulations we verify that the relation between galaxy and cluster
overdensity around voids remains linear. Hence, the void-centric density profiles of different
tracers can be linked by a single multiplicative constant. This amounts to the same value as
the relative linear bias between tracers for the largest voids in the sample. For voids of small
sizes, which typically arise in higher density regions, this constant has a higher value, possi-
bly showing an environmental dependence similar to that observed for the linear bias itself.
We confirm our findings by analysing mocks and data obtained during the first year of ob-
servations by the Dark Energy Survey. As a side product, we present the first catalogue of
three-dimensional voids extracted from a photometric survey with a controlled photo-z un-
certainty. Our results will be relevant in forthcoming analyses that attempt to use voids as
cosmological probes.

Key words: Cosmology: observations – large-scale structure of Universe – galaxies: clusters:
general

1 INTRODUCTION

Most of the mass content in our Universe is composed of cold dark
matter (CDM), currently described as a non-relativistic collision-
less fluid which is responsible for the formation of halos, gravi-
tationally bound clumps of dark matter that provide the potential
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wells in which baryons can cool and collapse to give birth to the
galaxies we observe in the sky (Peebles 1980). While the quest for
the nature of dark matter remains unresolved, currently the only
way to infer its properties is indirect, via the gravitational interac-
tion it exerts on the luminous constituents of the cosmos. To map
the CDM one can therefore rely on the distribution of luminous
tracers, such as galaxies and clusters of galaxies. Unfortunately,
these objects are located only in the highest peaks of the underly-
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ing matter density field, therefore their clustering properties do not
exactly mirror those of the CDM: galaxies and clusters of galax-
ies are biased tracers of the total mass distribution (Kaiser 1984).
On small scales, where highly non-linear effects are important, this
bias constitutes an unknown function of space and time. But on
large scales, where density fluctuations remain within the linear
regime, it can be modelled as a multiplicative offset in the clus-
tering amplitude. The latter is known as linear bias and depends
on a number of properties of the tracer population, one of the most
important being the mass of its host halos: tracers residing in more
massive halos exhibit a higher clustering bias (for a comprehensive
review, see Desjacques et al. 2016).

Typically, bias has been studied via the correlation function or
the power spectrum of all tracers as a whole, regardless of their
cosmic-web environment (see, e.g., Smith et al. 2007; Cacciato
et al. 2012; Springel et al. 2018; Simon & Hilbert 2017; Dvornik
et al. 2018, and references therein). In a recent paper, however,
Pollina et al. (2017) investigated the properties of bias focusing
on tracers located in the vicinity of cosmic voids, large and rel-
atively empty regions of large-scale structure. Voids, amongst all
other structure types, are the largest in the Universe and make up
the dominant fraction of its space. In Pollina et al. (2017) simu-
lations were analysed to determine the absolute clustering bias of
various tracers with respect to the total mass distribution. In or-
der to mimic an observational approach, voids were identified in
the distribution of tracers to define void catalogues. Then, both the
density of dark matter particles and the density of the tracers them-
selves was investigated as a function the distance r to the centers
of these voids. In particular, it was found that the void-tracer cross-
correlation function ξvt(r) exhibits a linear relation with the cor-
responding void-matter cross-correlation function ξvm(r), with a
proportionality constant bslope,

ξvt(r) = bslope ξvm(r). (1)

Furthermore, Pollina et al. (2017) investigated the dependence of
bslope on void size. It was found that the best-fit value for bslope

decreases monotonically towards larger voids, and saturates to a
constant number for the largest voids. This number was shown to
coincide with the linear tracer bias bt, which can be either calcu-
lated from theory, or determined using the common bias estimators.
Hence, bslope in Equation (1) can be expressed as follows:

bslope(rv)

{
> bt , for rv < r+

v

= bt , for rv > r+
v ,

(2)

where rv is the average, and r+
v the critical effective void radius

of the sample. In other words, Equation (1) linearly relates tracer
and matter densities around voids in all cases, but bslope coincides
with the linear bias bt only when voids of size rv > r+

v are con-
sidered in the measurement (for visualization please refer to Fig. 4
of Pollina et al. 2017). The precise value of r+

v depends on various
properties of the tracer distribution itself, such as its sparsity and
bias. Nevertheless, Equation (1) provides a very simple guideline
of how to infer the distribution of mass around voids in the tracer
distribution1. The aim of this paper is to show that the same ap-
plies when relating different types of tracers around voids, both in
simulations, and for the first time in observational data as well.

1 Note that Nadathur & Percival (2017) find a residual from the linearity of
Equation (1) when bslope is fixed to the linear bias bt, while Pollina et al.
(2017) and this paper treats it as a free parameter.

The importance of the result summarized in the previous para-
graph can be better understood if we consider how building a co-
herent framework within void-cosmology has been so far a very
complicated task. For example, obtaining accurate predictions on
the most basic statistic, the void number counts, has always been
particularly difficult. This has to do with the fact that the definition
criteria for voids and their associated assumptions are not unique
and typically differ between theory and practice. It is generally
agreed that voids are vast regions of large-scale structure with a
density below the average density of the Universe. However, due
to the multi-scale nature of cosmic web, it is unclear how to di-
vide local underdensities of different shape with multiple levels of
nested substructure into a unique set of distinct objects. In a pio-
neering theoretical study, Sheth & van de Weygaert (2004) define
voids as spherically symmetric underdensities that undergo shell
crossing at their boundaries. Their initial density profile is assumed
to have an inverted top-hat form, and spherical evolution is adopted
to predict the final void abundance following the excursion-set for-
malism (also see Jennings et al. 2013; Nadathur & Hotchkiss 2015;
Falck & Neyrinck 2015; Chan et al. 2014). In practice, however,
these assumptions are hardly ever justified. Two general directions
have been pursued to overcome this problem. One is to modify or
relax specific assumptions in the theory of Sheth & van de Wey-
gaert (2004), such as demanding volume conservation for the entire
void sample (Jennings et al. 2013), or allowing the critical density
threshold for void formation to vary as a free parameter (Pisani
et al. 2015). The other option is a modification of void catalogues
via selection cuts, which guarantee the assumptions in Sheth & van
de Weygaert (2004) to be satisfied (Ronconi & Marulli 2017). Both
approaches show promising results and will likely play a role in
future analyses that attempt to extract cosmological signals from
voids.

However, theoretical calculations rely on a smooth matter-
density field to define voids, while observations can only provide
a discrete distribution of tracers in three dimensions. A number of
different methods have recently been developed to quantitatively
extract void catalogues from observations (see, e.g., Padilla et al.
2005; Neyrinck 2008; Sutter et al. 2015), but their full connection
to theory remains an open problem. Given the large number of ob-
servational void catalogues already published (Pan et al. 2012; Sut-
ter et al. 2012a; Ceccarelli et al. 2013; Mao et al. 2017; Nadathur
2016), and expected to become available with future surveys (e.g.,
LSST, EUCLID, DESI, see Ivezic et al. 2008; Laureijs et al. 2011;
DESI Collaboration et al. 2016, respectively), it is important to
address this issue. The results of Pollina et al. (2017) provide a
first step to connect theory with practice, as Equation (1) allows us
to bridge the gap between the matter- and tracer density profiles
around observationally defined voids. In fact, these results have al-
ready been employed to this end by Ronconi & Marulli (2017),
who extended their theoretical void size function to voids traced in
halos thanks to Equation (1).

