Magnification effects on source counts and fluxes

Bhuvnesh Jain and Marcos Lima

Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

Accepted 2010 August 10. Received 2010 August 10; in original form 2010 March 31

ABSTRACT

We consider the effect of lensing magnification on high-redshift sources in the case that magnification varies on the sky, as expected in wide fields of view or within observed galaxy clusters. We give expressions for number counts, flux and flux variance as integrals over the probability distribution of the magnification. We obtain these through a simple mapping between averages over the observed sky and over the magnification probability distribution in the source plane. Our results clarify conflicting expressions in the literature and can be used to calculate a variety of magnification effects. We highlight two applications: (i) lensing of high-z galaxies by galaxy clusters can provide the dominant source of scatter in Sunyaev–Zel’dovich (SZ) observations at frequencies larger than the SZ null; and (ii) the number counts of high-z galaxies with a Schechter-like luminosity function will be changed at high luminosities to a power law, with significant enhancement of the observed counts at $L \gtrsim 10L^\ast$.

Key words: gravitational lensing: strong – galaxies: clusters: general – galaxies: general.

1 INTRODUCTION

Magnification due to gravitational lensing leads to observable effects, namely changes in the number density of galaxies behind large-scale structure and galaxy clusters (known as magnification bias) and in the moments of the flux distribution due to unresolved sources at high redshift. These and other effects of lensing magnification have been studied extensively in the past few decades, usually assuming simple expressions that apply for constant magnifications.

In this brief note, we generalize to the case where magnification varies on the sky – the variation is taken to be given by a magnification probability in the source plane, while quantities of interest are observed as averages in the image plane. We apply this calculation to lensing of the intrinsic number counts distributions of high-redshift galaxies as well as moments of the flux for Poisson-distributed high-z galaxies behind galaxy clusters. Our goal is to provide the formulae needed for magnification effects in a variety of physical situations and give estimates of the scale of the main effects. Applications to more detailed models and results for Sunyaev–Zel’dovich (SZ) surveys have been presented in a separate paper (Lima, Jain & Devlin 2010a).

2 CONSTANT MAGNIFICATION

By definition, magnification (denoted by μ) is the Jacobian of the transformation between image (lensed) and source (unlensed) coordinates (e.g. Bartelmann & Schneider 2001). Along a given line of sight, its effect on differential solid angles is given by

$$d\Omega \rightarrow d\Omega_{\text{obs}} = \mu d\Omega$$

or $\mu = d\Omega_{\text{obs}}/d\Omega$. We use the subscript ‘obs’ for the observed (or lens plane or image plane) and no subscript for the (unlensed) source plane. The surface brightness of galaxy sources, defined as the flux per unit solid angle, is conserved by lensing. Since magnification increases the solid angle of sources by a factor of μ, it also increases their flux S as

$$S \rightarrow S_{\text{obs}} = \mu S.$$

In terms of the lensing shear γ and convergence κ, the magnification is given by $\mu = 1/[(1 - \kappa)^2 - |\gamma|^2]$. As a result, the number density of a source population is modified by lensing magnification. Let dn/dS denote the intrinsic number density per unit flux per unit steradian on the sky. Given a (constant) magnification μ, it is modified as

$$\frac{dn}{dS} \rightarrow \frac{dn_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} = \frac{1}{\mu^2} \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu} \right).$$

The $1/\mu^2$ factor comes from transforming the angle $d\Omega$ and the flux differential dS into their observed counterparts, using equations (1) and (2). The change in argument comes from the fact that the observed flux S_{obs} corresponds to true flux $S = S_{\text{obs}}/\mu$. Given the differential number density dn/dS, we may define the cumulative number density $n(S)$, the average flux of the background galaxy population per steradian \overline{S} and the mean square flux per steradian $\overline{S^2}$ as

$$n(S) = \int_S^n \frac{dn}{dS} dS,$$

$$\overline{S} = \int_S^n dS,$$

$$\overline{S^2} = \int_S^n dS S^2.$$
\[\mathcal{S} = \int S \frac{dn}{dS} dS \]
(5)

