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Abstract

We present the Dark Energy Survey (DES) Science Portal,
an integrated web-based data interface designed to facilitate sci-
entific analysis. We demonstrate how the Portal can provide a
reliable environment to access complete data sets, provide val-
idation algorithms and metrics in the case of multiple methods
and training configurations, and maintain the provenance be-
tween the different steps of a complex calculation, while en-
suring reproducibility of the results. We use the estimation of
DES photometric redshifts (photo-zs) as an example. A sig-
nificant challenge facing photometric surveys for cosmological
purposes, such as DES, is the need to produce reliable redshift
estimates. The choice between competing algorithms and con-
figurations and the maintenance of an up-to-date spectroscopic
database to build training sets, for example, are complex tasks
when dealing with large amounts of data that are regularly up-
dated and constantly growing. We show how the DES Science
Portal can be used to train and validate several photo-z algo-
rithms using the DES first year (Y1A1) data. The photo-zs esti-
mated in the Portal are used to feed the creation of catalogs for
scientific workflows. While the DES collaboration is still de-
veloping techniques to obtain precise photo-zs, having a struc-
tured framework like the one presented here is critical for the
systematic vetting of DES algorithmic improvements and the
consistent production of photo-zs in future DES releases.

Keywords

astronomical databases: catalogs, surveys – methods: data
analysis – galaxies: distances and redshifts, statistics

1. Introduction

In the last few decades, galaxy surveys have become one of
the main research tools in astronomy, in particular, for the study
of cosmology. The need for increasing statistical samples and
depths have encouraged the design and construction of bigger
and wider surveys around the world. These projects are gener-
ating vast amounts of data, which have made astronomy enter
the realm of big data, making more challenging the cosmologi-
cal analysis.

In this context, the Dark Energy Survey (DES, Flaugher,
2005; DES et al., 2016) collaboration proposed, along with the
Data Management system (DESDM1, Mohr et al., 2012, - see
Section 2.1 for details), the creation of a dedicated portal to
solve some of the problems associated with the data process-
ing, the so-called DES Science Portal. In the future, the Portal
will interconnect the Data Release database with the coadded
images for exploration and visualization of the data. Moreover,
one form of public access to DES data will be with the help of
this infrastructure, into an online interface.

∗Corresponding author
Email address: julia@linea.gov.br (Julia Gschwend )

1http://www.darkenergysurvey.org/the-des-project/

survey-and-operations/data-management/

In this paper, we present the capabilities of the DES Sci-
ence Portal to produce photometric redshifts (photo-zs) for the
DES collaboration. The DES Science Portal provides an inte-
grated environment where all the steps necessary to compute
photo-zs can be carried out in a controlled and consistent way.
It produces galaxy samples with photo-zs in the form of pruned
lightweight catalogs containing only the columns required by
specified science analysis workflows, which are also integrated
into the Portal (Fausti et al. 2017, in preparation).

The automatic provenance, configuration management, and
the computing facilities that sustain the portal allow for a sam-
pling of many photo-z settings, which would be highly time-
consuming without an infrastructure such as this. The need for
the Portal capabilities will increase as the DES databases grow,
and more generally, as we enter an era of Big Data astronomy.

The DES is a 5-year program to carry out two distinct sur-
veys. The wide-angle survey covers 5,000 deg2 of the southern
sky in five (grizY) filters to a nominal magnitude limit of ∼24
in most bands. Also, there is a deep survey (i ∼26) of about 30
deg2 in four filters (griz) with a well-defined cadence to search
for type-Ia Supernovae (SNe Ia) (Kessler et al., 2015). The pri-
mary goal of the DES is to constrain the nature of dark energy
through the combination of four observational probes, namely
baryon acoustic oscillations, counts of galaxy clusters, weak
gravitational lensing, and determination of distances of SNe.

The constraining power of DES cosmological results will
strongly depend on the ability to estimate reliable photometric
redshifts (photo-z, e.g., Huterer et al., 2004; Ma et al., 2006;
Lima and Hu, 2007; Ma and Bernstein, 2008; Hearin et al.,
2010; Cunha et al., 2014; Georgakakis et al., 2014). In fact,
the computation of accurate photo-zs has been one of the major
concerns of the collaboration, which has spurred the implemen-
tation and testing of several algorithms. For instance, Sánchez
et al. (2014) addressed the performance of several codes when
applied to the DES science verification data (SVA1), while Banerji
et al. (2015) discussed the impact of using infrared data. More
recently, Bonnett et al. (2016) examined the impact of four
photo-z algorithms on the conclusions of the first DES cos-
mological analysis based on weak lensing discussed by Abbott
et al. (2016).

Photo-z estimation will only get more challenging for future
DES releases and future photometric surveys. The reason is that
we are sampling magnitudes beyond the reach of most spectro-
scopic surveys and therefore, traditional photo-z validations are
not realistic. This has inspired the implementation of new ideas
in the collaboration, such as the calibration of photo-zs with
cross-correlations (Newman, 2008), the training and validation
of photo-z codes with simulations (data-augmentation) (Hoyle
et al., 2015) and validation of photo-zs with spectrophotometric
samples like the Cosmic Evolution Survey (COSMOS, Scov-
ille et al., 2007) and the Advanced Large Homogeneous Area
Medium Band Redshift Astronomical Survey (ALHAMBRA,
Moles et al., 2008). These techniques are under development
within the collaboration on a parallel track with the elaboration
of the Portal tools. Therefore, the photo-z methods and catalogs
described here are not necessarily the ones used in DES cosmo-
logical analyses. Techniques for assignment and validation of

2
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photo-zs for DES are under continuous development and will
be implemented in the Science Portal as they become ready for
use.

As an example of usage of the Portal, we show a sequence
of tasks that include the preparation of a spectroscopic sam-
ple by combining data from different redshift surveys, the cre-
ation of training sets, the training and validation procedures for
several algorithms, and the computation of photo-zs for large
datasets. To show these examples, we used the DES first year
data release, referred as Y1A1 (Y1A1 data release paper, in
preparation). The algorithms used in this demonstration are:
Annz (Collister and Lahav, 2004), Annz2 (Sadeh et al., 2016),
ArborZ (Gerdes et al., 2010), DNF (De Vicente et al., 2016),
LePhare (Arnouts et al., 2002; Ilbert et al., 2006), Pofz (Cunha
et al., 2009), SkyNet (Graff et al., 2014), and TPZ (Carrasco
Kind and Brunner, 2013, 2014). More elaborate schemes are
being implemented in the Portal and can be used for future anal-
yses, e.g., the usage of probability density functions (PDFs) in-
stead of point estimates.

