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ABSTRACT
We constrain the mass–richness scaling relation of redMaPPer galaxy clusters identified in
the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters into
4 × 3 bins of richness λ and redshift z for λ > 20 and 0.2 6 z 6 0.65 and measure the
mean masses of these bins using their stacked weak lensing signal. By modeling the scaling
relation as 〈M200m|λ, z〉 = M0(λ/40)F((1 + z)/1.35)G, we constrain the normalization of the
scaling relation at the 5.0 per cent level as M0 = [3.081±0.075(stat)±0.133(sys)]·1014 M� at
λ = 40 and z = 0.35. The richness scaling index is constrained to be F = 1.356±0.051 (stat)±
0.008 (sys) and the redshift scaling index G = –0.30 ± 0.30 (stat) ± 0.06 (sys). These are
the tightest measurements of the normalization and richness scaling index made to date. We
use a semi-analytic covariance matrix to characterize the statistical errors in the recovered
weak lensing profiles. Our analysis accounts for the following sources of systematic error:
shear and photometric redshift errors, cluster miscentering, cluster member dilution of the
source sample, systematic uncertainties in the modeling of the halo–mass correlation function,
halo triaxiality, and projection effects. We discuss prospects for reducing this systematic error
budget, which dominates the uncertainty on M0. Our result is in excellent agreement with,
but has significantly smaller uncertainties than, previous measurements in the literature, and
augurs well for the power of the DES cluster survey as a tool for precision cosmology and
upcoming galaxy surveys such as LSST, Euclid and WFIRST.
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1 INTRODUCTION

Galaxy clusters have the potential to be the most powerful cos-
mological probe (Dodelson et al. 2016). Current constraints are
dominated by uncertainties in the calibration of cluster masses
(e.g., Mantz et al. 2015a; Planck Collaboration et al. 2016; Rozo
et al. 2010). Weak lensing allows us to determine the mass of
galaxy clusters: gravitational lensing of background galaxies by
foreground clusters induces a tangential alignment of the back-
ground galaxies around the foreground cluster. This alignment is a
clear observational signature predicted from clean, well-understood
physics. Moreover, the resulting signal is explicitly sensitive to all
of the cluster mass, not just its baryonic component, and is insensi-
tive to the dynamical state of the cluster. For all these reasons, weak
lensing is the most robust method currently available for calibrating
cluster masses. It is therefore not surprising that the community has
invested in a broad range of weak lensing experiments specifically
designed to calibrate the masses of galaxy clusters (von der Linden
et al. 2014a,b; Applegate et al. 2014a; Hoekstra et al. 2015; Ok-
abe & Smith 2016; Mantz et al. 2015b; Melchior et al. 2017; Simet
et al. 2017; Murata et al. 2017; Dietrich et al. 2017).

The Dark Energy Survey (DES) is a 5,000 square degree pho-
tometric survey of the southern sky. It uses the 4-meter Blanco Tele-
scope and the Dark Energy Camera (Flaugher et al. 2015) located
at the Cerro Tololo Inter-American Observatory. As its name sug-
gests, the primary goal of the DES is to probe the physical nature
of dark energy, in addition to constraining the properties and dis-
tribution of dark matter. Owing to its large area, depth, and image
quality, at its conclusion DES will support optical identification of
∼ 100, 000 galaxy clusters and groups up to redshift z ≈ 1. We use
galaxy clusters identified using the redMaPPer algorithm (Rykoff
et al. 2014), which assigns each cluster a photometric redshift and
optical richness λ of red galaxies. To fully utilize these clusters,
one must understand mass-observable relations (MORs), such as
that between cluster mass and optical richness. Weak lensing can
establish this relation – with high statistical uncertainty for individ-
ual clusters, but low systematic uncertainty in the mean mass scale
derived from the joint signal of large samples.

In this work, we use stacked weak lensing to measure the mean
galaxy cluster mass of redMaPPer galaxy clusters identified in DES
Year 1 (Y1) data. We use these data to calibrate the mass–richness–
redshift relation of these clusters. In Melchior et al. (2017) we pro-
vided a first calibration of this relation using DES Science Verifica-
tion (SV) data. There, we were able to achieve a 9.2 per cent statis-
tical and 5.1 per cent systematic uncertainty. Here, we update that
result using the first year of regular DES observations, incorporat-
ing a variety of improvements to the analysis pipeline. Our results
provide the tightest, most accurate calibration of the richness–mass
relation of galaxy clusters to date, at 2.4 per cent statistical and 4.3
per cent systematic uncertainty.

The structure of this paper is as follows. In Section 2, we intro-
duce the DES Y1 data used in this work. In Section 3 we describe
our methodology for obtaining ensemble cluster density profiles
from stacked weak lensing shear measurements, with a focus on up-
dates relative to Melchior et al. (2017). A comprehensive set of tests
and corrections for systematic effects is presented in Section 4. The
model of the lensing data and the inferred stacked cluster masses
are given in Section 5. The main result, the mass–richness–redshift
relation of redMaPPer clusters in DES, is presented in Section 6.
We compare our results to other published works in the literature
in Section 7 and conclude in Section 9. In Appendix A we present
the DES Y1 redMaPPer catalog used in this work for public use.
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Figure 1. Surface density of source galaxies in the METACALIBRATION

catalog within the DES Y1 footprint in the “S82” field (top) and the “SPT”
field (bottom).

Supplementary information on the analysis given in additional ap-
pendices.

Unless otherwise stated, we assume a flat ΛCDM cosmology
with Ωm = 0.3 and H0 = 70 km s–1 Mpc–1, with distances defined
in physical coordinates, rather than comoving. Finally, unless oth-
erwise noted all cluster masses refer to M200m. That is, cluster mass
is defined as the mass enclosed within a sphere whose average den-
sity is 200 times higher than the mean cosmic matter density ρ̄m
at the cluster’s redshift, matching the mass definition used in the
cosmological analyses that make use of our calibration.

2 THE DES YEAR 1 DATA

DES started its main survey operations in 2013, with the Year One
(Y1) observational season running from August 31, 2013 to Febru-
ary 9, 2014 (Drlica-Wagner et al. 2018). During this period 1839
deg2 of the southern sky were observed in three to four tilings in
each of the four DES bands g, r, i, z, as well as ∼1800 deg2 in the
Y-band. The resulting imaging is shallower than the SV data re-
lease but covers a significantly larger area. In this study we utilize
approximately 1500 deg2 of the main survey, split into two large
non-contiguous areas. This is a reduction from the 1800 deg2 area
due to a series of veto masks. These masks include masks for bright
stars and the Large Magellanic Cloud, among others. The two non-
contiguous areas are the “SPT” area (1321 deg2), which overlaps
the footprint of the South Pole Telescope Sunyaev-Zel’dovich Sur-
vey (Carlstrom et al. 2011), and the “S82” area (116 deg2), which
overlaps the Stripe-82 deep field of the Sloan Digital Sky Survey
(SDSS; Annis et al. 2014). The DES Y1 footprint is shown in Fig-
ure 1.

In the following we briefly describe the main data products
used in this analysis, and refer the reader to the corresponding pa-
pers for more details. The input photometric catalog, as well as
the photometric redshift and weak lensing shape catalogs used in
this study have already been employed in the cosmological analysis
combining galaxy clustering and weak lensing by the DES collab-
oration (DES Collaboration et al. 2017).

c© 2017 RAS, MNRAS 000, 1–25
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2.1 Photometric Catalog

Input photometry for the redMaPPer cluster finder (Section 2.2)
and photometric redshifts (Section 2.4) was derived from the DES
Y1A1 Gold catalog (Drlica-Wagner et al. 2018). Y1A1 Gold is
the science-quality internal photometric catalog of DES created
to enable cosmological analyses. This data set includes a cata-
log of objects as well as maps of survey depth and foreground
masks, and star-galaxy classification. In this work we make use
of the multi-epoch, multi-object fitting (MOF) composite model
(CM) galaxy photometry. The MOF photometry simultaneously fits
a psf-convolved galaxy model to all available epochs and bands for
each object, while subtracting and masking neighbors. The typical
10σ limiting magnitude inside 2′′ diameter apertures for galaxies
in Y1A1 Gold using MOF CM photometry is g ≈ 23.7, r ≈ 23.5,
i ≈ 22.9, and z ≈ 22.2. Due to its low depth and calibration uncer-
tainty, we do not use Y band photometry for shape measurement or
photometric redshift estimation.

The galaxy catalog used for the redMaPPer cluster finder is
constructed as follows. Bad objects that are determined to be cat-
alog artifacts, including having unphysical colors, astrometric dis-
crepancies, and PSF model failures are rejected (Section 7.4 Drlica-
Wagner et al. 2018). Galaxies are then selected via the more com-
plete MODEST_CLASS classifier (Section 8.1 Drlica-Wagner et al.
2018). Only galaxies that are brighter in z band than the local 10σ
limiting magnitude are used by redMaPPer. The average survey
limiting magnitude is deep enough to image a 0.2 L∗ galaxy at
z ≈ 0.7. Finally, we remove galaxies in regions that are contam-
inated by bright stars, bright nearby galaxies, globular clusters, and
the Large Magellanic Cloud.

2.2 Cluster catalog

We use a volume limited sample of galaxy clusters detected in the
DES Y1 photometric data using the redMaPPer cluster finding al-
gorithm v6.4.17 (Rykoff et al. 2014, 2016). This redMaPPer ver-
sion is identical to the v6.3 algorithm described in Rykoff et al.
(2016) but updated to accommodate the new redMaGiC galaxy cat-
alogs (Rozo et al. 2016; Elvin-Poole et al. 2017).

Two versions of the redMaPPer cluster catalog are generated:
a “flux limited” version, which includes high redshift clusters for
which the richness requires extrapolation along the cluster lumi-
nosity function, and one that is locally volume-limited. By “locally
volume-limited” we mean that at each point in the sky, a galaxy
cluster is included in the sample if and only if all cluster galaxies
brighter than the luminosity threshold used to define cluster rich-
ness in redMaPPer lies above 10σ in z, 5σ in i and r, and 3σ in
g according to the survey MOF depth maps (Drlica-Wagner et al.
2018). That is, no extrapolation in luminosity is required when
estimating cluster richness. At the threshold the galaxy sample is
> 90 – 95 per cent complete. It is this volume-limited cluster sam-
ple that is used in follow-up work deriving cosmological constraints
from the abundance of galaxy clusters. Consequently, we focus ex-
clusively on this volume-limited sample in this work. It contains
more than 76,000 clusters down to λ > 5, of which more than 6,500
are above λ = 20. The format of the catalogs are described in Ap-
pendix A.

redMaPPer identifies galaxy clusters as overdensities of red-
sequence galaxies. Starting from an initial set of spectroscopic seed
galaxies, the algorithm iteratively fits a model for the local red-
sequence, and finds cluster candidates while assigning a member-
ship probability to each potential member. Clusters are centered on
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Figure 2. Redshift–richness distribution of redMaPPer clusters in the vol-
ume limited DES Y1 cluster catalog, overlaid with density contours to high-
light the densest regions. At the top and on the right are histograms of the
projected quantities, zλ and λ, respectively, with smooth kernel density es-
timates overlaid.

bright galaxies selected using an iteratively self-trained matched-
filter method. The method allows for the inherent ambiguity of se-
lecting a central galaxy by assigning a probability to each galaxy of
being the central galaxy of the cluster. The final membership prob-
abilities of all galaxies in the field are assigned based on spatial,
color, and magnitude filters.

The distribution of cluster richness and redshift of the DES
volume-limited cluster sample is shown in Figure 2. The rich-
ness estimate λ is the sum over the membership probabilities of
all galaxies within a pre-defined, richness–dependent projected
radius Rλ. The radius Rλ is related to the cluster richness via
Rλ = 1.0(λ/100)0.2 h–1Mpc. This relation was found to mini-
mize the scatter between richness and X-ray luminosity in Rykoff
et al. (2012). A redshift estimate for each cluster is obtained by
maximizing the probability that the observed color-distribution of
likely members matches the self-calibrated red-sequence model of
redMaPPer.

Figure 3 shows the photometric redshift performance of the
DES Y1 volume-limited redMaPPer cluster sample. The photomet-
ric redshift bias and scatter are calculated by comparing the photo-
metric redshift of the clusters to the spectroscopic redshift of the
central galaxy of the cluster, where available. Unfortunately, the
small overlap with existing spectroscopic surveys means that our
results are limited by small-number statistics: there are only 333
galaxy clusters with a spectroscopic central galaxy, and only 34
(six) with redshift z > 0.6 (z > 0.65). Nevertheless, the photo-
metric redshift performance is consistent with our expectations: our
redshifts are very nearly unbiased, and have a remarkably tight scat-
ter — the median value of σz/(1 + z) is ≈ 0.006. An upper limit for
the photometric redshift bias of 0.003 is consistent with our data.

Of particular importance to this work is the distribution of mis-
centered clusters – both the frequency and severity of their miscen-
tering. Based on the redMaPPer centering probabilities, we would

c© 2017 RAS, MNRAS 000, 1–25
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Figure 3. Photometric redshift performance of the DES Y1 redMaP-
Per cluster catalog, as evaluated using available spectroscopy (333 clus-
ters). Upper panel: Gray contours are 3σ confidence intervals, and the
two red dots are the only 4σ outliers, caused by miscentering on a fore-
ground/background galaxy. Lower Panel: photo-z bias and uncertainty. The
comparatively large uncertainty from 0.3 < z < 0.4 is due to a filter transi-
tion.

expect≈ 80 per cent of the clusters to be correctly centered, mean-
ing the most likely redMaPPer central galaxy is at the center of
the potential well of the host halo. In practice, the fraction of cor-
rectly centered galaxy clusters is closer to ≈ 70 per cent, as es-
timated from a detailed comparison of the redMaPPer photomet-
ric centers to the X-ray centers of redMaPPer clusters for which
high-resolution X-ray data is available (Zhang et al. 2018; von der
Linden et al. 2018). The expected impact of this miscentering ef-
fect, and the detailed model for the miscentered distribution from
Zhang et al. (2018); von der Linden et al. (2018) is described in
Section 5.2.