While the first models for void evolution (Hausman et al.
1983; Bertschinger 1985) have been developed soon after their ear-
liest observations (Gregory et al. 1978; Kirshner et al. 1981), the
previous decade has witnessed an increasing number of publica-
tions unveiling the potential of various void properties to provide
new insights into cosmology. For example, their average density
profile has been shown to follow a universal shape across void size,
redshift, and tracer type that can be described by a narrow family
of empirical functions (e.g., Ricciardelli et al. 2013, 2014; Hamaus
et al. 2014c; Sutter et al. 2014a). Based on the cosmological prin-
ciple, voids represent a population of statistically isotropic spheres
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distributed at different redshifts, allowing us to probe the expansion
history of the Universe by means of the Alcock-Paczynski (AP) test
(Alcock & Paczynski 1979; Lavaux & Wandelt 2012; Sutter et al.
2012b, 2014b; Hamaus et al. 2014a, 2016; Mao et al. 2017). It has
been investigated whether the observed Cold Spot in the Cosmic
Microwave Background (CMB) could be explained as Integrated
Sachs-Wolfe (ISW) imprint caused by very large voids along the
line of sight (e.g., Rees et al. 1968; Finelli et al. 2014; Kovač et al.
2014; Nadathur et al. 2014; Kovács 2018), and a final conclusion
on this topic is yet to be reached; the potential of the ISW by voids
is nevertheless important and still being actively investigated (e.g.
Granett et al. 2008; Cai et al. 2014; Nadathur & Crittenden 2016;
Kovács et al. 2017). It has further been argued that void number
counts have the potential to improve on dark energy constraints
(Pisani et al. 2015) and that together with their average density pro-
file can discriminate modify gravity (Li 2011; Clampitt et al. 2013;
Cai et al. 2016; Barreira et al. 2015; Zivick et al. 2015), coupled
dark energy (Pollina et al. 2016), and massive neutrino (Massara
et al. 2015) cosmologies from ΛCDM. These probes could also be
sensitive to possible degeneracies between warm dark matter and
modifications of gravity (Baldi & Villaescusa-Navarro 2016). Most
recently, redshift-space distortions (RSD) around voids have been
identified as a promising source of additional cosmological infor-
mation (Hamaus et al. 2015, 2016; Cai et al. 2016; Chuang et al.
2017; Achitouv et al. 2017; Hawken et al. 2017; Achitouv 2017;
Hamaus et al. 2017). In order to fully exploit the associated signal,
a reliable model for tracer bias in void environments is indispens-
able, which is the subject of Pollina et al. (2017) and this work.

Despite the fact that Equation (1) has a number of interesting
consequences and applications, it is challenging to test experimen-
tally, as the dark matter density cannot be observed directly in all
three dimensions. However, voids can also be used as weak grav-
itational (anti-)lenses to infer their projected surface mass density
(Krause et al. 2013; Melchior et al. 2014; Clampitt & Jain 2015;
Sánchez et al. 2017). Either a deprojection of the void lensing pro-
files to 3D, or a projection of tracer density profiles to 2D then al-
lows us to constrain the bias relation in voids (Fang et al., in prep).
Another possibility is to apply Equation (1) to different tracers of
the matter distribution. As long as every individual tracer obeys a
linear clustering bias with respect to the dark matter, the relative
clustering bias between the tracers should remain linear as well.
In this analysis we will make use of galaxies and galaxy clusters
as two distinct tracer types. These are the most commonly avail-
able and abundant tracers in current surveys, and at the same time
exhibit very different clustering properties. We will use the distri-
bution of galaxy clusters to define our void sample, thanks to their
higher fidelity in providing photometric redshifts and thus accurate
distance estimates. The relative bias relation between galaxies and
galaxy clusters will be thoroughly investigated in the vicinity of
those voids. In order to provide a controlled setup, we first develop
our analysis techniques based on state-of-the-art hydrodynamical
simulations (MAGNETICUM). Our methods are then applied to the
REDMAGIC galaxy– and REDMAPPER galaxy cluster catalogues
originating from the first year of observations by the DES collab-
oration. Realistic mock catalogues provided by the MICE 2 project
that have been constructed to specifically mimic the observations
which will be used to validate our conclusions.

This paper is organized as follows: in section 2 we present all
the data employed in our study (hydro-sims, DES mocks and DES
data); in section 3 we describe the void finding algorithm, as well as
all the methods employed to estimate the relative bias of tracers; in

Table 1. Properties of the galaxy and cluster samples in the MAGNETICUM

simulations. The minimum mass Mmin is given in terms of stellar mass
M∗ for galaxies, and in terms ofM500c for clusters.Nt is the total number
of tracers and Nv the corresponding number of identified voids.

Tracers Mmin[M�/h] Nt Nv

Galaxies M∗ = 1× 1011 6.5× 106 -
M∗ = 5× 1011 2.6× 106 -
M∗ = 1× 1012 3.5× 105 -

Clusters M500c = 1× 1014 1.0× 105 1053

section 4 we present the results of our analysis; finally we discuss
our conclusions in section 5.

2 SIMULATIONS, DATA AND MOCKS

2.1 Simulations

The hydrodynamical simulation suite MAGNETICUM pathfinder2

(Dolag et al, in prep.) has already been employed successfully in a
wide number of numerical studies. MAGNETICUM showed so far a
remarkably good agreement with observations for various probes,
such as for the pressure profiles of the intra-cluster medium (Planck
Collaboration et al. 2013; McDonald et al. 2014), the expected Sun-
yaev Zeldovich signal (Dolag et al. 2016), the imprint of the inter-
galactic medium onto the dispersion signal of Fast Radio Bursts
(Dolag et al. 2015), various characteristics of AGN populations
(Hirschmann et al. 2014; Steinborn et al. 2015, 2016), the dynam-
ical features of massive spheroidal galaxies (Remus et al. 2013,
2017), and the angular momentum signatures of galaxies (Teklu
et al. 2015).

In this work we employ the largest cosmological volume
simulated within that project, it covers a box of side length
2688h−1 Mpc, simulated using 2 × 45363 particles (for details,
see Bocquet et al. 2016). We adopted a WMAP7 (Komatsu et al.
2011) ΛCDM cosmology with σ8 = 0.809, h = 0.704, ΩΛ =
0.728, Ωm = 0.272, Ωb = 0.0456, and an initial slope for the
power spectrum of ns = 0.963. The simulation is based on P-
GADGET3 (Springel 2005), a parallel cosmological tree Particle-
Mesh (PM) Smoothed-Particle Hydrodynamics (SPH) code. It uses
an entropy-conserving formulation of SPH (Springel & Hernquist
2002) and follows the gas using a low-viscosity SPH scheme to
properly track turbulence (Dolag et al. 2005). Halos and sub-halos
are identified using the SUBFIND algorithm (Springel et al. 2001;
Dolag et al. 2009). SUBFIND identifies sub-structures as locally
overdense, gravitationally bound groups of particles, starting from
a main halo which is identified through the Friends-of-Friends
(FoF) algorithm with a linking length of 0.16 times the mean inter-
particle separation. After this first step a local density is estimated
for each particle via adaptive kernel estimation, making use of a
prescribed number of smoothing neighbours. After isolated density
peaks are identified, additional particles of decreasing density are
added. When a saddle point that connects two disjoint overdense
regions in the global density field is reached, the smaller structure
between the two is treated as a sub-structure candidate, and the two
overdensities are then merged. An iterative unbinding procedure
with a tree-based calculation of the potential is then run on all sub-
structure candidates. These structures are finally associated with

2 http://www.magneticum.org
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galaxies, and their integrated properties (such as stellar mass, M∗)
are computed. Galaxies in MAGNETICUM can have stellar masses
as low as 4 × 108h−1M�, but in this study we will consider as
main sample only galaxies with M∗ > 1011h−1M�, which are
more realistically observable.

The virial radius of the main haloes identified by the FoF al-
gorithm is calculated using a density contrast built on the top-hat
model (Eke et al. 1996). To allow a better comparison with observa-
tions, we additionally use an overdensity with respect to 500 times
the critical density to define M500c, which is the mass we will re-
fer to as cluster mass in this paper. Clusters are identified as main
haloes with M500c > 1013h−1M�, but in this paper we only con-
sider MAGNETICUM clusters above 1014h−1M�. For our analysis
we make use of the galaxy and cluster samples extracted from the
simulation at redshift z = 0.14 with the criteria explained above.
In Table 1 we summarise some properties of the tracers relevant in
this work.