The outline of this paper is as follows. In Section 2, we
present the data used. In Section 3, we describe the procedures
and pipelines available in the Portal to compute photometric
redshifts and to carry out tests that evaluate their quality. In
Section 4 we present a few examples of how the Science Portal
can aid to determine reliable photo-zs. Finally our conclusions
are presented in Section 5.

Also, we present, attached to this text, a list2 of five videos
(V0 to V4), showing examples of live runs, in a guided tour
through the photo-z pipelines.

2. The Data

2.1. Photometric data
The DES observations are carried out with the mosaic cam-

era DECam (Flaugher et al., 2015; Honscheid et al., 2014), built
as part of DES project and mounted on the 4-meter Blanco tele-
scope at the Cerro Tololo Inter-American Observatory (CTIO),
in Chile. The data are reduced and calibrated by the DES Data
Management (DESDM) team at the National Center for Super-
computing Applications (NCSA) using standard procedures de-
scribed by Desai et al. (2012), Mohr et al. (2012), and Gruendl
et al. 2017 (in preparation). This system is used for the process-
ing and calibration of DES data, and the DECam Community
Pipeline. The observations (Diehl et al., 2014) reported here
took place from August 2013 to February 2014 and include a
total of 14,340 exposures in the grizY filters, covering a total
area of ∼1,800 deg2 in eight distinct regions, making the so-
called DES Y1 release.

The two largest regions are part of the wide-field survey.
One of about 160 deg2 overlapping the Sloan Digital Sky Sur-
vey Stripe 82 Imaging Data (S82, Jiang et al., 2014), and an-
other of ∼1,600 deg2 overlapping the region observed by the
South Pole Telescope (SPT, Carlstrom et al., 2011). These two

2https://www.youtube.com/playlist?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2

wide regions were covered with up to four passes in each filter,
reaching a SExtractor’s mag auto magnitude limit of i ∼22.5
in the AB system for a 10σ detection limit.. In this work, we
only used S82 as an example of a wide field. The remaining
regions, called “supplemental fields” — where a large num-
ber of spectroscopic redshifts (spec-zs) are available — belong
to both the science verification phase3 (SVA1), and of the Y1
release. Four of these regions are collectively known as Su-
pernova (SN) fields. One of the other regions overlaps with
the VVDS-14h field from VIMOS VLT Deep Survey (hereafter
VVDS, Le Fèvre et al., 2005) and the final region overlaps with
COSMOS. The SN fields are regularly observed as part of the
SNe Ia program, making available a greater number of expo-
sures compared to the wide survey. The locations of these re-
gions are shown in Figure 1 along with the DES footprint.

We use the Source Extractor (SExtractor, Bertin and Arnouts,
1996; Bertin, 2011) catalogs produced from these co-added im-
ages. In our case, we arbitrarily use SExtractor’s mag detmodel

magnitudes as input data in the tests shown in Section 4, al-
though there are several other magnitude types available. We
eliminate objects outside the physical color range -2.0 to 4.0 for
g-r, r-i and i-z and consider only objects with Flag=0 (clean
detection). These settings are similar to those utilized in the
analysis of the science verification data (e.g., Sánchez et al.,
2014; Bonnett et al., 2016; Giannantonio et al., 2016; Melchior
et al., 2016).

In Figure 2 we show the i-band and color g-r distributions
for all the fields considered (grouping the SN fields in a single
set). The main properties of the datasets are presented in Ta-
ble 1. Note that each supplemental field composes two distinct
datasets referred to as D04 and DFULL. The first corresponds
to the catalogs extracted from the co-addition of four single
epoch exposures, aiming to reproduce the mean depth obtained
in the Y1 wide fields SPT and S82. On the other hand, DFULL
corresponds to the catalogs extracted from the combination of
all the available single epoch exposures in the field. Except for
the VVDS field, the DFULL datasets are deeper than D04 and
those of the wide-field survey. Note that the exposures used to
make the D04 and DFULL sets also had to meet the quality cuts
defined for the DES wide-field survey. In general, these fields
were observed with different observing conditions, and there-
fore it was difficult to mimic the wide survey for Y1 in the sup-
plemental fields. In subsequent years an effort has been made
to amend that situation. The vertical dashed lines in Figure 2
refer to the approximate magnitude limits in these datasets, de-
fined as the magnitude corresponding to the maximum of the
distribution. These values are calculated before any pruning in
the samples. The photometric sample was also corrected for ex-
tinction using the corrections delivered by DESDM, which are
inferred from the extinction maps by Schlegel et al. (1998).

2.2. Spectroscopic data

In this paper, we use a spectroscopic redshift sample with
reliable measurements to train photo-z algorithms, and to test

3https://des.ncsa.illinois.edu/releases/sva1
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Figure 1: Location of all the Y1A1 fields used in this paper and DES footprint (dashed line).
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Figure 2: Magnitude (i-band) and color (g-r) distributions for all the fields used
in this paper. The dashed lines refer to the peak of magnitude distributions,
with values presented in Table 1. The DFULL sample (see text) includes all the
exposures taken at the time of the Y1A1 release.

Table 1: DES fields considered in this paper.
Field Dataset Objects Matches♦ Area† Mag lim‡

COSMOS D04 313,380 3,483 2.97 23.6
DFULL 599,139 3,544 3.04 24.6

SN D04 2,569,018 34,683 31.76 24.4
DFULL 4,761,997 26,477 31.73 24.6

VVDS D04 260,446 2,473 2.91 23.6
DFULL 271,518 2,461 2.91 23.6

S82 – 12,487,566 42,158 165.84 23.4
♦ Spectroscopic matches: see Section 3.2.
† Approximate area covered in deg2.
‡Magnitude limit in i-band (the peak of number counts)

their performance, as an example of validation procedure. This
sample is constructed by compiling data available from a large
number of surveys that were individually ingested into the data-
base associated to DES Science Portal.

Currently, in the Portal database, there are redshift measure-
ments from a total of 31 galaxy spectroscopic surveys avail-
able in the literature. In total, these catalogs contain 1,053,343
objects, where ∼93% are extragalactic sources including both
galaxies and quasars. We selected galaxies with high-quality
spec-z, reducing the sample to 841,057 measurements. Some
of these measurements are different observations of the same
object, i.e., they have been observed in more than one survey.
After dealing with multiple measurements in the spectroscopic
database (see discussion of how this is done in Section 3), we
end up with 759,890 unique high quality spec-zs.

We note that the data are dominated by low redshift sur-
veys (see Figure 3). However, we know that not all of these
sources will be matched to the photometric sample since they
extend beyond the Y1A1 DES footprint. Therefore, the number
of spectroscopic redshifts matched to DES photometry will be
smaller than the number of spec-zs in our database (see Sec-
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Figure 3: Spectroscopic redshift distribution of all galaxies in the spectroscopic
database, after resolving duplicates and after selecting the ones with high qual-
ity spec-zs.

tion 3). In particular, around 250,000 sources overlap with Y1
footprint.