2.3 Shear catalogs

Our work uses the DES Y1 weak lensing galaxy shape catalogs
presented in Zuntz et al. (2017). Two independent catalogs were
created: METACALIBRATION (Sheldon & Huff 2017; Huff & Man-
delbaum 2017) based on NGMIX (Sheldon 2015), and IM3SHAPE

(Zuntz et al. 2013). Both pass a multitude of tests for systemat-
ics, making them suitable for cosmological analyses. While the Y1
data is shallower than the DES SV data, improvements in the shear
estimation pipelines and overall data quality enabled us to reach a
number density of sources similar to that from DES SV data (Jarvis
et al. 2016).

In this study we will focus exclusively on the METACALI-
BRATION shear catalog because of its larger effective source den-
sity (6.28 arcmin–2) compared to the IM3SHAPE catalog (3.71
arcmin–2). The difference mainly arises because METACALIBRA-
TION utilizes images taken in r, i, z bands, whereas IM3SHAPE re-
lies exclusively on r-band data. In the METACALIBRATION shear
catalog the fiducial shear estimates are obtained from a single
Gaussian fit via the NGMIX algorithm. As a supplementary data
product METACALIBRATION provides (g, r, i, z)-band fluxes and
the corresponding error estimates for objects using its internal
model of the galaxies.

Galaxy shape estimators, such as the NGMIX model-fitting
procedure used for METACALIBRATION, are subject to various

sources of systematic errors. For a stacked shear analysis, the dom-
inant problem is a multiplicative bias, i.e. an over- or underestima-
tion of gravitational shear as inferred from the mean tangential el-
lipticity of lensed galaxies. This bias needs to be characterized and
corrected. Traditionally, this is done using simulated galaxy images
– with the critical limitation that simulations never fully resemble
the observations.

The METACALIBRATION catalog, in contrast, uses the galaxy
images themselves to de-bias shear estimates. Specifically, each
galaxy image is deconvolved from the estimated point spread func-
tion (PSF), and a small positive and negative shear is applied to the
deconvolved image in both the e1 and e2 directions. The resulting
images are then convolved once again with a representation of the
PSF, and an ellipticity is estimated for these new images (Zuntz
et al. 2017). These new measurements can be used to directly esti-
mate the response of the ellipticity measurement to a gravitational
shear using finite difference derivatives:

Rγ =
∂e
∂γ

. (1)

Selection effects can also be accounted for by examining the re-
sponse of the selections to shear. The application of a weight when
calculating the mean shear over an ensemble is effectively a type
of smooth selection, and is accounted for in the same way. We de-
scribe this effect with a selection response Rsel, which leads to the
response-corrected mean shear estimate

〈γ〉 ≈ 〈R〉–1〈R · γ〉 ≈ 〈R〉–1〈e〉 (2)

from biased measurements e with a joint response R ≈ Rγ + Rsel
(Sheldon & Huff 2017).

R is a 2×2 Jacobian matrix for the two ellipticity components
e1, e2 in a celestial coordinate system. For the METACALIBRATION

mean shear measurements in this work, we calculate the response
of mean tangential shear on mean tangential ellipticity. R is close to
isotropic on average, which is why other recent weak lensing anal-
yses (Troxel et al. 2017; Prat et al. 2017; Gruen et al. 2017; Chang
et al. 2018) have assumed it to be a scalar. For the larger tangential
shears measured on small scales around clusters, however, we ac-
count for the fact that the response might not be quite isotropic by
explicitly rotating it to the tangential frame.

Tangential ellipticity eT is related to e1, e2 (and likewise γT to
γ1 and γ2) by

eT = –e1 cos(2φ) – e2 sin(2φ) , (3)

where φ is the polar angle of the source in a coordinate system cen-
tered on the lens. For the shear response, the corresponding rotation
is derived from Equation 1 and Equation 3 as

Rγ,T = Rγ,11 cos2(2φ) + Rγ,22 sin2(2φ)+(
Rγ,12 + Rγ,21

)
sin(2φ) cos(2φ) .

(4)

For the METACALIBRATION selection response, no such rotation
can be performed as the term itself is only meaningful for ensem-
bles of galaxies. In this case, we exploit that the orientation of
source galaxies should be random relative to the clusters, which
suggest a symmetrized version of the response in the tangential
frame:

〈R(T)
sel 〉 ≈

1
2

Tr〈Rsel〉 where 〈Rsel〉i,j ≈
〈ei〉S+ – 〈ei〉S–

∆γj
. (5)

Errors introduced from this approximation are sub-dominant due
to the already small bias associated with source galaxy selection.

c© 2017 RAS, MNRAS 000, 1–25
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In the above equation 〈ei〉S± denotes the mean un-sheared ellip-
ticity of galaxies when selected based on their artificially sheared
images. A detailed discussion of additional possible systematics in
our specific analysis is presented in Section 4.1.

Blinding procedure

As a precaution against unintentional confirmation bias in the sci-
entific analyses, both weak lensing shape catalogs produced for
DES Y1 had an unknown blinding factor in the magnitude of e
(Zuntz et al. 2017) applied to them. This unknown factor was con-
strained between 0.9 and 1.1. While we made initial blinded mea-
surements for this work, the factor was revealed as part of unblind-
ing the cosmology results of DES Collaboration et al. (2017).

In accordance with the practices of other DES Y1 cosmology
analyses, we have further adopted a secondary layer of blinding.
Specifically, we blindly transform the chains from our MCMCs to
hide our in-progress results, and to prevent comparison between
our cluster masses and those estimated using mass–observable re-
lations from the literature. Chains of the parameters in the modeled
lensing profiles and the mass–richness relation were unaltered after
unblinding.

2.4 Photometric redshift catalog

In interpreting the weak gravitational lensing signal of galaxy clus-
ters as physical mass profiles we need to employ information about
the geometry of the source-lens systems by considering the relevant
angular-diameter distances. To calculate these distances we rely on
estimates of the overall redshift distribution of source galaxies, and
also on information about the individual P(z) of source galaxies.

We use the DES Y1 photometric redshifts estimated and val-
idated by Hoyle et al. (2017) using the template-based BPZ algo-
rithm (Benítez 2000; Coe et al. 2006). It was found by Hoyle et al.
(2017) that these photo-z estimates were modestly biased, introduc-
ing an overall multiplicative systematic correction in the recovered
weak lensing profiles. We determine this correction and its system-
atic uncertainty in Section 4.3.

In order to be able to correct selection effects due to the change
of photo-z with shear while utilizing the highest signal-to-noise
flux measurements for determining the source redshift distribution,
we use two separate BPZ catalogs: one generated from META-
CALIBRATION-measured photometry (for selecting and weighting
sources), and one from MOF (see Section 2.1) photometry (for de-
termining the resulting source redshift distributions). Details of this
are described in the following section.

3 STACKED LENSING MEASUREMENTS

3.1 Mass density profiles

Gravitational lensing induces distortions in the images of back-
ground galaxies, often called “sources”. In the limit of weak grav-
itational lensing, these are characterized by the ellipticity e, which
is related to the “reduced shear” via

g ≡ γ

1 – κ
= 〈e〉. (6)

In the equation above, g is the reduced shear, while γ is the shear
and κ is the convergence (e.g. Bartelmann & Schneider 2001).

The gravity of a localized mass distribution, such as a galaxy
cluster, induces positive shear along the tangential direction with

respect to the center of the overdensity. This net tangential shear
results in the stretching and preferential alignment of the images of
background galaxies along the tangential direction. The magnitude
of the azimuthally averaged tangential shear γT at projected radius
R can be predicted from the line-of-sight projected surface mass
density Σ of the lens mass distribution by the relation

γT =
Σ(< R) – Σ(R)

Σcrit
≡ ∆Σ(R)

Σcrit
. (7)

Here Σ(< R) represents the average surface mass density within
projected radius R, and Σ(R) represents the (azimuthal) average of
the surface mass density at R. For the case of reduced shear this
equation holds only in linear order, therefore we account for the
effect of κ in our model described in Section 5.3.2.

The geometry of the source–lens system modulates the ampli-
tude of the induced shear signal, and is characterized by the critical
surface mass density

Σcrit(zs, zl) =
c2

4πG
Ds

DlDls
(8)

in Equation 7. Here Ds, Dl and Dls are the angular diameter dis-
tances to the source, to the lens, and between the lens and the
source. Estimating the ∆Σ signal thus relies on robustly estimat-
ing the redshifts of the galaxy clusters and the source galaxies.
The lens redshifts are the photometric redshift estimates from the
redMaPPer algorithm. The statistical uncertainty on these estimates
is found to be ∆zl ≈ 0.01 (Rykoff et al. 2016), which is negligi-
ble compared to other sources of error in the lensing measurement,
allowing us to treat these redshifts as point estimates.

Source redshifts are also estimated from photometry, and are
described by a probability distribution pphot(zs) for each source
galaxy. We can therefore only estimate an effective critical surface
density

〈Σ–1
crit〉i,j =

∫
dzs pphot(zs,i) Σ–1

crit(zl,j, zs,i) , (9)

where i and j index the source and the lens in a lens-source pair.
Note that here we choose to express the inverse critical surface
density, which is the predicted amplitude of the lensing signal in
Equation 7. We consistently define it as zero if zs 6 zl. For reasons
of data compression, we will in fact not use the full integral over
pphot(z) later, but rather replace Equation 9 by Σ–1

crit evaluated at a
random sample of the pphot(z).

3.1.1 The lensing estimator

Due to the low signal-to-noise of individual source-lens pairs we
measure the stacked (mean) signal of many source galaxies around
a selection of clusters.

Sheldon et al. (2004) show that the minimum variance estima-
tor for the weak lensing signal is

∆̃Σ =

lens∑
j

src∑
i

wi,j eT; i,j

/
〈Σ–1

crit〉i,j∑
j,i

wi,j
, (10)

where the summation goes over all source–lens pairs in some radius
bin and eT; i,j is the tangential component of the ellipticity of source
i relative to lens j. The optimal weights, proportional to the inverse
variance of eT; i,j/

〈
Σ–1

crit

〉
, are

wi,j = 〈Σ–1
crit〉2i,j

/
σ2
γ,i , (11)
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where σ2
γ,i is the estimate on the variance of the measured shear

estimate of galaxy i relating to both the intrinsic variance of shapes
and also to the uncertainty originating from shear estimation.

3.1.2 Practical lensing estimator

This estimator can be equivalently understood as a mean tangential
ellipticity, weighted by the expected shear signal amplitude of each
galaxy 〈Σ–1

crit〉. It is normalized by the expected signal per unit ∆Σ,
i.e. the 〈Σ–1

crit〉-weighted mean of the 〈Σ–1
crit〉. With this in mind, and

including shear and selection response (see Section 2.3), we define
the estimator we use in practice as

∆̃Σ ≡

∑
j,i
ωi,j eT; i,j

∑
j,i
ωi,j Σ

′–1
crit;i,j RT

γ,i +

(∑
j,i
ωi,j Σ

′–1
crit;i,j

)
〈RT

sel〉
. (12)

In the above, 〈RT
sel〉 is calculated via Equation 5 separately for

source galaxies selected in each radial bin and each richness –
redshift bin, where the corresponding selections were defined by
the photometric redshift estimates derived from the sheared META-
CALIBRATION photometries. The small number of source galax-
ies at small radii introduces some noise to the estimated response,
however due to the intrinsic environmental dependence of RT

sel, this
cannot be readily substituted or approximated with other, less noisy
quantities. By considering the expectation value

〈eT; i,j〉 = ∆Σ Σ–1
crit;i,j RT

i , (13)

it is easy to see that the definition of Equation 12 yields an unbiased
estimate of ∆Σ.

Equation 12 includes two simplifications to make calculations
less computationally demanding. First, for the normalization, we
replace the expectation value of Σ–1

crit by a Monte Carlo estimate

Σ
′–1
crit;i,j = Σcrit(zlj , zMC

si ) , (14)

where zMC
si is a random sample from the pphot(zs) distribution esti-

mated with BPZ using MOF photometry. Second, the weights are
chosen as

ωi,j ≡ Σ–1
crit

(
zlj , 〈zMCAL

si 〉
)

if 〈zMCAL
si 〉 > zlj + ∆z , (15)

with 〈zMCAL
s 〉 being the mean redshift of the source galaxy es-

timated from METACALIBRATION photometry. Given the width
of our photometrically estimated p(z), this is close to the opti-
mal weight. We use a padding of ∆z = 0.1 for source selection.
We found that including the source weights provided by META-
CALIBRATION does not introduce a significant improvement in the
signal-to-noise of the measurement.

The use of two different photometric estimators is necessary
because when calculating the selection response, the internal pho-
tometry of the METACALIBRATION, with measurements on sheared
images, must be used for all selection and weighting of sources.
Hoyle et al. (2017) find this photometric redshift estimate to have a
greater scatter than the default MOF photometry. We therefore opt
to use the METACALIBRATION photo-z estimates only for select-
ing and weighting source-lens pairs. When normalizing the shear
signal to find ∆Σ, we utilize the MOF-based photo-z estimates.

3.1.3 Data vector binned in redshift and richness

In estimating the lensing signal through Equation 12 we utilize a
modified version of the publicly available XSHEAR code1 and the
custom built XPIPE python package.2 The core implementation of
the measurement code is identical to the one used by Melchior et al.
(2017).

We group the clusters into three bins in redshift: z ∈ [0.2; 0.4),
[0.4; 0.5), and [0.5; 0.65), as well as seven bins in richness: λ ∈
[5; 10), [10; 14), [14; 20), [20; 30), [30; 45), [45; 60), and [60;∞).
The redshift limit z = 0.65 of our highest redshift corresponds
roughly to the highest redshift for which the redMaPPer cluster cat-
alog remains volume limited across the full DES Y1 survey foot-
print. The ∆Σ profiles were measured in 15 logarithmically spaced
radial bins ranging from 0.03 Mpc to 30 Mpc. For our later results
we will only utilize the radial range above 200 kpc. Scales below
this cut are included only in our figures and for reference purposes,
and are excluded from the analysis to avoid systematic effects such
as obscuration, significant membership contamination, and blend-
ing. This radial binning scheme yields similar S/N across all bins.
The measured shear profiles are shown in Figure 4.

We find a mild radial dependence in the typical value for
METACALIBRATION shear response 〈Rγ,T〉, the asymptotic values
are 0.6, 0.58 and 0.55 as a function of increasing cluster redshift.
For the selection response we find an asymptotic value of 〈Rsel〉 ≈
0.013, 0.014, and 0.015.

