
PHYSICAL REVIEW D 72, 043006 (2005)
Self-calibration of cluster dark energy studies: Observable-mass distribution
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The exponential sensitivity of cluster number counts to the properties of the dark energy implies a
comparable sensitivity to not only the mean but also the actual distribution of an observable-mass proxy
given the true cluster mass. For example a 25% scatter in mass can provide a �50% change in the number
counts at z� 2 for the upcoming SPT survey. Uncertainty in the scatter of this amount would degrade dark
energy constraints to uninteresting levels. Given the shape of the actual mass function, the properties of
the distribution may be internally monitored by the shape of the observable mass function. As a proof of
principle, for a simple mass-independent Gaussian distribution the scatter may be self-calibrated to allow
a measurement of the dark energy equation of state of ��w� � 0:1. External constraints on the mass
variance of the distribution that are more accurate than ��2

lnM < 0:01 at z� 1 can further improve
constraints by up to a factor of 2. More generally, cluster counts and their sample variance measured as a
function of the observable provide internal consistency checks on the assumed form of the observable-
mass distribution that will protect against misinterpretation of the dark energy constraints.
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I. INTRODUCTION

It is well known that cluster counts as a function of their
mass are exponentially sensitive to the amplitude of the
linear density field and hence the dark energy dependent
growth of structure. Unfortunately the mass of a cluster is
not a direct observable and their numbers can only be
counted as a function of some observable proxy for mass.
Typical proxies include the Sunyaev-Zel’dovich flux dec-
rement, X-ray temperature, X-ray surface brightness or gas
mass, optical galaxy richness, and the weak lensing shear.
The exponential sensitivity to mass translates into a com-
parable sensitivity to the whole distribution of the observ-
able given the mass not just the mean relationship.

While scatter in the observable-mass relation is typically
addressed in studies of the local cluster abundance (e.g.
[1]), it is commonly ignored in forecasts for upcoming high
redshift surveys (e.g. [2–4]). While it is true that scatter in
the observable of a known form does little to degrade the
dark energy information, uncertainties in the distribution
directly translate into uncertainties in the dark energy
inferences that must be controlled.

In this paper, we undertake a general study of the impact
of uncertainty in the observable-mass distribution on high
redshift cluster counts. Previous work on forecasting pros-
pects for dark energy constraints have examined the effect
of scatter under specific and typically more restrictive
assumptions. For example, the change in the number
counts, known as Eddington bias [5], has been assessed
for a fixed cut in signal-to-noise of cluster detection via the
Sunyaev-Zel’dovich flux in a hydrodynamic simulation [6]
and through modeling a constant scatter in mass [7].
However, it is the uncertainty in the scatter, or the error
in the correction of the bias, that degrades dark energy
05=72(4)=043006(7)$23.00 043006
constraints. Along these lines, Levine et al. [8] considered
the marginalization of a constant scatter in the mass-
temperature relation for clusters but with strong external
priors on the dark energy parameters.

Prospects for the self-calibration of the mean
observable-mass relation have been extensively studied
recently. Self-calibration relies on the fact that whereas
the dark energy is a function of redshift alone, cluster
observables are a function of both mass and redshift.
Moreover, both the shape of the mass function [9] and
the clustering of clusters as a function of mass [10] can
be accurately predicted as a function of cosmology from N-
body simulations. While there currently remains substan-
tial uncertainty in these quantities, efforts are underway to
quantify these relations at the required percent level accu-
racy (e.g. [11]).

Thus, by demanding consistency between the counts and
their sample variance across the sky as a function of the
observable mass, one can jointly solve for the cosmology
and the mean observable-mass relation. Here we show that
the shape of the mass function is even more effective at
monitoring the scatter in the observable-mass relation.

We begin in Sec. II with a discussion of our parametri-
zation of the observable-mass distribution and assess its
implications for the dark energy. We examine the prospects
for self-calibration in Sec. III and conclude in Sec. IV.

II. OBSERVABLE-MASS DISTRIBUTION

The cosmological utility of cluster number counts arises
from their exponential sensitivity to the amplitude of the
linear density field. For illustrative purposes, we will em-
ploy a fit to simulations for the mass function or the
differential comoving density of clusters [12]
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exp��j ln��1 � 0:64j3:82	;

(1)

where �2�M; z� 
 �2
R�z�, the linear density field variance

in a region enclosing M � 4�R3
m=3 at the mean matter
density today 
m. We envision that this fitting function will
be replaced by direct N-body results in the future.