In Table 2 we show the information about all spectroscopic
surveys present in the spectroscopic database at the time of
writing, ordered by the number of successful matches with the
Y1A1 data (S82, COSMOS D04, SN D04 and VVDS14 D04
datasets). Those numbers includes all matches for each survey,
so the total number in the table includes objects with multiple
measurements due to the overlap in area covered by the surveys.

3. Methodology

As mentioned earlier all the results presented in this paper
were produced using the DES Science Portal. The Portal has
been conceived as an overarching web-based system integrated
with two databases: one for administration and other one to
store the data.

The structural organization of the DES Science Portal is
presented schematically in Figure 4. The Portal consists of four
different stages: Data Installation, Data Preparation, Catalog
Creation, and Science Pipelines. Each stage groups a list of
pipelines in Extensible Markup Language, which concatenate
components (Python wrappers calling algorithms of different
languages). The chaining of tasks needed to create catalogs
called “end-to-end” (E2E), is delineated by the gray dashed
area. The group of pipelines related to the photo-z calculation,
highlighted in blue, is fed with DES co-added photometric cat-
alog, as well as a spectroscopic catalog.

The DES Science Portal allows for quick changes in con-
figurations and input data, automatically produces figures and
tables with validation metrics, facilitating comparisons and ex-
pediting performance improvements. The Portal registers the
history of versions of pipelines, components, and algorithms.
It enables the access to code versions, thus allowing complete
reproducibility of the results.

A full description of the Portal is beyond the scope of the
present paper, and here we only describe the second stage which

deals with the steps required for the calculation photo-zs, high-
lighted in Figure 5. The pipelines Spectroscopic Sample, Train-
ing Set Maker, Photo-z Training, and Photo-z Compute are rep-
resented in green, while both the input data and output products
are represented in yellow. The first two pipelines are used to
prepare the training and validation sets that will be employed
for the photo-z algorithms. The last two are responsible for per-
forming the training (and validation) and computing the photo-
zs for the photometric data, respectively. The video V04 is an
overview of the Portal structure, especially covering the pipelines
related to the photo-z calculation.

Details about the usage of the four photo-z pipelines are pre-
sented in the videos V1 to V4 (see below). Here, we show one
example of the Portal interface in Figure 6, using one of the first
pipelines in the photo-z cycle, the creation of the Spectroscopic
Sample. The interface is organized into three steps, correspond-
ing to the tabs in the pipeline top menu. This structure is present
in all pipelines in the Portal. These are:

• Choice of Input Data, where the user selects the input
data, in this case, the spectroscopic surveys of interest,
from the 31 presently available (listed in Table 2).

• Choice of Configuration of each component. The list of
components that belong to the pipeline concerned (in this
case, there is only one) is displayed on the left menu.
There, the user can select among the components the spe-
cific configuration for each one. Below that, there is a
set of buttons from the configuration manager, a tool that
allows the user to save the most frequently used configu-
rations, which is useful for repeated tests. In our exam-
ple, we can choose the quality threshold of the spec-zs,
the spectral type and the criteria used to resolve multiple
measurements.

• In the Summary, the Portal displays a list of the decisions
taken in the previous steps so that the user can check and
confirm, just before the job submission. Finally, a brief
comment is required, to characterize the purpose of this
run.

We use the case of the Y1A1 data release to illustrate the
capabilities and the benefits offered by the Portal. However, the
examples presented here are not the basis of upcoming Y1A1
cosmology papers. They are arbitrary examples of applications,
where we take the opportunity to investigate some particular is-
sues related to the production of value-added quantities to built
astronomical catalogs, in particular, those related to the photo-z
calculation. These include handling of the data, built-in paral-
lelization of the processes whenever beneficial, and a complete
record of each executed actions and process, thus enabling the
user to track how any product was created and reproduce the re-
sults. The benefits of the Science Portal become most relevant
as the dataset grows in size and complexity. The calculation of
photo-zs is a good illustration of that.

4https://youtu.be/9zy0vXAWUdU?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
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Table 2: Spectroscopic samples used in this paper.

Survey # of matches % z mean z min z max Ref. ‡

2DF 218,932 28.8 0.12 0.00 3.50 1
6DF 107,266 14.1 0.07 0.00 3.79 2
DR7 89,282 11.7 0.17 0.00 4.21 3
WIGGLEZ 80,875 10.6 0.59 0.00 6.09 4
DR12 CMASS 51,381 6.8 0.57 0.00 7.01 5
DEEP2 35,205 4.6 0.87 0.01 3.43 6
LCRS 23,268 3.1 0.11 0.00 0.32 7
DR12 LOWZ 21,383 2.8 0.30 0.01 6.11 5
EBOSS DES ELG 20,547 2.7 0.91 0.00 7.01 8
3DHST 20,339 2.7 1.10 0.01 4.00 9
VIPERS 14,757 1.9 0.68 0.04 4.40 10
VVDS 14,714 1.9 0.61 0.00 4.54 11
DES AAOMEGA 14,381 1.9 0.61 0.00 4.77 12
ZCOSMOS 12,630 1.7 0.54 0.00 1.99 13
SDSS 8,708 1.1 0.54 0.00 5.66 14
GAMA 7,656 1.0 0.22 0.01 0.74 15
ACES 4,338 0.6 0.59 0.01 2.84 16
ATT archive 3,458 0.5 0.22 0.00 3.38 17
XXL AAOMEGA 3,143 0.4 0.91 0.00 4.66 18
PANSTARRS 1,792 0.2 0.80 0.00 4.31 19
UDS 1,411 0.2 1.12 0.00 4.79 20
SNLS FORS 1,353 0.2 0.54 0.01 3.76 21
ATLAS 753 0.1 0.39 0.00 3.20 22
SPARCS 403 0.1 0.92 0.12 1.76 23
CDB 392 0.1 0.63 0.08 2.54 24
GLASS 383 0.1 1.16 0.20 2.54 25
SNLS AAOmega 358 <0.1 0.63 0.03 2.10 26
FMOS COSMOS 328 <0.1 1.56 0.75 2.49 27
VUDS 245 <0.1 2.26 0.10 4.91 28
MOSFIRE 113 <0.1 2.31 0.80 3.71 29
STALIN 96 <0.1 1.15 0.04 3.87 30

‡ References: 1- Colless et al. (2001) http://www.2dfgrs.net/; 2- Jones et al.
(2009) and http://www.6dfgs.net/; 3- Abazajian et al. (2009) and http://classic.