3.2 Covariance matrices

The ∆Σ profiles estimated in the previous section deviate from the
true signal due to statistical uncertainties and systematic biases. We
construct a description for the covariance of our data vector below
and calibrate the influence of systematic effects in Section 4.

Statistical uncertainties originate from the large intrinsic scat-
ter in the shapes of source galaxies, the uncertainty in estimating
their photometric redshifts, and due to the intrinsic variations in the
properties and environments of galaxy clusters. Furthermore, due
to our large maximum radius, source galaxies are paired with mul-
tiple clusters, possibly generating covariance between between dif-
ferent radial ranges and/or across different cluster bins in richness
and redshift.

To quantify the correlation and uncertainty involved in the
measurement we construct a semi-analytic model for the data co-
variance matrix following the framework developed by Gruen et al.
(2015). Our use of a semi-analytic covariance (SAC) matrix is mo-
tivated by explicit covariance estimators exhibiting non-negligible
uncertainty and possible biases, for instance from jackknife regions
that are not completely independent. Both of these problems lead
to a biased estimate of the precision matrix (i.e. the inverse covari-
ance matrix), which in turn will bias the posteriors of likelihood
inference (Friedrich et al. 2016).

Instead, we predict several key contributions of the observed
covariances, namely those due to correlated and uncorrelated large
scale structure, stochasticity in cluster centering, the intrinsic scat-
ter in cluster concentrations at fixed mass, cluster ellipticity, and
the scatter in the richness–mass relation of galaxy clusters. Only
the shape noise contribution is estimated directly from the data, as
detailed below.

While we rely on the SAC matrix estimates in the remainder

1 https://github.com/esheldon/xshear
2 https://github.com/vargatn/xpipe
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Figure 4. Mean ∆Σ for cluster subsets split in redshift zl (increasing from top to bottom) and λ (increasing from left to right), as labeled. The error bars shown
are the diagonal entries of our semi-analytic covariance matrix estimate (see Section 3.2) for bins with λ > 20 and the jackknife estimated covariance matrix
for bins with λ < 20. The best-fit model (red curve) is shown for bins with λ > 20, and includes dilution from cluster member galaxies (Section 5.3.1) and
miscentering (Section 5.2); see Section 5 for details. Below 200 kpc we consider data points unreliable and therefore exclude them from our analysis; these
are indicated by open symbols and dashed lines. The profiles and jackknife errors are calculated after the subtraction of the random-point shear signal (see
Section 4.1.3).

of our analysis, we compare the SAC matrices to those derived us-
ing a standard jackknife method. We use jackknife (JK) resampling
with K = 100 simply-connected spatial regions Rk selected via a
k-means algorithm on the sphere.3 The jackknife covariance is de-
fined following Efron (1982):

C
∆̃Σ

=
K – 1

K

K∑
k

(
∆̃Σ(k) – ∆̃Σ(·)

)T
·
(

∆̃Σ(k) – ∆̃Σ(·)
)

, (16)

where ∆̃Σ(·) = 1
K
∑

k ∆̃Σ(k) and ∆̃Σ(k) denotes the lensing signal
estimated via Equation 12 using all lenses except those in region
Rk. Using this method, we calculate the covariance between all
radial bins in a single richness and redshift bin, as well as the co-
variance between adjacent richness and redshift bins.

Figure 5 shows an example of the structure of the jackknife
estimated correlation matrix between neighboring bins in rich-
ness and redshift. We find no significant correlation between rich-
ness/redshift bin and therefore treat each bin independently, even
though some systematic parameters may be shared between bins.

3.2.1 Shape noise

The large intrinsic variations of the shapes of galaxies (shape noise)
in the source catalog constitute a dominant source of uncertainty
in lensing measurements. We estimate the covariance originating
from both the random intrinsic alignments and also the stochas-
tic positions of source galaxies. In order to do so, we make use of
the measurement setup outlined in Section 3.1.3, but each source
is randomly rotated to create a new source catalog. We generated
1000 such independent rotated source catalogs, and performed the
lensing measurement with each. The resulting data vectors are con-
sistent with zero, as the random rotation washes away the imprint

3 https://github.com/esheldon/kmeans_radec
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Figure 5. Jackknife estimated correlation matrix of ∆̃Σ of a single
richness-redshift selection with λ ∈ [20; 30) and z ∈ [0.2; 0.35) (upper
left panel). The off-diagonal blocks display the correlation matrix between
the reference profile and the neighboring richness bin λ ∈ [30; 45) (upper
right panel), and the neighboring redshift bin z ∈ [0.35; 0.5) (lower left
panel)

of the weak lensing signal. However, their scatter is indicative of
the covariance due to shape noise.

We estimate the shape noise covariance matrix for each of the
1000 realizations using the spatial jackknife scheme outlined above
in Section 3.2. The final shape noise covariance matrix estimate is
obtained by averaging all 1000 of these jackknife covariance matri-
ces. We expect this method to be less noisy compared to estimating

c© 2017 RAS, MNRAS 000, 1–25
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the covariance matrix from the 1000 independent measurements of
the rotated ∆Σ vector only.

3.2.2 Uncorrelated LSS

Line of sight structures which are not physically connected to the
cluster leave an impact on the lensing signal. We cannot remove
them from the signal, but we can estimate their expected contri-
bution to the covariance. For an individual cluster, the covariance
estimate due to uncorrelated large scale structure (uLSS) can be
written as (e.g. Schneider et al. 1998; Hoekstra 2003; Umetsu et al.
2011)

CuLSS
ij =

∫
ldl
2π

Pκ(l)Ĵ0(lθi)Ĵ0(lθj) , (17)

where Pκ is the power spectrum of the convergence, and Ĵ0(lθi) is
the area-weighted average of J0 over annulus i. For small bins, we
can write Ĵ0 in terms of J1 via (Umetsu et al. 2011)

Ĵ0(x) =
1

2δx
[(1 + δ)J1 (x(1 + δ)) – (1 – δ)J1 (x(1 + δ))] , (18)

where the radial bin i extends from θi(1 – δ) to θi(1 + δ).
Naively, one would expect that the variance of a cluster

stack due to uncorrelated large scale structure to scale simply as
1/Nclusters. In practice, however, the positions of galaxy clusters are
correlated, and the area around them overlaps on large scales. Con-
sequently, we expect the variance due to uncorrelated structure to
decrease somewhat more slowly than 1/Nclusters.

We estimate this source of noise by measuring random realiza-
tions of the signal due to shear fields induced by log-normal density
fields with the appropriate power spectra and skewness. We calcu-
late the latter with the perturbation theory model of Friedrich et al.
(2017) for the Buzzard cosmology (DeRose et al. 2018; Wechsler
et al. 2018), using the log-normal parameter κ0 at a 10’ aperture
radius. As our cluster sample spans a range in redshift, a different
shear field is calculated for each of the three redshift bins. This is
done such that the shear fields are calculated at the lens-weighted
mean source galaxy redshifts found during the initial measurement
in Section 3.1.3. We then pass these shear fields through the mea-
surement pipeline and estimate the covariance matrix for each real-
izations using 100 spatial jackknife regions for each bin in richness
and redshift.

This above procedure was repeated 300 times, and the final
covariance matrix due to uncorrelated LSS is taken to be the mean
of the 300 jackknife covariance estimates.

3.2.3 Correlated LSS and halo ellipticity

Following Gruen et al. (2015), we model correlated large scale
structure using a halo model approach. We assume correlated halos
can be adequately described using only two parameters: the mass
M of the correlated halo, and the projected distance Rh from the
cluster. The mass distribution of the halos is assumed to follow the
halo mass function, while their spatial distribution is modeled as
a Poisson realization of the density field defined by the appropri-
ate halo–cluster correlation function. That is, the excess density of
halos of mass M a distance R from the halo is

ρh(M, Rh) = b(Mcl)b(M)wmm(Rh)
dn
dM

, (19)

where wmm is the projected linear correlation function at the red-
shift of the cluster, b(M) is the halo bias, and dn/dM is the halo

mass function, or the number of halos per unit volume per unit
mass (Tinker et al. 2008).

Given a model for the halo profile Σ(R|M), the contribution of
a halo at location Rh to the mean surface density Σ of the cluster in
radial bin Ri is Σi(M, Rh) = Σmisc(Ri|M, Rh), where Σmisc is a mis-
centered halo profile. Because of the Poisson-sampling assumption,
the covariance matrix is generated by the mass profiles of individ-
ual halos, so that the correlated large scale structure contribution to
the covariance matrix can be written as

CcLSS
ij =

∫
(2πRhdRh)dM ρh(M, Rh)∆Σi(M, Rh)∆Σj(M, Rh) .

(20)
In practice, the above predicted covariance matrix is further
rescaled by a constant factor calibrated on simulations. This is
meant to account for additional variance not captured by linear bias
and Poisson noise, due to filamentary structure and higher order
statistics in the spatial distribution of the correlated halos (e.g. the
non-zero three-point function). A more detailed derivation of the
above equation and its calibration is found in Gruen et al. (2015).

A very similar calculation can be made for characterizing the
contribution due to halo ellipticity (to the covariance matrix – for
the effect on the mean signal, see Section 5.4.2). If ρell(q,µ) is the
distribution of the halo axis ratio q and the line-of-sight orientation
angle θ relative to the major axis such that cos θ = µ, then one finds
(Gruen et al. 2015)

Cell
ij =

∫
dqdµ ρell(q,µ)∆Σi∆Σj , (21)

where ∆Σi is the contribution to the bin Ri under the assumption
that the halo has an axis ratio q and an orientation µ.

3.2.4 M–c scatter, M-λ scatter and miscentering

Halos at a given mass have some intrinsic scatter in their M–λ rela-
tion. A rough estimate of the intrinsic scatter in the mass–richness
(M–λ) relation is∼ 25 per cent (Rozo & Rykoff 2014; Farahi et al.
2018), and it causes an increase in the variance of stacked mea-
surements of ∆Σ. This scatter causes an even larger increase in
the variance, since it propagates into quantities that depend directly
on the mass, including the M – c relation. In addition, concentra-
tion (e.g. Diemer & Kravtsov 2015; Bhattacharya et al. 2013) and
miscentering possess some intrinsic scatter from halo to halo them-
selves.

Scatter in the M–λ relation causes variance on all scales, since
the bias b(M) directly depends on the mass. By comparison, scatter
in the M – c relation primarily affects small scales where the 1-halo
term dominates. Similarly, some cluster centers are misidentified
in our stacks, which creates additional covariance at small scales
where the signal is substantially suppressed.

We modeled the combined contribution to the SAC from scat-
ter in M–λ, scatter in concentration at fixed mass, and miscentering
of individual clusters in our stacks by doing the following:

(i) For each cluster in our stack, assign a mass by inverting a fidu-
cial M–λ relation (Melchior et al. 2017) and assuming 25 per cent
scatter. This is not identical to 25 per cent scatter in the M–λ rela-
tion, however this choice negligibly affects this component of the
covariance matrix.

(ii) For each cluster, assign a concentration (including scatter) based
on Diemer & Kravtsov (2015).

(iii) For each cluster, make a draw from our centering prior described
in Section 5.2. In other words, some fraction fmis of clusters in the

c© 2017 RAS, MNRAS 000, 1–25
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stack are miscentered, and the distribution of the amount of mis-
centering is given by p(Rmis).

(iv) Calculate ∆Σ for each cluster and average these signals to gener-
ate a signal for the entire stack.

(v) Repeat this process many times, and use these independent real-
izations to estimate the corresponding covariance matrix between
the various radial bins.

Using Simet et al. (2017) as our fiducial M–λ relation or using the
Bhattacharya et al. (2013) mass–concentration relation had no im-
pact on the final SAC matrix. We have also verified that using half
as many realizations as our fiducial choice (1000) did not appre-
ciably change the resulting covariance matrix. The same is true for
changes in the richness scatter or miscentering model parameters
within reasonable ranges.

3.2.5 Semi-analytic covariance matrix

Following Gruen et al. (2015), the full SAC matrix is obtained by
adding each of the above contributions. The individual components
described in the previous subsections are shown in Figure 6. Fig-
ure 7 demonstrates the differences between the SAC and jackknife
covariance matrices. The top two panels show the correlation ma-
trix R of the SAC and CJK respectively, where the correlation ma-
trix is defined via

Rij =
Cij√
CiiCjj

. (22)

Similarly, to visualize the difference between CSA and CJK we de-
fine the residual matrix

Qij =
CSA

ij – CJK
ij√

CSA
ii CSA

jj

. (23)

We show this residual matrix in the bottom right panel of Figure 7.
Finally, in the lower left panel we show the difference between the
errors along the diagonal between the CJK and the SAC, along with
each of the contributions to the SAC; the lower panel shows the
fractional difference between the diagonal entries. As expected,
shape noise is the dominant contributor to the SAC matrix, with
uncorrelated LSS becoming important at the largest scales. This
explains why the choices we had to make in modeling the non-
shape noise components did not significantly affect the resulting
SAC matrix or the posteriors analysis.

Using the SACs in our analysis provides two major improve-
ments: minimal bias from inverting the covariance matrix, and less
overall noise in the off-diagonal elements which improves the mass
measurement. In Melchior et al. (2017) we demonstrated that noise
in the jackknife covariance matrix led to an increase of ≈30 per
cent in the uncertainty of the mass of the stack. Using the SACs
reduces the contribution of the covariance to the error budget by 10
per cent compared to the jackknife estimated covariance.

4 SYSTEMATICS

4.1 Shear systematics

The METACALIBRATION shear catalog and the associated calibra-
tion of the source redshift distributions (Hoyle et al. 2017) passed
a large number of tests performed by Zuntz et al. (2017) and Prat
et al. (2017). Here we briefly enumerate the constraints on the most
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Figure 6. The four individual components to our Semi-Analytic Covari-
ance (SAC) matrix. Clockwise from top left: Shape noise component from
randomly rotating sources, correlated LSS and ellipticity component from
integrating over configurations of the host cluster and its correlated halos,
uncorrelated LSS from integrating over large scale structure, and finally
scatter in the M – λ relation, M – c relation, and miscentering distribution.
Dark colors correspond to low covariance and the colors are log scaled to
show trends. Light colors are normalized to the total covariance in the SAC.
See Section 3.2 for details.

relevant systematics, and refer the reader to the corresponding pa-
pers for a more detailed analysis.

