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23 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
24 Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA
25 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
26 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
27 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
28 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
29 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
30 Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
31 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
32 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
33 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
34 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
35 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
36 Event Horizon Telescope, Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden Street, Cambridge, MA 02138, UK
37 Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
38 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
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ABSTRACT
We define and characterise a sample of 1.3 million galaxies extracted from the first year of
Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence
of significant redshift uncertainties. The sample is dominated by luminous red galaxies located
at redshifts z & 0.6. We define the exact selection using color and magnitude cuts that balance
the need of high number densities and small photometric redshift uncertainties, using the
corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical
photo-z uncertainty varies from 2.3% to 3.6% (in units of 1+z) from z = 0.6 to 1, with number
densities from 200 to 130 galaxies per deg2 in tomographic bins of width ∆z = 0.1. Next we
summarise the validation of the photometric redshift estimation. We characterise and mitigate
observational systematics including stellar contamination, and show that the clustering on
large scales is robust in front of those contaminants. We show that the clustering signal in the
auto-correlations and cross-correlations is generally consistent with theoretical models, which
serves as an additional test of the redshift distributions.

Key words: cosmology: observations - (cosmology:) large-scale structure of Universe

1 INTRODUCTION

The use of the imprint of Baryon Acoustic Oscillations (BAO) in
the spatial distribution of galaxies as a standard ruler has become
one of the common methods in current observational cosmology
to understand the Universe. The physics that causes BAO is well
understood. Primordial perturbations generated acoustic waves in
the photon-baryon fluid until decoupling (z ∼ 1100). These sound
waves lead to the large oscillations observed in the power spectrum
of the CMB anisotropies, but they are also visible in the clustering
of matter, and therefore galaxies, as a high density region around
the original source of the perturbation, at a distance given by the
sound horizon length at recombination. This high density region
shows as a small excess in the number of pairs of galaxies sep-
arated by ∼ 150 Mpc. Since the sound horizon is very precisely
measured in the cosmic microwave background (Planck Collabora-
tion et al. 2016), the BAO measurements can be used as a standard
ruler. This is, therefore, a geometrical probe of the expansion rate of
the Universe, that maps the angular diameter distance and the Hub-
ble parameter as functions of the redshift. There have now been
multiple detections of the BAO in redshift surveys (Eisenstein et al.
2005; Percival et al. 2010; Ross et al. 2015; Alam et al. 2017; Ata
et al. 2018; Delubac et al. 2015; Bautista et al. 2017; Percival et al.
2001; Cole et al. 2005; Blake et al. 2011; Beutler et al. 2011) and
it is considered as one of the main cosmological probes for current
and planned cosmological projects.

A key feature of the BAO method is the fact that the sound
horizon length is large, and, therefore, very deep and wide galaxy
surveys are needed in order to reach precise measurements of the
BAO scale. But, at the same time, this large scale protects the BAO
feature from large corrections due to astrophysical and non-linear
effects of structure formation and therefore from systematic errors,
making BAO a solid probe of the expansion rate of the Universe.

The Dark Energy Survey (DES) is one of the most important
of the currently ongoing large galaxy surveys and, as its name sug-
gests, it is specially designed to attack the problem of the physical
nature of the dark energy. It will do it using several independent and
complementary methods at the same time. One of them is the pre-
cise study of the spatial distribution of galaxies, and in particular,
the BAO standard ruler. DES is a photometric survey, which means

? e-mail: martincrocce@gmail.com

that its precision in the measurement of redshifts is limited, pre-
venting the measurement of the Hubble parameter evolution. How-
ever, the evolution of the angular distance with redshift is possible,
through the measurement of angular correlation functions (Seo &
Eisenstein 2003; Padmanabhan et al. 2005; Blake & Bridle 2005;
Padmanabhan et al. 2007; Crocce et al. 2011; Sánchez et al. 2011;
Carnero et al. 2012; Seo et al. 2012; de Simoni et al. 2013).

Although DES will only measure BAO in the angular distri-
bution of galaxies, a determination of the photometric redshift as
precise as possible brings several benefits. It allows a finer tomog-
raphy in the mapping of the BAO evolution with the redshift and
makes the analysis cleaner, reducing the correlations between red-
shift bins. A sample of Luminous Red Galaxies (LRGs) would fit
these requirements (Padmanabhan et al. 2005, 2007). LRGs are lu-
minous and massive galaxies with a nearly uniform Spectral En-
ergy Distribution (SED), but with a strong break at 4000 Å in the
rest frame. These features allow a clean selection and an accu-
rate determination of the redshift for this type of galaxies, even in
photometric surveys. This selection has been done previously for
imaging data at z . 0.6 (Padmanabhan et al. 2005). But the BAO
scale has already been measured with high precision in this redshift
range (e.g. Alam et al. (2017) and references therein). In order to
go to higher redshifts, the selection criteria need to be redefined.
The 4000 Å feature enters the i band at z = 0.75, and the methods
used in previous selections are not valid anymore.

In this paper we describe the selection of a sample of red
galaxies to measure BAO in DES, that includes, but is not limited
to, LRGs. The selection is defined by two conditions. On the one
hand, keep the determination of the photometric redshift as precise
as possible. On the other hand, keep the galaxy density high enough
to have a BAO measurement that is not limited by shot noise.

In order to guide our efforts to select an optimized sample for
measuring BAO distance scales, we rely on Fisher matrix forecasts.
Seo & Eisenstein (2007) provide a framework and simple formu-
lae to predict the precision that one can achieve with a given set
of galaxy data, given its number density, angular footprint, redshift
uncertainty, and clustering amplitude. We fix the clustering ampli-
tude, assuming a galaxy bias of b = 1.6 for all calculations. This
is the bias found in Crocce et al. (2016) for a flux limited sam-
ple (i < 22.5) at redshifts z ∼ 0.9, selected from DES Science
Verification (SV) data. Since that redshift and magnitude are com-
patible with what we expect in this paper, we consider b = 1.6 a
representative value. More precise measurements are expected for

c© 2017 The Authors
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more biased samples, but the galaxy bias for any given sample is
not known a priori and the redshift uncertainty and number density
are the more dominant factors. Thus, we will test how Fisher matrix
forecasts vary given the variations obtained for the number density
and estimated redshift uncertainty given a set of color-magnitude
cuts.

This paper, detailing the BAO sample selection, is one of a
series describing the supporting work leading to the BAO measure-
ment using DES Y1 data presented in DES Collaboration (2017)
(hereafter DES-BAO-MAIN). As part of such series, one paper
presents the mock galaxy catalogues, Avila et al. (2017) (here-
after DES-BAO-MOCKS). Gaztañaga et al. (2017) discusses in de-
tail the photo-z validation, and we denote it DES-BAO-PHOTOZ.
Chan et al. (2017), from now on DES-BAO-θ-METHOD, intro-
duces the BAO extraction pipeline using a tomographic analysis of
angular correlation functions, while Camacho et al. (2017) presents
the study of the angular power spectrum (hereafter DES-BAO-`-
METHOD). Lastly, Ross et al. (2017a), in what follows referred to
as DES-BAO-s⊥-METHOD, introduced a novel technique to in-
fer BAO distances using the three-dimensional correlation function
binned in projected separations.

