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ABSTRACT
Mapping the underlying density field, including non-visible dark matter, using weak
gravitational lensing measurements is now a standard tool in cosmology. Due to its
importance to the science results of current and upcoming surveys, the quality of the
convergence reconstruction methods should be well understood. We compare three dif-
ferent mass map reconstruction methods: Kaiser-Squires, Wiener filter, and Glimpse.
Kaiser-Squires is a direct inversion method, taking no account of survey masks or
noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian
framework. The Glimpse method uses sparsity, with the aim of reconstructing non-
linearities in the density field. We compare these methods with a series of tests on
the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic
DES simulations. The Wiener filter and Glimpse methods offer substantial improve-
ment on the standard smoothed Kaiser-Squires with a range of metrics. For both the
Wiener filter and Glimpse convergence reconstructions we present a 12% improve-
ment in Pearson correlation with the underlying truth from simulations. To compare
the mapping methods’ abilities to find mass peaks, we measure the difference between
peak counts from simulated ΛCDM shear catalogues and counts from catalogues with
no mass fluctuations. This is a standard data vector when inferring cosmology from
peak statistics. The maximum signal-to-noise value of these peak statistic data vec-
tors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using
Glimpse. Glimpse shows significant signal-to-noise in the peak statistic data vectors
at high values of convergence, whereas the Wiener filter and KS suppress these high
peaks. With simulations we measure the reconstruction of the harmonic phases in
the maps, showing that the concentration of the phase residuals is improved 17% by
Glimpse and 18% by the Wiener filter. Finally, we show that the correlation between
the reconstructions from data and the foreground redMaPPer clusters is increased 18%
by the Wiener filter and 32% by Glimpse.
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2 N. Jeffrey et al.

1 INTRODUCTION

Mass map reconstruction from weak gravitational lensing
recovers the underlying matter distribution in the universe
from measurements of galaxy shapes. Images of distant
galaxies are deformed by the inhomogeneous matter distri-
bution along the line of sight. Any matter can contribute
to the lensing effect, making it a direct probe of non-visible
dark matter.

Weak lensing, which takes advantage of the statistical
power from many small distortions (that is, gravitational
lensing induced “shears”), is now a well established tool in
constraining cosmology. The Dark Energy Survey (DES)
has used the 2-point correlation function of shear to con-
tribute to excellent constraints on cosmological parameters
and models, including the nature of dark energy (DES Col-
laboration et al. 2017). Shear 2-point correlation functions
have been used to constrain cosmology from many other sur-
vey datasets (van Uitert et al. 2017, Kilbinger et al. 2013).
These methods use the shear measurements directly, as the
shear can be related to the underlying matter distribution
without needing to explicitly reconstruct mass maps.

A zero-mean Gaussian random field can be charac-
terised entirely by its 2-point correlations. The matter den-
sity field in the early universe is expected to be highly Gaus-
sian, a property which persists into the late universe for
the large scales that were less affected by gravitational col-
lapse. For the smaller scales at late times, non-linear grav-
itational collapse has led to a highly non-Gaussian density
field. Much valuable information can be extracted from this
non-Gaussianity, although this requires additional methods
beyond 2-point statistics.

Popular proposed methods to extract this information
include N-point statistics and higher order moments (Cooray
& Hu 2001), peak statistics (Dietrich & Hartlap 2010,
Kacprzak et al. 2016, Peel et al. 2017, Shan et al. 2017, Mar-
tinet et al. 2017), and Minkowksi functionals (Kerscher et al.
1996, Petri et al. 2013). It is often either essential or con-
venient to apply these methods to the density field di-
rectly (rather than in the space of the shear measurements),
thereby necessitating a reliable mass map reconstruction.

Peak statistics are particularly promising, as peaks in
the density field probe the non-Gaussian structure directly.
Peaks can be identified from aperture mass maps, which are
derived by convolving the shear data with a kernel, or from
the reconstructed density field. The first approach has the
advantage of having local noise, while the second is “closer”
to the underlying density field and often has faster algo-
rithms. Both methods often require simulations to provide
a link between the theory and data, with the exception of
proposed semi-analytic models (Lin & Kilbinger 2015, Shan
et al. 2017).

In addition to using mass maps for higher order statis-
tics to constrain cosmological parameters and models, the
mass maps can themselves be intrinsically useful. Clerkin
et al. (2017), using the original DES Science Verification
(SV) mass map, show evidence that the 1-point distribution
of the density field is more consistent with Log-Normal than
Gaussian. Combining mass maps with the spatial distribu-
tions of stellar mass, galaxies, or galaxy clusters allows the
relationship between the visible baryonic matter and invisi-
ble dark matter to be studied. Using mass maps to constrain

galaxy bias (Chang et al. 2016), the relation between the dis-
tribution of galaxies and matter, can in turn aid cosmologi-
cal probes other than weak lensing. Maps also enable simple
tests for systematic error in the galaxy shape catalogues.

Since the first application of mass mapping methods to
wide-field surveys with the Canada-France Hawaii Telescope
Lensing Survey (CFHTLenS) data (Van Waerbeke et al.
2013), mass maps have been a standard product of large
weak lensing surveys. In addition to DES, current surveys
reconstructing the density field from weak lensing data in-
clude the Kilo-Degree Survey (Giblin et al. in prep.) and
the Hyper Supreme-Cam Subaru Strategic Program (HSC-
SSP) (Oguri et al. 2017). Mapping dark matter is key to the
science goals of the future Euclid Mission (Amendola et al.
2016) and the Large Synoptic Survey Telescope (LSST Sci-
ence Collaboration et al. 2009).

DES is a ground based photometric galaxy survey, ob-
serving in the southern sky from the 4m Blanco telescope
at the Cerro Tololo Inter-American Observatory (CTIO)
in Chile with five photometric filters covering the optical
and near-infrared spectrum using the Dark Energy Camera
(Flaugher et al. 2015, Dark Energy Survey Collaboration
et al. 2016). The SV data come from an initial run over a
fraction of the final sky coverage, but to almost the full expo-
sure time of the final survey. The sky coverage is still large,
139 deg2, and the nearly full exposure (Chang et al. 2015)
gives a galaxy density almost equal to what is expected after
the complete 5 years of DES observations.

This paper uses the public DES SV data to compare the
quality of mass mapping reconstruction methods. The maps
are of the two-dimensional convergence, κ, a weighted pro-
jection of the density field in the foreground of the observed
background galaxies. Recovering the convergence from the
shear data is an ill-posed inverse problem, troubled by sur-
vey masks and galaxy “shape noise”.

This work follows on from that of Chang et al. (2015)
and Vikram et al. (2015) in which the original DES SV mass
map was created using the Kaiser & Squires (1993) method.
In this paper we compare three quite different methods:
Kaiser-Squires (KS); Wiener filtering (Wiener 1949); and
Glimpse (Leonard et al. 2014, Lanusse et al. 2016), a
sparsity-based reconstruction method. The Kaiser-Squires
method is a direct inversion from shear to convergence, tak-
ing no account of missing data or the effect of noise. The
Wiener filter and Glimpse assume different prior knowledge
about the underlying convergence to account for the effects
of noise and missing data.

In Sec. 2 we describe the theoretical foundation for weak
lensing mass mapping and the three different methods used
for this work. In Sec. 3 we describe the DES SV shear data,
the accompanying simulations, and the redMaPPer galaxy
cluster catalogue. Foreground galaxy clusters are expected
to trace the true density field, and therefore should be cor-
related with the convergence reconstruction. The different
methods are also applied to realistic data simulations where
the true convergence is known. In Sec. 4 we present our re-
sults on data and simulation, using various quality metrics
for the reconstruction. On simulations these metrics are the
Pearson correlation coefficient, the pixel root-mean-square
error (RMSE), the variance of the 1-point distribution of
pixel values, the phase residuals, and peak statistics. On
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DES SV Mass Maps with Gaussian and Sparsity Priors 3

data we compare the convergence reconstructions to the
foreground galaxy clusters. We conclude in Sec. 5.

2 METHODOLOGY

2.1 Weak gravitational lensing

We can use measurements of the distortion of background
galaxy shapes by weak gravitational lensing to learn about
the mass distribution in the foreground without making
many physical assumptions or relying on phenomenologi-
cal models. For convenience, here we summarise some of
the existing literature relevant for mass mapping from weak
lensing (Bartelmann & Schneider 2001, Kilbinger 2015).