We parametrize the various potential biases in the dataset as:

gi = (1 + mi)g
tr
i + αePSF

i + ci , (24)

where gtr
i is the true shear, while gi is the shear estimate, and α

relates to the contamination from the PSF ellipticity ePSF
i .

In weak lensing surveys the three main sources of bias are
commonly found to be model bias, noise bias, and selection bias
(or representativeness bias). In order to account and correct for
these sources of error, the METACALIBRATION algorithm performs
a self-calibration on the actual data by shearing the galaxy im-
ages during the measurement, and using the thus calculated re-
sponses to correct the shear estimates. To quantify the effectiveness
of this self-calibration, Zuntz et al. (2017) ran the METACALIBRA-
TION pipeline on a set of simulated galaxy images using GALSIM

(Rowe et al. 2015). The images were produced from high resolu-
tion galaxy images from the COSMOS sample, and processed to
resemble the actual DES Y1 observations both in noise and PSF
properties. Based on this test scenario Zuntz et al. (2017) found no
significant multiplicative bias m or additive bias c present in the
dataset.

Zuntz et al. (2017) further investigated the multiplicative bi-
ases due to blending of galaxy images, due to the potential leak-
age of stellar objects into the galaxy sample, and due to poten-
tial errors in the modeling of the PSF. They found blending as the
only component with a net bias, with the other sources being con-
sistent with zero, although contributing to the uncertainty on the
value of m. The final multiplicative bias estimates were found to be
m = [1.2 ± 1.3] · 10–2 with a 1σ Gaussian error. They found no
evidence of a significant additive bias term.
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Figure 7. Comparison between the semi-analytic covariance matrix and the jackknife estimated covariance matrix. Top left: Correlation matrix of the SAC
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contributions to the SAC error from each individual component. The line showing the SAC errors lies almost on top of the shape noise contribution, confirming
that it is the dominant source of covariance. Bottom right: Residual matrix Q (see Equation 23) that represents the difference between the SAC and jackknife
covariance matrices. See Section 3.2 for details.

Prat et al. (2017) tested for the presence of residual shear cal-
ibration biases in the DES Y1 galaxy-galaxy lensing analysis by
splitting the source sample by various galaxy properties and pa-
rameters of the observational data. They showed that within the
statistical uncertainty of the respective galaxy-galaxy lensing sig-
nals, and including the differences in redshift distributions induced
by the splitting, no differential multiplicative biases between any of
the splits are significantly detected.

In addition to the above calibrations during the construction of
the shear catalog, we perform additional sanity checks relevant to
stacked weak lensing measurements in the subsections below.

4.1.1 Second order shear bias

Due to the larger tangential shear near massive clusters, this analy-
sis is more strongly affected by non-linear shear response than pre-
vious DES Y1 lensing analyses (see the discussion in section 9 of
Sheldon & Huff 2017). This response biases cluster masses higher
than they would be otherwise. To test this effect, we modify the
measured ∆Σ profiles by adding the leading non-linear shear bias
term, at third order in γt = ∆Σ× Σ–1

crit, as

∆Σ′obs =
∆Σobs〈Σ–1

crit〉 – α
(

∆ΣModel〈Σ–1
crit〉
)3

〈Σ–1
crit〉

, (25)

where ∆ΣModel is the optimized model discussed in Section 5. For
the amplitude of non-linear shear bias we choose α = 0.6 (Sheldon
& Huff 2017). We model the profile of the highest richness stack
at z ∈ [0.2, 0.35] where, for the source redshift distribution of DES
Y1, this effect is strongest. The recovered mass changes by less
than 1 per cent, demonstrating that our recovered mass–richness–
redshift relation is robust to non-linear shear bias within our error
budget.

The choice of α = 0.6 in our test is motivated by the image
simulations used in Sheldon & Huff (2017). Other simulations find
a range of values of similar magnitude. Since the effect is smaller
than the overall shear uncertainty, yet its calibration is uncertain,
we choose not to implement a correction in our final model.

4.1.2 B-modes

Gravitational lensing due to localized mass distributions can only
produce a net E-mode signal in the shear field, which corresponds
to the tangential shear γt. This allows for a simple null test for the
presence of systematics: any non-zero cross-shear (i.e. a non-zero
B-mode) must be due systematics. We compute the cross-shear by
projecting the shears to the direction 45◦ from the tangential direc-
tion. We estimate the stacked B-mode signal for all richness and
redshift bins, and calculate the corresponding χ2 values using the
jackknife estimate of the covariance matrix. We find χ2/11 < 18/11
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for all richness bins with λ > 20, indicating that our measurement
is consistent with no systematics at a p > 0.1 level.

4.1.3 Random point test

In spite of not being detected by Zuntz et al. (2017) and Sec-
tion 4.1.2, additive shear systematics may be present in the data,
which could manifest as net signals visible on all radial scales. In
order to test for such potential systematics we measure the lensing
signal around a set of random points chosen by the redMaPPer al-
gorithm (Rykoff et al. 2016). These points are selected via weighted
random draws to mirror the distribution of DES Y1 redMaPPer
clusters both in angular distribution, as well as in redshift and rich-
ness.

As additive systematics would affect the lensing profiles of
galaxy clusters and random points the same way, the systematic
effect can be calibrated out by subtracting the profile of random
points from the profile of clusters. While we find no significant net
signal around random points, we nevertheless apply this calibra-
tion, and subtract the signal of 105 random points from the ∆̃Σ of
each bin in richness and redshift. Thanks to the large number of
random points used, this subtraction does not introduce significant
noise to the measurement.

A motivation for subtracting the signal around random points
from the measurement, regardless of the presence of systematics,
is presented by Singh et al. (2016). They found that the random
subtracted signal relates to the matter over-density field around the
lenses, while the un-subtracted lensing signal traces the matter den-
sity field, which carries additional variance on large scales. Indeed,
the precursor study of the present paper (Melchior et al. 2017)
found a similar trend. We note that when constructing our SAC ma-
trix we always apply the random point subtraction described above
to ensure that our covariance matrix properly accounts for the re-
duced covariance that this estimator enables.

4.2 Correction for cluster members in the shear catalog

Due to uncertainty in photometric redshift estimates, foreground
galaxies can be included in the source catalog used in our lens-
ing measurements. So long as the ensemble redshift distribution
dn/dz of the sources is properly estimated, this is accounted for in
our analysis. In the projected vicinity of galaxy clusters there is
however a systematic effect biasing the naive redshift estimates of
galaxies: the presence of a large cluster member population and
the associated large-scale matter overdensity localized at the clus-
ter redshift. For rich clusters, these member galaxies could make
up a significant fraction of all detected galaxies in a particular line
of sight. Consequently, due to intrinsic imperfections in the selec-
tion, some of these galaxies leak into the source catalog used in the
weak lensing measurement. Cluster member galaxies are randomly
aligned (Sifón et al. 2015), meaning their contamination results in
a measured lensing signal which is biased low due to the dilution
of actual source galaxies within the catalog.

It is therefore important for weak lensing studies to character-
ize and correct this dilution when interpreting the measurements.4

There have been several approaches in the literature to correct for
the net effect of cluster member contamination. For instance, Shel-
don et al. (2004) estimated the correction factor from the transverse
correlation of source galaxies around galaxy clusters, while Gruen

4 This correction is also referred to as a boost factor as the measured signal
should be boosted to correct for the contamination
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Figure 8. The photo-z correction factor to Σ–1
crit as described in Section 4.3.

The gray hatched region indicates the 1σ range of the correction factor. Red
points with error bars show the correction factors applied to each redshift
bin.

et al. (2014) and Melchior et al. (2017) estimated the contamina-
tion rate based on the color or photometric redshift p(z) information
of galaxies in different radial separations from the cluster. One can
also make simple color cuts (Schrabback et al. 2018) or photo-z cuts
(Applegate et al. 2014b) on the source population to mitigate the
contamination, or estimate its effect based on the increased galaxy
number density around the lenses (Dietrich et al. 2017; Hoekstra
et al. 2015; Simet et al. 2015).

In this study we adopt the approach of our precursor analysis
from the Science Verification data release of DES (Melchior et al.
2017), in which we make use of the estimated p(z) of the source
galaxy sample to calculate the cluster contamination fraction fcl
along with a corresponding covariance matrix Cfcl estimated via
spatial jackknifing, and use this quantity to recover the contamina-
tion corrected lensing profile:

∆̃Σcorr(R) =
∆̃Σ(R)

1 – fcl(R)
. (26)

Using this p(z) decomposition approach is further motivated by the
complexity of the shear selection function in our analysis, which
limits our ability to measure the correlation function of source
galaxies. A detailed description of this method, along with vali-
dation on simulated DES-like mock observations is presented in an
accompanying paper Varga et al. (2018).

4.3 Photometric redshift systematics

The redshift distribution of our selected source galaxies was esti-
mated using BPZ (Benítez 2000) in the implementation of Hoyle
et al. (2017). In BPZ or similar photometric redshift estimation
procedures, one assumes a variety of galaxy spectral energy dis-
tribution (SED) templates and priors for the relative abundance of
galaxies as a function of luminosity and redshift. Any deviation
from these assumptions in the DES source galaxy sample can cause
biases in photometric redshift estimates which must be calibrated.

For the cosmology analyses of the lensing two-point functions
(Troxel et al. 2017; Dark Energy Survey Collaboration 2016), this
calibration was performed in two independent ways, and with con-
sistent results: by the redshift distributions of samples of galax-
ies with high-quality 30-band photo-zs from COSMOS, matched to
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DES lensing source galaxies (Hoyle et al. 2017), and by the clus-
tering of lensing source galaxies with redMaGiC (Rozo et al. 2016)
galaxies as a function of the redshift of the latter (Davis et al. 2017;
Gatti et al. 2017).

For this work, we adapt the COSMOS calibration of Hoyle
et al. (2017) to estimate the bias of our ∆Σ measurements, and the
uncertainty in that bias. To this end, we select and weight galaxies
from COSMOS in the same manner as for our measurements of the
cluster ∆Σ profiles.

Following Hoyle et al. (2017, their section 4.1), we randomly
sample 200,000 galaxies in our data and match them to COSMOS
galaxies according to their flux in each band and their intrinsic size.
From this COSMOS resampling, we select and weight galaxies as
per Section 3.1.2 and Section 3.1.3. From the COSMOS 30-band
we calculate the weighted mean true Σ

′–1
crit,TRUE. From noisy MOF

griz BPZ redshift distribution samples we get a mean Σ
′–1
crit,MEAS

that relates the weighted mean tangential shear to the ∆Σ profile.
As in the denominator of Equation 12, we use a weight ω × R
for the means. Because the source selection, ω weight, and Σ

′

crit
depends on lens redshift, we repeat this exercise for the range of
cluster redshifts sampled by our catalog, zl = 0.2 . . . 0.65. A bias in
Σ

′–1
crit translates directly into a multiplicative bias in ∆Σ.

We estimate four sources of uncertainty in the calibration of
photometric redshift distributions (see Hoyle et al. 2017, their sec-
tions 4.2-4.5): 1) an uncertainty due to cosmic variance from the
relative scatter of average Σ

′–1
crit,TRUE in the resampling of the 368

simulated COSMOS footprints, to which we add the (subdomi-
nant) statistical uncertainty due to the limited sample size from
bootstrap resamplings in quadrature; 2) an uncertainty due to pho-
tometric zeropoint offsets from realizations of photometric zero-
point calibration offsets; 3) an uncertainty due to the morphology
matching, which we estimate as half the difference between the
estimated Σ

′–1
crit,TRUE of the sample with size+flux matching and

that obtained without the size matching; and 4) a systematic un-
certainty of the matching algorithm by a comparison between the
fiducial Σ

′–1
crit,TRUE value and that of the aforementioned 368 resam-

pled simulated COSMOS fields. Effects 1, 3, and 4 contribute to the
systematic uncertainties with similar size, while effect 2 is smaller
but not quite negligible.

We define our model for the bias as

Σ
′–1
crit,MEAS

Σ
′–1
crit,TRUE

≡ 1 + δ , (27)

with the mean value given from the COSMOS analysis, and an un-
certainty due to the four effects mentioned above. This ratio de-
pends on lens redshift through the selection/weighting of sources
and the source redshift dependence of photo-z bias. It is plotted
across the entire lens redshift range in Figure 8. The red points
show the ratio at the mean redshifts of the bins used in our analysis.
This multiplicative factor is fully degenerate with shear systemat-
ics (see Section 4.1) and is assumed to be correlated across redshift
bins. δ is incorporated in our analysis by a prior that varies between
each stack. The variation between richness bins is small compared
to the variation across cluster redshift bins.

δ =


0.009± 0.021 for z ∈ [0.2, 0.35]
0.002± 0.020 for z ∈ [0.35, 0.5]
0.004± 0.022 for z ∈ [0.5, 0.65].

(28)

This prior is combined with the prior on m and included in the final
likelihood as described in Section 5.3.3.

5 THE STACKED LENSING SIGNAL

5.1 Surface density model

Our surface density model remains unchanged from Melchior et al.
(2017). The lensing signal is given by Equation 7. The quantities
Σ(R) and Σ(< R) are given by

Σ(R) =
∫ +∞

–∞
dχ ∆ρ

(√
R2 + χ2

)
, (29)

where R is the projected separation and χ the separation along the
line of sight in comoving units and

Σ(< R) =
2

R2

∫ R

0
dR′ R′Σ(R′) . (30)

If the shear signal is caused by halos of mass M, the average excess
three dimensional matter density is given by

∆ρ(r) = ρ(r) – ρm = ρmξhm(r | M) , (31)

where ρm = Ωmρcrit(1 + z)3 is the mean matter density in physical
units at the redshift of the sample, ρcrit is the critical density at
redshift zero, and ξhm(r | M) is the halo–matter correlation function
at the halo redshift.