This paper is organized as follow: in section 2, a description
of the main features of the DES-Y1 catalogue is given: in section 3,
we give a detailed description of the selection cuts that define the
data sample that has been used to measure the BAO scale in DES;
section 4 contains a description of the procedure that has been de-
veloped and applied in DES in order to ensure the quality of the
photometric redshift determination, and to determine its relation
with the true redshift; section 5 describes the masking scheme and
the treatment of the variable depth in the survey; section 6 is a de-
scription of the analysis and mitigation of observational system-
atic errors on the clustering measurement; and finally, section 7
describes the measured two-point correlation and cross-correlation
functions and their evolution with redshift for the selected sample.
We finish with our conclusions in section 8.

2 DES Y1 DATA

The BAO galaxy sample we will define in this work makes use of
the first year of data (Y1) from the Dark Energy Survey. This pho-
tometric dataset has been produced using the Dark Energy Camera
(DECam, Flaugher et al. (2015)) observations, processed and cal-
ibrated by the DES Data Management system (DESDM) (Sevilla
et al. 2011; Mohr et al. 2012; Morganson et al. 2017) and finally
curated, optimized and complemented into the Gold catalog (here-
after denoted ‘Y1GOLD’), as described in Drlica-Wagner et al.
(2017). For each band, single exposures are combined in coadds
to achieve a higher depth. We keep track of the complex geome-
try that the combinations of these dithered exposures will create at
each point in the sky in terms of observing conditions and survey
properties. Objects are detected in chi-squared combinations of the
r, i and z coadds to create the final coadd catalog (Szalay, Connolly
& Szokoly 1999).

Y1GOLD covers a total footprint of more than 1800 deg2;
this footprint is defined by a HEALPIX (Górski et al. 2005) map at
resolution Nside = 4096 and includes only area with a minimum
total exposure time of at least 90 seconds in each of the griz bands,
and a valid calibration solution (see Drlica-Wagner et al. (2017) for
details). This footprint is divided into several disjoint sub-regions
which encompass the supernova survey areas, a region overlapping
stripe 82 from the SDSS footprint (S82; Annis et al. (2014)) and

a larger area overlapping with the South Pole Telescope coverage
(SPT; Carlstrom et al. (2011)). Figure 1 shows the angular distri-
bution of galaxies, selected as described in Section 3, that includes
these two areas. A series of veto masks, including masks for bright
stars and the Large Magellanic Cloud among others, reduce the
area by ∼ 500 deg2, leaving 1318 deg2 suitable for LSS study.
Other areas that are severely affected by imaging artifacts or other-
wise have a high density of image artifacts are masked out as well.
Section 5 provides a full account of the final mask used in com-
bination with the final BAO sample. “Bad” regions information is
propagated to the ‘object’ level by using the flags badregion
column in the catalog. Finally, individual objects which have been
identified as being problematic by the DESDM processing or by
the vetting process carried out by the scientists in the collaboration
are flagged when configuring the catalog (this is done through the
flags gold column). All data we describe in this and in sub-
sequent sections are drawn from quantities and maps released as
part of the DES Y1 Gold catalog and are fully described in Drlica-
Wagner et al. (2017).

The photometry used in this work comes mainly from two dif-
ferent sources:

• the SExtractor (Bertin & Arnouts (1996)) AUTO magni-
tudes, which are derived from the best matched elliptical aperture
according to the coadd object elongation and angle in the sky, mea-
sured using the coadded object flux;
• Multi-Object Fitting (MOF) pipeline, which performs a multi-

epoch and multi-band fit of the shape and per-band fluxes directly
on the single epoch exposures for each of the coadd objects, with
additional neighboring light subtraction. This is described in more
detail in Drlica-Wagner et al. (2017).

Using these photometric measurements, we will consider
three different photometric redshift catalogues. Two of them
are built using BPZ (Benı́tez 2000), a Bayesian template-fitting
method, and another using a machine learning approach: the Di-
rectional Neighborhood Fitting (DNF) algorithm as described in
De Vicente, Sánchez & Sevilla-Noarbe (2016). They are combined
with the photometric quantities described above and used as fol-
lows:

• BPZ run with AUTO magnitudes (hereafter zBPZ−AUTO) used
for making the selection of the overall sample.
• BPZ run with MOF magnitudes (hereafter zBPZ−MOF) used

for redshift binning and transverse distance calculation, finally used
as secondary catalogue to show the robustness of the analysis.
• DNF run with MOF magnitudes (hereafter zDNF−MOF) used

for redshift binning and transverse distance calculation, finally used
as our fiducial catalogue.

We should note that BPZ with AUTO magnitudes is part of
the DESDM data reduction pipeline and is available early on in the
catalogue making. This explains why we used that particular com-
bination for sample selection. We did not find, and do not expect,
the relative optimization of the sample selection and cuts to depend
much on the particular photo-z catalogue (but the final absolute er-
ror on BAO distance measurement does).

In Section 4, we summarize the validation performed to select
and characterise the true redshift distributions of the binned sam-
ples, which is described in detail in DES-BAO-PHOTOZ.

Throughout our analysis we assume the redshift estimate of
each galaxy to be the mean redshift of the redshift posterior for
BPZ, or the predicted value for the object in the fitted hyper-plane
from the DNF code (see De Vicente, Sánchez & Sevilla-Noarbe

MNRAS 000, 1–15 (2017)
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Figure 1. Angular distribution and projected density of the DES-Y1 red galaxy sample described in this paper, and subsequently used for BAO measurements.
The unmasked footprint comprises the two largest compact regions of the dataset: one in the southern hemisphere of 1203 deg2, overlapping South Pole
Telescope observations (SPT; Carlstrom et al. 2011), and 115 deg2 near the celestial equator, overlapping with Stripe 82 (S82, Annis et al. 2014). The sample
consists of about 1.3 million galaxies with photometric redshifts in the range [0.6− 1.0] and constitutes the baseline for our DES Y1 BAO analysis.

Table 1. Complete description of the selection performed to obtain a sample dominated by red galaxies with a good compromise of photo-z accuracy and
number density, optimal for the BAO measurement presented in DES-BAO-MAIN. The redshifts of the resulting catalogue are then computed using different
codes (BPZ and DNF) as described in Sec 2. Therefore, any subsequent photo-z selection can be done either with zphoto from BPZ or DNF.

Keyword Cut Description

Gold observations present in the Gold catalog Drlica-Wagner et al. (2017)
Quality flags badregion < 4; flags gold = 0 Sec.5; Sec.2

Footprint 1318 deg2 (1203 deg2 in SPT and 115 deg2 in S82) Fig. 1 Sec.5
Color Outliers −1 < gauto − rauto < 3 Sec. 3.1

−1 < rauto − iauto < 2.5 Sec. 3.1
−1 < iauto − zauto < 2 Sec. 3.1

Color Selection (iauto − zauto) + 2.0(rauto − iauto) > 1.7 Sec. 3.3
Completeness iauto < 22 Sec. 3.1

Flux 17.5 < iauto < 19.0 + 3.0zBPZ−AUTO Sec. 3.3
Star-galaxy separation spread model i + (5/3) spreaderr model i > 0.007 Sec. 3.2

Photo-z range [0.6− 1.0] Sec. 4

(2016). Any potential biases from these estimates are calibrated as
described in Section 4.

3 SAMPLE SELECTION

In this section, we describe the steps towards the construction of
a red galaxy dominated sample, for BAO measurements, starting
from the dataset described in Section 2. The selection is performed
over the largest continuous regions of the survey at this point,
namely SPT and S82. Objects are selected so that we avoid imaging
artifacts and pernicious regions with foreground objects using the
cuts on flags badregion and flags gold described therein.