2.2 Data

The Dark Energy Survey (DES, see The Dark Energy Survey Col-
laboration 2005) is an on-going 5 year observational campaign sup-
ported by an international collaborative effort. It employs the 570
megapixel Dark Energy Camera (DECam, see Honscheid et al.
2008; Flaugher et al. 2015) mounted on the Blanco telescope at
the Cerro Tololo Inter-American Observatory (CTIO). At the end
of its operations, DES will have mapped approximately 300 mil-
lion galaxies and tens of thousands of clusters over a 5000 square
degree footprint in the southern hemisphere. DES provides pho-
tometric data using five filters (grizY) to the limiting magnitude
of 24th i-band (Kessler et al. 2015), although the relevant limiting
magnitude for this study is 22.5 in i-band, as it constrains the ob-
servations of galaxies (Drlica-Wagner et al. 2018). In this work we
employ data obtained during the first year of observation (Y1) taken
between Aug. 31 2013 and Feb. 9 2014, that have already shown
their potential in constraining cosmology (DES Collaboration et al.
2017). DES Y1 wide-field observations scanned a large region ex-
tending approximately between −60◦ < δ < −40◦ overlapping
the South Pole Telescope (SPT) survey footprint, screening an area
of 1321 deg2 (A1). A much smaller area overlapping the “Stripe
82" of the Sloan Digital Sky Survey (SDSS) was also mapped by
DES, but this region will not be included in our analysis. From the
Gold catalogues (Drlica-Wagner et al. 2018), 26 million galaxies
were selected for the weak lensing sample. Recently the first three
years of the observational campaign were made public with the first
DES data release (Abbott et al. 2018).

2.2.1 Galaxy clusters

We make use of red-sequence Matched-filter Probabilistic Percola-
tion (REDMAPPER) Y1A1 clusters (McClintock et al. 2018), both
to use them as tracers of the large-scale structure, and to identify
cosmic voids in the latter. The photometric red-sequence cluster
finder REDMAPPER is specifically developed for large photomet-
ric surveys. It identifies galaxy clusters by searching for a bulk of
its population to be made up of old, red galaxies with a promi-
nent 4000Å-break. Focusing on this specific galaxy population the
algorithm increases the contrast between cluster and background
galaxies in colour space, and it enables accurate and precise photo-
metric redshift estimates, with a scatter of σz/(1+z) = 0.01 level
for z < 0.7 (Rykoff et al. 2016), which includes the redshift win-
dow employed for data analysis in this paper. The associated cluster

richness estimator, λ, is the sum of the membership probability of
every galaxy in the cluster field, and has been optimized to reduce
the scatter in the richness-mass relation (Rozo et al. 2009, 2011;
Rykoff et al. 2012). For a more detailed description of the algorithm
we refer to Rykoff et al. (2016). In this work we will employ cluster
samples with λ > 5, which corresponds to a minimum mean mass
of about ∼ 1013h−1M� following the mass-richness relation of
McClintock et al. (2018). This low richness cut that does not guar-
antee the purest cluster selection. In this paper, however, we are not
interested in the detailed properties of individual clusters. Rather,
we desire the selected sample to be used as a tracer of large-scale
structure, regardless of whether some of its objects are true clusters
or not. The resulting full catalogue contains 103423 clusters and
has proven to be optimal for the task of void identification, owing
to its relatively high cluster density of about 10−4h3Mpc−3.

2.2.2 Galaxies

We also employ red-sequence Matched-filter Galaxy Catalog
(REDMAGIC) Y1A1 galaxies (Elvin-Poole et al. 2017) as tracers
of large-scale structure. The REDMAGIC algorithm (Rozo et al.
2016) is automated for selecting Luminous Red Galaxies (LRGs)
and was specifically designed to minimize photometric redshift
uncertainties in photometric large-scale structure studies, result-
ing in a photo-z bias zspec − zphoto better than 0.005 and in a
scatter σz/(1 + z) of 0.017. REDMAGIC achieves this goal by
self-training the colour cuts necessary to produce a luminosity-
thresholded LRG sample of constant comoving density. In this
work we will distinguish among three different REDMAGIC sam-
ples, denoted as high density (brighter than 0.5L∗ and density
10−3h3Mpc−3), high luminosity (brighter than 1L∗ and density
4 × 10−4h3Mpc−3), and higher luminosity (brighter than 1.5L∗
and density 10−4h3Mpc−3).

2.3 DES Mocks

In order to validate our results, we make use of mock catalogues
extracted from the MICE 2 project. MICE 2, based on the original
MICE (MareNostrum - Instituto de Ciencias del Espacio) project
(Crocce et al. 2015; Fosalba et al. 2015), is a suite of large high-
resolution N -body simulations that have been run with the GAD-
GET 2 code (Springel 2005). Including 40963 particles in a box
size of 3.072h−1Gpc, MICE 2 resolves halos with even lower mass
resolution (2.93 × 1010 h−1M�) than MICE, making this particu-
lar simulation a perfect tool in providing mocks for deep and sen-
sitive surveys such as DES. FoF halo catalogues extracted from
the simulations are populated by galaxies using a Halo Occupation
Distribution (HOD), which assigns luminosities to the central and
satellite galaxies so that their observed luminosity function is pre-
served. The MICE 2 galaxy catalogue is forced to match luminosity,
colours and clustering properties of DES at redshift z = 0.1, from
where a light cone is then extrapolated by replicating and translat-
ing the simulation box, allowing one to build an output with negli-
gible repetition up to redshift z = 1.4. In this work we are going
to employ the largest available light cone, which reproduces a full
octant of the sky with the same properties as the DES Y1 obser-
vations, such as photometry. More specifically, we will employ the
REDMAGIC galaxy and REDMAPPER cluster catalogues extracted
from MICE 2 to asses the impact of photometric redshift uncertainty
on our results.

MNRAS 000, 1–17 (2018)
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3 METHODS

3.1 Void finder

We employ the Void IDentification and Examination toolkit VIDE

(Sutter et al. 2015) to construct our void catalogues. VIDE imple-
ments an enhanced version of ZOBOV (ZOnes Bordering On Void-
ness, Neyrinck 2008), an algorithm that identifies density depres-
sions in a 3-dimensional set of points. The void finding procedure
consists of three steps. First, the finder reads in the tracer positions
and associates to each tracer a cell of volume that is closer to it
than to any other tracer. This procedure is unique and referred to as
Voronoi tessellation, the resulting cells are denoted Voronoi cells.
By assuming equal weights for all particles it is straight-forward to
associate a density to each Voronoi cell: it is simply obtained as the
inverse of the Voronoi cell volume. In this manner every point in-
side the tracer distribution can be associated with a density, hence a
well-defined density field is obtained. As a second step, local den-
sity minima are found and their surrounding basins identified. A
local density minimum is a Voronoi cell of given volume whose
neighbouring cells all have smaller volumes, respectively higher
densities, than the central cell. Starting from these density minima,
surrounding Voronoi cells are merged consecutively if their indi-
vidual density is above the one of the previously merged cell. Once
a cell of lower density is encountered, the process of merging is
stopped. Thus, this procedure delineates local density basins, de-
noted as zones, with their surrounding ridges in the tracer distribu-
tion.

Finally, zones are merged to become voids by means of the
so-called watershed algorithm (e.g., Platen et al. 2007). To this end
a density threshold is raised starting from each zone’s local density
minimum. In analogy to a rising water level on a two-dimensional
terrain, water flows into adjacent zones when the separating ridges
are overflown. As long as shallower zones are added to the original
zone, the final void consists of all such merged zones, which are
still recorded as its sub-voids. When a deeper zone is encountered,
the process is stopped. Therefore, the watershed algorithm natu-
rally constructs a hierarchical structure of nested voids. Optionally,
in order to prevent including very overdense structures inside voids,
a density threshold for ridge densities can be set. It is typically cho-
sen to be 20% of the mean tracer density.

