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ABSTRACT

Photometric redshift (photo-z) estimates are playing an increasingly important role in extragalactic astronomy and
cosmology. Crucial to many photo-z applications is the accurate quantification of photometric redshift errors and their
distributions, including identification of likely catastrophic failures in photo-z estimates. We consider several methods
of estimating photo-z errors, and propose new training-set based error estimators based on spectroscopic training set
data. Using data from the SloanDigital Sky Survey and simulations of the Dark Energy Survey as examples, we show
that this method provides a robust, relatively unbiased estimate of photo-z errors. We show that culling objects with
large, accurately estimated photo-z errors from a sample can reduce the incidence of catastrophic photo-z failures.

Subject headinggs: galaxies: distances and redshifts — galaxies: photometry

1. INTRODUCTION

While spectroscopic redshifts have now been measured for
over 1 million galaxies, in recent years digital sky surveys have
obtained multiband imaging for over a 100 million galaxies.
Deep, wide-area surveys planned for the next decadewill increase
the number of galaxies with multiband photometry to a few bil-
lion. Over the last decade, substantial effort has gone into de-
veloping photometric redshift (photo-z) techniques, which use
multiband photometry to estimate approximate galaxy redshifts
(Connolly et al. 1995; Bolzonella et al. 2000; Benitez 2000;
Collister & Lahav 2004; Wadadekar 2005). For many applica-
tions in extragalactic astronomy and cosmology, the precision
achieved by photometric redshifts is sufficient, provided one can
accurately characterize the uncertainties in the photo-z estimates,
i.e., the photo-z errors. A number of recent papers have consid-
ered the effects of photo-z errors on cosmological probes, includ-
ing baryon acoustic oscillation (Zhan&Knox 2006), weak-lensing
tomography (Huterer et al. 2006; Ma et al. 2006), supernovae
(Huterer et al. 2004), and galaxy clusters (Huterer et al. 2004;
Lima & Hu 2007).

A number of methods have been proposed to characterize pho-
tometric redshift errors to date. They can be roughly divided into
two categories, methods based on estimating statistical errors in
template fitting, e.g., the �2 method and its Bayesian counterparts
(Bolzonella et al. 2000; Benitez 2000), and methods that explic-
itly propagate errors in the input parameters, typically magnitudes
or colors, through the photo-z estimator (e.g., Brunner et al. 1999;
Hsieh et al. 2005; Collister & Lahav 2004).

The error in a photometric redshift estimate zphot is simply the
difference between the photo-z estimate and the true (hereafter,
spectroscopic) redshift,�z ¼ zphot � zspec. In practice, the errors
for the vast majority of objects in a deep photometric sample are
unknown, since the spectroscopic redshifts are not measured. Our
goal is to devise an estimator of �z that has desirable statistical
properties, e.g., minimum bias and variance, based on whatever
information is at hand. Given a photo-z estimate, an error estima-

tor should give the range of redshifts over which the true redshift
will be found at some confidence level.

In most cases, spectroscopic redshifts are available for a small
subset of the photometric sample. Such spectroscopic samples are
often used as training sets for empirical ormachine-based learning
photo-z estimators. In this paper, we develop methods of photo-z
error estimation that are based on the use of spectroscopic training
sets to accurately characterize the error distribution. We show that
training-set based error estimators outperform other commonly
used methods when a representative training set is available and
that they are competitive, even when the training set is not fully
representative of the photometric sample. In cases in which the
magnitude errors are not well determined, we show that the rela-
tive advantages of the new training-set basedmethods are further
increased.

This paper is organized as follows. In x 2, we describe the data
sets that we use in this work. In x 3, we introduce the training-set
based error estimators and their implementations, as well as their
advantages and disadvantages. For comparison, we review the
traditional error estimators in x 4 and highlight the key differences
between them and the training setYbased error estimators. We
show in x 5 that the overall photo-z scatter and outlier fraction can
be significantly improved by culling objects with high estimated
photo-z errors, possibly leading to improved results in analyses
that rely on photo-z values. Finally, we offer concluding remarks
in x 6.

2. TEST METHODS AND DATA

In order to fairly compare the qualities of various photomet-
ric redshift error estimators, we have compiled two galaxy photo-
metric catalogs. Each catalog consists of spectroscopic redshifts,
magnitudes in several chosen filter passbands, and magnitude
errors.

The first catalog is a simulated data set created to resemble ob-
servations of the proposed Dark Energy Survey (DES; The Dark
Energy Survey Collaboration 2005). The DES is a 5000 deg2 sur-
vey in five optical passbands (grizY ) with a magnitude limit of
i � 24, to be carried out using a new camera on theCTIO4m tele-
scope. The goal of the survey is to measure the equation of state
of dark energy using several techniques, clusters, weak-lensing, an-
gular galaxy clustering (baryon acoustic oscillations), and super-
novae. SinceDESwill observe�300million galaxies, the redshifts
must be obtained using photometric methods. The DES optical
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survey will be complemented in the near-infrared by the VISTA
Hemisphere Survey, an ESO Public Survey on the VISTA 4 m
telescope that will cover the survey area in J,H, andKs. While the
color information provided by grizYJHKs photometry leads to im-
proved photo-z estimates compared to optical-only imaging, for
simplicity and purposes of illustration the mock catalog we use
here contains only griz magnitudes.