The weak lensing formalism follows photon paths
along geodesics in a perturbed Friedmann-Robertson-
Walker (FRW) metric. The perturbations are sourced by the
density field of large scale structure. Throughout we assume
that the perturbations are small, and that the measurements
are made over a small enough patch of the sky that the sky
geometry is Euclidian. Consistent with the Planck CMB re-
sults (Planck Collaboration et al. 2016) and motivated by
inflationary theory, we assume that the global geometry of
the universe is flat.

The density contrast, δ = (ρ− ρ̄)/ρ̄, of a pressureless fluid
is related to the scalar gravitational potential perturbation,
Φ, through the Poisson equation,

∇2
Φ =

3H0Ωm

2a
δ , (1)

where H0 is the present value of the Hubble parameter, a is
the cosmological scale factor, and ρ and ρ̄ are the local and
mean density respectively.

For a flat universe, the lensing potential is given by

ψ( #»θ , ω) = 2
∫ ω

0
dω′

[ω − ω′
ωω′

]
Φ( #»θ , ω′) , (2)

where ω is the comoving distance.
The Born approximation assumes that the observed an-

gle to a point,
#»
θ , deviates only a small amount from the

true angle
#»
β , so the change in distance of the photon’s

path is negligible. We can characterise the effect of lensing
on the galaxies using the Jacobian of the transformation,
Ai j = ∂βi/∂θ j , which is decomposed into the functions κ( #»θ )
and γ( #»θ ) = γ1 + iγ2, and which is given by

A =
(
δi j −

∂2ψ( #»θ )
∂θi∂θ j

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
.

(3)

Using the definition of the lensing potential and the Poisson
equation, the convergence can be expressed as an integral
over the density along the line of sight,

κ( #»θ , ω) =
3H2

0Ωm

2

∫ ω

0
dω′

ω′(ω − ω′)
ω

δ( #»θ , ω′)
a(ω′) . (4)

For a distribution n(ω) of lensed galaxies, the lensing effi-
ciency kernel is defined to be

p(ω′) =
∫ ω∞

ω′

(
ω − ω′
ω

)
n(ω)dω ; (5)

this weights the contribution of the foreground density fluc-
tuations to give the convergence weighted over the redshift
distribution of source galaxies,

κ( #»θ ) =
∫ ∞

0
n(ω)κ( #»θ , ω)dω

=
3H2

0Ωm

2

∫ ∞
0

dω′p(ω′)ω′ δ(
#»
θ , ω′)

a(ω′) .

(6)

The shear, γ( #»θ ), which is assumed to be an observable in
the weak lensing limit, is given by

γ( #»θ ) = 1
π

∫
R2

d2θ ′D( #»θ − #»
θ ′)κ( #»θ ′)

where D( #»θ ) = −(θ1 − iθ2)−2 .

(7)

For surveys where the integral is over large angles on the
sky, this formulation breaks down, and requires a full treat-
ment in spherical bases. Wallis et al. (2017) show that errors
can be introduced at an O(1%) level for correlations between
points at DES SV angular separation depending on the pro-
jection. All of the methods used here use the small angle
approximation, and should suffer equally.

The real and imaginary parts of the shear γ represent a
chosen two dimensional coordinate system. In weak lensing,
the observed ellipticity1 of a galaxy εobs is related to the
reduced shear g plus the intrinsic ellipticity of the source
galaxy εs through

εobs ≈ g + εs

where g =
γ

1 − κ .
(8)

The reduced shear is approximately the true shear, g ≈ γ,
in the weak lensing limit. This allows a standard definition
of observed shear, γobs = εobs, where the measurements are
degraded by “shape noise”, caused by the εs values of the
observed galaxies:

γobs ≈ γ + εs . (9)

The shape noise for a given galaxy is modelled as a
randomly-drawn Gaussian variate, εs ∼ G(0, σε ), where σε
is estimated from data. The distribution of the ellipticity
from the SV data in figure 2 is not an exact Gaussian, as
the true distribution is the result of galaxy astrophysics,
though a Gaussian still has properties that make it a good
approximation. The Gaussian would be the maximum en-
tropic, least informative, distribution for known mean and
variance, and, by the central limit theorem, would be the
correct distribution in the limit of large numbers of galaxies
averaged in pixels.

1 Using the Bartelmann & Schneider (2001) equation 4.10 ellip-
ticity definition for ε .

MNRAS 000, 1–19 (2018)
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It is possible to extend the simple Kaiser-Squires
method (Sec. 2.2) to use the reduced shear, g, for the mildly
non-linear lensing regime when it is no longer appropriate
to assume g ≈ γ (Schneider & Seitz 1995, Seitz & Schneider
1995, Seitz & Schneider 2001). This is also done by Glimpse
(Sec. 2.4).

In matrix notation, the problem as given by equations 7
and 9 can be expressed as a linear model, with a data vector
of observed shear measurements

γ = Aκ + n , (10)

where A is a discretised version of equation 7 and n is a
noise vector due to shape noise (equation 9). The elements
of the data vector can either correspond to the individual
shear measurements or to measurements binned into angular
pixels (in which case the noise vector would be the average
noise in the pixel).

The convergence need not be reconstructed with the
same pixelisation as the shear measurements, giving κ and γ

vectors of different length. Missing data due to survey masks
would correspond to a shorter γ vector; here one may wish to
fill in the convergence in the masked region — this is known
as inpainting. Different sized κ and γ vectors result in a non-
square A matrix, potentially causing inversion problems.

2.2 Kaiser-Squires reconstruction

2.2.1 Theory

The convergence-to-shear relationship, equation 7, is a con-
volution in the two dimensional angular plane. The two-
dimensional Fourier transforms of the shear and conver-
gence, defined for κ as

κ̃( #»k ) =
∫
R2

d2θκ( #»θ )exp(i #»
θ · #»

k ) , (11)

are related through an elementwise product via the convo-
lution theorem

γ̃( #»k ) = π−1D̃( #»k )κ̃( #»k ) , (12)

where the Fourier transform of the kernel is given by

D̃( #»k ) = π
(k2

1 − k2
2 + 2ik1k2)
| #»k |2

; (13)

here k1 and k2 are the components of
#»
k . Using D̃D̃∗ = π2,

equation 12 can be rewritten:

κ̃( #»k ) = π−1γ̃( #»k )D̃∗( #»k ) for #»
k ,

#»0 . (14)

The inverse Fourier transform then returns the convergence
reconstruction in configuration space (Kaiser & Squires
1993).

The real and imaginary parts of the reconstruction are
the E- and B-modes respectively, where κrecon = κE + iκB. In
standard cosmology (equation 7), the convergence sourced
by a real density field should be a pure E-mode. Errors, noise
or other systematic effects can lead to B-mode contributions
to the reconstruction.

2.2.2 Implementation

In the matrix formulation of equation 10, this deconvolution
corresponds to multiplying the Fourier space shear field with
the inverse of A in Fourier space. For a case with no shape
noise, that is

γ̃ = Ãκ̃ , (15)

the Kaiser-Squires method is identical to using the inverse
matrix

[
Ã−1]

i j =
k2

1,i − k2
2,i − 2ik1,ik2,i

k2
1,i + k2

2,i
δi j

=
[
Ã†

]
i j ,

(16)

where the Kronecker delta function, δi j , relates the element-
wise multiplication in Fourier space to a diagonal matrix
operator, and † is the conjugate transpose.

For the Kaiser-Squires inversion in configuration space,
the A and A† matrices are not diagonal, and therefore
are slower to compute. The discretisation of the underly-
ing smooth shear field into finite configuration space makes
the property AA† = I inexact. As a result of these factors,
we choose to implement the Kaiser-Squires reconstruction
in Fourier space.

The shear due to lensing is much smaller than the shape
noise, and not all places on the sky contain usable galaxies.
Both the shape noise and the random sampling of back-
ground galaxies propagate error through this noisy recon-
struction. Binning the shear measurements into larger pixels
can reduce the shape noise per pixel and ensure that there
are no empty pixels, but this comes at a loss of the small
scale information and cannot deal with masks or the edges
of the survey.