In this work we will employ the most general void catalogue
produced by VIDE, without applying any further selection cuts on
density or hierarchy levels of voids. We define the void centre as the
volume-weighted barycentre ~X of the N Voronoi cells that define
each void,

~X =

N∑
i=1

~xi · Vi

/
N∑
i=1

Vi , (3)

where ~xi are the coordinates of the i-th tracer of that void, and Vi
the volumes of their associated Voronoi cells. The effective void
radius rv is calculated from the total volume of the void Vv. It is
defined as the radius of a sphere with the same volume,

Vv ≡
N∑
i=1

Vi =
4π

3
r3
v . (4)

3.2 Correlation functions

In order to explore the clustering statistics around voids we will
employ correlation functions. The two-point correlation function

ξt1t2(r) between a tracer t1 and a tracer t2 is defined via the en-
semble average

ξt1t2(r) ≡ 〈δt1(~x)δt2(~x+ ~r)〉 , (5)

where the spatial density fluctuation of a tracer around its average
density 〈nt〉 is given by δt(~x) = nt(~x)/〈nt〉−1. In the case where
t1 = t2, this statistic is referred to as auto-correlation function,
and for t1 6= t2 as cross-correlation function. The cross-correlation
function between void centres and tracers ξvt(r) is of particular
relevance for this work. It can be shown to be equivalent to the
average (or stacked) tracer-density profile of voids, nvt(r)/〈nt〉 −
1 (see Hamaus et al. 2015). In simulations that incorporate periodic
boundary conditions it is straight-forward to calculate; one simply
histograms the number of tracers in spherical shells of width δr
around each void centre,

nvt(r) =
∑
i

Θ(| ~X − ~xi| − r)
δV (r)

, (6)

and then averages it over all voids. Here Θ represents a step func-
tion with

Θ(x) =

{
1 , for − δr/2 < x < δr/2

0 , otherwise .
(7)

In order to suppress discreteness noise, we choose to keep the radial
shell bins fixed in units of the void radius rv of each void, and
normalize by the constant shell volumes

δV (r) =
4π

3

[
(r + δr/2)3 − (r − δr/2)3] (r̄v/rv)3 (8)

after averaging over the tracer counts around all voids. The mean
effective radius r̄v of the void sample is used to rescale from di-
mensionless to physical units of volume.

However, in real observations we are observing tracers inside
irregular boundaries of a survey mask on the past light cone. In that
situation it is helpful to employ a catalog of randoms to isolate true
from fake correlations in the data. To this end the Landy-Szalay
estimator (Landy & Szalay 1993) provides a way to calculate the
void-tracer cross-correlation function from data catalogues D and
random catalogues R for each tracer and void sample,

ξvt(r) =
〈DvDt〉 − 〈DvRt〉 − 〈DtRv〉+ 〈RvRt〉

〈RvRt〉
, (9)

where angled brackets symbolize normalized pair counts at sepa-
ration r in units of rv. They can be calculated as histograms in
analogy to Equation (6).

Void density profiles have been studied in detail in the recent
literature (e.g., Colberg et al. 2005; Ricciardelli et al. 2013, 2014;
Hamaus et al. 2014c; Sutter et al. 2014a). They typically exhibit a
few very characteristic features: a deep under-dense core in the very
centre, and an over-dense ridge (compensation wall) close to the
effective radius rv. The following empirical function was shown to
capture these features accurately (Hamaus et al. 2014c),

nvt(r)

〈nt〉
− 1 = δc

1− (r/rs)
α

1 + (r/rv)β
, (10)

where δc is the central density contrast at r = 0, rs a scale radius
at which the density equals the average density of tracers 〈nt〉, and
α, β describe the inner and outer slopes of the profile.
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3.3 Bias estimation

In simulations the clustering bias of any tracer can directly be cal-
culated, because the dark matter particle locations are available.
Therefore, it is simply given by the ratio of tracer and matter corre-
lation functions,

bt =

√
ξtt(r)

ξmm(r)
' ξtm(r)

ξmm(r)
. (11)

The second equality only holds on large scales in the linear regime,
where bt is a constant number. In a similar manner we can define
the relative bias between a tracer t1 and a tracer t2 as

brel ≡
bt1
bt2

=

√
ξt1t1(r)

ξt2t2(r)
' ξt1t2(r)

ξt2t2(r)
, (12)

where, without loss of generality, we may choose tracer t1 to be the
more highly biased one, such that brel > 1. In this analysis we will
associate the highly biased tracer with galaxy clusters, and the less
biased tracer with galaxies.

In observational data, where we do not have direct access to
the mass distribution, the absolute clustering bias of tracers can
only be determined indirectly. We follow the approach of Paech
et al. (2017) and calculate the angular power spectra between tracer
t1 and tracer t2 using the public code CLASS3 (Blas et al. 2011) and
its extension CLASSgal (Di Dio et al. 2013),

Ct1t2
` = 4π

∫
dk

k
Pini(k)∆t1

` (k)∆t2
` (k) . (13)

Here, Pini(k) is the dimensionless primordial power spectrum at
wavenumber k and

∆t
`(k) =

∫
dz bt

dNt(z)

dz
j` [k r(z)]D(z)T (k) , (14)

where dNt(z)/dz is the redshift distribution and r(z) the comov-
ing distance of tracer t, j` the spherical Bessel function, D(z)
the growth factor, and T (k) the transfer function. Assuming a
fiducial flat ΛCDM cosmology with the parameters h = 0.678,
Ωb = 0.048, Ωm = 0.308, σ8 = 0.826, zre = 11.3 and
ns = 0.96 (Planck Collaboration et al. 2014), we can then infer
the effective values of bt1 , bt2 and their ratio (averaged within the
considered redshift range) from the angular auto-power spectra of
the two tracers. The angular power spectra are determined using
the public code POLSPICE4 (Szapudi et al. 2001; Chon et al. 2004)
from a pixellated map of the projected tracer-density contrast on
the sky. As in Paech et al. (2017), we treat the shot noise contribu-
tion to the angular power spectra as a free parameter, and consider
a multipole range of 20 < ` < 500. The covariance of the C`’s is
estimated via applying a jack-knife sampling of the map, splitting
up the map area into 100 contiguous regions of equal size.

4 ANALYSIS

In this section we present the results of our analysis pipeline, ap-
plied to MAGNETICUM simulations, MICE 2 mocks, and finally

3 http://class-code.net
4 http://www2.iap.fr/users/hivon/software/PolSpice

DES data. We emphasize that all void catalogues employed in this
paper are identified in the cluster samples at hand, regardless of the
nature of the data set analysed. If needed, we refer to those voids
as cluster-voids, to distinguish them from voids identified in a dif-
ferent tracer population5.

4.1 Hydro-simulations

With the help of the fully hydro-dynamical simulations MAG-
NETICUM we investigate whether it is possible to use a similar
approach to that presented by Pollina et al. (2017), albeit only con-
sidering clusters and galaxies as tracers. In this manner the relative
bias is expected to obey similar properties as the linear bias, in
analogy to Equation (1). The idea is to only use void catalogues
that are defined in the most highly biased population available and
then compute the average tracer-density profiles around voids of
similar size using clusters and galaxies separately. The latter are
hence exclusively used to compute galaxy-density profiles around
cluster-voids.

We apply a conservatively high mass cut of Mmin =
1014h−1M� to our MAGNETICUM clusters, firstly to make sure
that we do not include objects that are of too low detection signifi-
cance in the observed data, and secondly to achieve a relative bias
between our cluster and galaxy sample that is significantly larger
than unity. Since the lower limit for the bias of the galaxy sample is
set by the mass resolution of the simulation, we can only boost the
relative bias by increasing Mmin for the cluster sample. This im-
plies a lower resolution for smaller voids due to tracer sparsity (for
further details on sparse sampling and void finding, see Sutter et al.
2014a), so the resulting void catalogue contains rather large ob-
jects. However, as we are only interested in the relation between
tracer-density profiles around a fixed void population, the absolute
distribution of void sizes does not matter for our purposes.