The simulated DES catalog contains 200,000 galaxies with
z < 2 and 20 < i < 24. Themagnitude and redshift distributions
are derived from the galaxy luminosity function measurements
of Lin et al. (1999) and Poli et al. (2003), while the galaxy spec-
tral energy distribution (SED) type distribution is obtained from
measurements of the HDF-N/GOODS field (Capak et al. 2004;
Wirth et al. 2004; Cowie et al. 2004). The galaxy colors are gen-
erated using the four Coleman et al. (1980) templates, E, Sbc, Scd,
and Im-extended to the UVand NIR using synthetic templates
from Bruzual & Charlot (1993). To improve the sampling and
coverage of color space, we create additional templates by inter-
polating between adjacent templates or by extrapolating from the
E and Im templates. Flux errors are simulated for the mock cata-
log galaxies by adding Gaussian noise to the flux of each galaxy
(independently in each filter), as appropriate for the DES data set
after completion of all 5 years of observations. Specifically, we
adopted 10 � magnitude limits for our galaxies of griz ¼ 24:6;
24.1, 24.3, 23.9, and we also added in quadrature a 2% flux error
(also Gaussian distributed) to account for the photometric cali-
bration uncertainty expected for DES. The resulting mock catalog
thus incorporates the observational errors in magnitudes that cor-
respond to the completed DES galaxy sample.

The artificial redshift cut, given by z < 2, does not affect the
data significantly. The number of objects in the range 1:9 < z <
2:0 is less than 1% of the total number of objects in the catalog.
Because the redshift distribution of objects is exponentially de-
caying at high redshifts, we expect the effects of z > 2 objects to
be negligibly small.

The second test catalog we use is based on the Sloan Digital
Sky Survey (SDSS) Data Release 3 (DR3; Abazajian et al. 2003).
Although this catalog has been superseded by later data releases
(Adelman-McCarthy et al. 2008), for which we have published a
photo-z catalog (Oyaizu et al. 2008), it nevertheless provides a
useful test bed for studies of photo-z errors. This SDSS catalog
contains spectroscopic redshifts and magnitudes in ugriz pass-
bands for 292,964 galaxies from the main spectroscopic sample,
which is flux-limited to r < 17:77. Because this sample is con-
fined to low redshift, zP 0:3, most of the strong features of gal-
axy spectra targeted by photometric redshift estimators fall within
thewavelength range covered by the filters. A notable exception is
the Ly� emitters at z > 2:5. However, the fraction of these high-
redshift objects in our sample is too small to have measurable ef-
fects on our results.

We calculate photometric redshifts for these catalogs using two
methods, a neural network (NN) method and the �2-based spec-
tral template-fitting package Hyperz (Bolzonella et al. 2000). The
NN technique is a training set method based on fitting a parame-
terized function, represented by a feed-forwardmultilayer percep-
tron (FFMP) neural network, to the redshift-magnitude relation
embodied in a spectroscopic training set. The implementation is
the same as the one described in Oyaizu et al. (2008) for the SDSS
Data Release 6 (DR6) photo-z catalog, except that the network
configurations are different: here we use a 4:15:15:15:1 network
for the DES catalog and a 5:15:15:15:1 network for the SDSS
catalog. Figures 1 and 2 show the resulting photometric redshifts
plotted against spectroscopic redshifts for all catalogs used in this
study.

We split the DES and SDSS catalogs into three independent
catalogs each, labeled ‘‘training,’’ ‘‘validation,’’ and ‘‘photomet-
ric’’ sets. The sizes of these sets are 50,000, 50,000, and 100,000
for the DES and 100,000, 92,964, and 100,000 for the SDSS, re-
spectively. Except where noted below (x 3.3), these subsets are
drawn at random from the photometric samples; i.e., they are each
statistically representative of the full samples. When the photo-z
values are determined using the NN training-set method, we use
the training and validation sets to determine the mapping from

Fig. 1.—Photometric vs. spectroscopic redshift for the DES mock catalog
photometric set, calculated using the neural network (top) and Hyperz (bottom)
methods. The dashed and dotted curves enclose 68% and 95% of the points in
each zspec bin. In the bottom right of each panel, � is the rms photo-z scatter aver-
aged over allN objects in the photometric set,�2 ¼ (1/N )�N

i¼1(�z i) 2, and�68 is the
range containing 68% of the validation set objects in the distribution of � z. The
Hyperz photo-z values for the DES mock catalog are calculated with zmax set to 2.
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magnitudes to redshifts and from magnitudes to redshift errors.
The resulting mapping is then applied to the photometric set for
comparison of the training-set error estimator against other error
estimation methods. Splitting the catalogs ensures that the training-
set error methods are not given any unfair advantage with respect
to the other error estimators.Whenwe estimate photo-z values and
photo-z errors using template methods, we apply the methods di-
rectly to the photometric set.