At small scales ξhm is dominated by the so-called “1-halo”
term while at large scales it is dominated by the “2-halo” term.
We use the Zu et al. (2014) update to the Hayashi & White (2008)
model of ξhm. This is

ξhm(r | M) = max {ξ1h(r | M), ξ2h(r | M)} . (32)

For the 1-halo term we use a Navarro et al. (1996, hereafter NFW)
density profile ρNFW(r | M)

ξ1h(r | M, c) =
ρNFW(r | M, c)

ρm
– 1 , (33)

where

ρNFW(r | M, c) =
Ωmρcritδc

(r/rs) (1 + r/rs)2 . (34)

The concentration c = r200m/rs is left as a free parameter, with a
flat prior as per Table 1. This differs from the analysis in Melchior
et al. (2017), in which we forced the halo concentration to follow
the concentration–mass relation of Diemer & Kravtsov (2015).

For the two-halo term ξ2h(r | M) we use the non-linear matter
correlation function ξnl scaled by the halo bias b(M) of Tinker et al.
(2008) as

ξ2h(r | M) = b(M)ξnl(r) . (35)

ξnl is the 3D Fourier transform of the non-linear power spectrum
Pnl (Smith et al. 2003; Takahashi et al. 2012), given by

ξnl(r) =
∫ ∞

0

dk
k

k3Pnl(k)
2π2 j0(kr) , (36)

where j0(z) is the 0th spherical Bessel function of the first kind. The
power spectrum is computed using the CLASS code5 (Lesgourgues
2011; Blas et al. 2011). We repeated our analysis using the linear
matter correlation function ξlin and found nearly identical results as
discussed later in Section 6.3.1.

5 http://class-code.net/
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5.2 Miscentering correction

We have thus far assumed that we can measure the stacked shear
profile of clusters relative to the “center” of the halo as defined in an
N-body simulation. Our simulations use the spherical overdensity
algorithm ROCKSTAR as implemented in Behroozi et al. (2013).
If cluster centers are not properly identified, or are “miscentered”,
then the observed weak lensing signal in annuli around these clus-
ters will be suppressed. As in Melchior et al. (2017), we model the
recovered weak lensing signal as a weighted sum of two indepen-
dent contributions: a contribution ∆Σcen from properly centered
clusters, and a contribution ∆Σmis from miscentered clusters,

∆Σmodel = (1 – fmis)∆Σcen + fmis∆Σmis . (37)

∆Σcen is given by Equation 7. When a cluster is miscentered by
some radial offset Rmis, the corresponding azimuthally averaged
surface mass density is (e.g. Yang et al. (2006); Johnston et al.
(2007))

Σmis(R | Rmis) =
∫ 2π

0

dθ
2π

Σ

(√
R2 + R2

mis + 2RRmis cos θ
)

.

(38)
Letting p(Rmis) be the distribution of radial offsets for miscentered
clusters, the corresponding mean miscentered profile Σmis is

Σmis(R) =
∫

dRmis p(Rmis)Σmis(R | Rmis) . (39)

It is this quantity that we use to model the miscentered profile term
in Equation 37.

Zhang et al. (2018); von der Linden et al. (2018) measure the
centering fraction and centering distribution of redMaPPer clusters
by comparing the reported centers to those derived from high reso-
lution X-ray data (where available). Here, we summarize their find-
ings. The miscentering distribution p(Rmis) has the form

p(Rmis) =
Rmis

(τRλ)2 exp
(

–
Rmis
τRλ

)
(40)

where Rλ is the cluster radius assigned by redMaPPer, and τ =
Rmis/Rλ. We use a combination of the posteriors of Zhang et al.
(2018); von der Linden et al. (2018) to set the priors of the miscen-
tering parameters fmis and τ , as detailed in Table 1. The prior uncer-
tainties conservatively encompass the spread in best fitting values
and the confidence intervals of both works. It corresponds to a mis-
centering fraction fmis = 0.25± 0.08, that is, roughly≈ 75 per cent
of the redMaPPer clusters are correctly centered. Because the vari-
ation in Rλ within each richness bin is mild, we ignore variations
in Rλ across the bin, and set Rλ to the radius of a cluster whose
richness is equal to the mean richness of the clusters in the bin. We
have explicitly verified that if use the median rather than the mean
cluster richness, the difference between our predicted profiles is in-
significant relative to our statistical errors.

5.3 Multiplicative corrections

Multiplicative corrections to our model include boost factors, re-
duced shear, and shear+photo-z biases. These adjust our model ac-
cording to

∆Σfull(R) =
AmG(R)
B(R)

∆Σmodel . (41)

In this equation, Am is the multiplicative correction due to shear
and photometric redshift biases, G(R) is the multiplicative correc-
tion due to using reduced shear, and B(R) is the boost factor cor-
rection.

5.3.1 Boost factor model

In section Section 4.2, we discussed how membership dilution bi-
ases the recovered weak lensing profile by a factor 1–fcl. This factor
is known as a boost factor because to correct for it in the lensing
profile, one would increase the measured signal. We decided to not
apply this factor to our data, and instead dilute the theoretical pro-
file. To marginalize over the statistical uncertainty in our boost fac-
tor measurements, we parameterize the boost factor B ≡ (1 – fcl)

–1

by constructing a model for the cluster-member contamination us-
ing a two component (B0 and Rs) NFW profile:

Bmodel(R) = 1 + B0
1 – F(x)
x2 – 1

, (42)

where x = R/Rs, and

F(x) =


tan–1
√

x2–1√
x2–1

: x > 1
1 : x = 1
tanh–1

√
1–x2√

1–x2
: x < 1

. (43)

We fit the boost factors measured in each bin along with the lensing
profile of that bin. This introduces two additional parameters in our
model, B0 and Rs, for each richness and redshift bin.

5.3.2 Reduced Shear

We account for the fact that we measure the reduced shear g rather
than true shear γ, as seen in Equation 6, by multiplying our lensing
model by

G(R) =
1

1 – κ
=

1
1 – Σ(R)Σ–1

crit
. (44)

Here, Σ–1
crit is the same as that in 4.3 and Σ(R) is

Σ(R) = (1 – fmis)Σcen + fmisΣmis , (45)

where Σcen is given by Equation 29 and Σmis is given by Equa-
tion 39. This adjustment has a negligible effect on our results, and
introduces no new free parameters to our analysis.

5.3.3 Shear+photo-z bias

The factor Am = 1 + m + δ combines the effects of shear (m,
Section 4.1) and photo-z (δ, Section 4.3) systematic uncertainties.
Zuntz et al. (2017) found a shear calibration of m = 0.012± 0.013.
The photo-z bias comes from Hoyle et al. (2017) and varies be-
tween cluster stacks.

Since both m and δ are assigned Gaussian priors, the width of
the prior onAm is obtained by adding the widths of the priors on m
and δ in quadrature. We arrive at

Am =


1.021± 0.025 for z ∈ [0.2, 0.35]
1.014± 0.024 for z ∈ [0.35, 0.5]
1.016± 0.025 for z ∈ [0.5, 0.65].

(46)

The typical systematic uncertainty of ≈ 2.5 per cent represents a
significant improvement over the typical systematic uncertainty of
≈ 3.8 per cent we achieved in Melchior et al. (2017). This dramatic
improvement in accuracy is primarily driven by the improved shear
calibration achieved in the DES Y1 data with METACALIBRATION.

For the following data releases of DES, we anticipate that im-
provements in the treatment of blended objects can further reduce
the multiplicative shear bias. This implies that uncertainties in the
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calibration of photometric redshift estimates will likely be our dom-
inant measurement related systematic. Significant improvements
on this will require either extended calibration data sets or a hierar-
chical treatment that uses survey data to inform redshift estimation
consistently.

5.4 Stacked mass corrections

We expect the masses we measure in Section 5.5 to be biased with
respect to the true mean mass of the stacks. This bias arises from
two sources: our model presented above is not a true description of
cluster lensing profiles, and effects due to triaxiality and projection.
We account for both sources of bias by calculating a correction C
applied to the expected mass of the stackMtrue = C〈M〉, as detailed
in the section below. This is applied after the lens modeling is com-
plete, but before modeling the mass–observable relation from our
stacked masses in Section 6.

5.4.1 Modeling systematics

The model presented above for ∆Σ is not perfect; our analytic
model for the halo-mass correlation function in Equation 32 does
not match density profiles in simulations (Melchior et al. 2017;
Murata et al. 2017), in particular in the transition between the 1-
halo and 2-halo regimes. In lieu of a fully calibrated model, we
correct for any bias imparted by our choice of model by using
our likelihood analysis to estimate halo masses of synthetic data
generated from N-body simulations. The halos are drawn from an
N-body simulation of a flat ΛCDM cosmology run with GADGET

(Springel 2005). The simulation uses 14003 particles in a box with
1050 h–1Mpc on a side with periodic boundary conditions and for
softening of 20 h–1kpc. The simulation was run with the cosmol-
ogy Ωm = 0.318, h = 0.6704, Ωb = 0.049, τ = 0.08, ns = 0.962,
and σ8 = 0.835. Halos of mass 1013 h–1M� are resolved with 100
particles. We discard all information below 5 softening lengths, and
verified that the choice of extrapolation scheme for describing the
correlation function below this scale does not impact our results.
Halos were defined using a spherical overdensity mass definition
of 200 times the background density and were identified with the
ROCKSTAR halo finder (Behroozi et al. 2013).

The simulation is used to construct the synthetic ∆Σ profiles
of galaxy clusters at four different snapshots: z ∈ [0, 0.25, 0.5, 1].
There were ∼420,000 halos at z = 1 and ∼830,000 halos at z = 0.
We used snapshots instead of lightcones for two main reasons: we
wanted to maximize the number of halos we had available to per-
form the calibration, and we found that the synthetic profiles to only
weakly depend on redshift. Instead of splitting halos into mass sub-
sets as in Melchior et al. (2017), we assigned a richness to each halo
by inverting the mass–richness relation of Melchior et al. (2017)
and adding 25 per cent scatter. We then grouped our halos into rich-
ness subsets identical to how we grouped our clusters. For each of
these halo subsets we measured the halo-matter correlation func-
tion with the Landy & Szalay (1993) estimator as implemented in
CORRFUNC6 (Sinha & Garrison 2017). We numerically integrate
the halo-matter correlation function to obtain the ∆Σ profile as de-
scribed in Section 5.1.

This ∆Σ profile contains none of the systematics that exist in
the real data. To incorporate them, we modified this profile with
the multiplicative corrections described in Section 5.3 and miscen-
tering corrections in Section 5.2. We took the central values of our

6 https://github.com/manodeep/Corrfunc
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Figure 9. The mass calibration C = Mtrue/Mobs from adopting our model of
the correlation function in Equation 32 as a function of λ and redshift. The
solid line and hatched region are the best fit model and 1σ uncertainty of the
calibration. Error bars on the measured calibrations are the fitted intrinsic
scatter σC .

priors in Table 1 as well as values for B0 and Rs from modeling the
boost factors independently and modified the simulated ∆Σ profile
according to Equation 48. The observed mass Mobs for this simu-
lated profile was obtained by using the same pipeline that we apply
on the real data. When evaluating the likelihood in Equation 51,
we used the semi-analytic covariance matrix corresponding to the
nearest cluster subset in redshift.

Denoting Mtrue as the mean mass of the halos in the simulated
stack, the calibration for each simulated profile is seen in Figure 9.
The calibration C = Mtrue/Mobs was then modeled as a function of
the mean richness of the simulated stack λ̄ in the form

C(λ̄, z) = C0

(
λ̄

λ0

)α( 1 + z
1 + z0

)β

. (47)

The free parameters in our fit are C0, α, and β with pivot values at
z0 = 0.5 and λ0=30, as well as the intrinsic scatter σC of the cali-
bration. The mean model bias for our cluster stacks is ≈ 4 per cent
with C0 = 1.042±0.004, α = 0.03±0.006, and β = 0.025±0.012
as well as σC = 0.01. We repeated this process while assuming dif-
ferent amounts of intrinsic scatter in the M–λ relation from 10 per
cent up to 45 per cent, as well as with no intrinsic scatter which
is equivalent to the treatment of Melchior et al. (2017). We found
that the amount of model bias increased with scatter in the M–λ
relation. The model bias from Melchior et al. (2017) was recovered
when no intrinsic scatter was present and using covariance matrices
from that analysis.

We incorporated the dependence of the calibration on the in-
trinsic scatter in the M–λ relation as follows. We took the calibra-
tion described above at 25 per cent scatter to be our fiducial model
as estimated in Rozo & Rykoff (2014). In addition to the covariance
between C0, α, and β, we add additional uncorrelated uncertainty
to each of these terms equal to half of the difference between the
mean values obtained for these parameters assuming 15 per cent
and 45 per cent scatter. This increased the variance of all three pa-
rameters C0, α and β slightly. As discussed further in 8, the calibra-
tion contributed 0.73 per cent to the overall systematic uncertainty
on the normalization of the M–λ relation.
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5.4.2 Triaxiality and projection effects

Photometric cluster selection preferentially selects halos that are
oriented with their major axis along the line of sight. Similarly,
cluster selection is affected by other objects along the line of sight,
which increases both the observed cluster richness and the recov-
ered lensing mass. These two effects have been studied closely else-
where (White et al. 2011; Angulo et al. 2012; Noh & Cohn 2012;
Dietrich et al. 2014), and have competing effects on the recovered
cluster masses. Dietrich et al. (2014) determined that triaxiality
leads to an overestimation of the weak lensing mass and requires
a correction factor of 0.96± 0.02, while Simet et al. (2017) argued
projection effects require that the recovered masses be multiplied
by a factor of 1.02 ± 0.02. Together, triaxiality and projection ef-
fects modify the recovered weak lensing masses by a multiplicative
factor of 0.98 ± 0.03. Our treatment is identical to that of Mel-
chior et al. (2017), where additional details are provided. Although
these two effects mildly depend on richness and redshift, we as-
sume them to be constant in this analysis. We show the cumulative
effect in Table 6. For reference, we have estimated the number of
galaxy clusters that have another cluster within a 500 kpc radius
along the line of sight. The number of such cases with λ > 20 is
about 30, or 0.4 per cent of our sample, and thus negligible.

These effects as well as the correction for model bias are ap-
plied to the masses after fitting the lensing and boost factor data as
described in Section 5.5, but before modeling the M–λ relation in
Section 6.