In the left panel of Fig. 1 we show the stacked density profile
of such cluster-voids computed twice: once using the same cluster
population they were identified in (dashed black line), and once us-
ing the full galaxy sample extracted from MAGNETICUM (red dot-
ted line). The shaded areas represent the uncertainty on the mean
density profile, computed as the standard deviation of all individual
void profiles from their mean. The void density profiles are calcu-
lated following the procedure explained in the beginning of Sec-
tion 3.2, including voids of effective radii in the range 190h−1Mpc
< rv < 220h−1Mpc. The function from Equation (10) is used to
fit the density profiles (solid black for clusters and long-dashed red
for galaxies), yielding a good match in both cases. This corrobo-
rates the universal character of Equation (10) with respect to tracer
type. The very characteristic features are a clear under-dense core
close in the void centre and a compensation wall around r ' rv,
which are most pronounced in the cluster-density profile. When the
density profile of galaxies around the same cluster-voids is com-
puted, those features are less pronounced, but still clearly visible.
Because clusters have a higher clustering bias than galaxies, this
behaviour is expected.

Our aim is to constrain the detailed relation between the two
void density profiles. In particular, we want to check whether it is

5 The procedure can also be inverted, i.e. it is possible define voids in the
galaxy sample and then use those voids to measure the density of galaxies
and clusters around them. For consistency with the approach in Pollina et al.
(2017), and for the advantage that will be presented in section 4.2.1, we use
the more highly biased tracer to identify voids.

MNRAS 000, 1–17 (2018)

http://class-code.net
http://www2.iap.fr/users/hivon/software/PolSpice


Bias of void tracers in DES 7

Figure 1. Left: Tracer-density profiles (dashed black for clusters, dotted red for galaxies) around cluster-defined voids of radius 190h−1Mpc < rv <

220h−1Mpc in the MAGNETICUM simulation. Solid black and long-dashed red lines show the best fits obtained via Equation (10). Right: Cluster- and galaxy-
density profiles from the left panel plotted against each other (black points with error bars). The dotted black line shows the best fit using Equation (15).

Figure 2. Best-fit values for bslope as a function of effective void radius in the MAGNETICUM simulation. The stellar-mass cut for the galaxy sample is varied
from left to right, as indicated in each panel. The cluster sample has a fixed mass cut of M500c > 1014h−1M�, it is also used for the void identification.

Figure 3. Comparison of the best-fit bslope obtained from our largest void sample (solid red line) to the relative bias brel between clusters and galaxies in the
MAGNETICUM simulation, calculated using the estimators as indicated (black dashed and dotted lines). The stellar-mass cut for the galaxy sample is varied
from left to right, with the same values as in Fig. 2.

MNRAS 000, 1–17 (2018)
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Table 2. Best-fit values and 1σ uncertainties on the parameters of Equation (15) for cluster-defined voids of various size and for different stellar-mass cuts in
the galaxy sample from the MAGNETICUM simulation.

Voids Galaxies (M∗ > 1× 1011h−1M�) Galaxies (M∗ > 5× 1011h−1M�) Galaxies (M∗ > 1× 1012h−1M�)

Bins in rv [h−1Mpc] bslope coffset bslope coffset bslope coffset

90 < rv < 110 3.43± 0.39 −0.033± 0.089 2.02± 0.33 −0.013± 0.095 1.20± 0.21 −0.005± 0.022

110 < rv < 130 3.01± 0.10 −0.009± 0.070 1.80± 0.21 −0.003± 0.064 1.12± 0.14 −0.001± 0.020
130 < rv < 150 3.11± 0.26 −0.009± 0.063 1.76± 0.20 −0.005± 0.063 1.12± 0.14 −0.000± 0.055

150 < rv < 170 2.83± 0.22 −0.007± 0.045 1.77± 0.22 −0.003± 0.063 1.11± 0.14 −0.001± 0.045

170 < rv < 190 2.82± 0.26 −0.003± 0.063 1.77± 0.20 −0.001± 0.061 1.15± 0.14 −0.002± 0.045
190 < rv < 220 2.71± 0.22 −0.009± 0.045 1.72± 0.17 −0.004± 0.060 1.10± 0.14 −0.002± 0.055

220 < rv < 250 2.59± 0.33 −0.035± 0.105 1.68± 0.28 −0.017± 0.101 1.15± 0.22 −0.000± 0.095

linear, similar to the relation between tracers and mass found in
Pollina et al. (2017). To this end we plot the cluster-density pro-
file ξvc(r) as a function of the corresponding galaxy-density pro-
file ξvg(r) of the same cluster-voids. The results are depicted as red
dots in the right panel of Fig. 1, where the error bars show the un-
certainty on the mean density profiles from the left panel. The fol-
lowing simple linear function is used to fit those data points (black
dotted line):

ξvc(r) = bslopeξvg(r) + coffset , (15)

where bslope and coffset are the only two free parameters of the
fit. The linear relation between ξvc(r) and ξvg(r) is evident, and
in concordance with the linearity between ξvc(r) and the matter-
density profile ξvm(r) from earlier work (Pollina et al. 2017). The
best-fit values for bslope and coffset, including their 1σ uncertainties
can be found in Table 2. coffset is compatible with zero within the
error, while bslope attains a value of about 2.7. We expect bslope

to be related to the relative bias between clusters and galaxies, in
analogy to Equation (12).

We repeated the previous analysis for voids of different size,
and confirmed the linear relation in Equation (15) to provide a good
fit in all cases. The best-fit values of bslope and coffset are summa-
rized in Table 2. Furthermore, we explored the impact of various
mass cuts in our galaxy sample. The overall clustering amplitude of
galaxies is expected to depend on their stellar mass, which should
be reflected in our best fit for bslope as well. While our original sam-
ple contained all galaxies with stellar mass above 1×1011h−1M�,
we impose two more restrictive cuts with M∗ > 5× 1011h−1M�
and M∗ > 1 × 1012h−1M�. Also for these cases we can con-
firm the linear relation of Equation (15) to perform a good fit. The
corresponding parameter constraints are reported in Table 2.

In Fig. 2 the best-fit values of bslope are shown as a function
of the mean effective radius of the selected void sample. The three
panels correspond to the different stellar-mass cuts applied to the
galaxy catalogue. We observe a clear trend of bslope decreasing
with void size, a similar behaviour of what has been presented in
Pollina et al. (2017), albeit the different setup. In that study bslope

converges to a constant value for voids larger than a critical size,
and this value is shown to coincide with the linear bias of the tracer
with respect to the matter distribution.

In this paper, however, we are comparing the density profiles
of two different tracers against each other, consequently we expect
bslope to converge towards the ratio of the linear bias parameters of
both tracers, the linear relative bias brel. We can estimate brel via
Equation (12) in two ways, both of which are plotted in Fig. 3 as
solid and dashed black lines with shaded error bars, respectively.

On large scales both estimators agree with each other, and yield
the linear relative bias between the two tracers. We compare this
value with the best fit for bslope obtained from the largest effective
radius bin of our void sample (red solid line with shaded error bar),
which is the most likely one to have converged towards brel. In the
different panels of Fig. 3 only the stellar-mass cut for the galaxy
sample is varied, with the same values as used in Fig. 2.