A smoothing filter is applied to the Kaiser-Squires re-
construction to reduce the noise. This will similarly lose any
small scale structure, and especially suppress peaks in the
convergence. In this work, matching Chang et al. (2015),
we smooth the Kaiser-Squires maps with a Gaussian kernel.
The standard deviation scale, σsmooth, of this Gaussian ker-
nel is free to be chosen, where σsmooth = 0 corresponds to
standard, unsmoothed Kaiser-Squires.

2.3 Wiener Filter

2.3.1 Theory

The Wiener filter is the linear minimum-variance solution to
linear problems of the type in equation 10, where the noise is
uncorrelated. The Wiener filter reconstruction (Lahav et al.
1994, Zaroubi et al. 1995) is given by

κW =Wγ

W = SκA†
[
ASκA† + N

]−1
.

(17)

Here Sκ and N are the signal and noise covariance matrices
respectively, which are 〈κκ†〉 and 〈nn†〉 for this problem.

This filter is the linear minimum-variance solution, as
W is a linear operator that minimises the variance

〈(Wγ − κ)†(Wγ − κ)〉 . (18)

MNRAS 000, 1–19 (2018)



DES SV Mass Maps with Gaussian and Sparsity Priors 5

If the chosen prior on κ does not constrain the reconstruc-
tion, so that S−1

κ → 0 (Simon et al. 2009), or if the data are
noise-free, N = 0, then the linear minimum variance filter
becomes the Kaiser-Squires reconstruction. Setting S−1

κ → 0
is equivalent to removing the signal prior in the following
Bayesian framework.

From a different starting point, for the Wiener poste-
rior we begin by assuming a Gaussian likelihood (Jasche &
Lavaux 2015)

Pr(γ |κ) = 1√
(det2πN)

exp
[
− 1

2
(γ − Aκ)† N−1(γ − Aκ)

]
, (19)

where it is assumed that N is known and the noise is both
uncorrelated and Gaussian, as assumed in equation 10. In-
trinsic alignments of clustered galaxies will violate this un-
correlation condition.

The prior on the convergence is that of a Gaussian ran-
dom field, which is applicable for the density field on large
scales at late times,

Pr(κ |Sκ ) =
1√

(det2πSκ )
exp

[
− 1

2
κ† S−1

κ κ
]
. (20)

Using Bayes’ theorem and the fact that Pr(γ |Sκ, κ) =
Pr(γ |κ), the full posterior is given by

Pr(κ |Sκ, γ) =
Pr(γ |κ)Pr(κ |Sκ )

Pr(γ)

∝ 1√
(det2πSκ )

1√
(det2πN)

×

exp
[
− 1

2
κ†S−1

κ κ − 1
2
(γ − Aκ)†N−1(γ − Aκ)

]
∝ exp

[
− 1

2
(κ −Wγ)†(S−1

κ + AN−1A†)(κ −Wγ)
]
,

(21)

where W is the Wiener filter, so the maximum a posteriori
(MAP) solution is that of the Wiener reconstruction.

If the aim of the reconstruction is to infer cosmology
from the non-Gaussian component of the density field, the
Wiener filter may not be the ideal method for mass map
recovery. The small scale modes with less power are often
suppressed, losing the peak structure. Qualitatively it can be
thought of as either the Gaussian prior being inappropriate
or as the linear filter being insufficient.

2.3.2 Implementation

Using the exact Fourier space property Ã−1 = Ã† we rewrite
equation 17 as

κ̃W = Ã−1S̃γ
[
S̃γ + Ñ

]−1
γ̃

= Ã−1γ̃W

= Ã†γ̃W ,

(22)

where we have used ÃS̃κÃ† = 〈Ãκ̃ κ̃†Ã†〉 = 〈γ̃γ̃†〉 = S̃γ. This
shows that applying the Wiener filter to the shear to recover
γW and then applying the Kaiser-Squires inversion in Fourier

space is equivalent to directly calculating the Wiener filter
of the convergence.

In configuration space, the noise covariance matrix is
given by

[
N
]
i j =

2σ2
ε

pi
δi j , (23)

where pi is the galaxy count per pixel. Empty pixels in the
masked region have infinite variance, absorbing the mask
into a special case of the Wiener filter denoising.

The signal properties for a Gaussian random field are
constrained entirely by the mean and the signal covariance
matrix, which in harmonic space is identical to the power
spectrum. The cosmological principle implies that the angu-
lar distribution of a field on the sky is statistically isotropic,
so the angular power spectrum, C` , can contain all the 2-
point statistical information. The angular power spectrum
of the physical shear E-mode shear signal is defined as

C`,E =
1

2` + 1

+∑̀
m=−`

〈|a`m,E |2〉

= C`,κ ,

(24)

where a`m are the spherical harmonic coefficients and the
brackets 〈 〉 average over realisations of the signal. The sec-
ond equality assumes the flat sky approximation for high2 `.

We generate a theoretical power spectrum using the
Limber approximation with the Cosmosis package (Zuntz
et al. 2015) with our prior fiducial cosmological parameters:
Ωm = 0.286, ΩΛ = 0.714, Ωb = 0.047, h = 0.7, σ8 = 0.82, ns =
0.962 and w = −1. We use a background galaxy distribution
defined from equation 31, and shown in figure 1.

It is commonly asked whether it is reasonable to as-
sume cosmological parameters in the map reconstruction,
if the maps are then used to infer cosmological parameters.
Though we assume a specific set of cosmological parameters,
it would still be possible to use the maps for cosmological
parameter estimation, from peak statistics for example, if
the same prior is used on the simulations and the data iden-
tically. If simulations are not used, the power spectrum can
be jointly inferred from the data (Jasche & Lavaux 2015)
using Gibbs sampling.

In order to generate the power spectrum in flat Fourier
space, rather than on the curved sky, we again use a flat sky
approximation

k2
θP(kθ ) =

(
N
2π

)2

`(` + 1)C` , (25)

adapted from Loverde & Afshordi (2008), where N is the
total number of pixels in the map, kθ is the magnitude of
the projected Fourier mode, and where we have defined our
projected angular power spectrum as

P(kθ )δ(kθ − k′θ ) = 〈 γ̃(kθ ) γ̃
†(kθ ) 〉 . (26)

The largest scale mode is ` = 20.51, which corresponds to an
angular separation of 17.55 deg.

2 We omit a prefactor which goes as 1 − O(`−2) for high `.

MNRAS 000, 1–19 (2018)



6 N. Jeffrey et al.

Though the signal covariance matrix is diagonal in har-
monic space (equation 26), and the independent noise has
covariance which is diagonal in configuration space (equa-
tion 23), there is no natural basis in which both are sparse.
Inversion of dense matrices to evaluate the Wiener filter is
bypassed using the algorithm presented in Elsner & Wan-
delt (2013), where an additional messenger field is used to
pass information between harmonic and configuration space,
iteratively converging to the Wiener filter solution.

These messenger field methods were extended by Jasche
& Lavaux (2015) to draw Markov chain Monte Carlo
(MCMC) samples from the whole Wiener posterior (equa-
tion 21). The first application of messenger field methods
to weak lensing data was by Alsing et al. (2016, 2017),
who drew samples from the Wiener posterior and gener-
ated Wiener filtered shear (not convergence) maps from
CFHTLenS data. By comparison, in this work we do not
sample from the Wiener posterior; instead, we use the origi-
nal messenger field algorithm of Elsner & Wandelt (2013) to
calculate the Wiener filter reconstruction of the convergence
map from DES SV shear data and simulations.

2.4 Sparsity reconstruction

2.4.1 Theory

Consider the coefficients α of the decomposition of a sig-
nal x in a representation space (or “dictionary”) Φ, so that
x = Φα. Example dictionaries include the Fourier transform
or wavelet transforms. Assuming a sparse prior on the sig-
nal x in the dictionary Φ means that its representation α

is expected to be sparse, that is, with most of the coeffi-
cients equal to 0 (Starck et al. 2015). A simple example is a
cosine function signal and a Fourier transformation; in this
sparse basis only two coefficients have a non-zero value (cor-
responding to the frequency of the cosine function).

Formally most signals cannot strictly be made sparse,
and are merely compressible with a choice of an appropriate
transformation, such as a wavelet transform (Starck et al.
2015, Leonard et al. 2014). For a compressible signal the
magnitude-ordered sparse coefficients, αi , are expected to
have exponential decay and therefore to have a Laplace dis-
tribution (Tibshirani 1994).