sdss.org/dr7/; 4- Parkinson et al. (2012) and http://wigglez.swin.edu.au/

site/; 5- Alam et al. (2015) and http://www.sdss.org/dr12/; 6- Davis et al.
(2003, 2007) and http://deep.ps.uci.edu/DR4/home.html; 7- Shectman et al.
(1996) and http://qold.astro.utoronto.ca/lin/catalog/lcrscat.tar.gz; 8-
Comparat et al. (2016); 9- Momcheva et al. (2016) and http://3dhst.research.yale.

edu/Data.php; 10- Garilli et al. (2014) and http://vipers.inaf.it/rel-pdr1.

html; 11- Garilli et al. (2008); Le Fèvre et al. (2004); 12- Yuan et al. (2015); 13-
Lilly et al. (2009); 14- Ahn et al. (2014); 15- Driver et al. (2011); 16- http:

//mur.ps.uci.edu/cooper/ACES/zcatalog.html; 17- http://apm5.ast.cam.ac.
uk/arc-bin/wdb/aat_database/observation_log/make; 18- Lidman et al. (2016)
and http://cosmosdb.iasf-milano.inaf.it/XXL/; 19- Rest et al. (2014); Scolnic
et al. (2014); Kaiser et al. (2010); 20- http://www.nottingham.ac.uk/astronomy/

UDS/UDSz/; 21- Bazin et al. (2011) Private communication; 22- Mao et al. (2012); 23-
Muzzin et al. (2012); 24- Sullivan et al. (2011); 25- Treu et al. (2015) and https:

//archive.stsci.edu/prepds/glass/; 26- Lidman et al. (2013); 27- Silverman et al.
(2015) and http://member.ipmu.jp/fmos-cosmos/FC_catalogs.html; 28- Tasca
et al. (2016) and http://cesam.lam.fr/vuds/DR1/; 29- http://mosdef.astro.

berkeley.edu; 30- Stalin et al. (2010).
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Figure 4: Diagram with some of the Portal pipelines. Those directly involved in the photo-z production are highlighted in blue. The gray dashed area delimits the
E2E process, the group of pipelines needed to create catalogs.
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Photometric 
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Spectroscopic 
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Spectroscopic 
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Training 
Files

Photo-zs

Figure 5: Steps followed in going from the original photometric and spectro-
scopic samples to the photo-z estimation. In yellow, the tables stored in the
database and the products related to photo-z calculation. In green, the pipelines
involved: Spectroscopic Sample (Section 3.1), Training Set Maker (Sections 3.2
and 3.3), Photo-z Training (Section 3.4), and Photo-z Compute (Section 3.5).

3.1. Defining a spectroscopic sample

Empirical algorithms require a sample of known redshifts
to train themselves. For observed data, it is common to trust
in spectroscopic redshifts as true values, due to their smaller
uncertainties in comparison to photo-zs. In our case, we firstly
define a spectroscopic sample which is later matched to the pho-
tometric data of interest to build training and validation sets.
Figure 6 shows the Portal interface of the pipeline Spectro-
scopic Sample, as explained above. The supplemental video
V15 shows an example of a run using the Spectroscopic Sam-
ple pipeline and a quick exploration of its results.

In particular, the Portal is used to upload the spectroscopic
data available in the literature. To map the different quality
flags adopted by individual authors, the Portal uses the follow-
ing standard: Qspec = 1 (no spec-z), Qspec = 2 (low confi-
dence on redshift), Qspec = 3 (good confidence on redshift), and
Qspec = 4 (secure redshift). As distinct surveys have their own
quality criteria, we created a table to convert the redshift qual-
ity flags, on a best effort basis, from the surveys we use to the
system adopted in OzDES redshift survey (Yuan et al., 2015).
The database associated with the Portal serves as a centralized
spectroscopic database for DES, being continually updated, in
particular by ongoing follow-up observations from DES collab-
orators such as the OzDES collaboration.

We identify multiple observations of the same object by se-
lecting galaxies of all surveys that are within a user-specified
search radius, here taken to be 1 arcsec. We have implemented
two possible procedures to handle multiple measurements: the
first consists of averaging all redshifts for the same source to
produce a mean redshift; the second method, which we use in
this work, chooses the best redshift with the following criteria.
We first try to select the measurement that has the highest Qspec.
If more than one observation has the same Qspec flag, we select
the one that was observed more recently. If there were two or

5https://youtu.be/1mu-PqOvK88?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2

more observations in the same year, we choose the redshift with
the smallest error, when it is available (not all surveys provide
spec-z errors). Finally, if we still have more than one source
(from the same year and with no errors available), we choose
the one closest to the mean value of all the multiple measure-
ments. Since we have selected a high “quality” threshold, the
differences between choosing the best source or averaging be-
tween all the different matches are negligible.

Applying the above criteria to the database we create a spec-
troscopic sample containing high-quality measurements of red-
shifts from extragalactic objects, which is used below in the
construction of training sets.

3.2. Matching spectroscopic and photometric samples
Once the spectroscopic sample is defined, the next step is

to match the photometric data with the spectroscopic catalog
containing the known and precise redshifts.

The Training Set Maker pipeline builds training sets by com-
bining photometric sample(s) chosen by the user, among the
datasets defined in the previous section, with a spectroscopic
sample, which comes from the Spectroscopic Sample pipeline.
When running Training Set Maker, the user must choose a spec-
troscopic sample (Targets menu), one or more photometric data-
set(s) (in the tab Object Catalog). Optionally, it is possible to
apply zero-point corrections in the observed magnitudes, like
galactic extinction and stellar locus regression calibrations (High
et al., 2009).

The matching is done based on the angular separation be-
tween the objects in the spectroscopic and photometric cata-
logs. We have selected the radius to 1.0 arcsec as a default con-
figuration, after examining the distribution of the nearest (pho-
tometric) neighbor to each spectroscopic source in Y1A1 (see
Figure 7). About 99% of the matches have separations ≤ 0.5
arcsec. If two or more objects are within the search radius, the
nearest photometric object to the spectroscopic one is selected.
This step is done directly in DES Science Portal database, us-
ing a PostgreSQL extension for spatial indexing on a sphere,
called Q3C (Koposov and Bartunov, 2006). The supplemental
video V26 shows a live run example of the pipeline Training Set
Maker, using the spectroscopic sample created in the previous
step.

In the fourth column of Table 1, we show the number of
matched objects by the photometric dataset. We find 82,797 and
32,482 sources for the combined D04+S82 sets and the DFULL
set respectively. Different combinations of these datasets re-
sulted in the training and validation sets used in this paper.

3.3. Creating training and validation sets
Ideally, the training sample should have the same proper-

ties as the photometric sample of interest. However, this is
difficult to meet when spectroscopic data come from surveys
with different depths, redshift intervals, and targeting strategies
distinct samples of galaxies. Different training sets have been

6https://youtu.be/2nA1PFGCnEM?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
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Figure 6: Screenshot of the Configuration tab of the Spectroscopic Sample pipeline. In this tab, the user makes decisions about spec-z quality and the criterion to
resolve duplicates.