To exploit this exponential sensitivity, the observable-
mass distribution must be known to a comparable accuracy.
Let us consider the probability of assigning a mass Mobs to
a cluster of true mass M to be given by a Gaussian
distribution in lnM as motivated by the observed scatter
in the scaling relations between typical cluster observables
(e.g. [1])

p�MobsjM� �
1����������������

2��2
lnM

q exp��x2�Mobs�	; (2)

where

x�Mobs� 

lnMobs � lnM� lnMbias�������������

2�2
lnM

q : (3)

For simplicity we will allow the mass variance �2
lnM and

the mass bias lnMbias to vary with redshift but not mass. We
implicitly exclude sources of scatter due to noise in the
measurement of Mobs, which certainly would depend on
Mobs but in a way that is known given the properties of a
specific survey. More generally, our qualitative results will
hold so long as any trend in mass at a fixed redshift is
known.
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FIG. 1. Scatter of �lnM � 0:25 in the observable-mass relation
changes the mass distribution of clusters above an observable
threshold Mobs (curves) to provide an excess of clusters scatter-
ing up (dark shaded) versus down (light shaded) across the
threshold. Here the intrinsic mass function (thick line) has
been normalized to M0 � 1014h�1M� and evaluated at z � 0.
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The average number density of clusters within a range
defined by cuts in the observable mass Mobs
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1

2
�erfc�xi� � erfc�xi�1�	; (4)

where xi � x�Mobs
i �. The mean number of clusters in a

given volume Vi is then

	m i � 	niVi: (5)

Note that in the limit that �2
lnM ! 0 and Mobs

i�1 ! 1, 	mi is
the usual cumulative number counts above some sharp
mass threshold.

An unknown scatter or, more generally, uncertainty in
the distribution of the observable mass given the true mass
causes ambiguities in the interpretation of number counts.
Figure 1 shows the expected mass distribution of clusters
above a certain Mobs given a scatter of �lnM � 0:25. As the
observable threshold reaches the exponential tail of the
intrinsic distribution, the excess of upscattered versus
downscattered clusters can become a significant fraction
of the total. Since at high redshift a fixed Mobs will be
further on the exponential tail, even a constant but un-
known scatter can introduce a trend in redshift that will
degrade the dark energy information in the counts.

The relative importance of scatter can be understood by
examining the sensitivity of the counts to the scatter around
�2

lnM � 0
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FIG. 2. Local power law index � of the mass function as a
function of mass d 	n=d lnM / M� for z � 0, 0.5, and 1. The
relative importance of scatter versus bias can be scaled through
� and Eq. (9) to alternate mass and redshift ranges than consid-
ered here.
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Thus the steepness of the mass function around the thresh-
olds in the observable mass determines the excess due to
upscatters. Note that it is the variance �2

lnM rather than the
rms scatter �lnM that controls the upscattering effect. For
example, since

lim
�2

lnM!0

�
@ ln 	mi

@�lnM
� 2�lnM

@ ln 	mi

@�2
lnM

�
� 0; (7)

the sensitivity to the rms scatter depends on the true value
of the scatter and vanishes at �lnM � 0. Conversely from
Eq. (6), an observable with say half the scatter would have
a quarter of the fractional effect on number counts in this
limit.

On the other hand, the sensitivity to the bias is given by

lim
�2

lnM!0

@ ln 	mi

@ lnMbias
�

1

	ni

d 	n
d lnM

��������
xi�0

xi�1�0
: (8)

Thus the relative importance of scatter compared with bias
can be estimated through the local power law slope of the
mass function d 	n=d lnM / M� (see Fig. 2)

�
1

2

d2 	n=dln2M
d 	n=d lnM

� �
1

2
��M�: (9)

Uncertainties in scatter can dominate those of bias for the
steep mass function at high mass or redshift.

These expectations are borne out at finite scatter by a
direct computation of the number count sensitivity.
Figure 3 shows the sensitivity of number counts above
Mobs � 1014:2h�1M� in redshift bins of �z � 0:1 eval-
uated around lnMbias � 0 and a finite scatter �2

lnM �
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FIG. 3. Fractional sensitivity of the number counts in redshift
to the mass variance �2

lnM and bias lnMbias scaled to �0:25�2 and
0.25, respectively. The relative importance of the variance in-
creases with z.
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�0:25�2. Both in terms of absolute sensitivity and relative
sensitivity compared to the bias, the importance of scatter
increases with redshift. Uncertainties in the mass variance
of ��2

lnM � �0:25�2 would produce a �50% uncertainty in
the number counts at z � 2. For the high z counts to
provide cosmological information, the scatter must be
known to significantly better than this level.