As evident from Fig. 3, the convergence of bslope towards brel

is not complete in all cases. Only for the highest stellar-mass cut
of M∗ > 1012h−1M� in the galaxy sample are the two values
consistent with each other within the errors. At the same time, the
relative bias attains the lowest value in this case, owing to the higher
bias of the galaxy sample. The lower the stellar-mass cut for the
galaxies, the lower becomes their bias. Therefore the relative bias
between clusters and galaxies increases, which also increases the
discrepancy between bslope and brel. Hence, the higher the relative
bias between two tracers, the larger becomes the critical void radius
r+
v at which bslope and brel converge. When voids are defined in

sparse tracer distributions, such as the galaxy clusters considered
here, the size of r+

v may fall well beyond the range of effective
void radii that can be found in the entire void sample. A similar
conclusion has already been drawn in Pollina et al. (2017), where
the value of r+

v was investigated for voids identified in denser tracer
samples.

Nevertheless, this first test shows that the findings of Pollina
et al. (2017) can be indeed reproduced by measuring the relative
bias with the analysis proposed in this section, which can be fully
implemented with observational data.

4.2 DES Mocks

Having confirmed a linear relationship between the densities of lu-
minous tracers in void environments using the MAGNETICUM sim-
ulation, we now want to move to more realistic data. The next step
is to test our pipeline on DES mocks (MICE 2, see Section 2.3), to
evaluate the impact of the light cone and photometric redshift un-
certainty. The latter has so far been considered as an insurmount-
able obstacle for the identification of three-dimensional voids, as
the typical photo-z scatter of a single galaxy corresponds to line-of-
sight distance errors that are comparable to the extent of most voids.
This limitation lead to other innovative ideas on how to investigate
the potential of voids for cosmology, which explored under-dense
regions of large-scale structure in two-dimensional projections on
the sky (Sánchez et al. 2017; Gruen et al. 2016). It has been demon-
strated how this approach opens up complementary ways to con-
strain cosmology (Barreira et al. 2015; Gruen et al. 2017; Friedrich
et al. 2017; Cautun et al. 2017). Nevertheless, as the properties of
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Figure 4. The abundance of voids identified in the galaxy and cluster sam-
ples of the MICE 2 mocks, as a function of their effective radius. Both photo-
metric and spectroscopic redshifts have been used in each case, as indicated
in the figure legend. The cluster-void size function is not significantly af-
fected by photo-z uncertainty. In fact, clusters provide the most accurate
photometric redshift measurements and cluster-voids are the largest voids,
further reducing the relative impact of photo-z scatter on void finding.

three-dimensional voids have already been extensively studied in
simulations and spectroscopic surveys (see references in the intro-
duction), it is worth testing a similar method with photometric data.

4.2.1 Redshift uncertainty and void finding

To evaluate the impact of photometric redshift uncertainty on void
finding we run VIDE on the REDMAGIC and REDMAPPER sam-
ples of the MICE 2 mocks twice: once using the spectroscopic red-
shift (spec-z), and once the photometric (photo-z) redshift estimate
of each object. The photo-z scatter inherent in the latter effects
the distance estimation and causes the distribution of objects to be
smeared out along the line of sight.

In Fig. 4 we present the void size function (i.e., the spatial
number density of voids as a function of their effective radius) in
the MICE 2 mocks, extracted using VIDE on both spectroscopic and
photometric samples of galaxies and clusters. While the abundance
of galaxy-voids (solid and dashed red) is heavily skewed by photo-z
scatter, cluster-voids (dotted and dash-dotted blue) remain surpris-
ingly unaffected by the choice of redshift estimate. In particular,
the number of galaxy-voids with r̄v < 35h−1 Mpc is clearly over-
estimated when using photo-z, while the opposite is the case for
larger galaxy-voids. This finding is different to what has previously
been seen in Sánchez et al. (2017), where the largest galaxy-voids
in the REDMAGIC sample were least affected by photo-z uncer-
tainty. The disagreement is most likely a consequence of the dif-
ferent void finding techniques. The fact that Sánchez et al. (2017)
utilized a two-dimensional void finder on projected slices, with a
line-of-sight width above the typical photo-z scatter, largely mit-
igates the effects of the latter. In contrast, VIDE directly operates
on three-dimensional particle distributions, and the photo-z scat-
ter results in an unphysical line-of-sight smearing of structures that
can be detected as spurious watershed ridges in the algorithm. The
result is that larger voids are more likely to be segmented into mul-
tiple smaller voids.

However, this effect on void abundance is hardly detected in
the cluster-void sample, thanks to the relatively accurate photomet-
ric redshift estimates in REDMAPPER clusters. The higher accu-
racy can be attributed to the fact that multiple member galaxies
can contribute to a single cluster redshift estimate. Moreover, the
sparser and more biased distribution of clusters results in larger
voids overall (Sutter et al. 2014a), so the extent of the photo-z scat-
ter in redshift space matters less in comparison to the void size. In
order to quantify the impact of photometric redshifts on void iden-
tification in more detail, a comparison on individual voids would
be needed. However, this goes beyond the scope of this paper, as
we are only concerned about summary statistics here.

The robustness of the void size function from cluster-voids
in the presence of photo-z scatter has promising consequences for
void science with photometric surveys. For example, void number
counts can be used to constrain cosmology (Pisani et al. 2015),
even when identified in various tracer distributions. In particular,
Ronconi & Marulli (2017) suggest a simple way to extend the pre-
diction of void abundances to potentially observable voids: making
use of Equation (1) they claim to be able to accurately forecast
the void size function obtained from halos based on results from
the excursion-set theory for dark matter voids. According to Fig. 4,
this method may straight-forwardly be extended to cluster-voids
extracted from photometric samples, opening up to the possible ex-
ploitation of the void size function as a cosmological probe in a
large variety of forthcoming surveys (e.g., LSST, EUCLID, DESI,
see Ivezic et al. 2008; Laureijs et al. 2011; DESI Collaboration et al.
2016)

4.2.2 Density profiles and tracer bias

We now repeat the analysis of Section 4.1 with the MICE 2 mocks,
using photometric redshifts for both REDMAGIC and REDMAP-
PER samples. The density profiles are estimated with the help of
random catalogues, to account for the mask and light-cone effects.
To this end, we approximate the Landy-Szalay estimator of Equa-
tion (9) as

ξvt(r) ' 〈DvDt〉 − 〈DvRt〉 , (16)

which was shown to yield accurate results on void scales (Hamaus
et al. 2017). We have also compared our measurements with the
more common Davis-Peebles estimator (Davis & Peebles 1983),
which features a ratio instead of a subtraction in Equation (16), and
found consistent results. Fig. 5 presents the corresponding tracer-
density profiles for REDMAPPER-defined voids of size 50h−1Mpc
< rv < 60h−1Mpc. Overall we obtain smaller void sizes from
this sample, as the number density of clusters here exceeds the one
analysed in MAGNETICUM. However, as MICE 2 resolves galaxies
of lower mass, this results in a similar relative bias between the
tracers considered. As tracers, we utilize REDMAPPER clusters of
richness λ > 5, and three REDMAGIC samples with varying lumi-
nosity cuts. The correspondence with our earlier simulation results
in the left panel of Fig. 1 is striking: we observe a more pronounced
cluster-density profile with a deeper core and a higher ridge (dashed
black line) than each of the galaxy-density profiles (dotted red line).
Yet, the shapes of all these profiles seem to match quite nicely,
which means that galaxies trace voids just as the clusters do, al-
beit with a lower clustering amplitude. This is further confirmed by
the successful interpolation of all profiles by means of the fitting
function presented in Equation (10) (solid black and long-dashed
red lines). Note that in some cases the normalization of the profiles
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Figure 5. Tracer-density profiles (solid black for REDMAPPER clusters, dashed red for REDMAGIC galaxies) around cluster-defined voids of size 50h−1Mpc
< rv < 60h−1Mpc in the MICE 2 mocks. The luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

Figure 6. Cluster- and galaxy-density profiles from Fig.5 plotted against each other. The dotted black line shows the best fit obtained with Equation (15).