3. ERROR ESTIMATES USING TRAINING SETS

Training-set based photo-z estimators (e.g., Connolly et al. 1995;
Csabai et al. 2003; Collister & Lahav 2004) use a spectroscopic
training set, typically a subset of the photometric sample, to derive

a functional relation between redshift and photometric observ-
ables (e.g., magnitudes), which is then applied to the photometric
sample of interest. In the same spirit, we can also use a training set
to derive an estimate of the photo-z error, that is, a relation be-
tween photo-z error and some photometric observables. Note that
the error estimator does not need to make use of the same observ-
ables as the photo-z estimator. In fact, we stress that the empirical
photo-z error estimators are independent of themethod used to es-
timate photometric redshifts themselves: training-set based er-
ror estimators can be applied to either empirical (training set) or
template-based photo-z estimates. The assumption underlying
the training-set based error estimator is that there is a functional
relationship between some set of photometric observables and
photo-z error and that this relationship for the training set data is
reasonably representative of the relationship for the photometric
sample as a whole.

In the following subsections, we describe and test two basic
techniques that use a spectroscopic training set to estimate photo-z
errors. Both techniques are based on the simple observation that
objects with similar magnitudes in a photometric survey tend to
have similar photometric errors, and such magnitude errors are
typically the largest contributors to photometric redshift error.
Therefore, objects with similar multiband magnitudes will tend
to have similar photo-z errors. Moreover, such neighbors in mag-
nitude space, having similar colors, usually (but not always) cor-
respond to galaxies with similar SEDs. Photo-z errors depend
strongly on SED type, since the quality of photo-z estimates is
related to the presence of strong and broad spectral features. We
can therefore group objects in a spectroscopic training set ac-
cording to their magnitudes and determine the photo-z error as a
function of the magnitudes using the training set. For each object
in the photometric set, we then find the objects in the training set
that are near it in magnitude space and associate some weighted
mean of the measured errors for these training-set neighbors with
it. The two methods introduced below differ in the method of
grouping the galaxies.

3.1. Kd-Tree Error Estimator

The first photo-z error method we consider uses a Kd-tree al-
gorithm to bin training set objects in magnitude space. A Kd-tree
(short for K-dimensional tree) is a general data organization and
classification algorithm suited for efficiently partitioning data points
in multidimensional parameter spaces. In our implementation,
the training set is partitioned into two bins at the median value of
the first photometric parameter (which we choose to be umag for
SDSS and g for DES). For each bin, the objects within the bin are
further partitioned at the median of the second parameter (here g
for SDSS and r for DES), resulting in 22 ¼ 4 bins. This process
is continued for the photometric parameters of interest (here the
5 magnitudes for SDSS and 4 for DES).We then return to the first
parameter, partition each bin at the median of the first parameter
for that bin, cycle again through the parameters, and continue sub-
dividing until the number of objects in a bin becomes sufficiently
small. Once the partitioning is completed, we calculate the 68%
width of the error distribution centered about zphot � zspec ¼ 0 for
each bin and declare that to be the photo-z error estimate for ob-
jects in the photometric sample that fall within that bin.

Because the Kd-tree bins are always partitioned at the median
value of the object distribution in some parameter, the number of
training-set objects per bin,Nb, is nearly constant from bin to bin.
This constancy ensures a nearly uniform shot-noise uncertainty
(/1/

ffiffiffiffiffiffi
Nb

p
) on the estimates of the photo-z errors.While this statis-

tical uncertainty isminimized by havingmany objects per bin, large
bins are nonlocal in multimagnitude space, and the training-set

Fig. 2.—Photo-z vs. spectroscopic redshift for the SDSSDR3 photometric set
calculated using the neural network (top) andHyperz (bottom). TheHyperz photo-z
values for the SDSS catalog are calculated with zmax set to 0.4.
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based error estimator is predicated on the locality assumption
that similar magnitudes imply similar errors. Therefore, the op-
timal bin size should be as small as possible (or smaller than the
scale over which the error distribution changes appreciably), but
large enough that the shot-noise error is not large compared to the
error induced by nonlocality of the bin. For the training set sam-
ples we consider here, we find that Nb ’ 100 objects per bin is
nearly optimal. The size of the training set can also change the
locality of the nearest Nb neighbors, and in general, the required
locality depends on the first derivative of the redshift-magnitude
relationship. Because such relationships depend on numerous fac-
tors, such as filter choice, selection function, and magnitude er-
rors, we cannot provide a general requirement for the training-set
size. We note, however, that in both DES mock and SDSS cata-
logs, we find virtually no improvement in error estimator quality
when the training set size is larger than 20,000 galaxies.