Figure 7: Distribution of distances between spectroscopic sources and their
nearest photometric neighbor in DES Y1A1. 99% of the matches occur for
separations ≤ 0.5 arcsec. In our analysis we set a maximum search radius of 1
arcsec (dashed line).

built to investigate possible effects in the estimated redshifts
caused by these mismatches. Due to the flexibility of the Train-
ing Set Maker pipeline, one can quickly create several training
sets, keeping full control of versions and configurations used
for each one of them.

In this paper, we consider four training sets with differ-
ent properties, built from the matched catalog just mentioned.
One important aspect of photo-zs is the quality assessment of
the training solution provided by the photo-z algorithms. To
quantify this, we validate the training network on a test sam-
ple with known redshifts. We created validation sets using two
approaches. The first one is the division of the matched cat-
alog in two, where one part is used for training and the other
for validation. The second one is to use the complete matched
catalog for training and validate the photo-zs using independent
samples with photometric properties different from those of the
training sets, as previously done by Bonnett et al. (2016).

The first method is the default case in the Science Portal
Configuration. Here we set the training and validation sub-
sets to have the same size, randomly splitting the original cat-
alog into two halves (Table 3). This approach is a compro-
mise between having a large enough training set as well as ad-
equate statistics to estimate the quality of the computed photo-
zs. However, the second approach is critical since, for practical
cases, the distributions of magnitudes, colors, and redshift of
photometric samples and training sets do not entirely coincide.

The training and the default validation samples used in this
paper are presented in Table 3, which lists the number of objects
in each of the training and validation sets, together with an as-
signed number that we will use in the paper. The last column
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Figure 8: Distributions of i magnitude (left panel), g − r color (middle) and
redshift (right) of the four training sets discussed in the text. The sets listed in
the figure are those defined in Table 3.

Table 3: Number of objects in the different training and validation sets.

Set Dataset Train Valid Valid † Removed
1 S82 25,354 25,354 22,276 12.1%
2 D04 24,480 24,481 18,951 22.6%
3 D04 + S82 49,834 49,835 41,341 17.0%
4 DFULL 19,046 19,046 14,121 25.9%

† Number of objects after selection of i < 22.5.

contains the percentage of galaxies removed from the valida-
tion set, after imposing a magnitude limit cut in i < 22.5. This
value was chosen as it is, approximately, the magnitude limit
of the Y1 data and our main interest is to validate the photo-zs
for a magnitude-limited sample. The magnitude (i-band), color
(g-r) and redshift (spec-z) distributions for the training sets are
shown in Figure 8.

We further examine the quality of our photo-z using three
independent sets. We have used a pencil-beam survey contain-
ing all types of galaxies (zcosmos, Lilly et al., 2009), and two
wide surveys with different morphological composition: cmass
(Alam et al., 2015) containing early-type galaxies and wigglez
(Parkinson et al., 2012) primarily late-type galaxies. In order to
validate with independent samples new training sets are made
based on set 2, but excluding the objects that are present in
the validation sets, to avoid identical galaxies within the train-
ing and validation samples. Therefore, we create the sets 2Z,
2W and 2C to train the algorithms before validating with zcos-

Table 4: Training and validation sets used for independent cases†.

Set Train Valid Valid ‡ Removed
zcosmos 40,231 (2Z) 4,798 4,466 6.9%
wigglez 48,950 (2W) 10,608 10,410 1.9%
cmass 48,956 (2C) 10,699 10,663 0.3%

† Spectroscopic matches with photometric DES Y1A1 data.
‡ Number of objects after selection of i < 22.5.
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Figure 9: Same distributions as in Figure 8, but for the three independent (sur-
veys that do not take part of training procedure) validation sets, zcosmos, wig-
glez and cmass. The sets listed in the figure are those defined in Table 4.

mos, wigglez and cmass respectively (see Table 4). The i-band
magnitude, g − r color and redshift distributions of the three
independent validation sets are shown in Figure 9.

In summary, in this section, we have created four different
training sets (and their respective validation sets), and three in-
dependent samples, zcosmos, cmass, andwigglez (which needed
a modified version of set 2 for training).

3.4. Training and validating photo-z algorithms

In recent years the number of photo-z algorithms has in-
creased enormously, and it is beyond the scope of the present
paper to make a comprehensive review of the available algo-
rithms. So far, the following codes are implemented in the Por-
tal: Annz, Annz2, ArborZ, DNF, LePhare, Pofz, SkyNet, and
TPZ. Almost all algorithms are empirical methods, with the ex-
ceptions of LePhare, a template fitting code, for which a train-
ing sample can be used to improve photo-z through systematic
shifts in the theoretical magnitudes from the spectral energy dis-
tribution (SED) templates.

Regarding the results shown in Section 4, for TPZ we used
magnitudes and colors to build 200 trees, and considered the
mean of the PDF as the photo-z single value. DNF was used
in the Euclidean Neighborhood Fitting (ENF) mode, accepting
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only magnitudes as observables, which is the faster mode but is
not necessarily the one that provides the best results. For LeP-
hare, the template library adopted was a subset with 21 SEDs,
from elliptical to starburst galaxies, from the CFHTLS library.
We applied the internal extinction from Prévot et al. (1984) with
values of E(B − V) = [0.0, 0.1, 0.2, 0.3]. For the other algo-
rithms, the configuration was the default for each code.

The codes mentioned above are implemented in the Portal
in two separate pipelines shown in Figure 5. First, in Photo-z
Training, where the training and validation steps are done. Sec-
ond, in Photo-z Compute, where the products of the previous
step, hereafter training files, are inherited and applied to com-
pute photo-zs for large photometric samples.

The Photo-z Training pipeline consists of three components:
“Subsets Separation”, “Photo-z Training”, and “Photo-z Valida-
tion”.

In the “Subsets Separation” component, the user can define
the sample selection criteria, choosing the acceptable intervals
of magnitude, redshifts, colors and magnitude signal-to-noise
ratio. Also, this component splits the matched catalog into two
parts. The fraction of data used for training (and consequently
the remaining fraction for validation) is a free parameter in the
component’s configuration. If the fraction is chosen to be 1.0,
the validation step is skipped, and the whole sample is em-
ployed for training.

The “Photo-z Training” creates the training files, as well
as registers the code configurations that will be applied to the
next pipeline, Photo-z Compute. A unique training procedure
can be used in the photo-z calculation for different photometric
datasets.