Consider a generic linear inverse problem of the form
y = Ax+n. A robust estimate of the signal x can be recovered
by solving the (“LASSO”) optimisation problem

arg min
α

| |y − AΦα | |22 + λ | |α | |1 , (27)

where λ is a Lagrangian multiplier (Tibshirani 1994). Here
the first term corresponds to a χ2 minimisation, ensuring
fidelity of the signal reconstruction, while the second is the
sparsity-promoting regularisation term.

We can include non-constant noise variance by weight-
ing the first χ2 according to the variance. If the noise vari-
ance is included in the χ2 term, the λ value can be in-
terpreted as a signal-to-noise level in the transformed (e.g.
wavelet) space.

The second term does not use the Euclidan l2 norm, but
instead uses the sparsity-promoting l1 norm, defined as

| |α | |1 =
∑
i

|αi | . (28)

These methods are non-linear, so it can be difficult to derive
properties analytically. With realistic simulations of the data
and true signal, the value for λ can be chosen to maximise
some success metric. This is analogous to selecting a theo-
retical power spectrum for the Wiener filter, or a smoothing
scale for Kaiser-Squires.

Sparse recovery methods are non-linear and are not nec-
essarily formulated in the Bayesian framework of the Wiener
filter. The Wiener filter reconstruction is that which max-
imises the Wiener posterior, which is known analytically pro-
vided the noise and signal are Gaussian with known covari-
ance. However, one may make a frequentist estimate of the
error of the sparse reconstruction by propagating the noise
properties of the data using bootstrapping or Monte Carlo
techniques.

2.4.2 Implementation/GLIMPSE

The choice of dictionary depends on the structures con-
tained in the signal. Theory of structure formation in the
universe predicts the formation of quasi-spherical halos of
bound matter. It is standard practice to represent the spa-
tial distribution of matter in halos with spherically symmet-
ric Navarro-Frenk-White (Navarro et al. 1996) or Singular
Isothermal Sphere profiles. Coefficients of Isotropic Undeci-
mated Wavelets (Starck et al. 2015) in two dimensions are
well suited to the observed convergence of a dark matter
halo. The wavelet transform used in the Glimpse algorithm
is the Starlet (Starck et al. 2007), which can represent posi-
tive, isotropic objects.

The sparsity prior in the starlet basis enforces a physical
model that the matter field is a superposition of spherically
symmetric dark matter halos. This is not wholly correct, but
is an approximation which is true for the non-linear regime in
the standard model of structure formation, similarly to how
the assumption of Gaussianity holds in the linear regime.
On large scales, where the density field is expected to be
Gaussian, the Glimpse sparsity prior is less appropriate.

The Glimpse algorithm aims to solve the optimisation
problem

κ̂ = arg min
κ

| |N−
1
2
[
γ − T†ÂFκ

]
| |22

+ λ | |ωΦ†κ | |1 + iIm(κ)=0 ,
(29)

where F is the Fourier transform matrix, T is the Non-
equispaced Discrete Fourier Transform (NDFT) matrix, Â
is defined in equation 16, ω is a diagonal matrix of weights,
and Φ† is the inverse wavelet transform. The indicator func-
tion iIm(·)=0 (defined in Appendix B) in the final term im-
poses realness on the reconstruction (no B-modes). The use
of NDFT allows the first term to perform a forward fitted
Kaiser-Squires-like step without binning the shear data, al-
lowing the smaller-scales to be retained in the reconstruc-
tion. The full algorithm, including the calculation of the
weights, is described in Sec. 3.2 in Lanusse et al. (2016).
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Though the problem presented in equation 29 is an op-
timisation using the shear data γ, in fact it is the reduced
shear (equation 8) that Glimpse uses to recover κ (Lanusse
et al. 2016). As an extension, the Glimpse algorithm can
also perform the joint reconstruction with reduced shear and
flexion, a third-order weak gravitational lensing effect (Ba-
con et al. 2006) (although no flexion data are available for
our galaxy shear catalogue).

As the prior knowledge in this reconstruction relates
to the quasi-spherical clustering of bound matter, enforced
through a sparsity prior in Starlet space, this method should
better reconstruct the smaller scale non-Gaussian structure
than the Wiener filter.

3 DATA AND SIMULATIONS

3.1 Dark Energy Survey Science Verification Data

The shear data are from the 139 deg2 SPT-E field of the
public DES SV data. This initial test data set was taken
during an observing run before the official start of the full
science survey. The galaxy catalogue comes from the SVA1
(Science Verification) Data Release3. Due to changes to the
catalogues before final release (more galaxy shear measure-
ments are now available to us), the catalogue used in this
work is not identical to that used by Chang et al. (2015),
even when the same data selections are made. All maps are
therefore new, and slightly different to the previously pub-
lished SV map.

The photometric redshifts from five optical filters
(grizY ) were estimated using the Bayesian Photometric
Redshifts (BPZ) code (Beńıtez 2000, Coe et al. 2006, & Bon-
nett et al. 2016). The final median depth estimates are
g ∼24.0, r ∼23.0, i ∼23.0 and z ∼22.4 (10-σ galaxy limit-
ing magnitude). The “background galaxies”, the ones from
which the shear is measured, are taken in the range 0.6 <

zmean < 1.2. The zmean value for each galaxy is the mean
of the posterior probability distribution function (PDF) es-
timated using the BPZ code. The PDF for each galaxy is
very broad, giving a total stacked PDF of background galax-
ies that extends beyond the [0.6, 1.2] redshift range, as can
be seen in figure 1.

Using the ngmix shape catalogue, we apply a selection
of sva1 flag = 0 & ngmix flag = 0 to obtain galaxies with
a well-measured shear. The ngmix catalogue contains cor-
rections to measurement bias, in the form of “sensitivities”,
which can be applied to a weighted ensemble of hundreds
or thousands of galaxies, but which cannot be applied per
galaxy (which is not ideal for mass mapping). The structure
of equation 7 implies that a multiplicative shear bias would
lead to a convergence amplitude bias. Under the assumption
that multiplicative shear bias will not vary across the sur-
vey area, we correct all measured ellipticities by the same
debiasing factor

εobs,i = εmeasured,i × s̄−1 , (30)

where i is a galaxy index and s̄ (≈ 0.82) is the mean sensi-
tivity correction from all galaxies in our ngmix-selected cat-

3 http://des.ncsa.illinois.edu
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Figure 1. The redshift distribution from BPZ of the selected
background galaxies with 0.6 < zmean < 1.2. The blue solid his-

togram is of the galaxies’ point estimate mean redshifts in bins of

∆z = 0.02. The red line is the stacked redshift probability density
function (PDF) of all selected galaxies. The green dashed line is

the lensing efficiency (equation 5) of the background galaxies.

alogue. The total number of galaxies after the redshift and
shape measurement selection is 1, 628, 663.

For the Kaiser-Squires reconstruction, the shear mea-
surements are binned into angular pixels in a 256×256 map,
with average pixel size of 4.11 arcmin, using a sinusoidal pro-
jection with a centre at RA=71.0 deg. This is similar to the
5 arcmin pixel scale of the original Chang et al. (2015) map.
The choice of central RA for Kaiser-Squires is to minimise
the mask in the square projection, which is a large source
of systematic error. For the Wiener filter, where the mask is
taken into account, the shear measurements are also binned
into angular pixels in a 256× 256 map, but sinusoidally pro-
jected with a central RA=81.3 deg, to make the square max-
imally isotropic. The Glimpse algorithm does not bin the
input shear measurements, but requires a pixel scale for the
reconstruction, which we set as 3 arcmin using its gnomonic
projection centred on RA=76.95 deg and DEC=−52.23 deg.

3.2 redMaPPer Clusters

Groups and clusters of galaxies are expected to trace the
highest density regions in the foreground. They are lumi-
nous objects that correspond to regions of highly non-linear
growth, where the density field has deviated from Gaussian-
ity.