and
\[\mathcal{S}^2 = \int S^2 \frac{dn}{dS} dS, \]
(6)

respectively. In the presence of a constant magnification \(\mu \), the observed quantities are easily obtained using equations (2) and (3) as

\[n(>S) \rightarrow \frac{1}{\mu} n\left(>\frac{S_\text{obs}}{\mu}\right), \quad \mathcal{S} \rightarrow \mathcal{S}^*, \quad \mathcal{S}^2 \rightarrow \mu \mathcal{S}^2. \]
(7)

Note that in the integrals over \(S \) for \(\mathcal{S} \) and \(\mathcal{S}^2 \), there is no upper or lower cut-off in flux.

There is a long history in the literature of magnification effects on source counts (starting with Canizares 1981, 1982 and Peacock 1982). The expressions above are consistent with those in the literature. We next consider the case of variable magnification on the sky.

3 VARIABLE MAGNIFICATION ON THE SKY

We wish to generalize equations (3) and (7) to the case that the magnification varies on the sky. This variation can occur over a large patch of the sky with fluctuations due to large-scale structure or simply over the surface of a galaxy cluster due to variations in the surface mass density and shear over this surface.

For variable magnification, the obvious step would be to average equations (3) and (7) over the observed sky (i.e. the image plane), and this is indeed correct. It is often preferable to do calculations in the source plane. Thus, we need to generalize \(d\eta_{\text{obs}}/dS_{\text{obs}} = \int d\mu \frac{dn}{dS} P_\text{obs}(\mu)/\mu^2 \), where \(P_\text{obs}(\mu) \) is the normalized magnification probability in the image plane. This is straightforwardly done by using the relation

\[P_{\text{obs}}(\mu) = \frac{\mu}{\langle \mu \rangle} P(\mu), \]
(8)

where \(P(\mu) \) is the source plane probability.

The above relation gives the generalized expressions

\[\frac{d\eta_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} = \frac{1}{\langle \mu \rangle} \int d\mu \frac{P(\mu)}{\mu} \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu}\right), \]
(9)

\[\langle n_{\text{obs}}(>S_{\text{obs}}) \rangle = \frac{1}{\langle \mu \rangle} \int d\mu P(\mu) n\left(>\frac{S_{\text{obs}}}{\mu}\right), \]
(10)

\[\langle S_{\text{obs}} \rangle = \mathcal{S}, \]
(11)

\[\langle S^2_{\text{obs}} \rangle = \frac{\langle \mu^2 \rangle}{\langle \mu \rangle^2} \mathcal{S}^2, \]
(12)

where \(\langle \rangle \) denote averages of observed quantities over specified parts of the sky.

To obtain these results more formally, we evaluate the expressions on the left-hand side of the above equations by defining the average of a function \(X \) in the image plane over an observed solid angle as

\[\langle X \rangle_{\text{obs}} = \frac{1}{\Delta \Omega_{\text{obs}}} \int d\Omega_{\text{obs}} X. \]
(13)

In the source (unlensed) plane, the average over solid angle also defines \(P(\mu) \) as

\[\langle X \rangle_{\text{source}} = \frac{1}{\Delta \Omega} \int d\Omega X = \int d\mu P(\mu) X. \]
(14)

The function \(X \) is a function of angle \(\theta \) on the sky through its dependence on \(\mu(\theta) \). Defining \(P(\mu) \) on the source plane is convenient in lensing, as it addresses questions, such as what is the fraction of sources that are magnified by a certain amount?\(^1\) Note that we have as desired

\[\int d\mu P(\mu) = \frac{1}{\Delta \Omega} \int d\Omega = 1, \]
(15)

\[\int d\mu \mu P(\mu) = \frac{1}{\Delta \Omega} \int d\Omega \mu(\theta) = \langle \mu \rangle = \frac{\Delta \Omega_{\text{obs}}}{\Delta \Omega}. \]
(16)

In the limit of the whole sky, we have \(\Delta \Omega_{\text{obs}} = \Delta \Omega = 4\pi \) and \(\langle \mu \rangle = 1 \), that is, the average magnification is unity.