Figure 3 shows the results of applying the Kd-tree error esti-
mator to the DES and SDSS photometric sets. In these cases, the
neural network (NN)method was used for the photo-z estimates.
The photo-z errors are estimated using a Kd-tree with 512 bins
for the DES catalog and 1024 bins for the SDSS catalog, corre-
sponding toNb ’ 97 training-set objects per bin in each case. The
top panels of Figure 3 shows the photo-z error estimates vs. the
measured or ‘‘empirical’’ errors. In order to compute the empirical
error, we first sort the galaxies according to their estimated error.
Next, we bin the galaxies into bins of 100 objects, starting from
the galaxy with the smallest estimated error, and call the average
estimated error of the galaxies within a bin the ‘‘estimated error’’
of the bin,which is plotted on the vertical axis of Figure 3. Finally,
we compute the 68% width of the jzphot � zspecj/�est distribution
of each bin, and call it the ‘‘empirical error’’ of the bin. The as-
sumption here is that if the error estimator is working properly,
those objects with similar estimated error should follow similar
underlying error distributions, and the underlying distribution
should have a width that is well approximated by the estimated
error. As the figure shows, the estimated Kd-tree error correlates
well with the true error, with almost no apparent bias and rela-
tively small scatter.

The solid histograms in the lower panels of Figure 3 show the
corresponding distributions of (zphot � zspec)/�est, where�est is the
Kd-tree error estimate. The dashed curves in these panels show
Gaussian fits to the error distributions; we also indicate the best-fit
Gaussian means (�Gauss) and standard deviations (�Gauss), as well
as the �68 widths (about zero) of the distributions (not the fits).
The fits give equal weight to each bin of the distributions and ig-
nore objects for which�est ¼ 0. There is no a priori reason for these
error distributions to be Gaussian. Nevertheless, for the Kd-tree
error estimator, the error distributions are very close to Gaussians,
except for small tails seen for both the DES and SDSS catalogs.
The tails are signatures of catastrophic photo-z failures: due to
photometric errors, an intrinsically underluminous red galaxy at
low redshift, for example, may scatter into a bin mostly populated
(in the training set) by intrinsically luminous blue galaxies at much
higher redshift. In such degenerate cases, the photo-z error is large,
and the Kd-tree error underestimates the true error: in this example,
the Kd-tree error assigned to the red galaxy interloper would be
dominated by the small errors of the blue galaxies in that bin.With
a sufficiently large training set, one could hope to identify such
problematic bins in magnitude space, since the photo-z error dis-
tributions in the training set for those bins would show anomalous
tails.
A disadvantage of the Kd-tree method is the fact that the esti-

mated error is discrete. There can only be as many different error
estimates as there are Kd-tree bins, and this limits the resolution
of the estimated photo-z errors, especially for objects with large
photo-z errors as seen by the lack of high Kd-tree estimated er-
rors in Figure 3. This problem can in principle be alleviated by
using more Kd-tree bins. However, as noted above, for a fixed
training set size, the number of bins is limited by the requirement
that each bin should contain enough training-set objects to de-
termine the error with small shot-noise uncertainty.

3.2. Nearest Neighbor Error Estimator

While the Kd-tree error estimator was seen to have good sta-
tistical properties, we have found that a nearest neighbor error
(NNE) estimator performs even better. Note that the NNE has in

Fig. 3.—Top, left to right: Estimated error vs. empirical error for DES photometric set using Kd-tree error estimate, SDSS using Kd-tree, DES using nearest neighbor
error (NNE) estimate, and SDSS using NNE. In all four cases, the neural network method was used to estimate the photo-z values. Bottom, left to right: Corresponding
distributions of (zphot � zspec)/�est, where �est is the photo-z error estimate for each galaxy. Solid histograms show the distributions; dashed curves are Gaussian fits to the
distributions.
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principle nothing to do with neural networks (NN), and readers
should be careful not to confuse the similar acronyms. In this
method, for each object in the photometric set we estimate the
photo-z error by using the 68% spread of the error distribution of
its Nnei nearest neighbors in the training set. Here, nearness in
magnitude space is defined using the Euclidean metric: given
two objects with two sets of measured magnitudesm1 andm2, we
define the distance between them by

D2 ¼ jm1� m2j2 ¼
XNm

�¼1

(m
�
1 � m

�
2 )

2; ð1Þ

where Nm denotes the number of magnitudes (different pass-
bands) measured for each object. In contrast to the Kd-tree
method, in NNE each object in the photometric set defines its
own bin.

The choice of the number of nearest neighbors (Nnei) to use is
analogous to the choice of the number of bins in the Kd-tree er-
ror estimate. We prefer to keep the number of neighbors constant
for all objects in the photometric set, since the shot noise of the re-
sulting error estimate is then fixed. As with the Kd-tree method,
one should chooseNnei large enough to keep the shot noise of the
estimate under control, but small enough so that the error estimate
remains relatively local in magnitude space. For the samples we
have tested in this analysis, we again find thatNnei ’ 100 training-
set neighbors is nearly optimal.