In the rest of this section we go into finer details on the flux, color
and star-galaxy separation selection.

In Table 1, we summarise this sample selection, including ref-
erences to the sections where these cuts are explained.

3.1 Flux and color outlier cuts

The flux-limit of the sample is set as

iauto < 22. (1)

Additionally, we remove the most luminous objects by making the
cut iauto > 17.5 . The faint cut is selected as a compromise be-

MNRAS 000, 1–15 (2017)



Galaxy sample for DES Y1 BAO measurements 5

Figure 2. Measurement of the trade off between area and number of objects
as a function of magnitude limit and sample flux limit in Y1GOLD and SV.
For a given iauto-band “threshold” value we select all regions which have
a deeper limiting magnitude that this value (10σ depth limit> “threshold”)
and count the galaxies brighter than the “threshold” value over those re-
gions. These should be complete samples at each threshold value. Number
counts are shown normalized to their maximum in the figure.

tween the area lost and the homogeneous depth we would like
to achieve. In Fig. 2 we show the normalized counts as a func-
tion of magnitude limit cut. For deeper magnitude limits, more ob-
jects are incorporated into the sample but the area reaching that
depth is smaller. For comparison we include the same quantity
in Science Verification Data, which is deeper than Y1 but much
smaller area, that justifies the sample flux limit of iauto < 22.5
in Crocce et al. (2016). The curve shows a plateau in the range
22 . iauto . 22.4, with variations of about 5%. However the
photo-z performance (not shown), particularly at high redshift, de-
grades rapidly for fainter objects. Therefore we decided to stay at
the bright end of this range (iauto = 22).

Color outliers which are either unphysical or from special
samples (Solar System objects, high redshift quasars) are removed
as well, to avoid extraneous photo-z populations in the sample (see
Table 1).

3.2 Star-Galaxy Separation

Removing stars from the galaxy sample is an essential step to avoid
the dampening of the BAO signal-to-noise Carnero et al. (2012)
or the introduction of spurious power on large scales (Ross et al.
2011a). Stellar contamination affects the broad shape of the mea-
surement and so we want to minimise it to be able to fit the BAO
template properly. However, it does not appreciably affect the lo-
cation of the BAO feature, so we don’t need to push for 100% pu-
rity. Any residual contamination is then taken care of by using the
weighting scheme detailed in Section 6.

In this work we have used the default star-galaxy classifica-
tion scheme described in Drlica-Wagner et al. (2017), based on
the i-band coadd magnitude spread model i and its associated
error spreaderr model i, from SExtractor. This classifier
was developed using as truth tables data from COSMOS (Leau-
thaud et al. 2007), GOOD-S (Giavalisco et al. 2004) and VVDS
(Le Fèvre et al. 2005) overlapping Y1GOLD, and subsequently
tested against CFHTLenS (Erben et al. 2013). The combination
spread model i + (5.0/3.0)spreaderr model i > 0.005 is
suggested for high-confidence galaxies as a baseline for Y1GOLD.
A detailed follow up analysis of star-galaxy separation is given in
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Figure 3. Contamination of galaxy sample from stars as a function of red-
shift and star-galaxy separation threshold, as measured using galaxy density
vs stellar density plots (from a pure stellar sample). The MODEST classifier
is defined in Drlica-Wagner et al. (2017) as the default star galaxy classi-
fier (based on spread model and wavg spread model). ‘BAO classifier’
stands for a cut in spread model i + (5.0/3.0)spreaderr model i. A
threshold of 0.007 provides an important decrease of contamination with a
minor adjustment in the number of galaxies, which becomes significantly
more severe at higher thresholds for a very similar purity. The redshift bin-
ning here uses zBPZ−AUTO.

Sevilla-Noarbe et al. (2017). Here instead we decided to modify
slightly this proposed cut in order to increase the purity of the sam-
ple (from 95% to 97 − 98%), at the cost of losing approximately
3% of the objects, by making the following selection:

spread model i + (5.0/3.0)spreaderr model i > 0.007.

In Fig. 3 we show the estimated star sample contamination for
different thresholds of this cut, using the relation between galaxy
density and a map of stellar density built from Y1GOLD (a method-
ology that is described in detail in section 6). A threshold of 0.007
reduces the contamination level to less than 5% across the redshift
range of interest. In Table 2 we report a consistent or smaller level
of stellar contamination, using a similar estimation, in the cata-
logues with MOF photometry, both for BPZ and DNF (see Sec.
6). In Fig. 5 we also include in the middle figure the track from the
stellar locus, which showcases the reason why the first two redshift
bins are more affected by stellar contamination, as it crosses the
elliptical templates at these redshifts. To further illustrate this, in
Fig. 4 we show the distribution of the mean photometric redshifts
for stars (selected using the criterion |wavg spread model i| <
0.002, a more accurate variant of spread model i using single-
epoch, suitable for moderate to bright magnitude ranges) showcas-
ing how they will contaminate preferentially the second redshift
bin, following the same trend as shown in Table 2.

3.3 Selecting Red Luminous Galaxies for BAO

Next we want to select from Y1GOLD a sample dominated by lu-
minous red galaxies, given that the typical photo-z estimates for
these are more accurate than for the average galaxy population,
thanks to the 4000 Å Balmer break in their spectra. This feature
makes redshift determination easier even with broad-band photom-
etry (Padmanabhan et al. 2005). In addition we want our BAO sam-
ple to cover redshifts larger than 0.6 as there are already very pre-
cise BAO measurements for z < 0.6, see e.g. Cuesta et al. (2016);
Ross et al. (2017b); Beutler et al. (2017).

MNRAS 000, 1–15 (2017)
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Figure 4. Photometric redshift distribution of stars selected morphologi-
cally and passing the same cuts described in Table 1.The redshift value
zphot is the mean from the pdf of zBPZ−AUTO, which was used for the
overall sample selection in Section 3.

We have tested that, while a very stringent selection can be
done to yield minimal photo-z errors, e.g. with the redMaGiC
algorithm (Rozo et al. 2016), it does not lead to optimal BAO
constraints because the sample ends up being very sparse, with
∼ 200, 000 galaxies in Y1GOLD at z > 0.6 (Elvin-Poole et al.
2017).

Instead we will follow an alternative path and apply a standard
selection in color-color space to isolate red galaxies at high redshift,
balancing photo-z accuracy and number density with a BAO figure-
of-merit in mind.

In Figure 5 we show the evolution in redshift of the eight
spectral templates used in BPZ, which includes one typical red el-
liptical galaxy, two spirals and five blue irregulars/starbursts (color
coded) based on Coleman, Wu & Weedman (1980) and Kinney
et al. (1996). We compute the expected observed DES broad-band
magnitudes for these templates as a function of redshift and show
them in different color-color combinations.The tracks are evolved
from z = 0 to z = 2.0 in steps of 0.1 (marked with dots). We
will use these to define cuts in color-color space which allow iso-
lating the red templates, which typically occupy a distinct region in
color-color space.

A model of a red elliptical galaxy is shown in Figure 6, where
it appears redshifted to z = 0.4, 0.8, 1.15, where the notable 4000
Å break crosses from g → r, r → i and i → z. This suggests
that for z > 0.6 the strongest evolution in color will be for i −
z and r − i, and hence we will focus in this combination. Note
how the transition of the 4000 Å break from one band to another
abruptly bends the color-color tracks in Figure 5. However, this
applies mainly to elliptical templates, and recent star formation will
dampen this effect.