Given that the relative effect of scatter depends on the
local slope of the mass function, measuring the counts as a
function of Mobs monitors the scatter in the mass-
observable relation. Combined with additional information
in the sample variance of the number counts, an unknown
evolution in Mbias and �2

lnM may be internally calibrated.

III. SELF-CALIBRATION

To assess the impact of uncertainties in the observable-
mass distribution, we employ the usual Fisher matrix tech-
nique. For illustrative purposes we take a fiducial cluster
survey with specifications similar to the planned South
Pole Telescope (SPT) Survey: an area of 4000deg2 and a
sensitivity corresponding to a constant Mobs

th �
1014:2h�1M�. We further divide the number counts into
bins of redshift �z � 0:1 from an assumed optical photo-
metric follow up out to z � 2 and 400 angular cells of
10deg2 for assessment of the sample variance of the counts
(see [13] for an exploration of these choices). Finally, to
study the efficacy of self-calibration from binning of the
M0
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FIG. 4. Simulations predict the sample variance of counts,
shown for a typical volume (R � 50h�1 Mpc, upper curves),
and the shape of the mass function (lower curves) as a function
of mass. Self-calibration is assisted by binning the selection,
multiplied here by 0.01 for clarity and shown here with �lnM �
0:25, into 5 bins of �log10M

obs � 0:2 (solid lines) as opposed to
a single threshold binning of Mobs � 1014:2h�1M� (dotted line).
With only threshold binning, joint changes to the cosmology,
mass bias, and scatter are degenerate with the dark energy
equation of state w (long dashed lines).

-3



MARCOS LIMA AND WAYNE HU PHYSICAL REVIEW D 72, 043006 (2005)
observable we compare 5 bins of �log10M
obs � 0:2 versus

a single bin of Mobs � Mobs
th (see Fig. 4).

The Fisher matrix is constructed out of predictions for
the number counts and their covariance. The mean number
counts mi possess a sample covariance of [3]

Sij � h�mi � 	mi��mj � 	mj�i

�
bi 	mibj 	mj

ViVj

Z d3k

�2��3
W�
i �k�Wj�k�P�k�; (10)

given a linear power spectrum P�k� and the Fourier trans-
form of the selection windowWi�x�. The pixel index i here
runs over unique cells in redshift, angle, and observable
mass. Here bi is the average bias of the clusters predicted
from the distribution in Eq. (4)

bi �
1

	ni

Z dM
M

d 	ni
d lnM

b�M; zi�; (11)

where we take a fit to simulations of [14]

b�M; z� � 1 �
ac�

2
c=�

2 � 1

�c
�

2pc
�c�1 � �a�2

c=�2�pc	

(12)

with ac � 0:75, pc � 0:3, and �c � 1:69. That the sample
variance, or the clustering of clusters, is a known function
of mass provides a second means of self-calibration [10].
Note that for a given volume defined by the redshift and
solid angle, the mean counts for different ranges in the
observable massMobs are fully correlated. Finally, the total
covariance matrix is the sample covariance plus shot vari-
ance

Cij � Sij � 	mi�ij: (13)

The Fisher matrix quantifies the information in the
counts on a set of parameters p� as [13,15]

F�! � 	mt
;�C�1 	m;! �

1

2
Tr�C�1S;�C�1S;!	; (14)

where the first piece represents the information from the
mean counts and the second piece the information from the
sample covariance of the counts. We have here arranged
the counts per pixel i into a vector m 
 �m1; . . . ; mNpix

� and
correspondingly their covariance into a matrix. The Fisher
matrix approximates the covariance matrix of the parame-
ters C�! � �F�1	�! such that the marginalized error on a

single parameter is ��p�� � �F�1	1=2
�� . When considering

prior information on parameters of a given��p�� we add to
the Fisher matrix a contribution of ��2�p����! before
inversion.

For the parameters of the Fisher matrix we begin with
six cosmological parameters: the normalization of the
initial curvature spectrum �$ �� 5:07 � 10�5� at k �
0:05 Mpc�1 (see [16] for its relationship to the more tradi-
tional �8 normalization), its tilt n�� 1�, the baryon density
043006
$bh
2�� 0:024�, the dark matter density $mh

2�� 0:14�,
and the two dark energy parameters of interest: its density
$DE�� 0:73� relative to critical and equation of state w��
�1� which we assume to be constant. Values in the fiducial
cosmology are given in parentheses. The first 4 parameters
have already been determined at the few to 10% level
through the CMB [17] and we will extrapolate these con-
straints into the future with priors of ��ln�$ � � ��n� �
��ln$bh2� � ��ln$mh2� � 0:01. We have verified that
the results below are insensitive to the specific choice of
dark energy parameters.