The public redMaPPer cluster catalogue (Rykoff et al.
2016) used the redMaPPer algorithm to optically identify
clusters and to estimate each cluster’s richness, λRM . The
richness is defined as the sum of the membership probabil-
ities over all galaxies within a scale radius (chosen to min-
imise the scatter in the mass-richness relation); it gives an es-
timate for the number of galaxies in a cluster. Cluster mass is
expected to scale approximately linearly with richness. The
redshift uncertainty is excellent, around σz/(1 + z) ∼ 0.01,
due to the clusters containing large numbers of well mod-
elled, red galaxies. The public redMaPPer catalogue used in
this work contains only clusters with λRM > 20, so that the
clusters with less certainty of detection and characterisation
are not used.
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Figure 2. Distribution of the first component of ellipticity, ε1,

from the selected SV catalogue. A Gaussian distribution with

the same mean and standard deviation shows that the ellipticity
distribution is not a true Gaussian, though the noise per pixel

will be more closely Gaussian due to the central limit theorem.

3.3 Simulations

To compare the reconstructions between different methods,
we use a simulated catalogue with a known true conver-
gence. We use a set of N-body simulations developed for
the DES collaboration and designed to be representative of
the DES data (Busha et al. 2013). The simulations used
are N-body light cones composed from three boxes (14003,
20483, and 20483 particles in boxes of comoving length 1050
Mpc/h, 2600 Mpc/h, and 4000 Mpc/h respectively). The
cosmological parameters for the simulations are: Ωm = 0.286,
ΩΛ = 0.714, Ωb = 0.047, σ8 = 0.82, h0 = 0.7, ns = 0.96,
w = −1. We apply a mask to match the SV data.

Source galaxies have randomly-assigned positions in the
simulations, as correlation between the background galaxy
positions and the weak lensing shear signal is expected to be
negligible. The simulated catalogues contain the lensing ma-
trix components, Ai j , for each galaxy, calculated with the
ray-tracing code CALCLENS (Becker 2013). This provides the
true κ and γ per galaxy, from which we derive the reduced
shear. The shape noise due to the intrinsic ellipticities of
the source galaxies, εs, is simulated by adding an ellipticity
component to the reduced shear. Each noise realisation is
generated from the data by randomly exchanging the ellip-
ticity values between galaxies in the catalogue to remove the
weak lensing signal and leave the shape noise.

We attempt to match the redshift distribution of the
simulated galaxies to the observed redshift distribution, n(z).
We use the stacked posterior probability density functions
of individual galaxy redshifts from the selected data cata-
logue (figure 1), giving an estimate of the true underlying
distribution. This assumes that

n(z) =
∑
i

pi(z) , (31)

where pi(z) are the individual probability distributions for
the galaxies from BPZ. This is not necessarily exact, due
to errors in pi(z) per galaxy (Leistedt et al. 2016), but is
a reasonable choice for a simulated catalogue. Using rejec-

tion sampling in bins of ∆z = 0.02 we select galaxies with a
probability equal to the ratio between the desired n(z) from
the data and the distribution in the simulation. One typical
simulated catalogue contained 1, 629, 024 galaxies, slightly
different to the data catalogue due to the sampling scheme,
but with the desired n(z).

4 RESULTS

To ensure that the mass map tests are consistent with differ-
ent output formats, all maps were converted onto a spherical
pixelisation using HEALPix (Górski et al. 2005). A HEALPix
map comprises twelve subdivisions on the sphere, which are
then each partitioned into NSIDE × NSIDE grids. Each pixel
of a HEALPix supersampled NSIDE = 4096 map was filled ac-
cording to the value at the corresponding RA and DEC in
the reconstructed maps. The supersampled high NSIDEmaps
were then degraded to NSIDE = 1024. The true convergence
maps from the simulations were directly binned from the
convergence values at galaxy positions to NSIDE = 1024. For
all maps the same mask is applied, where pixels with no
galaxies are masked.

Figure 3 shows the mass map reconstructions from the
SV shear data using the three different methods. An exam-
ple simulation with truth and the three reconstructed maps
is shown in figure 4. The “tuning parameters”, σsmooth =

10.0 arcmin for Kaiser-Squires and λ = 3.0 for Glimpse, are
tuned to maximise the Pearson correlation coefficient r with
the underlying truth when tested on simulations.

Using a suite of 10 simulations, in Sec. 4.1 we calculate
the Pearson correlation coefficient between the truth and
the reconstruction with different methods as a test of the
reconstruction’s quality. In Sec. 4.2, we calculate the root-
mean-square error of the residuals between the truth and the
reconstruction. In Sec. 4.3 we calculate the variance of the
1-point distribution of the pixel values in the reconstruction
and compare with the truth. In Sec. 4.4 and Sec. 4.5 we
quantify the quality of the reconstruction of the phase and
peak statistics respectively, by comparing to the simulated
truth. The final result presented in Sec. 4.6 compares the
reconstruction from the DES SV shear data with foreground
galaxy clusters from the redMaPPer catalogue (which are
expected to trace non-linearities in the underlying density
field).

In this work we do not use correlation functions as a test
of the map reconstruction. None of the mass mapping meth-
ods here are expected to reproduce the correct correlation
functions or power spectra. It is simple to show this analyt-
ically with the Wiener filter, where despite the filter giving
the MAP pixel values, the pixel variance, and therefore the
power spectrum, is suppressed.

4.1 Pixel Cross Correlation

We quantify the correlation between the true convergence
from simulation and the reconstructed convergence of the
simulated catalogue using the Pearson correlation coeffi-
cient. As with other metrics of success for mass map recon-
struction, this can be used to tune the sparsity λ parameter
and the smoothing scale for Kaiser-Squires.
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Figure 3. The convergence (κ) map reconstructions using the DES SV shear data with the three different methods. Top panel : Kaiser-
Squires reconstruction with a smoothing scale σsmooth = 10 arcmin. Right panel : The Glimpse reconstruction with a regularisation
parameter λ = 3.0. Both tuning parameters were chosen to maximise the Pearson correlation coefficient r when tested on simulations

(See Sec. 4.1). Left panel : The Wiener filter reconstruction. Note that the colour scale for the Wiener filter is less than that for the other
reconstructions, as the pixel values are closer to zero.

The Pearson correlation coefficient, r, between the pix-
els’ true convergence, κtruth, and the reconstruction, κrecon,
is given by

r =

∑n
i=1(κ

truth
i

− κ̄truth)(κrecon
i

− κ̄recon)√∑n
i=1(κ

truth
i

− κ̄truth)2
√∑n

i=1(κ
recon
i

− κ̄recon)2
, (32)

where the summations are over all pixels i in the map and
κ̄ is the mean convergence in the map.

In the left panels of figure 5, the Pearson r value from 10

simulations is plotted for varying tuning parameters. Almost
all of the simulations and also their mean have a maximal
Pearson r value at σsmooth = 10.0 arcmin for Kaiser-Squires
and at λ = 3.0 for Glimpse.

Table 1 presents the mean value from the 10 simula-
tions, where the tuning parameter is chosen to maximise
r when relevant. All methods show good correlation with
the underlying true convergence. Both the Wiener filter and
Glimpse have the same highest value of r = 0.37, 12% higher
than Kaiser-Squires.

Note that the Pearson correlation coefficient as pre-
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Figure 4. The top left panel is an example of a true convergence map, κrecon, from simulation. The top right panel is the Kaiser-Squires

reconstruction with a smoothing scale σsmooth = 10 arcmin. The bottom right panel is the Glimpse reconstruction with regularisation
parameter λ = 3.0. Both tuning parameters were chosen to maximise the Pearson correlation coefficient r when tested on simulations
(see Sec. 4.1). The bottom left panel is the Wiener filter reconstruction. Note that the colour scale for the Wiener filter is less than that

for the other reconstructions, as the pixel values are closer to zero.

sented in equation 32 is invariant under a rescaling of the
reconstruction. Despite the Wiener filter reconstruction hav-
ing values closer to zero, the Wiener filter maps still have
good correlation to the truth. This second aspect is ad-
dressed in Sec. 4.3 and in the second column of table 1.

4.2 Pixel Residuals

The difference between the true convergence from simulation
and the reconstruction in pixel i is defined as

∆κi = κ
truth
i − κrecon

i . (33)

We define the root-mean-square error (RMSE) as

RMSE(κtruth, κrecon) =

√√√
1
n

n∑
i=1

∆κ2
i (34)
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Figure 5. Kaiser-Squires (top) and Glimpse (bottom). Three different statistics comparing the true κ map and the reconstruction with
10 simulations. Left panel : The Pearson correlation coefficient, r (equation 32). The errorbar on the mean is the standard deviation of

the sample. The better the reconstruction, the higher the value of r . Middle panel : The lower the pixel RMSE (equation 34), the better
the reconstruction. Right panel : Ratio of variances between the 1-point distribution of the pixels in the reconstruction and pixels in the

true map (equation 35).

where n is the number of pixels.
A smaller value of RMSE for a given method implies

a better reconstruction according to this metric. It is this
RMSE that the Wiener filter attempts to minimise using a
linear filter, as defined in equation 18, by using an assumed
signal covariance 〈κκ†〉 (see Sec. 2.3.1).