The top right two panels in Figure 3 show the results of ap-
plying the NNE estimation method to the DES and SDSS cat-
alogs, respectively. The discreteness that was a concern for the
Kd-tree error estimate is not present in the NNE method. More-
over, the NNE error displays tighter correlation with the empir-
ical error, because a nearest neighbor bin for a photometric object
is almost alwaysmore local inmagnitude space than a Kd-tree bin
for the same object. The bottom panels of the same figure show
that the error distributions are reasonably well fit by Gaussians,
with widths that are within 5% of the expected width �Gauss ¼ 1.
Non-Gaussian tails similar to those seen in the Kd-tree error

distributions are also present in the NNE error distributions, for
the same reasons.

As noted above, the NNE and the Kd-tree error methods can
be used in conjunction with any photo-z estimator, either training-
set or template-based, provided there exists a subset of the photo-
metric sample with spectroscopic redshifts. As an illustration, we
use the Hyperz template-fitting method to calculate photometric
redshifts for the full DES mock catalog (shown Fig. 1, bottom).
We then use 50,000 objects from theDES catalog as a training set
for NNE and calculate photo-z errors for the remaining photo-
metric objects. Figure 4 shows the estimated vs. empirical error
(left) and the error distribution (right) for this example. The NNE
error estimateworks well, although as before it results in an under-
estimate when the errors are very large (�z > 0:25). The error
distribution is not as well fit by a Gaussian in this case; this is not
surprising, since the photo-z estimate in this case has a net bias of
�23%.However, the error estimator is able to account for the bias
and still predict the error towithin 12% in�Gauss. This ability to in-
clude the bias in the error estimatesmakes the training set error es-
timate approach particularly powerful compared tomethods based
on magnitude error propagation (see x 4.2).

In our implementation of the NNE, computing the NNE is ex-
pensive compared to the Kd-tree method. In the naive implemen-
tation, computation time to find the nearest objects scales asNTNP,
where NT and NP are the number of objects in the training set and
the photometric set, respectively (see, e.g., Press et al. 1992).
In contrast, the Kd-tree method scales as NP logNT . For most
training-set photo-zmethods, including the neural network, the
computation time scales as NP. Therefore, for a sizeable training
set (NT � 10;000 objects), the NNE computation dominates the
time involved in estimating the photo-z values and their errors.
Fortunately, the method is trivially parallelizable, because the NNE
calculation of one object in the photometric set is independent of all
the other objects in the same set. Taking advantage of this paral-
lelization, the NNE estimator has been successfully applied to a
data set as large as the SDSSDR6 (Adelman-McCarthy et al. 2008),
containing more than 78 million galaxies with neural net photo-z
values (Oyaizu et al. 2008). In addition, tree-structured nearest

Fig. 4.—Left: Estimated error vs. empirical error for NNE applied to the DES catalog with Hyperz photo-z values. Right: Error distribution for the same data.
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neighbor search methods, such as the Cover-Tree (Beygelzimer
et al. 2006), can be used to improve the computation time to
O(NP log NT ), essentially eliminating the difference between the
Kd-tree and NNE methods.

3.3. Nonrepresentative Training Set

The training-set based error estimators we have introduced rely
on the spectroscopic training set to characterize the errors of the
photometric set. Hence, the quality of the error estimate depends
in principle on the degree to which the training set is a representa-
tive subsample of the photometric set. Since spectroscopic samples
often are not simply random subsets of the parent photometric sam-
ples fromwhich they are drawn, onemight have concerns about the
robustness of these error estimates. Here we consider cases of non-
representative training sets and show that the training-set error es-
timators perform satisfactorily, provided the training set covers the
full magnitude range of the photometric sample.

In order to illustrate this issue, we have constructed two non-
representative training sets using the DES catalog generator. One
training set ( labeled ‘‘Flat’’) has a flat i-magnitude distribution at
i < 24, instead of the increasing distribution characteristic of a
flux-limited sample; bright (faint) objects are overrepresented
(underrepresented) compared to the photometric sample. The sec-
ond training set (labeled ‘‘Extr’’) has an i-magnitude distribution
highly skewed toward bright magnitudes, i < 22, since a spectro-
scopic set typically does not go as faint as the corresponding pho-
tometric sample. Both training sets haveflat redshift and SED type
distributions, differing from those of the fiducial DES mock cat-
alog. The i-magnitude distributions, as well as the zphot vs. zspec
plots, are shown in Figure 5. Each training set contains 50,000 gal-
axies. We used the training sets to derive neural network photo-z
solutions, which were then used to estimate photo-z values for the
DES mock photometric catalog. Photo-z errors were estimated
using the NNE method, again using the same nonrepresentative
training sets in each case. In Figure 6, we show the estimated vs.
empirical error (top) and the error distributions (bottom) for the
two cases.We see that the NNE error method estimates the errors
correctly at the �10% level, while maintaining Gaussianity in
both cases. In the case of the flat training set, the error accuracy
degradation is less than 1% compared to the representative train-
ing case. Given the fact that the neural network photo-z quality is
itself degraded by �10% compared to the representative case in
scatter, these results show that the NNE error estimator is robust
against differing distributions of the training and photometric sets.