Figure 7. Best-fit values for bslope (solid red) as a function of effective void radius in the MICE 2 mocks. The luminosity cut for the galaxy sample is varied
from left to right, as indicated in each panel. Dashed black lines show the linear relative bias between clusters and galaxies, estimated via their angular power
spectra on large scales.
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Table 3. Best-fit values and 1σ uncertainties on the parameters of Equation (15) for cluster-defined voids of various size and for different luminosity cuts in
the galaxy sample from the MICE 2 mocks.

Voids REDMAGIC (L > 0.5L∗) REDMAGIC (L > 1.0L∗) REDMAGIC (L > 1.5L∗)

Bins in rv [h−1Mpc] bslope coffset bslope coffset bslope coffset

20 < rv < 40 3.21± 0.57 −0.071± 0.130 2.80± 0.64 −0.119± 0.173 1.96± 0.53 −0.084± 0.158

40 < rv < 50 3.13± 0.42 −0.006± 0.084 2.56± 0.39 −0.066± 0.089 2.02± 0.39 −0.090± 0.10
50 < rv < 60 2.63± 0.27 0.023± 0.063 2.02± 0.23 −0.041± 0.063 1.62± 0.22 −0.082± 0.091

60 < rv < 70 2.50± 0.33 0.070± 0.105 1.88± 0.24 −0.043± 0.077 1.54± 0.26 −0.111± 0.183

70 < rv < 80 2.28± 0.35 0.101± 0.126 1.56± 0.25 −0.067± 0.084 1.25± 0.24 −0.174± 0.190
80 < rv < 90 2.10± 0.39 0.162± 0.161 1.41± 0.32 −0.127± 0.128 1.01± 0.31 −0.262± 0.354

at large distances r can be slightly offset from zero. This can have
various reasons, which may be related to imperfect corrections for
the survey geometry, or the spread in void sizes in a given bin of
rv. However, we have checked that the magnitude of this effect is
small enough not to impact our conclusions (i.e., coffset is always
consistent with zero).

The correspondence between the different tracers can be seen
more clearly in Fig. 6, where their void-centric density profiles are
plotted against each other. A linear trend in the data is apparent, so
we fit Equation (15) and constrain its slope and offset again. We
further repeat this for voids of all available sizes from our cata-
logue and summarize the results in Table 3. The best-fit value for
bslope decreases when galaxies with higher luminosity cut are used.
This is consistent with expectation, as they acquire a higher clus-
tering bias, making the relative bias between clusters and galaxies
decrease. In contrast, the parameter coffset remains consistent with
zero in all cases.

The dependence of bslope on void effective radius is visual-
ized in Fig. 7. We observe a decreasing trend again, as before in the
MAGNETICUM simulation. Towards the largest voids, bslope con-
verges to the linear relative bias between the cluster and the galaxy
samples (dashed black line), which is estimated via the method de-
scribed in Section 3.3. However, the critical void radius r+

v , where
the two relative bias measurements agree, cannot be determined
from the galaxy sample with the lowest luminosity cut. This con-
firms our earlier conclusion that the convergence of bslope to brel

happens at larger void radii when brel is higher. However, we have a
clear indication that it is possible to measure the relative linear bias
of tracers with this method when applied to the final DES dataset
after 5 years of observations. We further conclude that the uncer-
tainty inherent in photometric redshift estimates is not affecting our
results from before: the linear relation of Equation (1) is still satis-
fied to the same degree of accuracy as in simulations, with similar
constraints on its parameters.

4.3 Data

Having assessed the feasibility of our analysis using mocks, we are
finally ready to test it on DES Y1 data and to determine whether
the linear relation given by Equation (1) (applied to visible tracers)
is in the sky. In this section we describe the void catalogue obtained
from the data and present all related results.

4.3.1 DES void catalogue

This section presents the first catalogue of three-dimensional water-
shed voids built with DES data. We follow our previous approach,

Figure 8. Abundance of voids as a function of their effective radius, iden-
tified in the distribution of REDMAPPER clusters from DES data (Y1A1).
The average cluster-density profile of all voids is shown as inset.

using REDMAPPER clusters with λ > 5 for void identification
with VIDE. Since the area observed during the first year of DES
(Y1A1) operations is significantly smaller (1321deg2) than the full
octant of the MICE 2 mocks, the number statistics of the data are ex-
pected to be lower. In total we find 475 voids in the redshift range
0.2 < z < 0.65 (which is the range where all REDMAGIC samples
are fairly volume limited), with effective radii between 15h−1Mpc
and 80h−1Mpc. Voids intersecting with the survey mask have been
pruned from the final sample. The void size function is shown in
Fig. 8, with an inset displaying the average cluster-density profile
of all voids in the sample. It is remarkably similar to that of cluster-
voids in mocks shown in Fig. 4. The small difference can be caused
by the assumed mass-richness relation in the cluster mocks, which
may not reproduce the real data exactly.

The footprint of our void catalogue on the sky can be per-
ceived in Fig. 9, which was made using the public code SKYMAP-
PER6. We show the positions of void centres (cyan circles) on the
density plot of clusters for a redshift slice of 0.2 < z < 0.45. This
range was chosen to allow direct comparison with Fig. 1 of Gruen
et al. (2017), where a similar map for the location of line-of-sight
under-densities in the galaxy spatial distribution was presented. The
blue line displays the full DES footprint at the end of its operations.

6 https://github.com/pmelchior/skymapper
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Figure 9. Density plot of REDMAPPER clusters and their associated void
centres (cyan circles) in a redshift slice of 0.2 < z < 0.45. The blue line
displays the 5-year-DES footprint, voids intersecting with the survey mask
are discarded.

Figure 10. Three-dimensional map of the DES light cone; magenta dots
show 5% of all REDMAPPER clusters, green dots display 5% of REDMAP-
PER clusters inside watershed voids and black spheres of radius rv repre-
sent the spherical volume of each void.

Figure 10 is a three-dimensional plot of the DES light cone, where
5% of all REDMAPPER clusters are shown in magenta, 5% of those
clusters located inside voids are highlighted in green, and black
spheres of radius rv indicate the locations of void centres with a
size that reflects the spherical equivalent of the watershed volume.
The number of clusters was diluted for visualization purposes.

4.3.2 Density profiles and tracer bias

With the observational void catalogue at hand, we are now in the
position to apply our earlier analysis to real data. Fig. 11 fea-
tures the average tracer density profiles for cluster-voids of size
40h−1Mpc < rv < 80h−1Mpc. As tracers, we use REDMAPPER

clusters (dashed black lines) and REDMAGIC galaxies of high den-
sity, high luminosity, and higher luminosity samples (dashed red
lines, from left to right). As apparent from each panel, the densities
of different tracers are highly correlated in these void environments,
all featuring a clear depression around the void centre, and a com-
pensating ridge at the void edge. In particular, the similarity with
the mocks in Fig. 5 is striking, as is the ability of Equation (10) to

accurately fit the data (solid black and long-dashed red lines). How-
ever, due to the smaller area it can be noted that the uncertainties in
the real data are higher, especially close to the void centres, where
the statistics are most affected by the sparsity of tracers.

This can also be observed in Fig. 12, where we focus on the re-
lation between cluster- and galaxy-density profiles plotted against
each other. The linear trend in the data is apparent, although some
of the data points exhibit large scatter. In all cases we find Equa-
tion (15) to provide a satisfactory fit to the data. We find no evi-
dence for any deviation from linearity other than due to statistical
noise, which argues Equation (15) to indeed be the simplest and
most conservative model that is consistent with the data. Our earlier
results based on simulations and mocks with much better statistics
corroborate this result. We further confirm a decrease in the best-fit
value of the slope bslope, caused by an increase in the bias of the
galaxy samples with increasing luminosity cuts. At the same time,
the offsets coffset remain consistent with zero. The detailed param-
eter constraints are reported in Table 4.