Using the relations given above in equations (13)–(16) for angular averaging, we can obtain equation (9) as follows:

\[\langle \frac{d\eta_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} \rangle = \frac{1}{\Delta \Omega_{\text{obs}}} \int d\Omega_{\text{obs}} \frac{d\eta_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} \]
\[= \frac{1}{\langle \mu \rangle \Delta \Omega} \int d\Omega \mu \frac{1}{\mu^2} \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu}\right) \]
\[= \frac{1}{\langle \mu \rangle} \int d\mu P(\mu) \frac{1}{\mu} \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu}\right). \]
(17)

This is our first desired result. It is obviously different from integrating the expression for \(d\eta_{\text{obs}}/dS_{\text{obs}} \) from equation (3) over \(P(\mu) \) – doing that would have led to both factors of \(1/\mu \) being inside the integrand. Next, we substitute equation (3) into

\[\langle n_{\text{obs}}(>S_{\text{obs}}) \rangle = \frac{1}{\Delta \Omega_{\text{obs}}} \int d\Omega_{\text{obs}} \int S_{\text{obs}} \frac{d\eta_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} dS_{\text{obs}} \]
and change variables to \(S = S_{\text{obs}}/\mu \) to obtain equation (10). Our expressions for number counts agree with Schneider, Kochanek & Wambsganss (2006). Note that the unlensed number counts are independent of position on the sky, as are \(\mathcal{S} \) and \(\mathcal{S}^2 \). Equations (11) and (12) for the flux moments can be similarly obtained and are easily generalized to the \(n \)th moment as \(\langle S^n_{\text{obs}} \rangle = \langle \mu^n \rangle / \langle \mu \rangle \mathcal{S}^n \). This expression changes, if there is a lower or higher limit to the integral over \(S \). For instance, in the case of an upper limit \(S_{\text{cut}} \), we can generalize to obtain

\[\langle S_{\text{obs}}(<S_{\text{cut}}) \rangle = \frac{1}{\langle \mu \rangle} \int d\mu P(\mu) \mu^n <S_{\text{cut}}. \]
(18)

Applications to galaxy clusters are discussed below. Another application is the contribution of unresolved point sources to cosmic microwave background (CMB) anisotropies, given by \(C_l = \mathcal{S}^2(<S_{\text{cut}}) \). The upper cut-off, \(S_{\text{cut}} \), is usually introduced to remove resolved objects brighter than the cut-off. With lensing, the observed contribution is enhanced – given by the above result with \(n = 2 \). The enhancement depends on the slope of the \(d\eta/dS \) relation at the cut-off. Finally, we note that with a flux limit, equation (11) is no longer true, since surface brightness is only conserved when integrated over all fluxes.

\(^1\) One must of course ensure that theoretical predictions are also in the source plane. This occurs naturally in ray-tracing simulations, which start the rays at the observer and trace backwards (e.g. Jain, Seljak & White 2000). However, predictions that rely on the Born approximation apply to the image plane. See Hilbert et al. (2007) for a discussion of simulation predictions; they also considered the effects of multiple imaging, which we are not concerned with here.
4 GALAXY CLUSTERS

Galaxy clusters produce magnifications ranging from ~ 10 per cent enhancements above unity to factors of several or more as one approaches the critical curves. As a result, both number counts of background galaxies and the flux moments of unresolved background sources are significantly altered. Consider the unlensed average number of background galaxies within a cluster solid angle $\Delta \Omega_{\text{vir}}$ defined by its virial radius, that is, $N_{\text{vir}} = \Delta \Omega_{\text{vir}} n(>S)$. Note that in the unlensed case $\Delta \Omega_{\text{vir}} = \Delta \Omega$, that is, the virial radius of the cluster is actually the intrinsic angle. With lensing, the virial radius is now the observed solid angle, that is, $\Delta \Omega_{\text{obs}} = \Delta \Omega_{\text{vir}}$, and we have

\[
\langle N_{\text{obs}}(> S_{\text{obs}}) \rangle_{\text{vir}} = \Delta \Omega_{\text{vir}} \langle n_{\text{obs}}(> S_{\text{obs}}) \rangle = \frac{1}{\langle \mu \rangle} \int d\mu P(\mu) N \left(> \frac{S_{\text{obs}}}{\mu} \right)_{\text{vir}},
\]