5.5 The complete likelihood

The full model of the weak lensing profile is

∆Σ =
AmG(R)
B(r)

[
(1 – fmis)∆Σcen + fmis∆Σmis

]
. (48)

Written this way the model includes the multiplicative biasAm, the
boost factor B(r), the reduced shear correction G(R), and miscen-
tering effects fmis and ∆Σmis. Using the semi-analytic covariance
matrices C∆Σ described in Section 3.2.5, the log-likelihood of the
kth ∆Σ profile is

lnL(∆Σk | Mk, c,Am, Rmis, fmis, B0, Rs) ∝ –
1
2

DT
k C–1

∆ΣDk (49)

where D = (∆̃Σ – ∆Σ) and ∆̃Σ is the measurement from Equa-
tion 12.

The boost factor covariance matrix Cfcl is estimated from jack-
knifing. With this the corresponding log-likelihood of the measured
fcl,k in cluster subset k given the parameters in Equation 42 is

lnL(fcl,k | B0, Rs) ∝ –
1
2

BT
k C–1

fcl Bk (50)

where Bk = (B – Bmodel)k. Each boost factor Bk is fit in conjunc-
tion with the associated lensing profile for the kth subset, allowing
us to account for any degeneracies between the parameters in the
respective models.

The total log-likelihood for a single cluster subset is

lnLk = lnL(∆Σk | Mk, c,Am, Rmis, fmis, B0, Rs)+

lnL(fcl,k | B0, Rs) .
(51)

Our goal is to constrain masses of independent cluster subsets Mk
and boost factor parameters. Constraints on the latter are informed
by both their effect on the ∆Σ profile as well as independent mea-
surements of fcl. The weak lensing and boost factor profiles are fit
simultaneously, but each cluster subset is fit independently of other
subsets.

Table 1. Parameters entering L(∆Σ) (Equation 49) and L(B)(Equation 50)
Flat priors are specified with limits in square brackets, Gaussian priors with
means ± standard deviations.

Parameter Description Prior
log10 M200m Halo mass [11.0, 18.0]
c200m Concentration [0, 20]
τ Dimensionless miscentering offset 0.17± 0.04
fmis Miscentered fraction 0.25± 0.08
Am Shape & photo-z bias Equation 46
Bcl

0 Boost magnitude [0,∞]
Rcl

s Boost factor scale radius [0,∞]

5.6 Stacked cluster masses

A complete list of the model parameters describing each clus-
ter stack as well as their corresponding priors are summarized
in Table 1. The likelihood is sampled using the package emcee7

(Foreman-Mackey et al. 2013), which enables a parallelized explo-
ration of the parameter space. We use 32 walkers with 10000 steps
each, discarding the first 1000 steps of each walker as burn-in. We
checked the convergence with independent runs of 5000 steps per
walker that yielded identical results. After 14 steps the chains of
single walkers become uncorrelated (with a correlation coefficient
|r| < 0.1). This is much shorter than the total length of the chain.
As a result the number of independent draws between all walkers
is ≈ 20500.

The calibration correction described in 5.4 was applied to the
recorded chains for each cluster subset. Specifically, for each point
in the chain, we randomly sample the mass calibration factor C(λ, z)
from its posteriors to adjust the mass. Further, we also apply the
effect of triaxiality and projection effects (Section 5.4.2), both of
which add 2 per cent to the uncertainty of each mass. In practice
this is written as

M = C(λ, z)G(0.96, 0.02)G(1.02, 0.02)×M0 , (52)

where G is a Gaussian and M0 are the “uncalibrated” masses in the
chains. In this fashion, our final posteriors are properly marginal-
ized over the uncertainty in the calibration factor C as well as triax-
iality and projection effects.

In order to characterize the contribution of both statistical and
systematic uncertainties to our final results we perform our analysis
three different times with three different sets of assumptions. These
three analyses we run are:

• Full: All parameters (concentration, Shear+photo-z, boost fac-
tors, miscentering) are allowed to vary within their priors. This is
our fiducial analysis.
• FixedAm: Am is set to the center of its prior distribution but all

other parameters are allowed to vary. This determines the contribu-
tion from the shape and photo-z uncertainties.
• OnlyMc: Only mass and concentration are free. All other param-

eter priors are set to δ-functions at their central values. This repre-
sents our statistical uncertainty on the mass.

Table 2 contains the results of the Full analysis. Full poste-
riors from the cluster subset z ∈ [0.2, 0.35) and λ ∈ [20, 30) are
shown in Figure 10. The corresponding data and best-fit model are
shown in Figure 11, where we also demonstrate the combined ef-
fects of miscentering, boost factors, reduced shear, and multiplica-
tive bias. The best fit model for each richness and redshift bin is
over-plotted on top of the weak lensing data in Figure 4.

From the Full analysis we can see the contribution of the

7 http://dan.iel.fm/emcee
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Figure 10. Posteriors for the parameters describing the lensing profile ∆Σ and the boost factor profile B for the bin z ∈ [0.2, 0.35), λ ∈ [20, 30). Contours
show the 1σ, 2σ, and 3σ confidence areas. Black lines show the prior distributions. The mass presented here is uncalibrated, meaning it has not been corrected
for modeling systematics, projection effects, or cluster triaxiality (see Section 5.4).

various systematics to our final results. The boost factors amount
to a correction of≈ 2 per cent to ∆Σ at R = 1 Mpc. The posteriors
on the miscentering parameters are equal to the priors, demonstrat-
ing that these parameters are only weakly constrained by the weak
lensing data. In our earlier analysis (Melchior et al. 2017) we found
a weak correlation between fmis and M, which did not appear in this
work. This was due to our use of the Diemer & Kravtsov (2014)
M–c relation. We determined this by running one additional con-
figuration in which the concentration was fixed by the Diemer &
Kravtsov (2014) M–c relation, thus increasing the correlation be-
tween fmis and M. At present, the contribution of miscentering to

the mass is sub-dominant to other sources of systematic uncertain-
ties in our final error budget (cf. Table 6). The multiplicative bias
Am follows the prior and is degenerate with mass.

The OnlyMc likelihood evaluation allows us to quantify the
statistical and systematic uncertainties of the fiducial analysis. The
difference in quadrature between the uncertainties in the Full and
OnlyMc configurations represents the total systematic contribution
to the error budget, while the OnlyMc alone provides the statisti-
cal contribution. The central values for each cluster subset along
with statistical and systematic contributions to the uncertainties are
presented in Table 2.
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Table 2. Calibrated masses for each richness-redshift stack. All masses are in units of log10M� using the M200m definition. Listed uncertainties are split
into the symmetric 68 per cent confidence intervals of the systematic and statistical components, in that order. Adding the two in quadrature gives the total
uncertainty on the mass.

λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
[20, 30) 14.191 ± 0.013 ± 0.032 14.162 ± 0.013 ± 0.033 14.083 ± 0.015 ± 0.048
[30, 45) 14.477 ± 0.014 ± 0.031 14.446 ± 0.014 ± 0.031 14.456 ± 0.015 ± 0.041
[45, 60) 14.608 ± 0.011 ± 0.044 14.643 ± 0.011 ± 0.044 14.648 ± 0.016 ± 0.056
[60,∞) 14.913 ± 0.014 ± 0.038 14.899 ± 0.015 ± 0.038 14.879 ± 0.023 ± 0.061
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Figure 11. Fit with all components of the ∆Σ and B models for the cluster
subset z ∈ [0.2, 0.35) and λ ∈ [20, 30). The top two panels show the best
fit models in red compared to the data. Unfilled points are not included in
the fit. Top left: the black dot-dashed line is ∆Σcen while the blue dashed
line is ∆Σmis. The weighted mean of these two yields the green solid line,
and then applying the boost factor model, reduced shear, and multiplicative
bias yields the final model in red. Top right: the red line is our NFW model
for the boost factors. Bottom: the fractional difference between our data and
models. The total χ2 is 45 with 21 degrees of freedom, which is acceptable
despite the imperfect fit of our simple model to the boost factors. The boost
factors are measured from the data with small uncertainty, which is why the
small mismatch with respect to the best-fit model causes a relatively large
χ2 but negligible effect on the recovered mass.

6 THE MASS–RICHNESS–REDSHIFT RELATION

The quantity we aim to constrain in this paper is the mean mass
M(λ, z) of clusters of galaxies at a given observed richness λ and
redshift z, similar to what was done in Melchior et al. (2015). Note
that this is different from constraining the mean (and possibly dis-
tribution) of richness at given mass, or the full distribution of mass
at given richness, as done in e.g. Simet et al. (2017); Murata et al.
(2017). In particular, we neither constrain nor require a model of the
intrinsic scatter in richness, hence making this analysis largely in-
dependent from the choices in subsequent cluster cosmology stud-
ies based upon it.

We note that an assumed value of the intrinsic scatter is used
in two places: the semi-analytic covariance matrices described in
Section 3.2.5 and the calibration described in Section 5.4.1. For
the covariance, this assumption had a negligible effect compared
to the shape noise. While the overall calibration did depend on the
amount of scatter, we took a conservative approach by treating the
difference in calibration between assuming 15 per cent and 45 per
cent scatter as a systematic uncertainty. In this way, our final results
are not sensitive to the amount of assumed intrinsic scatter.

6.1 Modeling the mass–richness relation

We fit a redshift-dependent power-law relation between cluster
richness and cluster mass. Specifically, we set

M(λ, z) ≡ 〈M |λ, z〉 = M0

(
λ

λ0

)Fλ
(

1 + z
1 + z0

)Gz

, (53)

where M0, Fλ, and Gz are our model parameters. We select pivot
values λ0 = 40 and z0 = 0.35, which are very near the median
values of the cluster sample. Note M is the expectation value of
the mass of a halo as a function of richness and redshift.

The expected mass of a given cluster subset k represents a
weighted mean of the masses of the individual clusters in that stack.
We then have

Mk =

∑
j∈k ŵjM(λj, zj)∑

j∈k ŵj
. (54)

We take the weight ŵj of the jth cluster to be the sum of the weights
of all lens–source pairs wj,i around that cluster from 0.3 Mpc and
above and verified that the choice of radial range does not affect our
recovered masses. Individual cluster weights ŵj differ from unity.
This is because 1) the lensing weight of each lens–source pair given
by Equation 11 depends on the cluster redshift, and 2) in a given ra-
dial bin there are more sources associated with low redshift clusters
since that bin subtends a larger angle on the sky compared to the
same bin around a high redshift cluster. In other words, the mass
in the bin is skewed toward the average mass of the lower redshift
clusters in the bin.

The impact of the weak lensing weights on the stacked mass
estimates can be characterized by the ratio

a =
M0
Mŵ

. (55)

We report the quantity log a in Table 3. We chose to report log a
rather than a which has the computational advantage that one need
only add log a to the mass values in Table 2 to arrive at an estimate
of the mean cluster masses of cluster in a bin with unit weighting
(as opposed to mean weak lensing weighted masses). The correc-
tions in Table 3 are used to correct the recovered cluster masses to
unit-weighted masses in the DES Y1 analysis of cluster abundances
(DES collaboration, in preparation).

6.2 Mass covariance

The purpose of our different chain configurations (Full,
FixedAm, and OnlyMc) is to allow us to estimate the contribution
of each systematic to the final uncertainty on the mass calibration
parameters M0, Fλ, and Gz. In our analysis there are seven sources
of systematic uncertainty: multiplicative shear bias, multiplicative
photo-z bias, miscentering, boost factors, modeling systematics, tri-
axiality and projection.

We discuss how we combine all systematics to arrive at a full
covariance matrix between our bins that respects the covariance in
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Table 3. The logarithm of the mean mass correction factor log10 a from Equation 55. This represents a correction to the stacked cluster masses due to the fact
that different clusters contribute to the measured mass in a different way than they contribute to ∆Σ.

λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
[20, 30) –1.372× 10–3 –8.744× 10–4 –4.501× 10–4

[30, 45) –2.979× 10–3 –3.278× 10–3 –6.660× 10–4

[45, 60) –8.258× 10–4 –7.856× 10–5 –1.903× 10–3

[60,∞) 3.043× 10–3 –4.061× 10–3 6.264× 10–3

our systematic error budget. The reader will recall that the origi-
nal chains we obtain from fitting the weak lensing profiles are pro-
cessed via Equation 52 to account for the effect of calibration, tri-
axiality, and projection effects. If we let M0 denote our unprocessed
chains, and M denote the chains post-processing, in order to derive
the statistical uncertainty only in our mass measurement we gener-
ate a new chain M̃ via

M̃ = C̄ × 0.96× 1.02×M0 . (56)

The difference in the variance between chain M in Equation 52 and
that of chain M̃ represents the uncertainty associated with calibra-
tion, triaxiality, and projection effects. We will use the M without
a ∼ to denote the chains post-processed as per Equation 52, and M̃
for chains post-processed as above.

The OnlyMc chain configuration contains only the statistical
uncertainty in our analysis. For this reason, the covariance matrix
describing the masses in this configuration is diagonal. We define
the statistical uncertainty of the ith mass σ2

i,stat

σ2
i,stat = Var

(
M̃OnlyMc

i

)
. (57)

We also isolate the uncertainty associated with shear and photo-z
systematics. To do so, we note the Full chain configuration in-
cludes all sources of uncertainty. Consequently, the difference in
the variance between this chain and the FixedAm chain repre-
sents the uncertainty associated with shear and photo-z systematics.
Therefore, we define

σ2
i,S+Pz = Var(MFull

i ) – Var(MFixedAm
i ) . (58)

Finally, the uncertainty associated with modeling systematics (cal-
ibration, triaxiality, and projection effects) takes the form

σ2
i,mod = Var(MFull

i ) – Var(M̃Full
i ) . (59)

By construction, the full uncertainty σ2
i,Tot satisfies

Var(MFull
i ) = σ2

i,stat + σ2
i,S+Pz + σ2

i,mod . (60)

We now define three different covariance matrices. First, Cstat

is diagonal, with Cstat
ii = σ2

i,stat. When we fit the weak lensing
masses using this covariance matrix, we recover the statistical un-
certainty in our scaling relation parameters. Second, CS+Pz is de-
fined via

CS+Pz
ii = σ2

i,stat + σ2
i,S+Pz (61)

CS+Pz
ij =

[
σ2

i,S+Pzσ
2
j,S+Pz

]1/2
. (62)

Note the shear and photo-z components of the uncertainty are per-
fectly correlated across all bins. Fitting the weak lensing mass with
this covariance matrix, and subtracting the statistical uncertainty in
quadrature, enables us to calculate the uncertainty in our scaling
relation parameters associated with shear and photo-z systematics.
Third, CFull is defined via

CFull
ii = σ2

i,stat + σ2
i,S+Pz + σ2

i,mod (63)

CFull
ij =

[(
σ2

i,S+Pz + σ2
i,mod

)(
σ2

j,S+Pz + σ2
j,mod

)]1/2
. (64)

Just like the shear and photo-z calibration uncertainties, modeling
systematics are assumed to be perfectly correlated across all bins.
The posteriors for the scaling relation parameters derived with this
covariance matrix represent our full error budget, and the difference
in quadrature between these errors and those obtained using the
covariance matrix CS+Pz give us the error budget associated with
modeling systematics.