The last component, “Photo-z Validation”, produces qual-
ity assessment plots and validation metrics for all the selected
codes, utilizing the same training files that will be used in the
Photo-z Compute pipeline. An example is presented in Fig-
ure 10, showing the “Result” screen of the Photo-z Training
pipeline, with “Validation Plots” for DNF algorithm. In the top
menu, the user can navigate through tabs, to explore the results
from different components.

An example of usage of the Photo-z Training pipeline is
shown in the supplemental video V37. There we apply the
matched catalog created in the previous pipeline, Training Set
Maker, to perform training and validation procedures with ran-
dom halves of the sample. We also make a tour in the results
screen to explore the metrics and diagnostic plots generated.

To assess the performance of the photo-z algorithms, we es-
timate metrics to quantify dispersion, systematic errors, and the
capability of recovering the N(z) distribution. We selected four
from the ten metrics addressed in the DES science verification
analysis. The equations that define these quantities are found in
Sánchez et al. (2014). Below we describe the meaning of each
one:

• bias is defined as the mean difference between photo-zs
and spec-zs, quantifying some possible systematic trend

7https://youtu.be/ZOJ0hGWlvag?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2

of the photo-z to be larger or smaller than the spec-z. In
the figures, we show a dotted line in the level 0.0 to make
this trend more evident for the reader.

• σ68 is the half width of the distribution, with respect to
the median of bias, where 68% of the date are enclosed
(note that for Gaussian errors, this coincides with the
standard deviation). This metric reflects the photo-z scat-
tering around the expected values (spec-zs).

• frac(> 2σ) is the fraction of catastrophic photo-zs that lie
out of the interval of 2 times the standard deviation of the
mean bias. This is another way to quantify the dispersion
around the expected values.

• NP measures the difference between the estimated N(photo-
z) and the N(spec-z) for each bin, normalized by Poisson
fluctuations

√
N(spec−z). The global NP is computed as

the RMS of the values in redshift the intervals studied.
This metric is a straightforward way to compare the two
histograms that represent N(photo-z) and N(spec-z). NP

would be ideally equal 0.0 if both distributions coincide,
so the level 0.0 is marked in the plots as a reference.

In Section 4 we adopt the same performance targets used
by Sánchez et al. (2014), as a benchmark to compare differ-
ent codes or training/validation sets. All those quantities are
calculated globally and as a function of redshift, in intervals
of 0.1. The goal of this comparison is to show that the Por-
tal can be utilized as a tool to verify whether the data meet or
not the scientific requirements, whatever they are. The Sánchez
et al. (2014) benchmarks were formulated by DES collabo-
ration as pre-survey estimates of photo-z performance needs.
Subsequent experience and analyses have led to a substantial
and ongoing evolution in the types of statistics taken to verify
that photo-z errors do not contribute significantly to the cosmo-
logical error budgets. Science requirements for some specific
studies have to be more strict, e.g., tomographic weak lensing
studies (Bonnett et al., 2016), and driven by the scientific case
of interest.

The Photo-z Training pipeline presents the metrics automat-
ically if the validation step is performed. Errors in the metric
values are estimated using the Bootstrap re-sampling technique
(Bradley and Tibshirani, 1993) based on 100 realizations, as
done in Sánchez et al. (2014). We recall that the main purpose
of the Photo-z Training pipeline is the creation of the training
solutions for multiple algorithms, and the automatic validation
of them, before their application to the photometric sample. In
Section 4 we summarize the results we have obtained for the
different training and validation samples presented in Section 2,
as an example of how DES Science Portal can aid to assess the
photo-z performance of different codes and configurations.

3.5. Computing Photo-zs for large datasets
The actual photo-zs calculation in DES Science Portal is

done through the Photo-z Compute pipeline. This pipeline es-
timates photo-zs for all co-added objects present in the photo-
metric sample, regardless of the object’s nature (e.g., star or
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Figure 10: Results from the Photo-z Validation component, organized in tabs by photo-z algorithms. In this case, we present results for DNF algorithm.

galaxy). Once the photo-zs are calculated, they will be utilized
to aid in the creation of catalogs ready for Portal science work-
flows, considering, e.g., different star/galaxy classifiers, color
cuts, and magnitude limits.

Since the same object can be tagged as galaxy by one classi-
fier or star by another, it is important to have photo-zs available
for all objects. Therefore, the N(z) obtained with the Photo-z
Compute pipeline is not representative of the true galaxy distri-
bution yet, and only when the final catalogs are produced, that
the N(z) can be used for scientific analyses.

Photo-z Compute is the most computationally intensive of
all the photo-z related pipelines. As we need to deal with the
entire photometric sample, to do so efficiently, data access hap-
pens through Hadoop8 File System. The pipeline allows two
types of parallelization procedures, depending on the code. TPZ,
for instance, has an implementation based on Message Passing
Interface (MPI), so we deploy only one thread (a DES tile of
about 0.5 deg2) per node and MPI itself fills all the cores in that
node. On the other hand, DNF and other codes have several
threads executed per node, each occupying a core (typically
24 cores per node on our production cluster). These threads
are consolidated and ingested in the database. More details
about parallelization and benchmarks will be presented else-
where (Fausti et al. 2017, in preparation).

We show an example of running the Photo-z Compute pipeline

8http://hadoop.apache.org/

in the supplemental video V49. There, we apply the training
files created in the previous step and perform the photo-z calcu-
lation for the whole photometric dataset S82. We also show the
resulting distribution of photo-zs, with the caveat that, at this
stage, the star/galaxy classification was not performed yet.

4. Use case examples

In this section, we present and discuss some examples to il-
lustrate the benefit of having an infrastructure as such. We show
examples of tests carried out with the Photo-z Training pipeline,
to explore different configurations that can later be used to cal-
culate photo-zs for the photometric sample, using the Photo-z
Compute pipeline. These tests show the versatility of the Por-
tal in producing photo-zs in different scenarios. On the other
hand, as previously stated, the photo-z estimations presented
here have not been robustly validated by the DES photo-z work-
ing group, and are therefore not meant to be used in a scientific
analysis.

For simplicity, in most of the tests, we only show the results
obtained with TPZ and DNF algorithms. TPZ was chosen due
to its good performance on previous DES Science Verification
data (e.g., Sánchez et al., 2014). DNF, the nearest neighbor
algorithm, for being computationally fast, especially in the ENF

9https://youtu.be/IcCk0MYhy-E?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
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mode. A comparison with other codes installed at the Portal can
be seen in Section 4.2.

4.1. Dependence on training sets
We start our examples by randomly splitting the training

sets defined in Section 3.3 into two, with the same sizes, to be
used for training and validation. In this case, the training sam-
ple is representative of the validation sample. To ensure the to-
tal coverage of magnitude and color ranges, by default no cuts
were done in the training set. Nonetheless, for validation, all
results presented here use validation sets limited to i < 22.5,
which is brighter than the magnitude limit of all datasets con-
sidered.