Thus, in order to maximize the signal-to-noise of the BAO
measurement, a color cut is applied to the sample in the form,

(iauto − zauto) + a1(rauto − iauto) > a2. (2)

The cut was chosen in this form as it allows us to select only
the reddest galaxies (see Figure 5) which are the ones with lower
uncertainties in their photometric redshift determination and still
present a high enough number density.

Samples were produced across a grid of a1 and a2 values,
calculating the number of galaxies Ngal and a mean width of the
photo-z distribution σz/(1 + z) for each sample, after splitting the
galaxy in tomographic bins. For BPZ we estimated σz averaging in

Table 2. Characteristics of the DES Y1 BAO sample, as a function of red-
shift. Results are shown for a selection of the sample in bins according to
DNF photo-z (zphot) estimate in top of the table and BPZ in the bottom,
both with MOF photometry. Here z̄ =< ztrue > is the mean true redshift,
σ68 and W68 are the 68% confidence widths of (zphot − ztrue)/(1 +

ztrue) and ztrue respectively, all estimated from COSMOS-DES valida-
tion with SVC correction, as detailed in Sec. 4 and Fig. 7. fstar is the esti-
mated stellar contamination fraction, see Sec. 6

DNF Ngal bias z̄ σ68 W68 fstar

0.6− 0.7 386057 1.81 ± 0.05 0.652 0.023 0.047 0.004
0.7− 0.8 353789 1.77 ± 0.05 0.739 0.028 0.068 0.037
0.8− 0.9 330959 1.78 ± 0.05 0.844 0.029 0.060 0.012
0.9− 1.0 229395 2.05 ± 0.06 0.936 0.036 0.067 0.015

BPZ Ngal bias z̄ σ68 W68 fstar

0.6− 0.7 332242 1.90 ± 0.05 0.656 0.027 0.049 0.018
0.7− 0.8 429366 1.79 ± 0.05 0.746 0.031 0.076 0.042
0.8− 0.9 380059 1.81 ± 0.06 0.866 0.034 0.060 0.015
0.9− 1.0 180560 2.05 ± 0.07 0.948 0.039 0.068 0.006

each tomographic bin the width of the individual redshifts posterior
distributions (PDFs) provided per galaxy.

The BAO forecast using the algorithm of Seo & Eisenstein
(2007) is then run for the Ngal and σz/(1 + z) of each sample and
final values of a1 and a2 are selected to minimise the forecasted
BAO uncertainty, finding a balance between galaxy number density
and redshift uncertainty. In order to give a sense for the sensitivity
of such process, we note there is a slight degeneracy when increas-
ing a1 and a2 simultaneously, resulting in similar forecasted BAO
uncertainties. However deviations from this degeneracy direction
lead to significant degradation in the forecasted error. For example,
doubling a1 leads to a degradation of the forecasted error by ap-
proximately 0.01 (from 5% to 6% roughly). The values used in this
analysis are a1 = 2.0, a2 = 1.7. Figure 5 shows the color cut in
the central panel, where the shadowed region is excluded from the
sample.

To further minimize the forecasted BAO uncertainty, an addi-
tional, redshift dependent magnitude cut is applied to the sample as
a second step. This applies a cut to iauto at low redshift which is
stricter than the global iauto < 22 cut (at lower redshift the sample
is sufficiently abundant that one can still select brighter galaxies,
with better photo-z, and still be sample variance dominated). The
cut is in the form,

iauto < a3 + a4z. (3)

As with the color cut in Eq. 2, this is designed to find a sample
that balances redshift uncertainty with number density, to minimise
the forecasted BAO error. The BAO forecast error was minimised
at the values a3 = 19 and a4 = 3 and this cut was applied to the
sample. We find that the forecasted error improves by∼ 15% when
introducing the redshift dependent flux limit as opposed to a global
iauto < 22 cut.

The final forecasted uncertainty on angular diameter distance
combining all the tomographic bins is ∼ 4.7%. Note that the dis-
cussion in this section only has as a goal the definition of the sam-
ple. The real data analysis with the sample defined here, and the
final BAO error achieved, will of course depend in many other vari-
ables that were not considered up to this point. Such as the quality
of photometric redshift errors, analysis and mitigation of systemat-
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Figure 5. Evolution of BPZ templates in color-color space. Each dot corresponds to a different redshift in steps of 0.1, ranging from z = 0.0 to z = 2.0. The
shadowed region in the central panel is excluded from the sample. The black dots indicate the position of z = 0.6 (triangles), and z = 1.0 (squares) for the
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F
λ

g r i z

Elliptical galaxy at redshift z = 1.15

F
λ

g r i z

Elliptical galaxy at redshift z = 0.80

4000 5000 6000 7000 8000 9000 10000

Wavelength [Å]
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Figure 6. Elliptical model spectrum used in template-based fitting code
BPZ. Overplotted are the DES response filters g,r,i,z. The template has been
redshifted to z = 0.4, 0.8, 1.15, where the notable 4000 Å break crosses
from g → r, r → i and i→ z.

ics, use of the full covariance and optimized BAO extraction meth-
ods.

We note however that the forecasted error obtained in this sec-
tion is in fact quite close to the final BAO error obtained in DES-
BAO-MAIN. In the following sections we discuss the various com-
ponents that will enter the real data analysis, starting with the val-
idation of photometric redsfhit errors and the estimate of redshift
distributions.

4 PHOTOMETRIC REDSHIFTS

The photometric redshifts used for redshift binning and transverse
distance computations in our fiducial analyses are derived using the

Directional Neighborhood Fitting (DNF) algorithm (De Vicente,
Sánchez & Sevilla-Noarbe 2016), which is trained with public
spectroscopic samples as detailed in Hoyle et al. (2017). For com-
parison we also discuss below the Bayesian Photometric Redshift
(BPZ) (Benı́tez 2000) which we find slightly less performant in
terms of the error with respect to “true” redshift values (see below).
In both cases we use MOF photometry which provides∼ 10−20%
more accurate photo-z estimates with respect to the equivalent esti-
mates using SExtractor MAG AUTO quantities from coadd photom-
etry. In this section we summarise the steps taken to arrive at these
choices, based on a validation against data over the COSMOS field.

We recall that throughout this work we use the individual ob-
ject’s mean photo-z from BPZ (not to be confused with the mean
value z̄ =< z > of the sample) and the predicted value in the
fitted hyper-plane from the DNF code, as our point estimate for
galaxy redshifts. As for the estimates of theN(z) from the photo-z
codes, for comparison with our fiducial choice based on the COS-
MOS narrow band p(z), we will use the stacking of Monte Carlo
realisations of the posterior redshift distributions p(z) for the BPZ
estimates, or the stacking from the nearest neighbour redshifts from
the training sample, in the case of DNF (henceforth we’ll call these
stack N(z)). Figure 7 shows the stack N(z) (yellow histograms)
in all 4 redshift bins for our fiducial DNF photo-z analysis.