The centre panel of figure 5 shows that increasing the
smoothing scale, σsmooth, for Kaiser-Squires or the regu-
larisation parameter, λ, for Glimpse initially reduces the
pixel RMSE, but increased filtering contributes little be-
yond σsmooth = 10.0 arcmin for Kaiser-Squires or λ = 3.0
for Glimpse.

The smallest mean pixel RMSE is 10.0×10−3 for Kaiser-
Squires and 9.9×10−3 for Glimpse. The Wiener filter, whose
smoothing is constrained by the prior on C` and which there-
fore cannot be tuned, has a pixel RMSE of 9.4 × 10−3.

4.3 Pixel 1-Point Variance

The 1-point distribution can be thought as a histogram of
the pixel values. Figure 6 shows an example of such a his-
togram (derived from the simulated truth map and recon-
structions of figure 4).

The mean of this distribution is unconstrained by weak
lensing, due to an integration constant in equation 7. The
variance of the 1-point distribution is increased compared
to the underlying truth due to shape noise in the un-
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Figure 6. Pixel histograms (1-point distributions) for various

map reconstructions from the simulated data shown in figure 4.
The histograms are normalised such that the largest value of each

is equal to one. The ratio of the variance between the reconstruc-

tions and the truth is presented in table 1.

smoothed Kaiser-Squires reconstruction. A reconstruction
method would aim to reduce the variance of the 1-point
pixel distribution to match that of the underlying truth.
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Table 1. The centre column gives the average Pearson correla-
tion coefficient r (equation 32) between κ truth and κrecon from

10 simulations. The choices of σsmooth = 10 arcmin and λ = 3.0
maximise the Pearson r value. The right column gives the ratio
of the pixel variance between κrecon and κ truth (equation 36).

Method Pearson r Variance Ratio

KS (σsmooth = 10 arcmin) 0.33 3.7 ×10−1

Wiener filter 0.37 6.3 ×10−2

Glimpse (λ = 3.0 ) 0.37 5.0 ×10−1

We define the estimate of the variance of the 1-point
distributions of the truth or reconstructed κ as

Vartruth =
1

n − 1

n∑
i=1
(κtruth
i − κ̄truth)2

Varrecon =
1

n − 1

n∑
i=1
(κrecon
i − κ̄recon)2 ,

(35)

where the notation matches equation 34. The ratio of these
variances is given by

Varrecon
Vartruth

=

∑n
i=1(κ

recon
i

− κ̄recon)2∑n
i=1(κ

truth
i

− κ̄truth)2
, (36)

The closer this value is to 1, the better the variance of the
pixel distribution matches the truth. Using 10 simulations
we can calculate this quantity for different reconstruction
methods (and at different smoothing scales or λ regularisa-
tion values where relevant).

In figure 5 the right panel shows the result of this test
for Glimpse and Kaiser-Squires. Both methods show a pixel
distribution that has too high variance for insufficient fil-
tering, and too low variance for over-filtering. For Kaiser-
Squires, the ratio is closest to 1 at a smoothing scale of
σsmooth = 5 arcmin. For Glimpse, the ratio is closest to 1 at
a sparsity regularisation value of λ = 2.

Both of these reconstruction methods have a match-
ing variance at a smoothing parameter value less than that
which maximises the Pearson correlation coefficient r. If one
chose this parameter to maximise the Pearson r value, such
that λ = 3 and σsmooth = 10 arcmin, a good reconstruction
should also have the ratio of the variances as close to 1 as
possible.

The right column of table 1 gives the mean variance
ratio from 10 simulations with the different methods. The
choice of λ = 3.0 and σsmooth = 10 arcmin are the tuning
parameters that maximise the Pearson r value for Glimpse
and Kaiser-Squires respectively. Though Glimpse and the
Wiener filter reconstructions both have the same Pearson r
value, the variance of the pixel values of the Wiener filter
is much lower with respect to the underlying truth than is
the case for Glimpse. This can also be seen in the recon-
structions of figure 4, where the Wiener filter pixel values
are closer to zero than the simulated true convergence.

The histogram of figure 6 shows, for one single exam-
ple, the distributions matching what the results of the sec-
ond column of table 1 describe. Glimpse outperforms the
other methods at matching the variance of the underlying

truth, however it still falls short. Also, all methods, including
Glimpse, have distributions which are symmetric, unlike the
asymmetric, heavy-tailed distribution of the true κ values.

Though Glimpse reconstructs maps with the 1-point
distribution variance closest to the truth, it is also the
only method to have convergence values dropping below the
truth. These unphysical “negative peaks” can also be seen
in the map reconstructions from data (figure 3) and from
simulated catalogues (figure 4), and are likely to come from
enforcement of sparsity for positive and negative wavelets
equally. The physical motivation for Glimpse comes from
a density field of superimposed halos. Though there should
be no negative halos, negative wavelets are included to map
the underdense regions, clearly at the expense of producing
these very negative regions.

4.4 Phase reconstruction

The summation over all m modes at each ` multipole
in the angular power spectrum (equation 24) loses all
phase information; only the magnitudes are retained. This
phase information corresponds to the spatial distribution of
anisotropies. As the phases are dependent on the physical
underlying structure, they contain information beyond what
can be gained by 2-point statistics. Their retention is a well-
motivated, desired property of a mass mapping reconstruc-
tion.

Inspired by Chapman et al. (2013), who use phases to
test the reconstruction after foreground removal from simu-
lated Epoch of Reonization 21-cm maps, we use the phase
residual as a metric of success between our three methods.

The phase difference between the true map and the re-
construction is defined as

∆θ`m = θ
truth
`m − θrecon

`m

= arg
(
atruth`m

)
− arg

(
arecon
`m

)
,

where arg(z) = arctan
( Im(z)

Re(z)

)
.

(37)

A small phase difference ∆θ`m between the truth and the
reconstruction implies that the phase has been well recon-
structed. For random variables drawn from a Gaussian dis-
tribution, this would correspond to a small standard devi-
ation. Here, however, a Gaussian distribution would be an
inappropriate choice as it assumes the data are defined on
an unbounded Euclidean space.

The two dimensional data space of phase pairs,
{θtruth
`m

, θrecon
`m
}, is a torus, T2, and the projected data space

of the phase difference, ∆θ`m, is a circle, S1. On a circle, the
maximum entropy, least informative, distribution for speci-
fied mean and variance is the von Mises (Jammalamadaka
& Sengupta 2001), which in one dimension is given by

Pr(∆θ`m |C, µ) =
1

2πI0(C)
exp

[
C cos(∆θ`m − µ)

]
, (38)

where I0 is the modified Bessel function of order 0, and C
is a concentration parameter. For µ = 0, a large concentra-
tion parameter (analogous to 1/σ2) would correspond to a
small dispersion in the phase reconstruction error. The aim
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Figure 7. The maximum likelihood value of the concentra-

tion of the phase residual distribution, ĈMLE, as described by
equation 39. The ĈMLE values are shown for 10 different simu-

lations and with Kaiser-Squires (top panel) at varying smooth-

ing scale, σsmooth , and Glimpse (bottom panel) at varying reg-
ularisation parameter λ. The phase reconstruction is best for

σsmooth = 5 arcmin and λ = 3.0 respectively.

is therefore to compare the inferred value of the concentra-
tion, C, between different mass mapping methods, with a
larger value of C implying a better phase reconstruction.

By assuming that the error on the phase reconstruction
is independent between phases, we can say that the phase
differences, ∆

#»
θ , are independent and identically distributed

random variables, with a likelihood distribution given by

Pr(∆ #»
θ |C, µ) =

∏
`m

1
2πI0(C)

exp
[
C cos(∆θ`m − µ)

]
=

1
[2πI0(C)]n

exp
[
C

∑
`m

cos(∆θ`m − µ)
]
.