(19)

Note that $P(\mu)$ is now the magnification probability within the cluster virial radius (in the source plane as before). In the limit of constant magnification inside the virial radius, we get $N_{\text{obs}} = N/\langle \mu \rangle$. Furthermore, if there is no lower limit to the flux integral $S_{\text{obs}} \rightarrow 0$, we have $\langle N_{\text{obs}} \rangle = N/(\langle \mu \rangle)$, that is, we observe fewer galaxies in the line of sight of clusters. Note that our result for N_{obs} appears to differ from some of the literature (e.g. Schneider et al. 2006), but the difference is that we use the same solid angle for the observed and unlensed case, because the only solid angle in town is the observed size of the galaxy cluster.

The intrinsic mean flux and mean square flux within the cluster solid angle $\Delta \Omega_{\text{vir}}$ are $\bar{S}_{\text{vir}} = \Delta \Omega_{\text{vir}} S$ and $\bar{S}^2_{\text{vir}} = \Delta \Omega_{\text{vir}} \bar{S}^2$, respectively. With lensing, we have

\[
\langle \bar{S}_{\text{obs}} \rangle_{\text{vir}} = \Delta \Omega_{\text{vir}} \langle \bar{S}_{\text{obs}} \rangle = \bar{S}_{\text{vir}},
\]

(20)

\[
\langle \bar{S}^2_{\text{obs}} \rangle_{\text{vir}} = \Delta \Omega_{\text{vir}} \langle \bar{S}^2_{\text{obs}} \rangle = \langle \mu \rangle^2 \bar{S}^2_{\text{vir}}
\]

(21)

Consider a cluster of observed radius 1 arcmin. The average flux from background galaxies crossing this 1-arcmin cluster is the same with or without lensing: with lensing, the background galaxies are brighter but less numerous and the two effects exactly compensate. Thus, lensing does not create a bias by increasing the expected flux within the cluster solid angle relative to a random 1-arcmin patch of the sky, as long as there is no flux cut-off.

For SZ surveys, the mean flux from background galaxies is subtracted in obtaining the SZ decrement or increment (depending on the observed frequency), but there is additional scatter due to the Poisson error from shot noise fluctuations (a given cluster having more or less galaxies than the expected average). This effect is important for SZ surveys, where high-z submillimetre galaxies can contaminate the SZ signal (Knox, Holder & Church 2004; White & Majumdar 2004; Lima et al. 2010a). Lensing enhances this source of scatter significantly, as the factor $\langle \mu^2 \rangle/\langle \mu \rangle$ for galaxy clusters can be quite large – see Fig. 1. The estimates shown are based on an analytical model of cluster haloes that uses Navarro–Frenk–White profiles and elliptical isopotential contours (Lima et al. 2010a). Our estimates are conservative in that we include cluster ellipticity but not substructure. Fig. 2 also indicates the error made in approximating moments of the flux by using the mean magnification (e.g. Refregier & Loeb 1997).

Notice that if we attempt to remove galaxies above some flux S_{vir}, which could be removed if they were resolved, we introduce a difference between the observed and intrinsic average flux through the cluster, that is, $\langle S_{\text{obs}} \rangle \neq S$. In that case, the mean CMB flux is not equally contaminated by background galaxies and subtracting this mean flux from the cluster flux does not cancel the galaxy contribution on average. Therefore, removing bright galaxies from the sample biases the SZ signal. An observationally relevant situation arises, if a flux cut-off is used to identify sources – thus altering both the number counts and flux contribution from unresolved sources (e.g. Refregier & Loeb 1997).