For the observable-mass distribution we choose a fidu-
cial model of lnMbias�zi� � 0 and �2

lnM�zi� � �0:25�2. The
results that follow do not depend on the specific choice. In
a Fisher matrix approach, degeneracies between the
observable-mass relation (e.g. distance measures em-
bedded in the observable selection) and counts or cluster-
ing given a selection in mass are carried by the parameters
of the distribution not by the fiducial model. We have
tested this by taking a much smaller fiducial scatter of
�2

lnM�zi� � �0:05�2.
Given an observable-mass distribution fixed at the fidu-

cial model and the priors on the other cosmological pa-
rameters, the baseline errors on the dark energy parameters
are ��$'; w� � �0:008; 0:03�. The mere presence of scat-
ter in an observable does not necessarily degrade the
cosmological information; in fact, for reasonable scatter
it actually enhances the information by effectively low-
ering the mass threshold at high redshift.

However, cosmological parameter errors are degraded
once observable-mass parameters are added in a joint fit.
As the most general case, we take independent lnMbias�zi�
and �2

lnM�zi� parameters for each redshift bin for a total of
40 parameters. As discussed in Sec. II, for the Fisher
results to be valid around a fiducial �lnM � 1, the mass
variance and not its scatter must be chosen as the parame-
ters. Because the evolution in the cluster parameters is
expected to be smooth in redshift, we alternatively take a
more restrictive power law evolution in the bias Mbias

lnMbias�zi� � Ab � nb ln�1 � zi� (15)

and/or a Taylor expansion of �2
lnM around z � 0

�2
lnM�zi� � �2

lnMjfid �
XN��1

a�0

Bazai (16)

With no self-calibration, i.e. no clustering information
from the sample variance and no binning in Mobs, interest-
ing constraints on the dark energy are not possible even for
the restricted evolutionary forms of Eqs. (15) and (16) if
�2

lnM�z� is allowed to evolve (N� � 2). Even restricting the
parameters to a single constant scatter (N� � 1) causes a
degradation to ��$'; w� � �0:37; 0:24�.

As shown in Fig. 5 adding in the sample (co)variance
information in the Fisher matrix of Eq. (14) for a single bin
in Mobs helps but still does not allow for full self-
-4
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lnM�< �0:1�2 for each of the 20
redshift bins can improve dark energy constraints beyond self-
calibration by a factor of 2 (solid line). This cumulative effect of
independent priors is compared with the joint effect of priors on
the 4 parameters of a ��Ba� � 2���2
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FIG. 5. Efficacy of self-calibration through (a) the clustering information in the sample variance alone, (b) the shape of the counts in
5 mass bins and (c) both (note the �10 change in scale). From outer to inner ellipse, each at the 68% CL, the assumptions on the
redshift evolution of the bias and scatter are tightened from a free functional form of 20 parameters each in bins of �z � 0:1, a power
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constraints are possible under any of these assumptions. For reference we show the baseline results of a completely fixed Mbias and
�2

lnM as the solid innermost ellipse.
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calibration of an arbitrary evolution in �2
lnM�z�, even when

Mbias is restricted to power law evolution. Further restrict-
ing the evolution in the mass variance to a cubic form
N� � 4 yields ��$'; w� � �0:22; 0:17� and to a constant
form N� � 1 yields ��$'; w� � �0:15; 0:07�.

Employing the information contained in the shape of the
counts through Mobs binning allows for a more robust self-
calibration. In the case of arbitrary evolution for both the
bias and the scatter ��$'; w� � �0:03; 0:21�. With a power
law form for the bias ��$'; w� � �0:02; 0:11�; with an
additional cubic form for the mass variance ��$'; w� �
�0:02; 0:10�; with a constant form for the scatter
��$'; w� � �0:02; 0:06�.

External priors on the observable-mass distribution from
simulations and cross-calibration of observables can fur-
ther improve on self-calibration. Cross-calibration of clus-
ter observables may involve a subsample of clusters which
have detailed mass modeling from lensing or X-ray tem-
perature and surface brightness profiles assuming hydro-
static equilibrium [10]. In Fig. 6 we explore the effect of
independent priors on the 20 �2

lnM�zi� parameters in the
power law Mbias context. Priors of the level of ���2

lnM� �
�0:1�2 would suffice to improve ��w� by a factor of 2. Note
that the potential further improvement in w errors comes
from the ability to change the scatter smoothly from z � 0
to z� 1. Since we take the priors to be independent, their
cumulative effect implicitly poses a much more stringent
constraint on the possible smooth evolution of �2

lnM than
any one individual prior.