A possible approach to the issue of nonrepresentative training
sets would be to resample or weight the training-set objects to
obtain a distribution that matches the distribution of photometric
observables (magnitudes, colors, etc.) of the photometric sample.
In the case of the DES catalog and the two nonrepresentative
training sets used above, this resampling results in a marginal
improvement in the error estimate at the �2% level in both �68
and �Gauss. We plan to offer further discussions and test results
in subsequent articles, currently in preparation (Lima et al.
2008; Cunha et al. 2008).

4. COMPARISON WITH OTHER ERROR ESTIMATORS

Other photo-z error estimators have been proposed in the liter-
ature. Two commonly used estimators are the�2 error in template-
fitting methods, such as Hyperz (Bolzonella et al. 2000), and the
propagation of magnitude errors that is found in, for example,
ANNz (Collister & Lahav 2004). In this section, we discuss the
performance of these error estimators and consider the advan-
tages and disadvantages of our training setYbased error estimators
compared to these methods.

4.1. �2 Error Estimate

Template-fitting photo-z methods often use �2 minimization
to determine the best-fit zphot and spectral type. The quantity to
be minimized is

�2 ¼
XNm

k¼1

Fk
obs� aF k

temp(z)

� k
F

" #2

; ð2Þ

where Fk
obs is the observed flux in passband k, �k

F is the corre-
sponding uncertainty in the flux, Fk

temp(z) is the flux of a template
SED, redshifted to a given z, a is a normalization factor, and Nm is
the number of passbands in which measurements are available.
This statistic is minimized over redshift and over the set of tem-
plate SEDs.
When a model being fit to data is linear in the fit parameters,

the probability distribution for the �2 statistic is the �2 proba-
bility distribution for � degrees of freedom, P(�2|�) (Press et al.
1992). Given the value of �2 ¼ �2

min that minimizes equation (2),
the corresponding P(�2

minj�) gives the probability that the ob-
served �2 for a correct model is less than �2

min. This probability
can be used to calculate redshift confidence intervals. Given a con-
fidence level � (0 < � < 1), define the quantity �� 2 such that
(Avni 1976)

P(�2 � �� 2 j�) ¼ �: ð3Þ

The level-� zphot confidence interval is given by the set of all red-
shifts for which

�2(z)� �2
min � �� 2 ; ð4Þ

where �2(z) is minimized over spectral type and the coefficient
a. That is, �� 2 is simply the increment in �2 required to cover
the region of parameter space with redshift confidence �. Here
we are interested in comparing the 68% confidence interval of
the photometric redshift, so we set the parameter � ¼ 0:68.
In Figure 7, we show the�2-estimated error vs. empirical error

and the residual error distribution for the Hyperz photo-z esti-
mator applied to the DES mock catalog. The �2 error underes-
timates the true error by about a factor of 2. Furthermore, the
distribution of the error residual divided by the estimated error is
decidedly non-Gaussian, exhibiting strong tails. We attribute the
underestimate to the fact that the �2 distribution is not a realistic
description of the true photo-z error distribution, given the rela-
tively strong degeneracies present in the catalog. In a test using
an artificial mock catalog containing only early-type galaxies, in
which the degeneracy between redshift and galaxy SED type is
removed,we found that the�2 estimatorwas accurate at the�30%
level. In addition, themodel used in the�2 error estimator assumes
that the fitting function, Fk

temp(z), is linear in the fitting parameters,
namely, the redshift. In reality, the template-fitting functions are
highly nonlinear, and therefore it is not surprising that the �2 error
estimator does not robustly predict the correct errors.
We also tried to compute �2 errors for Hyperz applied to the

SDSS catalog, but we were not able to obtain sensible estimates.
We found no discernible correlation between the�2 errors and the
true errors of the photo-z estimate. We discuss this issue further at
the end of x 4.2.