![Figure 1](image-url)

Figure 1. Left-hand panel: Mean magnification $\langle \mu \rangle$ and mean squared $\langle \mu^2 \rangle$ measured within clusters at redshift $z = 0.5$ as a function of the cluster mass. The upper panel averages within the virial radius of the cluster, while the lower panel uses a smaller radius within which the overdensity is 2500 times the critical density. In X-ray and SZ analyses, different choices for the cluster radius are made, which typically lie within these two. Right-hand panel: Contamination of submillimetre galaxies to the SZ flux within the virial radius of clusters of virial mass $M_{\text{vir}} = 10^{14.8} - 10^{15} h^{-1} M_{\odot}$. The solid line shows the intrinsic SZ flux ΔS^Z_{gal}. The light-shaded region delineates the 1σ region from contamination of submillimetre galaxies from Poisson noise in their counts, that is, $\sigma^2_{\text{gal}} = \bar{S}^2_{\text{vir}}$. The dark-shaded region accounts for lensing magnification, which further enhances the noise by $\langle \mu^2 \rangle/\langle \mu \rangle$ (cf. equation 22).

© 2011 The Authors
5 ILLUSTRATIVE NUMBER–MAGNITUDE RELATIONS

5.1 Power law

It is common in the magnification bias literature to consider the case of a local power law in the logarithm of the number counts. We then obtain for the observed cumulative number density

$$n(>S) \propto S^{-\alpha} \rightarrow n_{\text{obs}}(>S_{\text{obs}}) = \frac{(\mu_>)^\alpha}{(\mu)} n(>S_{\text{obs}}).$$

(22)

Working with apparent magnitudes instead of fluxes, this gives (using $m = -2.5 \log_{10} S + \text{constant}$)

$$n(<m) \propto m^\tau \rightarrow n_{\text{obs}}(<m_{\text{obs}}) = \frac{(\mu_<)^\tau}{(\mu)} n(<m_{\text{obs}}).$$

(23)

Note that the use of the power law for $n(>S)$ allows us to simplify the integral over μ. The above equation agrees with the standard expression (e.g. Broadhurst, Taylor & Peacock 1995): $n_{\text{obs}}(<m) = \mu_<(5) n(<m)$ for the case of constant magnification. For variable magnification, one needs to evaluate the averages as above. If one simply uses the factor $(\mu_5)^{-1}$ behind a galaxy cluster instead of equation (23), then an error in the number counts can result. The error ranges from 3 per cent for a cluster of mass $10^{14} h^{-1} M_\odot$ to 6 per cent for a cluster of mass $10^{15} h^{-1} M_\odot$. This would result in an equivalent bias in the inferred cluster mass. Mass estimates that rely on number counts may be feasible for large samples of clusters from future surveys.

To compare the results from equation (9) with other formulae used in the literature, consider first the naive generalization to variable magnification (which is correct in the image plane):

Prescription A: $$\frac{dn_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} = \int d\mu P(\mu) \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu} \right).$$

(24)

This underestimates the lensing effect. Alternatively, some authors drop the μ factors altogether (Paciga, Scott & Chapin 2009), which overestimates the lensing effect:

Prescription B: $$\frac{dn_{\text{obs}}(S_{\text{obs}})}{dS_{\text{obs}}} = \int d\mu P(\mu) \frac{dn}{dS} \left(\frac{S_{\text{obs}}}{\mu} \right).$$

(25)

5.2 Schechter luminosity function

A single power-law number–magnitude relation is lensed into an observed relation with same power law (but different amplitude). However, if the intrinsic dn/dS is not a power law, then lensing changes the shape of the distribution as well. High-magnification events shift galaxies with low fluxes to high fluxes – hence, if dn/dS falls sharply at high S, magnification can significantly enhance the counts at these fluxes.