(39)

As only the relative values of C are needed to compare dif-
ferent mass mapping methods, the full posterior distribution
is not required. Additionally, any reasonable prior distribu-
tion, Pr(C), will be either flat or monotonically decreasing
above zero, so the ranking of maps by the largest maximum
likelihood value or maximum posterior value of C will be
identical. For the purposes of this comparison the simpler
maximum likelihood estimate, ĈMLE, will therefore do.

We calculate the maximum likelihood values of µ and C
by taking the spherical harmonic transform of our HEALPix
map to recover the a`m coefficients up to `max = 1024, calcu-

Table 2. The mean over 10 simulations of the von Mises concen-
tration maximum likelihood estimate, ĈMLE, from phase residuals

(equation 39).

Method Phase reconstruction

Concentration ĈMLE

KS (σsmooth = 5 arcmin) 0.501

Wiener filter 0.591

Glimpse (λ = 3.0 ) 0.584

lating the phase residual as defined by equation 37 between
the truth and the reconstruction for each coefficient, and
then maximising the likelihood (equation 39). The maximi-
sation is performed using the scipy package BFGS algo-
rithm (Byrd et al. 1995, Zhu et al. 1997, Morales & Nocedal
2011), using 3 random initialisation values to test for robust-
ness.

Figure 7 show the results for the phase reconstruction
from 10 simulations using Kaiser-Squires and Glimpse with
varying tuning parameters. For Kaiser-Squires the mean
phase reconstruction value, ĈMLE, is maximised at σsmooth =

5.0 arcmin. For larger smoothing scales the phase reconstruc-
tion quality drops, as phase information is lost. For Glimpse
the mean phase reconstruction value, ĈMLE, is maximised at
λ = 3.0. The maximum value of ĈMLE is not particularly pro-
nounced, and the ĈMLE values are quite stable over a range
of λ.

Table 2 presents the mean values of ĈMLE with the best
tuning parameters for the three map reconstruction meth-
ods. Both Glimpse and the Wiener filter do much better
than Kaiser-Squires for reconstructing the phases. Though
the variance from these 10 different simulations is large, the
Wiener filter does slightly better than Glimpse, as can be
seen in figure 7.

4.5 Peak Statistics

Peak statistics are a promising method for inferring cos-
mological parameters from data, as they access informa-
tion beyond what can be inferred from 2-point correlation
functions. Unlike higher order correlation functions, such as
the bispectrum, peak statistics are inherently high signal-to-
noise. They also probe the highly non-linear regions, where
non-Gaussianity is greatest. The effect of masking is triv-
ially taken into account by applying the identical mask to
the suite of simulations used to construct a likelihood.

We cannot truly test which mass mapping method best
constrains cosmology with the statistics of density peaks
without fully deriving the posterior probability distribu-
tions of cosmological parameters. It is possible to test which
method returns peaks which are distinguishable from noise
and at which convergence values. Distinguishing a large
number of peaks from noise at high values of κ would mean
the map is reconstructing the non-linear regions well.

For a given convergence map, we can define a function,
n(κ), that gives the number of peaks as a function of conver-
gence. For a given mass reconstruction method we can com-
pare the peaks in reconstructions from simulated data with
the peaks in reconstructions from catalogues of “randoms”,
with shape noise but no weak lensing shear signal (equiva-
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Figure 8. The mean ndata, nrandoms and n∆ functions with 10 sim-

ulated data catalogues and 10 random catalogues from Glimpse
(λ = 3) reconstructions. n∆ is defined in equation 40. Errorbars

are standard deviation sample estimates from the 10 simulations,

and are consistent with Poissonian noise.

lent to γ = 0 in equation 9). If a given map from data or
from a simulated catalogue has the same n(κ) as the random
catalogues, then the mass mapping method used has been
useless for peak statistics. On the other hand, if the map
from data or simulation has a very different n(κ) function
to that from the reconstruction from the random catalogue,
then the map reconstruction method has recovered “true”,
physical κ peaks.

In the DES SV cosmology constraints from peak statis-
tics, Kacprzak et al. (2016) use this difference as the data
vector used to constrain cosmology,

n∆(κi) = ndata(κi) − nrandoms(κi) . (40)

This function is far from zero at a given κ if there is a large
difference between the number of peaks counted in maps re-
constructed (a) from data and (b) from random catalogues.

It is reasonable to believe that the number of peaks,
n(κi), in the ith bin, κi , is drawn from a Poisson distribution.
The difference between two Poissonian random variables fol-
lows the Skellam distribution. Using this distribution, we ex-
pect the difference in the number peaks in maps from data
and from random catalogues to have a mean given by

µ∆(κi) = µdata(κi) − µrandoms(κi) , (41)

and a variance given by

σ2
∆
(κi) = µdata(κi) + µrandoms(κi). (42)

We can therefore define a peak signal-to-noise estimate

SNR(κi) =
µ∆(κi)√
σ2

∆(κi)
. (43)

Figure 8 shows ndata, nrandoms, and n∆ from Glimpse
(λ = 3) from 10 simulations and 10 random catalogues.

Here we define a peak as a local maxima in the HEALPIX

map. Across different methods and smoothing parameters,
the predicted variance from equation 42 matches well with
the estimated sample variance, verifying that the peak dis-
tribution is indeed Poissonian for a given κ.

Figure 9 shows the peak signal-to-noise (SNR) estimates
from 10 simulations and from 10 random catalogues as a
function of κ and smoothing scale, for Kaiser-Squires, or λ,
for Glimpse. As the peaks in the maps from data have higher
convergence values than those from random catalogues, the
SNR(κ) function is negative for low values of κ.

In the figures, the Glimpse reconstruction gives better
signal-to-noise estimates on the peaks than does the Kaiser-
Squires reconstruction. For Kaiser-Squires, the largest pos-
itive and negative signal-to-noise values are 1.52 and -1.28.
For Glimpse, the largest positive and negative are signal-to-
noise values of 2.32 and -13.72. For the Wiener filter these
values are 4.20 and -5.41.

The Wiener filter therefore has the highest signal-to-
noise of the peak function n∆(κ), though the κ values of these
peaks are very low. As can be seen in the reconstruction from
the SV data in figure 3, the pixel values of the Wiener filter
are much closer to zero. This is reflected in the peak statis-
tic signal-to-noise values. In the left panel of figure 9, the
Wiener filter detects negligibly few peaks with κ > 0.0125,
whereas Glimpse detects peaks with positive signal-to-noise
up to higher values of κ. It is at these high values where the
non-Gaussian information due to non-linear structure for-
mation can be probed.

4.6 Foreground Clusters

Comparisons with foreground clusters of galaxies is an in-
dependent test of the mass map reconstructions, as it uses
data (unlike our tests on simulations).

In figure 10 the redMaPPer clusters described in Sec. 3.2
are overlaid on the DES SV κ map reconstructions shown in
figure 3. The maps show good spatial correlation between
the locations of the clusters and the κ peaks in the map.

The size of a cluster marker is the effective lensed cluster
richness λ

e f f
RM

, rather than the redMaPPer cluster richness.
This concept is adapted from the definition of κg presented
in Chang et al. (2015). For a given cluster, this is defined as

λ
e f f
RM
=

p(z)ω(z)
a(z) × λRM ×

〈λRM 〉
〈λe f f

RM
〉
, (44)

where z is the redshift of the cluster, p(z) is the lensing effi-
ciency at the location of the cluster (see figure 1), and ω(z) is
the comoving distance to the cluster (so that the first term
matches the integrand of equation 6). The final term nor-
malises the mean, where 〈λRM 〉 is the average richness over
all galaxy clusters. The effective lensed cluster richness gives
the richness as “seen” by the lensing effect, where clusters at
the peak of the lensing efficiency should contribute more to
the κ map. We therefore calculate the correlation between

λ
e f f
RM

for each cluster and the reconstructed κ value at the
cluster centre.

This method does not take into account multiple clus-
ters overlapping in a given line of sight. In figure 10, many
small clusters overlap on large peaks in the reconstructed κ
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Figure 9. The estimated signal-to-noise (SNR) of n∆(κ) (equation 40) using 10 simulated data catalogues and 10 random catalogues
with the three different mass mapping methods. Kaiser-Squires and Glimpse maps can be tuned by their respective parameters. The

width of the left (Wiener filter) panel is purely nominal; it does not actually have a ”flat structure”, just no parameter to tune. (SNR

interpolated with a sinc function.)