To reveal the impact of constructing training samples in re-
gions of the sky with different characteristics, we compare sets
1 and 2 (see Table 3). The results obtained with training sets 2
and 3 may help us understand the relevance of the training set
size, and finally, comparing the results obtained with training
sets 2 and 4 may be useful to assess the effect of signal-to-noise.
While other training sets could conceivably be proposed, we be-
lieve that these four sets considered here span a wide range of
possibilities.

We show the metrics in intervals of photo-z in Figure 11.
The global values are summarized in Table 5. We note that the
difference between metrics, especially bias, is much larger than
the metric errors, which are statistical in nature.

The four pairs of training/validation sets provide very sim-
ilar global metrics for most of the photo-z range. The discrep-
ancies become significant only at high redshifts (z > 1.0). The
biases are small for the two algorithms, at least up to z ∼ 0.8.
For σ68 both codes fulfill the pre-survey performance targets
(< 0.12, marked by the dashed line), also up to z ∼ 1.0. The
fraction of outliers frac(> 2σ) satisfies the requirement (< 0.1)
for all the redshift range studied (see Table 5). For both al-
gorithms, the smallest value of Np (the best agreement) was
obtained with set 4 (DFULL), where the signal-to-noise ratio
of galaxies is better, even though the difference with set 2 is not
large (its counterpart, D04).

Comparing sets 1 and 2, we do not see significant discrep-
ancies in the value of Np. It indicates that the differences in
these two regions of the sky are not relevant for recovering the
photo-z distributions. Finally, a comparison between sets 2 and
3 reveals that increasing the size of the training set does not
necessarily produce improvements in the photo-z metrics either.
The distributions of redshifts, shown in the right panel of Fig-
ure 11, are reasonably well recovered in all cases.

In this first example, we show that the photo-z distributions
recover the spec-z distributions reasonably well when training
and validation sets have similar photometric properties. Un-
fortunately, the spectroscopic sample available in the Portal’s
database does not resemble the photometric properties of Y1A1,
regarding the distributions of colors and magnitudes. There-
fore, the validation procedure used in these tests does not set
the quality levels for the photo-zs calculated in DES. However,
it is useful to make comparisons between different codes and
their configurations, for better understanding the impact of de-
cisions taken when building training sets.

Table 5: Global metrics for the validation sets composed by one half of matched
catalogs, after training with the other half.

Algorithm Set bias σ68 frac(> 2σ) NP
×(10−4) ×(10−4) ×(10−4) ×(10−2)

DNF

1 5 ±3 533±2 522±3 571±6
2 83 ±3 638±2 513±4 611±8
3 66 ±2 605±2 503±3 796±6
4 126±4 542±2 498±5 514±7

TPZ

1 -74±3 518±2 491±3 745±5
2 -58±3 602±2 463±4 638±6
3 -58±3 574±1 465±3 856±7
4 -17±4 490±2 446±4 429±5

Regarding the purpose of the tests presented in this section,
we conclude that in the case of a representative training sam-
ple: (i) The different regions of the sky used to create training
and validation sets shows no influence on the photo-z quality. It
means that the regions that compose the datasets in Y1A1 are
large enough to present similar depth in average and to be not
substantially affected by the cosmic variance during the train-
ing procedure. (ii) The training set size does not affect much
the results, as we are working with a training sample that is
already representative of the validation sample. (iii) The differ-
ences in the signal-to-noise ratio of training sets 2 (D04), and 4
(DFULL) are not large enough to induce significant differences
in their results.

4.2. Dependence on the photo-z algorithm

In this section, use the training set 2 to study the perfor-
mance of all the photo-z algorithms currently installed in the
Science Portal and how their performances compare to one an-
other and in particular to TPZ and DNF. For further algorithm
comparisons, we refer to Hildebrandt et al. (2010) and Carrasco
Kind and Brunner (2014).

The set is validated using the validation sample representa-
tive of itself, but limiting at i < 22.5. The variation of metrics
as a function of redshift interval is presented in the two first
panels of Figure 12. Global metrics are shown in Table 6. Sim-
ilar to the analysis presented in the previous section, here again,
we compared the metrics with the pre-survey performance tar-
gets, as a benchmark to allow the comparison. In the third panel
we show the comparison between the N(z)s, from photo-zs and
spec-zs.

These results indicate that nearly all codes have similar be-
havior, except close to the limits of the redshift range consid-
ered. Besides Skynet and Pofz, all the other codes lead to sim-
ilar results but with TPZ in general yielding slightly better re-
sults. However, DNF is by far the fastest code available while
TPZ and LePhare are the slowest. Approximately, they all meet
the collaboration pre-survey performance targets, although TPZ
and DNF do seem to behave slightly better, therefore justifying
our choice to use them in the more detailed tests.

For most of the cases, the algorithms were run in the de-
fault mode. It is possible that the results can be improved if we
investigate the impact of the configuration parameters for each
one of the photo-z codes available. For instance, Pofz, LeP-
hare, and SkyNet, which show here the larger differences in
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Table 6: Global metrics for all photo-z codes using the set 2.

Algorithm bias σ68 frac(> 2σ) NP
×(10−4) ×(10−4) ×(10−4) ×(10−2)

annz 135±4 750±3 466±4 1061±9
annz2 90±3 782±2 469±3 1046±9
arborz 254±4 656±2 488±4 1018±8
dnf 83±4 638±2 513±4 611±8
lephare 321±5 941±3 514±4 1277±695
pofz -469±5 1087±4 521±3 1436±16
skynet 438±4 1164±7 596±3 1156±7
tpz -58±3 602±2 463±4 638±6

the reproduced N(z) distribution, performed better in Sánchez
et al. (2014). Therefore, despite this analysis does not assess the
realistic metrics for Y1, the results presented in Table 6 show
the capability of the Portal to make fair comparisons between
methods, ensuring the same conditions in their execution.

4.3. Validation with independent sets

The ways of evaluating the quality of computed photo-zs
described earlier suffers the weakness that the validation sam-
ples are similar to the sample used for the training which, of
course, is not usually the case. Weighting the validation sam-
ple, so that it takes into account the magnitude and color distri-
butions of the photometric sample of interest, is a way to tackle
this problem.

Another more direct way is to validate the estimated photo-
zs using a sample that is independent from that used in training,
to see whether the codes are capable of recovering a redshift
distribution whatever it is. We start doing that using the spec-
troscopic sample of zcosmos (Lilly et al., 2009) to create an
independent validation set.

Table 7: Global metrics evaluated in zcosmos independent validation set, after
training with training set 2C.