We illustrate the effect of magnification for realistic galaxy populations by considering a Schechter function (Schechter 1976):

$$\frac{dn(S)}{dS} \propto \left(\frac{S}{S^*} \right)^\alpha \exp\left(-\frac{S}{S^*}\right).$$

(26)

For galaxies observed in a narrow redshift interval, such a dn/dS relation can arise due to the Schechter luminosity function of the population.

In Fig. 2, we show the intrinsic distribution and the lensed versions according to the two incorrect prescriptions (Prescriptions A and B) mentioned above, as well as the correct prescription of equation (9). We assume all galaxies are at redshift $z_s = 2.1$ and use a $P(\mu)$ obtained from N-body simulations by Hilbert et al. (2007). We also choose $\alpha = 0$ in the Schechter function. We plot $dn/d\ln S$ to relate more easily to the observational literature, which shows number per unit absolute magnitude. Our results in Fig. 2 may be matched with high-z luminosity functions by replacing S/S^* with L/L^*. The lensing contribution (correctly included in the green curves) is large for the Schechter function at the bright end ($S/S^* > 10$). Thus, for a population of galaxies with a Schechter luminosity function, the observed dn/dS will not retain the exponential tail of...
the Schechter function. Using equation (9) and approximating the Schechter function as having a sharp cut-off at $S = S^*$, it is easy to see that the integration over μ generates a power law in $d\mu/d\ln S$, whose slope is -2, due to the asymptotic slope $P(\mu) \propto \mu^{-3}$. The green solid curve approaches this slope beyond $S = 10 S^*$.

Choosing a lower (higher) value of α slightly enhances (suppresses) the lensing contribution at fixed S/S^*. Fig. 2 also shows that the difference between the three prescriptions is large at the bright end for the Schechter function. The dn/dS in Fig. 2 is normalized so that the distribution matches submillimetre galaxies measured by the Balloon-borne Large Aperture Telescope (BLAST) (Devlin et al. 2009) at 500 μm. In a separate study, we show that if the submillimetre galaxies lie at $z \sim 2$–3, then lensing of an intrinsic Schechter function can explain the observations from BLAST and other surveys (Lima et al. 2010b).

Similar comparisons to luminosity function observations in the visible bands can be carried out: it is especially important to include lensing in the comparison of low-z data with data at $z \gtrsim 1$, since the magnification contribution is significant only at high z.

6 DISCUSSION

We have derived expressions for computing average quantities in the observed image plane, given a distribution $P(\mu)$ of magnifications in the source plane. Our results, summarized in equations (9)–(12), generalize expressions found in the lensing literature for the case of constant magnifications. We illustrated the effect of lensing on steep number counts of background galaxies and on boosting the contamination that high-redshift galaxies induce in cluster SZ fluxes. The formulae we have presented may be useful for studying the intrinsic properties of high-redshift galaxies and for current and upcoming cluster surveys.

The quantitative estimates presented here for galaxy clusters are based on analytical models of haloes. While these incorporate realistic density profiles as well as halo ellipticity, they miss the full complexity of halo bimodality (due to major mergers) and substructure. These features only enhance the effects of averaging we have considered.

Finally, we note that the lensing effects discussed here do not impact the predicted (magnification induced) cross-correlation of number counts measured in different redshift bins (Moessner \\& Jain 1998). Such cross-correlations depend on the two-point cross-correlations of magnification with the galaxy density. Thus, measurements of magnification bias from galaxy–quasar cross-correlations or of its contamination on high-z cross-correlations due to the Integrated Sachs-Wolfe effect are unaffected by the spatial averaging issues discussed here.

ACKNOWLEDGMENTS

We thank Anna Cabre, Yan-Chuan Cai, Mark Devlin, Mike Jarvis and Ravi Sheth for helpful discussions, and Stefan Hilbert for sharing their simulation results. We especially thank Gary Bernstein and Peter Schneider for sharing their insights and knowledge of the history of the field. This work was supported in part by an NSF-PIRE grant and AST-0607667.

REFERENCES

Devlin M. J. et al., 2009, Nat, 458, 737

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.