4.1 COSMOS Validation

As detailed in DES-BAO-PHOTOZ, we check the performance of
each code by using redshifts in the COSMOS field (which are not
part of the training set in the case of DNF), following the procedure
outlined in Hoyle et al. (2017). These redshifts are either spectro-
scopic or accurate (σ68 < 0.01) 30-band photo-z estimates from
Laigle et al. (2016). Both validation samples give consistent results
in our case because the samples under study are relatively bright.

The COSMOS field is not part of the DES survey. However a
few select exposures were done by DECam which were processed
by DESDM using the main survey pipeline. We call this sample
DES-COSMOS. Because the COSMOS area is small (2 square de-
grees) and DECam COSMOS images were deeper and not taken
as part of the main DES-Y1 Survey, we need to first resample the
DES-COSMOS photometry to make it representative of the full
DES Y1 samples that we select in our BAO analysis. Hence we
add noise to the fluxes in the DES-COSMOS catalog to match the
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Figure 7. Normalised redshift distributions for our different tomographic bins of DNF-MOF photo-z. StackN(z) are shown for the full DES-Y1 BAO sample
(yellow histograms). The black histogram (with Poisson error bars) shows the raw 30-band photo-z from the COSMOS-DES validation sample. Magenta lines
shows the same sample corrected by sample variance cancellation (SVC, see text), which is our fiducial estimate. The labels show the values of W68, σ68 and
∆z =< zstack > − < z > and in each case, see also Table 2.

noise properties of the fluxes in the DES-Y1 BAO sample, this is
what we refer to as resampled photometry. Then for each galaxy in
the DES-Y1 BAO sample, we select the galaxy in DES-COSMOS
whose resampled flux returns a minimum χ2 when compared to the
DES-Y1 BAO flux (the χ2 combines all bands, g, r, i and z). This
is done for every galaxy in the DES-Y1 BAO sample to make up
the ‘COSMOS-Validation’ catalog, which by construction has col-
ors matching those in the DES-Y1 BAO sample. The “true” redshift
is retrieved from the spectroscopic/30-band photo-z of this match.

We then run the DNF photo-z code over the COSMOS-
Validation catalog to select 4 redshift bin samples in the same way
as we did for the full DES-Y1 BAO sample. We use the “true” red-
shifts from the COSMOS-Validation catalogs to estimate the N(z)
in each redshift bin by normalising the histogram of these true red-
shifts.

Results are shown as histograms in Figure 7, which are com-
pared to the stack N(z) from the photo-z code, for reference. The
black histograms show large fluctuations which are caused by real
individual large scale structures in the COSMOS field. This can
be seen by visual inspection of the maps. This sampling variance
comes from the relatively small size of the COSMOS validation re-

gion. There is also a shot-noise component, indicated by the error
bars over the black dots, but it is smaller. In the next section, we
briefly describe the methodology to correct for this to be able to
make use of this validation sample effectively.

4.2 Sample variance correction

As detailed in DES-BAO-PHOTOZ we apply a sampling variance
correction (SVC) to the data and test this method with the Halo-
gen mocks described in DES-BAO-MOCKS. In what follows we
provide a summary of such process and its main results.

We use the VIPERS catalog (Scodeggio et al. 2016), which
spans 24 square degrees to i < 22.5, to estimate the sampling
variance effects in the above COSMOS validation. After correct-
ing VIPERS for target, color and spectroscopic incompleteness we
select galaxies in a similar way as done in section 3. We then use the
VIPERS redshifts to estimate the true N(z) distribution of the par-
ent DES-COSMOS sample (before we select in photometric red-
shifts). The ratio of the N(z) in the DES-COSMOS sample to the
one in VIPERS gives a sample variance correction that needs to be
applied to the N(z) in each of the tomographic bins.
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Figure 7 shows the SVC-corrected version of the raw COS-
MOS catalog in magenta. As shown in this figure the resulting
distribution is much smoother than the original raw measurements
(black histograms). This by itself indicates that SVC is working
well. Tests in simulations show that this SVC method is unbiased
and reduces the errors in the mean and variance of the N(z) distri-
bution by up to a factor of two. Similar results are found for differ-
ent binnings in redshift.

4.3 Photo-z validation results

In Table 2 we show the values of σ68, which corresponds to the
68% interval of values in the distribution of (zphoto− ztrue)/(1 +
ztrue) around its median value, where zphoto is the photo-z from
DNF (zmean above) and ztrue is the redshift from the COSMOS
validation sample corrected by SVC. We also show W68 and z̄
which are the 68% interval and mean redshift in the ztrue distri-
bution for each redshift bin. The corresponding values for the stack
N(z) and raw N(z) are also shown in the labels of Figure 7. ∆z
in the label inset shows the difference ∆z =< zstack > − < z >,
where < zstack > is the mean stack redshifts for DES-Y1, shown
in the top label.

In DES-BAO-PHOTOZ we present a comparison of the quan-
tities shown in Table 2 with and without SVC and also between
COSMOS validation and N(z) from DNF stacks (see also labels
of Figure 7). The validation errors and biases in these values are
also presented but we anticipate that they are subdominant for the
BAO analysis, which instead is dominated by the limited size of the
DES Y1 footprint. In DES-BAO-PHOTOZ we present results for
the COSMOS subsample with only spectroscopic redshifts, which
shows a good agreement for these quantities when using COSMOS
30-band photo-z instead of the spectroscopic redshifts. We also in-
clude a comparison with BPZ photo-z (see also Table 2) and re-
sults for different photo-z with coadd photometry. The values of
W68 and σ68 are always smaller (by 10-20%) for DNF with MOF
photometry, which is therefore used as our fiducial photo-z sample.

The fiducialN(z) used in the main BAO analysis are the ones
from COSMOS with SVC (magenta lines in Figure 7).

5 ANGULAR MASK

We build our mask as a combination of thresholds/constraints on
basic survey observation properties, conditions due to our particu-
lar sample selection, and restrictions to avoid potential clustering
systematics. In summary,

• We start by combining the Y1GOLD Footprint and Bad
regions mask, both of which are described in Drlica-Wagner
et al. (2017). The Footprint mask imposes minimum total
exposure times, valid stellar locus regression1 (SLR) calibration
solutions and basic coverage fractions. The Bad Regions
mask removes at different levels various catalog artifacts, regions
around bright stars and large foreground objects. In particular,
for the later we remove everything with flag bit > 2 in Table 5
of Drlica-Wagner et al. (2017), corresponding to regions around
bright starts in the 2MASS catalogue (Skrutskie et al. 2006).

1 This is a complementary calibration technique used for the construction
of Y1GOLD making use of the distinct color locus occupied by stars to
perform relative additional calibration between bands.

• We introduce coordinate cuts to select only the wide area
parts of the surveys, namely those overlapping SPT (roughly with
300 < RA(deg) < 99.6 and −40 < DEC(deg) < −60) and
S82 (with 317.5 < RA(deg) < 360 and −1.76 < DEC(deg) <
1.79). This removes small and disjoint regions which are part of
the Supernova survey and two auxiliary fields used for photo-z
calibration and star-galaxy separation tests (COSMOS and VVDS-
14h), which do not contribute to our clustering signal at BAO
scales.

• Pixelized maps of the survey coverage fraction were created
at a HEALPIX resolution of Nside = 4096 (area = 0.73 arcmin2)
by calculating the fraction of high resolution subpixels (Nside =
32768, area = 0.01 arcmin2) that were contained within the original
mangle mask (see Drlica-Wagner et al. (2017) for a description
of the later). Since our color selection requires observations in all
four griz bands we use the coverage maps to enforce that all pixels
considered (at resolution 4096) show at least 80% coverage in
each band. Furthermore we then use the minimum coverage across
all four bands to down-weight the given pixel when generating
random distributions, see Sec. 7.