Algorithm bias σ68 frac(> 2σ) NP
×(10−4) ×(10−4) ×(10−4) ×(10−2)

DNF 164±5 714±7 530±9 654±11
TPZ 25±6 663±4 502±9 500±10

Here, we show the results obtained using the training set
2Z listed in Table 4 of Section 3.3. The results are shown
in Figure 13 and summarized in Table 7 for photo-zs obtained
using the DNF and TPZ codes. As can be seen in the figure,
both codes lead to very similar results with the usual metrics
satisfying the pre-survey performance targets over a large range
of redshifts. For redshifts greater than 0.8, the bias becomes
slightly positive (DNF) or negative (TPZ), before it starts to
increase systematically beyond z = 1.

We compare the computed photo-zs to the measured red-
shift distribution in the right panel of Figure 13. It is remark-
able that the sharp features of the very inhomogeneous distribu-
tion which characterize this pencil-beam survey are reasonably
reproduced, including the location of the peaks in the case of
TPZ.

Both DNF and TPZ provide not only a single estimation for
the photo-z, but also a probability density function (PDF) over
the redshift range regarded. For simplicity, we decided to show
in this paper only the N(z) using the single photo-z values.

To understand the effect of the predominance of a particular
galaxy type in the sample, we have also used as independent
samples wigglez and cmass. Based on their color distributions,
we infer that the first almost exclusively composed by late-type
galaxies, whereas the second is dominated by early-type galax-
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ies. The results for wigglez and cmass samples were obtained
using the DNF and TPZ codes and the training sets listed in
Table 4.

While the redshift distribution of early-type galaxies is re-
produced extremely well, this is not the case for late-types espe-
cially in the interval 0.2 < z < 0.7. Two factors contribute to the
best performance of photo-z codes in CMASS. First, the nature
of the early-types’ SED, with the remarkable feature around
4000 Å, which makes easier the determination of the photo-zs
when there are only five bands available, as the DES case (e.g.,
Budavári et al., 2001). Second, the absence of objects at lower
redshifts, where the lack of the u-band has the significant im-
pact.

Altogether, the results from Sections 4.1 to 4.3 indicate that
the Portal infrastructure is ready to compute photo-zs and can
be used as a tool to perform a wide range of tests. The de-
termination of the best method or the best training and valida-
tion samples for Y1A1 and future releases are a good example.
These results are particularly important, for instance, for cluster
finders based on photo-zs such as WAZP (Benoist et al. 2017,
in preparation), or for the calculation of luminosity and stellar
mass functions, both science pipelines currently under imple-
mentation in the Portal.

4.4. Tests on Y1A1 data

We have used training set 2 to compute photo-zs for the ob-
jects in the S82, the larger region considered in this work, using
the DNF and TPZ codes. The results are shown in Figure 15.
We should emphasize that photo-zs were computed for all ob-
jects without any color or magnitude cuts, nor classification.
The time spent to run Photo-z Compute was approximately 1.2
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Figure 14: Left: the variation of metrics as a function of redshift comparing the
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minutes per million objects for DNF and 6.5 minutes per mil-
lion objects for TPZ, using the parallelization described in sec-
tion 3. Even though it takes more time to compute photo-zs for
a larger sample that was not pruned, later it provides greater
flexibility and speed when producing catalogs ready for Portal
science-workflows, as one does not have to go back and re-run
Photo-z Compute if different pruning decisions are made. Be-
sides, regarding star/galaxy classification choices, the number
of stars in DES footprint is much smaller than that of galaxies
(since we are avoiding the Galactic disk) so keeping stars in the
photometric sample does not add much to photo-z computation
time.

External tests using the SPT region, which is even larger
than S82 (see Figure 1), revealed that the features seen in the
distributions are characteristics of the code and not the region,
as the distributions obtained for the two regions are almost iden-
tical. We note that the rise in the number of objects with TPZ
photo-z close to zero is mostly related to stars (98%), as classi-
fied by MODEST method (e.g., Chang et al., 2015) which is based
on the SPREAD MODEL parameter (Desai et al., 2012) (see also
DES Y1 release paper in preparation).

5. Summary

In this paper, we have described the infrastructure available
in the Science Portal to create training sets, training files and to
compute photo-z using different algorithms. It is an easy-to-use
framework that concatenates all the different pipelines involved
in the calculation of photo-zs, ensuring consistency between
these processes. The pipeline used in the estimation of photo-zs
is parallelized to improve performance. Since all processes are
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Figure 15: Photo-z distribution for the S82 field, measured by Photo-z Compute
pipeline, after training with set 2. At this stage, there is neither quality pruning
nor star/galaxy classification, so this distribution does not reflect the real galaxy
N(z).

registered in a database, the Portal framework eases the task of
carrying out a large variety of tests and comparing the results as
illustrated in the present paper. Also, the infrastructure is used
as a first step in the preparation of catalogs ready for Portal sci-
ence workflows.

Once training sets are prepared, photo-zs obtained from all
codes of interest are calculated and stored in tables which can
later be used as input in the preparation of science catalogs.

New spectroscopic data are continuously ingested into the
database associated with the Portal, increasing the number of
entries used in the construction of training and validation sets.
Even though the redshift repository continuously grows, the list
of surveys used in any test is reported and registered, so the
test can be reproduced in the future, using only the surveys of
interest.

Considering the volume of data, the number of algorithms
and the number of releases of new photometric and spectro-
scopic data, having a structured framework like the one pre-
sented here is critical for the vetting of DES algorithmic im-
provements, and the systematic production of photo-z’s for fu-
ture DES releases.

As an example, we used the available Portal infrastructure
on DES Y1 data, evaluating in different ways the quality of
computed photo-zs using different training sets and algorithms.
The realistic validation set that will give a precise prediction
of the photo-z quality for Y1 is the subject of another paper
that is being prepared by the collaboration. Here, we show a
list of comparative tests that gives us several clues about the
photo-z quality for Y1A1, besides it makes evident the Portal’s
flexibility to perform a large variety of tests.

It is important to point out that the strategy adopted by the
Portal is to compute photo-zs for all objects in the original cat-
alog produced by DESDM. We do that because the photo-z cal-
culation is, by far, the most computationally intensive step of
the E2E process. Calculating photo-zs for all objects gives the
flexibility to create any catalog for Portal science workflows
without having to re-compute photo-zs if one decides to change
the star/galaxy classifier or the sample selection. One disad-
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vantage of our approach is that, in this first pass, we only com-
pute point-values of photo-z. The calculation of a full PDF hap-
pens at a later stage when the number of objects of interest is
smaller, after quality pruning and star-galaxy separation. This
will be discussed in a separate paper that focuses on the method
of preparing catalogs ready for Portal science workflows.

Finally, we would like to mention that, recently, the entire
Portal framework was adapted to handle with simulations, be-
sides the observed data. It represents a significant increase in
the number of applications of the Portal in future scientific anal-
ysis.
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