4.2. Error Estimate from Magnitude Derivative (MDE)

The basic assumption underlying photo-z estimates is that there
is a one-to-onemapping from photometric observables, e.g., mag-
nitudes, to redshift. In training-set photo-zmethods, this mapping
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is given by an explicit, usually analytic, function of magnitudes
m� and fit coefficients ck,

zphot ¼ zphot(ck ;m
�); ð5Þ

where the ck are determined from the spectroscopic training set
by minimizing a score function, a measure of the error residuals
of the photo-z estimates. To first order, we can propagate the co-
efficient errors �ck and the magnitude errors �m to the photo-z er-
rors �z as

�2
z ¼

XNc

k¼1

@ zphot
@ck

� �2
�2
ck
þ
XNm

�¼1

@ zphot
@m�

� �2
�2
m� : ð6Þ

If the training set is sufficiently large (say, �10,000 objects),
the photo-z errors due to errors in the model fit coefficients are
typically negligible compared to those arising from magnitude
error propagation. Therefore we will concentrate on the latter and
define the magnitude derivative error (MDE) as the second term
in equation (6) (Collister & Lahav 2004). For polynomial fitting
and NN photo-zmethods, analytic expressions for the derivatives
(see, e.g., Bishop [1995] for the case of NN) can be used. How-
ever, we may also calculate these derivatives by finite differences,
in which case MDE can be applied to any photo-z estimation
method, including template fits.

Figure 8 shows the performance of the MDE error calculation
for the DES mock catalog using neural network photo-z values.

Fig. 5.—Top: The i-magnitude distribution for the Flat and Extr nonrepresentative training sets. The representative i-magnitude distribution is plotted in dashed lines for
comparison. Bottom: The neural network zphot vs. zspec of the DES mock photometric set calculated using the DES Flat training set (left) and the DES Extr training set (right).
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MDE errors underestimate the true error by approximately 40%
for this case. Although the error residuals are nearly Gaussian,
the tails of the error distribution are more pronounced than the
tails for the NNE error, signaling the failure of MDE to correctly
identify catastrophic photo-z errors.

Collister & Lahav (2004) identify a second source of error in
neural network photo-z values. In the training process, the score
function typically hasmany local minimawith similar values. As
a result, networks that start the minimization process at different
initial values for the fit coefficients can end up in different local
minima, resulting in slightly different photo-z estimates for the
same input magnitudes. The variance in photo-z estimates due to
this effect is an additional contribution to the photo-z error. By

retraining our networks with different initial conditions, we find
that the contribution of such an effect to the photo-z error is small
(<1% of MDE) for our two catalogs, not enough to account for
the underestimate of the MDE errors when applied to neural net-
work photo-z estimates.
The �2 and MDE error estimators are both predicated on the

accuracy of the quoted magnitude errors. However, photometric
errors are often difficult to estimate accurately (e.g., Scranton et al.
2005). The problem is further exacerbated if the magnitude errors
in different passbands are correlated with each other, thereby vio-
lating the assumptions made in the �2 fit and in magnitude error
propagation. Because of these difficulties, theMDE errors applied
to the NN photo-z estimates for the SDSS catalog are only weakly

Fig. 6.—Top: NNE error vs. empirical error calculated using two nonrepresentative training sets. Bottom: Error residual distributions.
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correlated with the true errors, similar to the case of �2 error ap-
plied to the SDSS. A key advantage of the training-set based error
estimators is that they do not depend on the measured magnitude
errors.

4.3. Disadvantages of NNE

While the training-set based methods can be applied with great
success inmany situations, the domains of their applicabilities are
in fact limited. First and foremost, the methods depend critically

on the availability of training sets that cover the same range of
magnitudes as the photometric set. Without the proper coverage,
the notion of a ‘‘neighbor’’ is no longer sensible, and therefore the
methods necessarily break down. However, we believe that a sub-
sample of the photometric set must have spectroscopic infor-
mation available in any survey of scientific quality, even if the
intention is not to use the subsample as a training set. Without
this spectrocopic information, it is impossible to accurately gauge
the photometric redshift quality and thus the errors of the survey

Fig. 7.—Left: �2-estimated error vs. empirical error for the DES mock catalog, using the Hyperz photo-z estimator. Right: �2 error residual distribution, along with
Gaussian fit. For the comparable training set see Fig. 4.

Fig. 8.—Left: MDE error vs. empirical error for the DES mock catalog, using the NN photo-z estimate. Right: Error residual distribution for MDE error for the DES
mock catalog. For comparison with the training set error estimators, see Fig. 3, first and third panels.
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outcome. Hence, any reasonable future survey should have an
appropriate spectrocopic subset that can be used as the training set
for an NNE procedure.

A second and a somewhat more subtle difficulty is the training-
set based method’s underlying assumption that the photometric
error properties be the same between the training set and the pho-
tometric set. In other words, the photometry of the training set
cannot beworse nor better than those of the photometric set, since
the methods outlined in this paper are designed to quantify the scat-
tering of galaxies in the observable space.