Table 3. The Pearson correlation coefficient value, r , between

effective richness, λ
e f f
RM , of the foreground redMaPPer clusters

and the reconstructed convergence map at the location of each
galaxy cluster.

Method redMaPPer Cluster λ
e f f
RM

Pearson r

KS (σsmooth = 10 arcmin) 0.116
Wiener filter 0.129

Glimpse (λ = 3.0 ) 0.152

map. The naive one-to-one correspondence between cluster
and κ would mistake this for an excess of κ in the recon-
struction. However, all methods will suffer equally from this
assumption. A more thorough treatment of this overlapping
effect is left for future work.

Table 3 presents the Pearson correlation coefficient r
between the λ

e f f
RM

value of each cluster and the κrecon value at
the corresponding pixel. The tuning parameters for Kaiser-
Squires and Glimpse are chosen to maximise the Pearson
correlation coefficient r between the reconstruction and the
truth from simulations (see Sec. 4.1).

Though both Glimpse and the Wiener filter take into
account the noise and the mask in the data, and therefore
do better than Kaiser-Squires, the Glimpse reconstructions
show higher correlation with the effective richness of the
foreground clusters than do the Wiener filter reconstruc-
tions. This is no surprise, as Glimpse is expected to do
better at reconstructing non-Gaussian κ, which would corre-
spond to the non-linear matter structures in which clusters
of galaxies form.

5 CONCLUSIONS

In this work we have presented convergence map reconstruc-
tions using the public DES SV shear data with three differ-
ent methods: Kaiser-Squires, Wiener filter, and Glimpse.

Kaiser-Squires is a simple inversion from shear to conver-
gence, whereas the Wiener filter and Glimpse use prior
knowledge about the true convergence to help regularise
the reconstruction and to reduce the effects of noise and
missing data. The Wiener filter is a Bayesian MAP esti-
mate if the signal and noise are Gaussian and the respective
covariance matrices are known. The Glimpse method en-
forces a sparsity-promoting l1 norm in a wavelet space where
the wavelets represent positive, isotropic, quasi-spherical ob-
jects well. Glimpse is therefore expected to do well at re-
constructing non-linear structures. The Wiener filter and
Glimpse therefore aim to reconstruct different regimes: the
linear and non-linear density field.

The three methods were applied to realistic simulations
of the DES SV shear data, for which an underlying true
convergence is known. Using these simulations we are also
able to tune the Kaiser-Squires smoothing scale, σsmooth,
and the Glimpse sparsity regularisation parameter, λ.

With these simulations we measure the Pearson correla-
tion coefficient, r, between the truth and the reconstruction
with different methods. Compared to the Kaiser-Squires re-
constructions we find a 12% improvement in Pearson corre-
lation with both the Wiener filter and Glimpse. The tuning
parameters of σsmooth = 10 arcmin for Kaiser-Squires and
λ = 3 for Glimpse maximise the Pearson correlation. We
also measure the variance of the 1-point distribution of the
reconstructed convergence. The Wiener filter suppresses the
variance to 6.3 % of the truth, Kaiser-Squires to 37 % and
Glimpse to 50 % of the truth. The tunable parameters here
were those which maximised the Pearson correlation with
the truth.

A large motivation for creating these maps is to recon-
struct the convergence while still retaining the non-Gaussian
information (which cannot be accessed with 2-point statis-
tics such as the power spectrum). As such, we test the recon-
struction of the harmonic phases, which is averaged out in
the power spectrum, and the signal-to-noise of a peak statis-
tic data vector, which is a popular probe of non-Gaussian
information. The phase residuals between the truth and
the reconstruction have the highest von Mises concentration
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Figure 10. The mass map reconstruction from DES SV shear data with the three different methods, as presented in figure 3), with the
locations of redMaPPer clusters overlaid. The size of the cluster marker is the effective richness of the cluster, as defined in equation 44.
Note that the colour scale for the Wiener filter is less than that for the other reconstructions, as the pixel values are closer to zero.

with the Wiener filter (ĈMLE = 0.591), with the Glimpse re-
construction performing comparably (ĈMLE = 0.584). Both
methods outperformed the Kaiser-Squires reconstruction
(ĈMLE = 0.501).

With realistic data vectors for peak statistics generated
from simulations, the maximum signal-to-noise value was
increased by a factor of 3.5 for the Wiener filter and by a
factor of 9 for Glimpse, compared to Kaiser-Squires. The
signal-to-noise of the peak statistic data vector (n∆(κ)) is
shown in figure 9, where Glimpse has significant signal-to-
noise with high convergence peaks, where non-linearities in
the underlying density field are highest. We predict these

high value peaks are most useful for constraining cosmology
beyond Gaussianity. In order to constrain cosmology with
these different reconstruction methods, realistic simulations
with different cosmological parameters or models must be
used and the same reconstruction method should be applied
to the simulations and data. As seen from our results, differ-
ent reconstruction methods can produce convergence maps
with different properties.

Finally, we switched from using simulations to instead
using real observations (DES SV data). Here we measured
the correlation between the reconstructed maps and the ef-
fective richness of the foreground redMaPPer clusters (this
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is the cluster richness as “seen” by the lensing effect). Ta-
ble 3 shows the results. Compared with Kaiser-Squires, the
Wiener filter shows a 18% increase and Glimpse shows a
32% increase in correlation. This demonstrates with inde-
pendent, cosmological data the ability of the methods to
reconstruct non-linear structures.

The metrics we have used for comparing the three re-
construction methods are generic, and they have been in-
spired by recent applications of weak lensing mass maps to
cosmological studies (e.g. Chang et al. 2016, Kacprzak et al.
2016). These metrics may not be optimal for evaluating ev-
ery application of mass maps. Future studies can compare
the efficiency of the three and other methods in end-to-end
analyses; for example, with the estimation of cosmological
parameters or identification of galaxy clusters.

Applying the Wiener filter and Glimpse methods to the
DES Year 1 (Y1) shear catalogue would require extensions
of the methods to account for the curved sky at large an-
gular scales. The Y1 data covers ≈ 1500 deg2 and contains
≈ 34, 800, 000 galaxies, so is a large increase in data volume
from DES SV. This modification has already been done with
an extension of Kaiser-Squires to the sphere by Chang et al.
(2017) for the Y1 DES data. These extensions would also
be useful for the upcoming ≈ 5000 deg2 DES Y3 shear cata-
logue.

Of future interest would be to use the Wiener filter or
Glimpse convergence maps for scientific results, as we have
shown that they reconstruct the convergence better than
Kaiser-Squires according to many different metrics.

We have made our map reconstructions (as shown in
figure 3) available at https://github.com/NiallJeffrey/

DES_SV_mass_maps.
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de Janeiro, Conselho Nacional de Desenvolvimento Cient́ı-
fico e Tecnológico and the Ministério da Ciência, Tecnologia
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Tecnológicas (CIEMAT), Madrid, Spain
26 Department of Physics, IIT Hyderabad, Kandi, Telangana

502285, India
27 Department of Astronomy/Steward Observatory, 933 North

Cherry Avenue, Tucson, AZ 85721-0065, USA
28 Jet Propulsion Laboratory, California Institute of Technology,

4800 Oak Grove Dr., Pasadena, CA 91109, USA
29 Department of Astronomy, University of Michigan, Ann

Arbor, MI 48109, USA
30 Department of Physics, University of Michigan, Ann Arbor,

MI 48109, USA
31 SLAC National Accelerator Laboratory, Menlo Park, CA

94025, USA
32 Center for Cosmology and Astro-Particle Physics, The Ohio

State University, Columbus, OH 43210, USA
33 Department of Physics, The Ohio State University, Columbus,

OH 43210, USA
34 Harvard-Smithsonian Center for Astrophysics, Cambridge,

MA 02138, USA
35 Australian Astronomical Observatory, North Ryde, NSW

2113, Australia
36 Departamento de F́ısica Matemática, Instituto de F́ısica,
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APPENDIX B: INDICATOR FUNCTION

We define the indicator function iC (as used in equation 29)
of a set C as

iC(x) =
{

0 if x ∈ C
+∞ otherwise .

(B1)

This paper has been typeset from a TEX/LATEX file prepared by
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