• In order to match the global magnitude cut of the sample and
ensure it is complete across our analysis footprint, we select re-
gions with 10σ limiting depth of iauto > 22, where the depths are
calculated according to the procedure presented in Drlica-Wagner
et al. (2017).

• Since we want to reliably impose the color cut defined in
Eq. (2) and Table 2, we consider only areas with limiting depth
in the corresponding bands large enough to measure it. Given
that we are already imposing iauto depth greater than 22, the new
condition implies keeping only the regions with 10σ limiting
magnitudes (2 rauto − zauto) < 23.7, or equivalently those with
zauto > 2 rauto − 23.7.

• As a result of our analysis of observational systematics in
Sec. 6, we identify that galaxy number density in regions of high
z-band seeing shows an anomalous behaviour. To isolate this out
we remove areas with z-band seeing greater than 1 arc-second
(that amounts to 71 deg2, or 5% of the footprint)

• Lastly we also remove a patch of 18 deg2 over which the
airmass computation was corrupted.

The resulting footprint occupies 1318 deg2 and is shown in Fig. 1.

6 MITIGATION OF OBSERVATIONAL SYSTEMATIC
EFFECTS

We have tested for observational systematics in a manner similar to
Elvin-Poole et al. (2017), which builds upon work in DES Science
Verification Data (Crocce et al. 2016) and other surveys (e.g. Ross
et al. (2011a); Ho et al. (2012)).

Generically, we test the dependence of the galaxy density
against survey properties (SPs). We expect there to be no depen-
dence if SPs do not introduce density fluctuations in our sample
beyond those already accounted for by the masking process. We
have used the same set of SP maps as in Elvin-Poole et al. (2017),
namely :
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• 10σ limiting depth in band
• full width half maximum of point sources (“seeing”)
• total exposure time
• total sky brightness,
• atmospheric airmass,

all of them in each of the four bands griz, in addition to Galac-
tic extinction and stellar contamination (refer to Elvin-Poole et al.
(2017) for a detailed explanation on how the stellar density map is
constructed from Y1GOLD data). We find that the relevant system-
atics are stellar density, PSF FWHM, and the image depth. We out-
line the tests that reveal this and how we apply weights to counter
their effect in what follows.

We found the most important systematic effect, in terms of
its impact on the measured clustering, to be the stellar density. In
the top panel of Fig. 8 we find positive trends when comparing the
number density of our ‘galaxy’ sample as a function of the stellar
number density (nstar). Our interpretation is that there are stars in
our sample. Assuming these contaminating stars follow the same
spatial distribution as the stars we use to create our stellar density
map, this stellar contamination will produce a linear relationship
between the density of our galaxy sample and the stellar density. In
this scenario, the value of the best-fit trend where the number den-
sity of stars, nstar, is 0 is then the purity of the sample. We find the
results are indeed consistent with a linear relationship, as illustrated
in the top panel of Fig. 8. The stellar contamination, fstar, that can
be determined from these plots is listed in Table 2. The stellar con-
tamination varies significantly with redshift, as expected given the
proximity of the stellar locus to the red sequence as a function of
redshift. Thus, we measure the stellar contamination in ∆z = 0.05
bin widths and use a cubic spline interpolation in order to obtain the
stellar contamination at any given redshift. This allows us to assign
a weight to each galaxy given by,

w(fstar(z)) = ((1− fstar(z)) + nstarfstar(z)/〈nstar〉)−1 , (4)

where nstar is the stellar density that depends on angular location
and 〈nstar〉 is the mean stellar density over the DES-Y1 footprint.

Note that we repeat the fitting procedure for each photo-z cata-
logue, hence redshift here means either zDNF−MOF or zBPZ−MOF.
From Fig. 8 it seems that the measurements are a bit noisy. However
this procedure helps us resolve the peak in the stellar contamination
of five per cent at z ∼ 0.78. The uncertainty on each fit is ∼ 0.01,
which is consistent with the scatter we find in the values of fstar
per bin. The spline simply interpolates between the best-fit values.

We also add weights based on fits against relationships with
the mean i-band PSF FWHM (seeing, which we denote as si) and
the g-band depth (dg.) The dependencies we find are purely em-
pirical as we lack any more fundamental understanding for how
these correlations develop. They must result from the complicated
intersection of our color/magnitude selection and the photometric
redshift algorithm. For the seeing, we do not find a strong depen-
dence on redshift and thus use the full sample to define the seeing
dependent weight

w(si) = (As +Bssi)
−1 , (5)

where As and Bs are simply the intercept and slope of the best-
fit linear relationship, shown in the middle panel of Fig. 8. The
coefficients we use are Ai = 0.782 and Bi = 0.0625. For the
g-band depth, we fit linear relationships in redshift bins ∆z = 0.1
and again use a cubic spline interpolation in order to obtain a weight
at any redshift

w(dg, z) = (C(z) + dg(1− C(z))/〈dg〉)−1 , (6)

where C(z) is the interpolated result for the value of the linear-
fit where dg = 0. The relationships as a function of redshift and
the linear best-fit models are shown in the bottom panel of Fig. 8.
The total systematic weight,wsys, is thus multiplication of the three
weights

wsys = w(fstar(z))w(si)w(dg, z) (7)

In the following section, we test the impact of these weights on
the measured clustering, and determine their total potential impact.
In DES-BAO-MAIN , we show that the weights have minimal im-
pact on the BAO scale measurements and that our treatment is thus
sufficient for such measurements. Our treatment is not as compre-
hensive as Elvin-Poole et al. (2017), and thus further study might
be required when using the sample defined here for non-BAO ap-
plications.

7 TWO-POINT CLUSTERING

In this section we describe the basic two-point clustering properties
of the samples previously defined. We concentrate on large-scales
where the BAO signal resides, and the sample using zDNF−MOF

photometric redshifts which is the default one used in DES-BAO-
MAIN.

We compute the angular correlation functionw(θ) of the sam-
ple, split into four redshift bins, using the standard Landy-Szalay
estimator (Landy & Szalay 1993),

w(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
(8)

as implemented in the CUTE software2 (Alonso 2012), where
DD(θ), DR(θ) and RR(θ) refer to normalized pair-counts of
Data (D) and Random (R) points, separated by an angular aper-
ture θ. Random points are uniformly distributed across the foot-
print defined by our mask (albeit downsampled following the frac-
tional coverage of each pixel, described in Sec. 5), with an abun-
dance twenty times larger than that of the data in each given bin.
For the fits and χ2 values quoted in this section we always con-
sider 16 angular-bins linearly spaced between θ = 0.45 deg and
θ = 4.95 deg, matching the scale cuts in the BAO analysis us-
ing w(θ) of DES-BAO-MAIN. We compute pair-counts in angular
aperture bins of width 0.3 deg in order to reduce the covariance
between the measurements. The covariance matrix is derived from
1800 Halogen mocks, described in detail in DES-BAO-MOCKS.