5. REDUCING CATASTROPHIC OUTLIERS:
CULLING OBJECTS BY ESTIMATED ERROR

In certain analyses, one would like to remove objects with very
erroneous, so-called catastrophic, photo-z estimates from a sam-
ple. If the estimated photo-z errors are reliable, then objects with
large estimated errors can be used to identify catastrophic photo-z
failures. Removing such objects from a sample can reduce the
scatter and bias in photo-z estimates.
In this study, we define objects with catastrophic errors as those

for which jzphot � zspecj is large compared to the photo-z scatter,
�. Specifically, we define catastrophic errors to be jzphot � zspecj >
3 � for both the DES and the SDSS catalogs, where � is the red-
shift quality of the particular redshift estimator used. We define

Fig. 9.—Top: Reduction in photo-z scatter � when objects with large esti-
mated photo-z errors are culled from the sample, using two photo-z estimators,
NN andHyperz, and four error estimators, NNE, Kd-tree,MDE, and�2. The ver-
tical axis shows the fractional improvement in the overall photo-z scatter relative
to the scatter of the uncut photometric set, �0. Horizontal axis is the fraction of
objects culled from the DES catalog. Bottom: Reduction in outlier fraction when
objects are culled by estimated photo-z error.

Fig. 10.—Same as Fig. 9, but for the SDSS catalog. Note that the scatter and the
outlier fraction do not improve when the catalog is cut using the �2 errors.
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the outlier fraction to be the fraction of objects in a photometric
sample with catastrophic errors.We sort the photometric catalogs
by the galaxies’ estimated photo-z errors and track the changes in
� and in the outlier fraction as we successively remove objects
with smaller and smaller estimated errors.

In Figure 9, we show the dependence of the photo-z scatter, �,
and the outlier fraction on the fraction of objects culled from the
sample based on the estimated error.We show results for the four
different error estimators described above (Kd-tree, NNE, �2,
and MDE) for the DES mock catalog. We see that the NNE and
the MDE estimators perform best when used with the neural net-
work photo-z values, while the Kd-tree error on average are�10%
less efficient in reducing the photo-z scatter. When applied to a
template-based photo-z estimator (i.e., Hyperz), the NNE per-
forms considerably better than the �2-based error estimator. An
NNE-based cut is also able to reduce the outlier fraction by a fac-
tor of 2 with only �10% of objects removed.

Figure 10 shows the photo-z scatter and outlier fraction for the
SDSS catalog. For this case, MDE and �2 do not perform as well
in reducing scatter and outliers. These error estimators rely on the
reported magnitude errors, and as noted above, the latter are highly
correlated between passbands and are non-Gaussian for the SDSS
catalog. In fact, culling objects with high �2 error results in no im-
provement of the scatter, a reflection of the fact that the �2 error
for the SDSS catalog is not correlated with the actual error of the
Hyperz photo-z estimates.

Figure 11 shows zphot vs. zspec for the DES catalog with NN
photo-z values when 10% of the objects, those with the largest
estimated NNE errors, have been removed. Comparing to the re-
sults in the top panel of Figure 1, this process reduces the photo-z
scatter in the remaining objects by�23%.Moreover, most of the
catastrophic objects at low redshift are removed, improving the
bias and the scatter at those redshifts.

This procedure of removing catastrophic objects changes the
selection function of the sample, which in turn changes the red-
shift distribution.When culling a catalog using an estimated error,
one should carefully consider the effects of the reduced sample

size, as well as the change in the selection function of the objects
to be analyzed. Recently, there has been promising work show-
ing that, for the DESmock catalog, the accuracy of galaxy power
spectrummeasurement can be improved by culling high estimated
error galaxies using the MDE estimator (Banerji et al. 2008).
The study finds that the improvement in the photo-z scatter out-
weighs the reduced statistics of the resulting smaller sample of
low photo-z error galaxies.

6. CONCLUSIONS

In this paper, we have introduced a new approach to estimat-
ing photometric redshift errors using a spectroscopic training set.
We presented two implementations of the training set approach,
Kd-tree and nearest neighbor error (NNE), and found that NNE is
the best error estimator when a representative training set is avail-
able. Compared to the �2 error and the MDE estimators, training-
set based error estimators are less sensitive to systematic errors in
magnitude error estimates. They incorporate both the bias and
scatter of the photo-z values, important features given the often
substantial biases in photo-z estimates. Comparison of NNE and
Kd-tree errors with error estimators from the literature shows that
these training-set error estimators are in general more accurate
and better behaved (in the sense that the error residual distribu-
tion is closer to a Gaussian).

Since a fully representative spectroscopic training set is not al-
ways available, we explored the impact on these error estimates
of nonrepresentative training sets. We found that this does not
substantially degrade the accuracy of the training-set error esti-
mates. In fact, we showed that, even for training sets with very dif-
ferent magnitude and redshift distributions from the photometric
sample, the training-set error estimates remain accurate at the 10%
level.

Finally, we demonstrated that one can cull galaxies with large
estimated errors from a sample and thereby significantly improve
the overall scatter and bias of the photo-z estimates. Because the
training-set error estimators are more accurate than other error
estimators and because the photo-z error residuals are nearly
Gaussian-distributed for these methods, culling objects using
NNE or Kd-tree results in a greater performance improvement
than culling with other error estimators.
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