6.3 Likelihood for the mass–observable relation

We model the likelihood of the recovered weak lensing masses as
Gaussian in the log. This is illustrated in Figure 12, which shows
the posterior for each of the 12 cluster bins with λ > 20, along with
the corresponding Gaussian approximation. We rely on the λ > 20
cluster bins exclusively as it is only these systems for which we are
confident we can unambiguously map halos to clusters and vice-
versa. The full likelihood function is

lnL(Mobs | M0, Fλ, Gz) ∝ –
1
2

(∆ log M)T C–1
M (∆ log M) , (65)

where CM is the covariance between the mass bins for a particular
configuration (see Section 6.2). In the above equation ∆ log M is
the difference between the measured mass of each cluster subset
and our model for the expected mass given as per Equation 53.
Thus, for the kth bin

∆ log Mk = log Mk – logMk . (66)

We sample the posterior of the MOR parameters using emcee
with 48 walkers taking 10000 steps each, discarding the first 1000
steps of each walker as burn-in. Table 4 summarizes the posteriors
of our model parameters, while Figure 13 shows the corresponding
confidence contours. All parameters in the M–λ–z relation have flat
priors.

We explicitly enforce correlated uncertainties of shear,
photo-z, modeling systematics, and triaxiality and projection ef-
fects. Miscentering and boost factors are considered independent
across cluster subsets. These independent uncorrelated systematics
will tend to average out across bins.

In order to distinguish between the systematic and statistical
contribution to the error budget on the M–λ–z relation parameters,
we repeat the analysis using the statistical errors from the OnlyMc
run. That is, we calculate Equation 65 using only the uncertain-
ties measured from the OnlyMc run, or the Cstat

M covariance ma-
trix. The central values of the measured masses from the OnlyMc
run are nearly identical to the Full run, as are the parameters in
the M–λ–z relation. The difference in quadrature between the two
uncertainties represents the systematic contribution while the ex-
cess uncertainty from the OnlyMc run is the statistical contribu-
tion. These uncertainties are reported in Table 4.

Our results imply that galaxy clusters of richness λ = 40 at
redshift z = 0.35 have a mean mass of log10M = 14.489 ±
0.011 (stat) ± 0.019 (sys). The richness scaling is slightly steeper
than linear at Fλ = 1.356 ± 0.051 (stat) ± 0.008 (sys), while
the mass shows a weak redshift dependence of Gz = –0.30 ±
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Figure 12. The calibrated posteriors of the masses for each cluster stack.
Uncertainties appear above each panel, and are highlighted by the blue
shaded regions. Gaussian approximations to these posteriors appear as black
dashed lines.
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Figure 13. Parameters of the M–λ–z relation. Contours show the 1σ, 2σ
and 3σ confidence areas from the Full run.

0.30 (stat) ± 0.06 (sys) consistent with no evolution. This amounts
to a 5.0 per cent calibration (2.4 per cent statistical, 4.3 per cent
systematic), of the M–λ–z relation.

In Melchior et al. (2017), we found that the dominant sys-
tematic uncertainty stemmed from shear and photo-z systematics,
as was the case in Simet et al. (2017). By repeating our analysis
with the FixedAm run, which includes all systematics except Am,
we are able to quantify the contribution from these sources. We
found that the posterior distributions from the M–λ–z relation are
significantly reduced, and that shear and photo-z systematics alone
account for 48 per cent of the systematic uncertainty. This means

Table 4. Parameters of the M–λ–z relation from Equation 65 with their pos-
teriors. The mass is defined as M200m in units of M�. The pivot richness and
pivot redshift correspond to the median values of the cluster sample. Uncer-
tainties are the 68 per cent confidence intervals and are split into statistical
(first) and systematic (second).

Parameter Description Posterior
log10 M0 Mass pivot 14.489± 0.011± 0.019
Fλ Richness scaling 1.356± 0.051± 0.008
Gz Redshift scaling –0.30± 0.30± 0.06
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Figure 14. Best fit model for M–λ relation evaluated at the pivot redshift of
our model, z0 = 0.35, compared to other measurements. Our pivot richness
is at λ0 = 40. The previous DES result is in blue, from Melchior et al.
(2017), while the relation measured in this analysis is in red. The analysis
by Baxter et al. (2018) in orange used the same clusters as this work and
found a consistent scaling relation over the richness range it probed.

that the remaining 52 per cent of the systematic uncertainty is due
to modeling systematics, projection effects, and cluster triaxiality.

6.3.1 Alternative model using ξlin

Hayashi & White (2008) used a similar model to ours, but with
the linear matter correlation function for their 2-halo term. This
causes very different behavior near the 1-halo to 2-halo transition
region, which can affect the fitting procedure, as discussed in Mel-
chior et al. (2017). We repeated our entire analysis, including re-
computing the calibration, using ξlin in place of ξnl. The masses of
the stacks changed by less than 1 per cent, as did the normaliza-
tion of the M–λ relation log10 M0. This means that our approach of
calibrating the masses is largely robust to our choice of model.

6.3.2 Additional tests

We performed additional tests to verify our results. To ensure
against possible small-scale systematic effects, we repeated our
analysis with a more conservative radial cut of 500 kpc rather than
200 kpc. The resulting M–λ–z relation changed only in the mass
scale, with M0 changing by 0.2σ.

We also tested against possible differences in modeling sys-
tematics between large and small scales. By dividing each ∆Σ pro-
file at 2 Mpc into large and small scale samples we could fit these
regimes independently. While the constraining power was greatly
diminished, the recovered masses were consistent with each other
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and the fiducial value within errors. No trend was observed in the
differences between the recovered masses in any of these tests com-
pared to the fiducial masses in Table 2.

Lastly, we tested an extension of Equation 53 where Fλ(z) =
Fλ,0 + zFλ,1 and found Fλ,1 consistent with 0 at the 1.2σ level.
Therefore, if any redshift evolution exists in the richness scaling,
we are unable to resolve the behavior at present.

7 COMPARISON TO RESULTS IN THE LITERATURE

We compare our calibration of the M–λ relation to previous results
from the literature. The specific richness–mass relations we con-
sider are summarized in Table 5, and we describe below the origin
of each of these.

• Melchior et al. (2017) was the precursor to this analysis. In that
work, we calibrated the mass–richness relation of redMaPPer clus-
ters in the DES Science Verification data. A detailed description of
the changes between that analysis and this one appears in the next
section.
• Baxter et al. (2018) used the lensing of the Cosmic Microwave

Background as measured by the South Pole Telescope to measure
the mass–richness relation of DES Y1 redMaPPer clusters. Their
analysis focused on 7066 clusters with richness 20 6 λ 6 40. The
upper limit was set to avoid potential biases in the recovered masses
from contamination by thermal Sunyuaev-Zel’dovich emission by
the clusters.
• Simet et al. (2017) measured the mass–richness relation of

redMaPPer clusters found in the Sloan Digital Sky Survey (SDSS).
While their analysis is similar in spirit to ours, there are numerous
methodological differences, including modeling choices (Simet et
al. only fit the 1-halo term in the lensing profile), different radial
scales used in the fit, a different shape catalog, and different photo-
metric redshift catalogs.
• Murata et al. (2017) measured the richness–mass relation of SDSS

redMaPPer clusters assuming a Planck cosmology. We fit a power
law relation to their masses in order to extract a scaling relation
that can be compared to our results. As demonstrated in Murata
et al. (2017), their work and Simet et al. (2017) are consistent with
each other, despite the fact that they used different models for ∆Σ,
different radial scales and slightly different richness bins. Of spe-
cial note is the fact that while Simet et al. (2017) modeled only the
1-halo term using an NFW profile (along with a calibration step
to correct for any biases introduced by this choice), Murata et al.
(2017) used an emulator approach to simultaneously model the 1-
halo and 2-halo terms of the lensing profile.
• Baxter et al. (2016) analyzed the cluster clustering of SDSS

redMaPPer clusters. By measuring the angular correlation function
of clusters they were able to constrain the amplitude of the mass
scaling relation to 18 per cent, in which their dominant systematic
was uncertainty in the bias–mass relation.
• Farahi et al. (2016) measured masses using stacked pairwise ve-

locity dispersion measurements of SDSS redMaPPer clusters. Their
measurements serve as a good cross check against other analyses of
SDSS clusters, but found that they are ultimately less precise due
to large uncertainties in velocity bias.
• Saro et al. (2015) measured the mass–richness relation of

galaxy clusters by assuming a Planck cosmology to determine the
observable–mass relation of clusters from the South Pole Tele-
scope (Bleem et al. 2015). They then matched these SPT clusters
to redMaPPer clusters from the DES Science Verification data, and
use the overlap sample to determine the richness–mass relation. We

invert the relation using the method of Evrard et al. (2014) in order
to show the comparison in Figure 14.
• Mantz et al. (2016) compared the scaling relation measured from

the Weighting the Giants mass estimates for individual redMaPPer
clusters in SDSS from Applegate et al. (2014b) to that of the Simet
et al. (2017) analysis. They found the two scaling relations in good
agreement, which is also the case when compared to our measure-
ment.

Table 5 summarizes these scaling relations. Critically, the rich-
ness definition λ is sensitive to the details of image processing,
source detection, choice of magnitudes, etc, and can therefore vary
systematically from one survey to the next. We explicitly correct
for this impact cross-matching DES Y1 clusters to DES SV and
SDSS redMaPPer clusters, and measuring the richness offset. We
find

λDES SV = (1.08± 0.16)λDES Y1 (67)

λSDSS = (0.93± 0.14)λDES Y1 . (68)

In these equations, the error is the standard deviation in the richness
ratio, not the error on the mean. We apply these corrections to the
SDSS and DES SV scaling relations before comparing to our result.
So, for instance, if the scaling relation for data set X takes the form

〈M|λX〉 = AλαX (69)

and the ratio λX /λDES Y1 = r, then the scaling relation for Y1 rich-
nesses is

〈M|λDES Y1〉 = ArαλαDES Y1. (70)

Finally, all scaling relations that do not explicitly incorporate red-
shift evolution are transported from their quoted pivot redshift to
our chosen pivot redshift z = 0.35 using our best fit redshift evolu-
tion.

Figure 15 and Table 5 show the mass at λ = 40 and z = 0.35 as
well as the richness scaling index for each of the scaling relations
described above.

8 SYSTEMATIC IMPROVEMENTS FROM DES SV TO
DES YEAR 1, AND FROM YEAR 1 TO YEAR 5

Our current analysis has multiple significant improvements relative
to Melchior et al. (2017), the precursor to this work. Specifically:

• Shear calibration related errors on mass decreased from 4 per cent
to 1.7 per cent, based primarily on the data driven correction of
shear biases with METACALIBRATION. This implies that the shear
calibration uncertainty is no longer the dominant source of system-
atic error in our weak lensing analysis.
• The largest contribution to the systematic uncertainty is now

photo-z errors. In the purely COSMOS-based calibration applied
in this work, we find only a minimal improvement between SV and
Y1.
• The≈ 15 per cent increase in uncertainty due to using noisy jack-

knife estimates of the covariance matrix (Dodelson & Schneider
2013) of the weak lensing profiles was entirely removed through
the use of a semi-analytic covariance matrix.
• Uncertainty from modeling systematics decreased from 2 per cent

to 0.73 per cent. In Melchior et al. (2017), the model calibration
corrections were computed by stacking halos in mass bins. By con-
trast, our current analysis assigns richness according to a fiducial
richness–mass relation, allowing us to stack in richness bins and
to therefore accurately compute the correction for a richness bin.
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Table 5. redMaPPer scaling relation comparisons from the literature. Of note, the Simet et al. (2017) results have changed slightly (Simet, private communi-
cation). We evaluate log10〈M|λ = 40, z = 0.35〉 of the other scaling relations in order to compare them to our result, applying the richness correction given
by Equation 67. When necessary, we use the method presented in Evrard et al. (2014) to convert from richness–mass relations to mass–richness relations. All
masses are M200m.

Authors Description log〈M|λ = 40, z = 0.35〉 [M�] Richness scaling index Fλ

This work weak lensing calibration using DES Y1 14.489± 0.022 1.356± 0.052
Melchior et al. (2017) weak lensing calibration using DES SV 14.540± 0.067 1.12± 0.21
Baxter et al. (2018) CMB lensing calibration using DES Y1 14.49± 0.31 1.24± 0.30
Baxter et al. (2016) cluster clustering using SDSS 14.7± 0.1 1.18± 0.16
Simet et al. (2017) weak lensing calibration using SDSS 14.48± 0.03 1.30± 0.09
Murata et al. (2017) weak lensing calibration using SDSS 14.519± 0.072 1.17± 0.07
Farahi et al. (2016) pairwise velocity dispersion using SDSS 14.42± 0.10 1.31± 0.14
Saro et al. (2015) SZE mass calibration using SPT and DES SV 14.44± 0.05 0.91± 0.18
Mantz et al. (2016) weak lensing of individual WtG clusters 14.42± 0.11 1.36± 0.21

14.3 14.4 14.5 14.6 14.7 14.8

This work

Melchior et al. (2017)

Baxter et al. (2018)

Simet et al. (2017)

Murata et al. 2017
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Farahi et al. (2016)

Saro et al. (2015)

Mantz et al. (2016)

log10〈M |λ = 40, z = 0.35〉

0.8 1.0 1.2 1.4 1.6 1.8

Fλ

Figure 15. Comparison of the predicted mass at λ = 40 and z = 0.35 as well as the richness scaling relation between this work (gray bands) and other results
from the literature.