The expected noise in the inverse covariance from the finite
number of realisations (Hartlap, Simon & Schneider 2007) and the
translation of that into the variance of derived parameters (Dodel-
son & Schneider 2013) is negligible given the size of our data vec-
tor (16 angular measurements per tomographic redshift bin) and
the number of model parameters (one bias per bin). For instance
the increased error in derived best-fit biases in any given bin would
be sub-percent. The change in the full

√
χ2 is ∼ 3.7% (16x4 data-

points, see the discussion below). We therefore neglect these cor-
rections in this section.

Figure 9 shows the impact of the systematic weights on the
measured angular clustering in terms of the difference ∆w between
the pre-weighted correlation function w and the post-weighted one
wweighted, relative to the statistical error σw (i.e. neglecting all co-
variance). To compare this against the expected amplitude of the

2 https://github.com/damonge/CUTE
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Figure 8. The galaxy density vs. potential systematic relationship used to
define weights that we apply to clustering measurements. Top panel: The
galaxy density versus stellar density in four photometric redshift bins. The
linear fits are used to determine the stellar contamination. The χ2 values for
the fits are 9.7, 10.0, 3.5, and 14.3 (8 degrees of freedom). Middle panel:
The galaxy density versus the mean i-band seeing for our full sample. The
inverse linear fit is used to define weights applied to clustering measure-
ments. The χ2 is 7.7 (8 degrees of freedom) and the coefficients are 0.788
and 0.0618. Bottom panel: The galaxy density versus g-band depth in four
photometric redshift bins. The coefficients are interpolated as a function of
redshift and used to define weights to be used in the clustering measure-
ments. The χ2 values for the fits, given 8 degrees of freedom, are 7.7, 8.9,
12.7, and 6.1. The slopes are (-0.0256, 0.0320, 0.103, 0.0609).

Figure 9. The impact of the systematic weights on each redshift bin, shown
by the differential angular correlations, with and without weights applied,
relative to the uncertainty. One can see that the weights make the biggest
difference for the 0.7 < z < 0.8 bin, which is the redshift range with the
greatest stellar contamination. The thick solid line displays the BAO feature
in similar units, (wBAO − wnoBAO)/σw , for the second tomographic
bin as an example (different bins show similar BAO strength but displaced
slightly in the angular coordinate). The systematic weights only modify the
underlying smooth shape, and do not have a sharp feature at BAO scales.

BAO feature at this scales we also display in thick solid black line
the theoretical angular correlation function with and without BAO,
for the second tomographic bin for concreteness, relative to the sta-
tistical errors. The corrections are all at the same level (or smaller)
than the expected BAO signal.

The weights have the largest impact in terms of clustering am-
plitude for the redshift bin 0.7 < z < 0.8, which is the redshift
range with the largest stellar contamination (∼ 4%, see Table 2), al-
though never exceeding one σw. For the remaining bins the change
in the correlation functions are within 1/4 of σw. We can assess
quantitatively the total potential impact of the weights by calculat-
ing χ2

sys = ∆w(θ)tC−1∆w(θ); the square-root of this number is
an upper bound in the impact, in terms of number of σ’s, that the
weights could have on the determination of any model parameter.

In the range 0.45 deg < θ < 4.95 deg, with 16 data-points,
we find χ2

sys = 0.1, 1.35, 0.2 and 0.5 respectively for each tomo-
graphic bin separately (showing that for example best-fit bias de-
rived solely from the 2nd tomographic bin can be shifted by more
than one sigma if weights are uncorrected for). More interestingly,
for the four bins combined and including the full covariance matrix,
we find χ2

sys = 1.35. This implies a maximum impact of 1.16σ in
a derived global parameter such as the angular diameter distance
measurement. This maximum threshold is well above the actual
impact of the weights inDA/rs found in DES-BAO-MAIN, which
is 0.125σDA/rs (see Table 5 in that reference). We consider this an
indication that the particular shape of the BAO feature is not easily
reproducible by contaminants, and is therefore largely insensitive to
such corrections, which is consistent with previous analyses (Ross
et al. 2017b).

Figure 10 displays the auto-correlation function (including ob-
servational systematic weights) of 4 tomographic bins of width
∆zphoto = 0.1 between 0.6 6 zphoto 6 1.0. Data at z > 0.8
appear to show significant BAO features. Best fit biases, derived
1σ errors and their corresponding χ2 values are reported as inset
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Figure 10. Angular correlation function in four redshift bins, for galaxies selected with zDNF−MOF. Symbols with error bars show the clustering of galaxy
sample corrected for the most relevant systematics. Dashed line displays a model using linear theory with an extra damping of the BAO feature due to
nonlinearities, and a linear bias fitted to the data (whose best fit value is reported in the inset labels). We consider 16 data-points and one fitting parameter in
each case (dof=15). Note that the points are very covariant, which might explain the visual mismatch in the first tomographic bin that nonetheless retains a
good χ2/dof .

Figure 11. Angular cross-correlation functions of the four tomographic bins in 0.6 < zphoto < 1.0, see Fig. 10, for galaxies selected according to
zDNF−MOF. The model prediction shown with dashed lines assumes a bias equal to the geometric mean of the auto-correlation fits, i.e. bij =

√
bibj ,

and is basically proportional to the overlap of redshift distributions, which are shown in the bottom right panel.
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panels and in Table 2. The model displayed assumes linear the-
ory and the MICE cosmology3 (Fosalba et al. 2015; Crocce et al.
2015), with an extra damping of the BAO feature, see DES-BAO-
θ-METHOD for details. The χ2/dof are all of order∼ 1 or better,
showing that these are indeed good fits given the covariance of the
data. In Table 2 we also report best fit bias values for a split of the
sample into four tomographic bins using the BPZMOF photo-z,
showing no discrepancies.

As a further test of the clustering signal, as well as the tails of
the photo-z distributions, we show in Fig. 11 the cross-correlation
between different bins. The overploted models were derived using
the redshift distributions of the corresponding bins and assume a
bias equal to the geometric mean of the tomographic bins,

wij(θ) = b2ij

∫ ∫
dz dz̃ni(z)nj(z̃)D(z)D(z̃)ξ(rθ) (9)

where r2θ = r(z)2 + r(z̃)2 − 2r(z)r(z̃) cos θ and b2ij = bibj .
In Eq. (9) we denote ξ the spatial correlation function computed
in linear theory at z = 0. The error bar displayed and the re-
ported χ2 values are obtained with a theoretical covariance ma-
trix designed to match the Halogen mocks covariance of the auto-
correlations (i.e. matching the bias and shot noise and area of
the mocks). Detailed formulae and tests of this theory covariance
are given in a companion paper, DES-BAO-θ-METHOD (see also
Crocce, Cabré & Gaztañaga (2011); Ross et al. (2011b); Salazar-
Albornoz et al. (2014)). However when we test the χ2 values of
the auto-correlations against the best-fit model4 using this theory
covariance instead of the one derived from the mocks we find con-
siderably larger χ2 values: ri ≡ χ2

i,theory−cov/χ
2
i,mocks−cov =

1.46, 1.37, 1.37, 1.47 for auto-correlations in bin i = 1 to 4, re-
spectively. We propagate this uncertainty to the cross-correlations
by dividing χ2

ij,theory−cov by√rirj .
Overall the cross-correlations show a good match to the

model, which is sensitive to the tails of the redshift distributions and
the geometric mean bias. The χ2/dof are ∼ 1. The non-adjacent
bin 1×3 (where the expected clustering signal is negligible) shows
an excess correlation on very large-scales. This most probably in-
dicate a residual systematic and not a problem of the photo-z dis-
tributions.