To better quantify the implications of the joint prior, note
that the self-calibration errors on the cubic form in Fig. 5(c)
nearly coincide with the fully arbitrary form. Taking inde-
pendent priors on the 4 Ba parameters of ��Ba� �
2���2

lnM� to reflect the assumed uncertainty around z � 1
yields the dashed curve in Fig. 6. The full improvement
requires �2

lnM priors at the �0:02�2 level and a minimum of
043006
�0:1�2 for substantial improvements. If these priors are to
come from mass modeling of observables, then a fair
sample of more than �100 clusters at z� 1 with accurate
masses will be required. Accurate masses will be difficult
to obtain at the low threshold of 1014:2h�1M� employed
here.

Priors on Mbias can also improve constraints. For a
completely fixed Mbias, errors for an arbitrary evolution
in �2

lnM are ��$'; w� � �0:01; 0:06�. Conversely, for a
-5
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completely fixed �2
lnM, errors for an arbitrary evolution of

Mbias are ��$'; w� � �0:02; 0:13�.
Finally, to assess the possible impact of unknown trends

in the mass bias and variance with mass at fixed redshift,
we limit the Mobs bins to 2 separated by �log10M

obs � 0:2
from the threshold. In this case errors for arbitrary evolu-
tion degrade slightly to ��$'; w� � �0:03; 0:26� and with
power law mass bias and cubic variance to ��$'; w� �
�0:03; 0:11�. Thus most of the information from self-
calibration comes from the small range in masses around
the threshold reflecting the steepness of the mass function.
The mass bias and mass variance need only be constant or
slowly varying in a known way in mass across a range in
masses comparable to the expected scatter for self-
calibration to be effective. In any case, bins at higher
masses also monitor the validity of this assumption in
practice.
IV. DISCUSSION

The exponential sensitivity of number counts to the
cluster mass requires a calibration of the whole
observable-mass distribution before cosmological infor-
mation on the dark energy can be extracted. We have
shown that even in the case of an unknown arbitrary
evolution in the mass bias and scatter of a Gaussian distri-
bution, there is enough information in the ratio of the
counts in bins of the observable mass and their sample
variance to calibrate the distribution and provide interest-
ing constraints on the dark energy.

For the more realistic case of an unknown power law
evolution in the mass bias Mbias, the forecasted errors for
the fiducial SPT-like survey are ��$'; w� � �0:02; 0:11�.
To further improve on these constraints, external con-
straints on the mass variance would need to achieve an
accuracy of ���2

lnM�< �0:1�2 � 0:01 on a possible evolu-
tion of the mass variance from 0 � z � 1. Note that this
result is robust to the assumed true value of the scatter
when quoted as a constraint on the mass variance and not
the rms scatter.

However, self-calibration is not a replacement for simu-
lated catalogues, cross-calibration techniques from so-
called direct mass measurements [10], and monitoring
scatter in observable-observable scaling relations. It is
instead an internal consistency check on their assumptions
and the simplifying assumptions in this study. We have
043006
assumed that the observable-mass distribution is a
Gaussian in lnM and that its parameters depend in a known
way on mass at a given redshift for at least a range in
masses that is greater than the expected scatter. This may
not be true in practice. For example, although point source
contamination can be modeled through an observable-mass
distribution, its effect may yield a highly non-Gaussian,
mass dependent distribution. Such an effect can still be
monitored in this way. However, if a discrepancy is evi-
dent, it may be wiser to raise the observable-mass threshold
of the sample well above the sensitivity limit as opposed to
modeling the distribution in this way.

Raising the observable-mass threshold to account
for point sources and other known systematics decreases
the total number of clusters and hence the efficacy
of dividing the sample into observable-mass bins.
Raising it from our fiducial choice ofMobs

th � 1014:2h�1M�

(�8 deg�2) to 1014:5h�1M� (�1:4 deg�2) decreases the
efficacy of self-calibration by a factor of 1.3–1.9 in the
errors onw for the various prior assumptions in Fig. 5. This
degradation is on top of the globally poorer errors by 1.5
for a perfectly known observable-mass relation.

For low mass clusters detected optically (e.g. [18]) or
through lensing (e.g. [19]), the assumption of a one-to-one
mapping of objects identified by mass to those identified by
the observable breaks down since confusion and projection
or ‘‘blending’’ will cause many small mass objects in a
given redshift range to be associated with a single object in
the observable (see e.g. [20,21]).

Without such simplifying assumptions, true self-
calibration is impossible (see e.g. [9]). Still, the ideas
underlying self-calibration will be useful in revealing vio-
lations of the assumed form of the distribution of cluster
observables given the cluster masses and prevent misinter-
pretation of the data.
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