Relative to our SV analysis, the amplitude of this correction in-
creased, while its uncertainty was reduced, from 1.00 ± 0.02 to
1.042 ± 0.004. The increase in the correction is primarily due to
the richness binning of the halos as well as the fact that by using
the Y1 covariance matrix, the impact of small differences on large
scales between our analytical model and numerical simulations is
amplified, leading to larger correction factors. More importantly,
however, the uncertainty on this correction was greatly reduced.
This is due to the semi-analytic covariance matrix as well as al-
lowing for intrinsic scatter of the calibration factors. While we use
the semi-analytic covariance matrix for calibration on the simulated
profiles, the matrix does not adequately describe the uncertainty in
any systematic differences between the model and real data. Addi-
tionally, we now fit for the associated systematic uncertainty from
the dispersion in the calibration data. Both of these factors result in
a decrease in the systematic error budget.

• The mass–concentration relation of galaxy clusters is allowed to
float in this analysis, while it was held fixed in Melchior et al.
(2017). The fixed mass–concentration relation in our SV analy-
sis was necessitated by the relatively low S/N of the weak lens-
ing measurements. By contrast, our current analysis enables us to
marginalize over concentration, which in turn should make our re-

sults significantly more robust to the impact of baryonic physics in
the cores of galaxy clusters.

All in all, the reduced statistical and systematic uncertainty in
our analysis has reduced the error in the amplitude of the mass–
richness relation from 11.2 per cent to 5.0 per cent. Unlike our
analysis in Melchior et al. (2017), our current constraints are close
to systematics limited. Without improved systematics between now
and the end of the survey, the improved statistics of the Year 5 data
will only decrease our total error budget from 5.0 per cent to ≈ 4
per cent. Evidently, further reducing systematic uncertainties in fu-
ture weak lensing mass calibration analysis is imperative.

Photometric redshift errors currently dominate the systematic
error budget. Significant improvements in the weak lensing mass
calibration of galaxy clusters will require new algorithms for cali-
brating photometric redshifts. A joint constraint from high-fidelity
photo-zs of matched reference samples and clustering redshifts
(Gatti et al. 2017; Davis et al. 2017), as done in Hoyle et al. (2017),
is not feasible for higher redshift sources due to the limited redshift
range of available spectroscopic or redMaGiC catalogs. Alterna-
tively, source selection criteria that take into consideration photo-
metric redshift uncertainty could lead to a desirable trade off be-
tween statistical and systematic uncertainty. With some combina-
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tion of these approaches, reducing the photometric redshift uncer-
tainty by a factor of two for a year 5 analysis seems plausible.

Related to this, in our current analysis we have assumed that
all systematics are perfectly correlated across all redshift and rich-
ness bins. This is likely too conservative. In particular, photometric
redshift systematics are unlikely to be perfectly correlated across
all redshift bins: the selection of the source population, and their
relative signal contribution as a function of source redshift, differ
as a function of lens redshift. Adequately characterizing the covari-
ance in the systematic uncertainties associated with photometric
redshift errors seems like a relatively simple way to significantly
decrease our systematic error budget. For instance, if one were to
assume that the photometric redshift systematics were entirely un-
correlated, the associated systematic would be reduced by a factor
of 1/
√

3, rendering photometric redshift errors sub-dominant. This
is clearly unrealistic, but it does illustrate that characterizing the
covariance in the systematics may lead to significant reductions in
the total error budget.

Following photometric redshift uncertainties, three different
effects come in at the ≈ 2 per cent level: shear systematics, triaxi-
ality effects, and projection effects. Of these, shear systematics are
the least problematic. We fully expect shear calibration uncertain-
ties will continue to decrease over the coming years, and they will
no longer be a major source of error for cluster mass calibration.
By contrast, the current systematic error estimates for triaxiality
and projection effects clearly demonstrate that there is a significant
need for a detailed study of these on weak lensing mass profiles,
such as in the recent work of Osato et al. (2017).

Additional, but less urgent, upgrades to our analysis are also
possible. For instance, following Murata et al. (2017), an emulator
based approach to modeling the halo-matter correlation function or
∆Σ directly can potentially greatly reduce the modeling calibration
and its contribution to the uncertainty. Centering errors will also
continue to decrease as the availability of multi-wavelength data
continues to increase.

Finally, systematics that we have thus far ignored need to be
better addressed. For instance, intrinsic alignment by cluster mem-
ber galaxies even if its effect is very small (Sifón et al. 2015), which
impact membership dilution estimates. Likewise, a study of the im-
pact on baryonic physics on our weak lensing calibration method-
ology is necessary. While we expect these sources of error to be
subdominant in our present study, quantifying the systematic error
associated with these effects will be increasingly important in the
future.

9 SUMMARY AND CONCLUSIONS

We measured the stacked weak lensing signal of redMaPPer cluster
in the DES Y1 data. The clusters were divided into 21 subsets of
richness and redshift. The mean mass of each cluster stack was
estimated for those subsets with λ > 20 and 0.2 6 z 6 0.65. Our
model incorporated:

• Shear measurement systematics (Section 4.1),
• Source photometric redshift uncertainties (Section 4.3),
• Source sample dilution by cluster members (Section 4.2, Sec-

tion 5.3.1),
• Cluster miscentering (Section 5.2),
• Model calibration systematics (Section 5.4),
• Triaxiality & projection effects (Section 5.4.2).

The mean masses of the cluster subsets were used to determine the

mean cluster mass as a function of richness and redshift according
to Equation 53. We emphasize that the full analysis was performed
blindly: the paper underwent internal review by the DES collabora-
tion prior to unblinding, and no changes to the analysis were made
post-unblinding.

We summarize our constraints on the scaling relation as fol-
lows: for clusters at our pivot richness of λ0 = 40 and pivot redshift
of z0 = 0.35, the mean cluster mass is

M0 = [3.081± 0.075± 0.133] · 1014 M�. (71)

The slope Fλ for the mass–richness relation is

Fλ = 1.356± 0.051± 0.008, (72)

and the slope Gz governing the redshift evolution of the mass–
richness relation is

Gz = –0.30± 0.30± 0.06, (73)

where the first and second set of errors correspond to statistical and
systematic errors, respectively. The full scaling relation is given by
Equation 53. This scaling relation is in excellent agreement with,
while being significantly more precise and accurate than, previous
results from the literature: Mantz et al. (2016); Saro et al. (2015);
Simet et al. (2017); Baxter et al. (2018); Murata et al. (2017); Mel-
chior et al. (2017).

The 5.0 per cent constraint on the amplitude of the mass–
richness relation is systematics dominated, with our systematic er-
ror alone reaching 4.3 per cent. We stress the systematic uncer-
tainty in the shear and photometric redshift catalogs have been ex-
tensively tested and validated, so we are confident our systematic
error budget is robust. Halo triaxiality and line of sight projections
are now an important contributor to the total systematic error, and
represent a critical path for minimizing the overall error budget for
future analyses

Mass calibration remains the limiting factor for the ability of
testing cosmological models with cluster counts. Nevertheless, this
work represents a significant step forward: we were able to reduce
the systematic error budget from 6.1 per cent in DES Science Verifi-
cation to 4.3 per cent in DES Year 1. While we will need to achieve
similar level of improvements for future analyses including DES
Year 5 and LSST Year 1 to significantly improve upon our results,
we are confident that we will be able to rise to the challenge: the
story of weak lensing mass calibration is one of ever decreasing
systematic errors, a trend that to this day shows no signs of abating.
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APPENDIX A: THE REDMAPPER V6.4.17 CLUSTER
CATALOG

The full redMaPPer DES Y1A1 catalogs will be available at
http://risa.stanford.edu/redmapper/ in FITS for-
mat. The catalogs will also be available from the online journal
in machine-readable formats. We note that this is of the same for-
mat as (Rykoff et al. 2016), and we point the reader to that paper
for further details. The cluster catalog is described in Table A1, and
the associated members in Table A2. The catalog is the “full” cata-
log, with all clusters with λ > 20, and the volume-limited subset is
flagged with the VLIM flag. The map of the maximum redshift of
the volume-limited catalog is described in Table A3, and the ran-
dom points are described in Table A4.

APPENDIX B: PARAMETER POSTERIORS

When fitting the weak lensing profiles some parameters are not
constrained by a prior and are also not shared between cluster bins.
These are the halo concentration c, the boost factor amplitude B0,
and the boost factor scale radius Rs. Table B1 shows the posteriors
for these three parameters for each cluster bin. As seen in Figure 10
B0 and Rs are highly degenerate.
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Table A1. redMaPPer Y1A1 Cluster Catalog Format

Name Format Description
ID INT(4) redMaPPer Cluster Identification Number
VLIM INT(2) One if in cosmology catalog, 0 otherwise
NAME CHAR(20) redMaPPer Cluster Name
RA FLOAT(8) Right ascension in decimal degrees (J2000)
DEC FLOAT(8) Declination in decimal degrees (J2000)
Z_LAMBDA FLOAT(4) Cluster photo-zzλ
Z_LAMBDA_ERR FLOAT(4) Gaussian error estimate for zλ
LAMBDA FLOAT(4) Richness estimate λ
LAMBDA_ERR FLOAT(4) Gaussian error estimate for zλ
S FLOAT(4) Richness scale factor
Z_SPEC FLOAT(4) Spectroscopic redshift for most likely center (-1.0 if not available)
COADD_OBJECTS_ID INT(8) DES COADD_OBJECTS_ID identification number
MAG_CM_G FLOAT(4) g MAG_CM magnitude for most likely central galaxy (SLR corrected)
MAGERR_CM_G FLOAT(4) error on g MAG_CM magnitude
MAG_CM_R FLOAT(4) r MAG_CM magnitude for most likely central galaxy (SLR corrected)
MAGERR_CM_R FLOAT(4) error on g MAG_CM magnitude
MAG_CM_I FLOAT(4) i MAG_CM magnitude for most likely central galaxy (SLR corrected)
MAGERR_CM_I FLOAT(4) error on g MAG_CM magnitude
MAG_CM_Z FLOAT(4) z MAG_CM magnitude for most likely central galaxy (SLR corrected)
MAGERR_CM_Z FLOAT(4) error on g MAG_CM magnitude
ZLUM FLOAT(4) Total membership-weighted z-band luminosity (units of L∗)
P_CEN[5] 5×FLOAT(4) Centering probability Pcen for 5 most likely centrals
RA_CEN[5] 5×FLOAT(8) R.A. for 5 most likely centrals
DEC_CEN[5] 5×FLOAT(8) Decl. for 5 most likely centrals
ID_CEN[5] 5×INT(8) DES COADD_OBJECTS_ID identification number for 5 most likely centrals
PZBINS[21] 21×FLOAT(4) Redshift points at which P(z) is evaluated
PZ[21] 21×FLOAT(4) P(z) evaluated at redshift points given by PZBINS

Table A2. redMaPPer DES Y1A1 Member Catalog Format

Name Format Description
ID INT(4) redMaPPer Cluster Identification Number
RA FLOAT(8) Right ascension in decimal degrees (J2000)
DEC FLOAT(8) Declination in decimal degrees (J2000)
R FLOAT(4) Distance from cluster center (h–1 Mpc)
P FLOAT(4) Membership probability
P_FREE FLOAT(4) Probability that member is not a member of a higher ranked cluster
THETA_L FLOAT(4) Luminosity (z-band) weight
THETA_R FLOAT(4) Radial weight
MAG_CM_G FLOAT(4) g MAG_CM magnitude (SLR corrected)
MAGERR_CM_G FLOAT(4) error on g MAG_CM magnitude
MAG_CM_R FLOAT(4) r MAG_CM magnitude (SLR corrected)
MAGERR_CM_R FLOAT(4) error on r MAG_CM magnitude
MAG_CM_I FLOAT(4) i MAG_CM magnitude (SLR corrected)
MAGERR_CM_I FLOAT(4) error on i MAG_CM magnitude
MAG_CM_Z FLOAT(4) z MAG_CM magnitude (SLR corrected)
MAGERR_CM_Z FLOAT(4) error on z MAG_CM magnitude
Z_SPEC FLOAT(4) Spectroscopic redshift (-1.0 if not available)
COADD_OBJECTS_ID INT(8) DES COADD_OBJECTS_ID identification number

Table A3. redMaPPer zmax Map Format

Name Format Description
HPIX INT(8) HEALPIX ring-ordered pixel number (NSIDE=4096)
ZMAX FLOAT(4) Maximum redshift of a cluster centered in this pixel
FRACGOOD FLOAT(4) Fraction of pixel area that is not masked
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Table A4. redMaPPer Random Points Catalog Format

Name Format Description
RA FLOAT(8) Right ascension in decimal degrees (J2000)
DEC FLOAT(8) Declination in decimal degrees (J2000)
Z FLOAT(4) Redshift of random point
LAMBDA FLOAT(4) Richness of random point
WEIGHT FLOAT(4) Weight of random point

Table B1. Lensing profile parameters not constrained by priors or shared between cluster bins. Uncertainties are the 68 per cent confidence intervals.

λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
Concentration c
[20, 30) 6.59 ±1.11 6.38 ±1.24 5.50 ±1.88
[30, 45) 5.03 ±0.76 7.32 ±1.23 4.11 ±0.79
[45, 60) 4.90 ±1.04 6.11 ±1.30 5.36 ±1.36
[60,∞) 5.10 ±0.91 3.66 ±0.65 4.56 ±1.25
Boost factor amplitude B0

[20, 30) 0.41 ±0.04 0.15 ±0.02 0.31 ±0.07
[30, 45) 0.39 ±0.04 0.22 ±0.03 0.18 ±0.04
[45, 60) 0.32 ±0.04 0.16 ±0.05 0.20 ±0.04
[60,∞) 0.67 ±0.06 0.19 ±0.04 0.16 ±0.03
Boost factor scale radius Rs [Mpc]
[20, 30) 0.54 ±0.06 0.66 ±0.10 0.34 ±0.06
[30, 45) 0.71 ±0.09 0.61 ±0.08 0.63 ±0.11
[45, 60) 1.00 ±0.15 0.92 ±0.26 0.80 ±0.16
[60,∞) 0.57 ±0.05 1.00 ±0.24 1.38 ±0.31
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