Finally, we test the convergence of bslope to the linear rela-
tive bias brel of the employed tracers. Due to the relatively low
number of voids in our sample, we can only afford to have two
independent bins in effective radius. We choose to split the sam-
ple such that both bins roughly contain the same number of voids,
with rv < 40h−1Mpc and rv > 40h−1Mpc. The corresponding
best-fit values of bslope are shown as the red dots, connected by
a solid line in Fig. 13 (which is analogous to Fig. 7 albeit with
DES data). In comparison, the linear relative bias estimated via the
large-scale clustering statistics of the tracers, as described in Sec-
tion 3.3, is shown in dashed black. Evidently, the poor statistics in
the measurement do not allow any detailed conclusions about the
convergence properties of bslope towards brel. However, at least for
the galaxy samples of high and higher luminosity, an indication for
a decrease in bslope at larger rv is apparent. A more detailed investi-
gation of this will be possible with future DES tracer catalogues of
larger size. The final DES Y5 tracer catalogues will provide similar
statistics as the MICE 2 mocks employed above.

5 CONCLUSIONS

The aim of this paper was to probe the nature of tracer bias in
void environments, a regime of large-scale structure that so far has
little been investigated specifically for this purpose (however, see
Neyrinck et al. 2014; Yang et al. 2017; Paranjape et al. 2017). In
contrast, the overall tracer bias, which is typically weighted towards
the most overdense structures in the Universe, has remained an ac-
tive topic of research for a long time, due to its complex non-linear
behaviour on intermediate and small scales (e.g., Smith et al. 2007;
Cacciato et al. 2012; Springel et al. 2018; Simon & Hilbert 2017;
Dvornik et al. 2018, and references therein). Moreover, recent ev-
idence for additional stochasticity beyond the Poisson expectation
in the clustering properties of galaxies and clusters further com-
plicates the common treatment of bias (e.g. Hamaus et al. 2010;
Baldauf et al. 2013; Paech et al. 2017; Gruen et al. 2017; Friedrich
et al. 2017). A consistent and reliable framework for the modelling
of tracer bias is indispensable for the cosmological analysis of mod-
ern data sets of large-scale structure, because it establishes a con-
nection between its observable luminous constituents and the in-
visible dark matter. As the latter is expected to be responsible for
more than 80% of the mass content in the Universe, the accuracy
of cosmological constraints is often limited by the degree to which
tracer bias is understood.

MNRAS 000, 1–17 (2018)
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Figure 11. Tracer-density profiles (solid black for REDMAPPER clusters, dashed red for REDMAGIC galaxies) around cluster-defined voids of size 40h−1Mpc
< rv < 80h−1Mpc in the DES data. The luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

Figure 12. Cluster- and galaxy-density profiles from Fig.11 plotted against each other. The dotted black line shows the best fit obtained with Equation (15).

Figure 13. Best-fit values for bslope (solid red) as a function of void radius in DES data. The luminosity cut for the galaxy sample varies from left to right,
as indicated in each panel. Dashed black lines show the linear relative bias between clusters and galaxies, estimated via their angular power spectra on large
scales.

In this work we have investigated tracer bias in void environ-
ments of the distribution of galaxy clusters, based on a complete
pipeline of hydrodynamical simulations, mocks, and data from the
first year of DES observations. We find a remarkably linear rela-
tionship between the void-centric density fluctuations of clusters

and galaxy samples of various magnitude limits across all dis-
tance scales, suggesting tracer bias to remain linear in the two-
point statistics of void environments. This confirms recent simu-
lation results by Pollina et al. (2017), but for the first time with
observational data. We show that the relative clustering amplitude

MNRAS 000, 1–17 (2018)
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Table 4. Best-fit values and 1σ uncertainties on the parameters of Equation (15) for cluster-defined voids of various size and for different luminosity cuts in
the galaxy sample from the DES data.

Voids REDMAGIC (L > 0.5L∗) REDMAGIC (L > 1.0L∗) REDMAGIC (L > 1.5L∗)

Bins in rv [h−1Mpc] bslope coffset bslope coffset bslope coffset

15 < rv < 40 2.92± 0.53 −0.055± 0.122 2.62± 0.62 −0.038± 0.145 2.45± 0.59 −0.027± 0.138

40 < rv < 86 2.91± 0.40 −0.065± 0.083 2.21± 0.37 −0.056± 0.084 1.68± 0.37 −0.043± 0.095

between any two tracers can be expressed by a single multiplicative
constant bslope, relating their void-tracer cross-correlation func-
tions according to Equation (15) with an offset consistent with zero
(coffset = 0). However, the constant bslope coincides with the lin-
ear relative bias brel between those tracers only when voids above
a certain critical effective radius r+

v are used in this measurement.
In case of very sparse void tracers, such as the galaxy clusters used
here, the value of r+

v may exceed the available range of void sizes in
a given area on the sky. For smaller voids, bslope increases towards
lower rv.

A detailed model for this behaviour can be important in cases
where the absolute value of tracer bias is needed to obtain param-
eter constraints, which goes beyond the scope of this paper. It has
been pointed out that tracer environment can be more relevant than
host-halo mass to determine the bias of tracers (Abbas & Sheth
2007; Pujol et al. 2017; Shi & Sheth 2018), and we expect the en-
vironmental constraint from voids to be important in this respect.
When tracers are selected above some mass or luminosity thresh-
old, as done here, they are typically more biased in void environ-
ments than elsewhere in the cosmic web (Yang et al. 2017; Paran-
jape et al. 2017). Conversely, selecting the most extreme environ-
ments as tracers of the density field, such as the centres of voids,
can lead to a vanishing, or even negative clustering bias (Hamaus
et al. 2014b; Clampitt et al. 2016). Nevertheless, the fact that tracer
bias can be treated linearly with a single free parameter signif-
icantly simplifies most common two-point clustering analyses of
large-scale structure. For example, it implies that different tracer-
density profiles around voids can be described with the same uni-
versal functional form (as provided by Equation (10), Hamaus et al.
2014c; Sutter et al. 2014a). The analysis we presented is arguably
the best approach to test such a function, as with observational data
we do not have access to the entire three-dimensional distribution
of luminous and dark matter. Furthermore, the presented method
can be augmented with measurements of tangential shear around
voids, which provides the projected surface-mass density excess
between weakly lensed source galaxies and the observer. Shape cat-
alogues of the galaxies in DES are available, a study of the absolute
tracer bias with respect to the underlying dark matter distribution
in void environments is underway (Fang et al., in prep.). Our con-
clusions are further in excellent agreement with recent analyses of
weak lensing by troughs in the projected galaxy distribution (Gruen
et al. 2016, 2017), which can be accurately modelled using linear
bias (Friedrich et al. 2017). While those results argue for a non-
vanishing stochasticity parameter to be important for the counts-
in-cells statistic, this does not apply to cross-correlation functions
(as employed in this paper), where stochasticity does not enter at
non-zero separation.

As a side product, we have constructed the first catalogue of
3D-watershed voids that are solely based on photometric redshift

measurements with a controlled photo-z uncertainty.7 Another ele-
ment of novelty in our approach is that we employ galaxy clusters,
rather than single galaxies, as tracers for void finding. In fact, our
tests with mocks indicate that while the accuracy of REDMAGIC
redshift estimates for single galaxies is not sufficient to match void
number counts from a spectroscopic survey, REDMAPPER clus-
ters produce remarkably similar void abundances among spec-z
and photo-z catalogues. The flip side of using clusters rather than
galaxies as void tracers is that they can only access fewer and larger
voids, due to their sparsity. Nevertheless, for our purposes this con-
stitutes also an advantage, as the relative impact of photo-z scatter
becomes even smaller for large voids. Furthermore, the high num-
ber of clusters accessible in photometric surveys opens up a promis-
ing perspective for void science in the future. In fact forthcoming
surveys, such as LSST (Ivezic et al. 2008) and EUCLID Laureijs
et al. (2011), will partially rely on photometric redshift estimates.
The effort to fully exploit these kind of data in the context of void
studies will thereby benefit from our analysis.
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