The large χ2 values in some of the cross-correlations (bins
2 × 3 and 3 × 4) are driven by the non-diagonal structure of the
covariance matrix rather than a mismatch between the best-fit bias
of the cross-correlation bij compared to the geometrical mean of
the auto-correlation biases. For example, for 2× 3 the best-fit bias
from w2×3 is only 2% larger than

√
b2b3 (and the corresponding

χ2 change sub-percent). On the other hand, the χ2 of the cross-
correlation drops to 0.4 if we only consider a diagonal covariance
matrix. Similarly χ2

3×4 drops to 1.28 from 2 using a diagonal co-
variance matrix. Overall, we conclude there is a fairly good match
between the implications of the overlap of redshift distributions and
the cross-correlation clustering signal.

In Figure 12 we show ξ(sperp) which is the three-dimensional
correlation function binned only in projected physical separations.

3 We make this choice throughout the DES-Y1 BAO analysis because the
MICE N-Body simulation was used to calibrate the Halogen mock galaxy
catalogues. MICE cosmology assumes a flat concordance LCDM model
with Ωmatter = 0.25, Ωbaryon = 0.044, ns = 0.95, σ8 = 0.8 and
h = 0.7.
4 The best-fit bias and error from the theory covariance or the mocks one
are consistent with each other, however the χ2 values are only so to about
40%.

Figure 12. Three-dimensional correlation function binned in projected pair
separations. We use projected separations because radial pairs are damped
due to photo-z mixing. The dashed line is the best fit model assuming linear
bias and a smeared BAO feature, as discussed in detail in DES-BAO-MAIN.

To compute this correlation we converted (photometric) redshift
and angles to physical distances assuming MICE cosmology. This
yields a three-dimensional map of the galaxies in comoving coordi-
nates. Random points are distributed in this volume with the same
angular distribution as the angular mask defined in section 5, and
used for w(θ), and drawing redshifts randomly from the galaxies
themselves. Pair counts are then computed and binned in projected
separations. A full detail of such procedure is given in DES-BAO-
MAIN as well as in Ross et al. (2017a). The modeling displayed in
Fig. 12 projects the real space three-dimensional correlation func-
tion into photometric space assuming Gaussian photometric red-
shift errors per galaxy, provided in Table 2 as σ68. It also assumes
a linear bias betweeen the galaxies and the matter field.

The bias recovered from the three-dimensional projected clus-
tering at a mean redshift of 0.8 is b = 1.83± 0.06, consistent with
the one from w(θ) tomography. In addition we stress that this clus-
tering estimate includes all cross-correlations of the data. The fact
that it is matched by the theory modeling, which in turn includes a
characterisation of the redshift distributions per galaxy, represents
also an additional consistency check of reliability of the photomet-
ric redshifts.

8 CONCLUSIONS

This paper describes the selection of a sample of galaxies, opti-
mised for BAO distance measurements, from the first year of DES
data. By construction, this sample is dominated by red and lumi-
nous galaxies with redshifts in the range 0.6 < z < 1.0. We have
extended the selection of red galaxies beyond that of previously
published imaging data used for similar goals in SDSS by Padman-
abhan et al. (2005) to cover the higher redshift and deeper data
provided by DES.

We compute the expected magnitudes of galaxy templates in
the four DES filters and identify the (i− z) and (z− i) color space
to select red galaxies in the redshift range of interest. The actual
selection in color and magnitude is defined using the BAO dis-
tance measurement figure-of-merit as a guiding criteria. Remark-
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ably, the resulting forecast matches the results obtained in DES-
BAO-MAIN with the final analysis. The global flux limit of the
sample is iauto < 22, although we later introduce a sliding mag-
nitude cut to limit ourselves to brighter objects towards lower red-
shifts.

We consider three different photo-z catalogues, with two dif-
ferent photometric determinations. We showed that the typical
photo-z uncertainty (in units of 1 + z) goes from 2.3% to 3.6%
from low to high redshift, for DNF redshifts using MOF photom-
etry, and slightly worse for BPZ with MOF photometry. Hence
the former constitutes our primary catalogue in DES-BAO-MAIN,
while the later is used for consistency. Redshift estimations based
on COADD photometry turned out to be worse than those derived
from MOF photometry by 10%−20%. Our final sample is made of
1.3 million red galaxies across 1318 deg2 of area, largely contained
in one compact region (SPT).

We study and mitigate, when needed, observational system-
atics traced by various survey property maps. Of these, the most
impactful is the stellar contamination, which we find nonetheless
bound to < 4%. Also i-band mean seeing and g-band depth are
relevant. We define weights to be applied to the galaxies when
computing pair counting to remove the relations between galaxy
number density and large scale fluctuations in those survey prop-
erties. We show that none of these corrections have an impact on
BAO measurements, mainly because they can eventually modify
the broad-shape of the correlation functions but do not introduce a
characteristic localised scale as the BAO.

Lastly we characterised the two-point clustering of the sam-
ple, which is then used in DES-BAO-MAIN to derived distance
constraints. We find the auto-correlations to be consistent with a
bias that evolves only slightly with redshift, from 1.8 to 2. The bias
derived from the tomographic analysis is consistent with the one fit-
ted to the whole sample range with the 3D projected distance anal-
ysis. Furthermore we investigate the cross-correlation between all
the tomographic bins finding clustering amplitudes matching ex-
pectactions, although with poor χ2-values in some cases. Overall
this is a further test of the assumed redshift distributions.

This paper serves the purpose of enabling for the fist time BAO
distance measurements using photometric data to redshifts z ∼ 1.
These measurements achieve a precision comparable to those con-
sidered state-of-the-art using photometric redshift to this point (Seo
et al. 2012), as well as those from WiggleZ (Blake et al. 2011),
which are both limited to z ∼ 0.65. These BAO results are pre-
setend in detail in DES-BAO-MAIN. While this paper was com-
pleted, the third year of DES data was made available to the collab-
oration, totalling 3 to 4 times the area presented here, and similar or
better depth. Hence we look forward to that analysis, which should
already yield a very interesting counter-part to the high precision
low-z BAO measurements already existing.
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(IEEC/CSIC), the Institut de Fı́sica d’Altes Energies, Lawrence
Berkeley National Laboratory, the Ludwig-Maximilians Univer-
sität München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy Observa-
tory, the University of Nottingham, The Ohio State University, the
University of Pennsylvania, the University of Portsmouth, SLAC
National Accelerator Laboratory, Stanford University, the Univer-
sity of Sussex, Texas A&M University, and the OzDES Member-
ship Consortium.

Based in part on observations at Cerro Tololo Inter-American
Observatory, National Optical Astronomy Observatory, which is
operated by the Association of Universities for Research in As-
tronomy (AURA) under a cooperative agreement with the National
Science Foundation.

The DES data management system is supported by the Na-
tional Science Foundation under Grant Numbers AST-1138766
and AST-1536171. The DES participants from Spanish institu-
tions are partially supported by MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded by the
CERCA program of the Generalitat de Catalunya. Research leading
to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Pro-
gram (FP7/2007-2013) including ERC grant agreements 240672,
291329, and 306478. We acknowledge support from the Australian
Research Council Centre of Excellence for All-sky Astrophysics
(CAASTRO), through project number CE110001020.

This manuscript has been authored by Fermi Research Al-
liance, LLC under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, Office of Science, Office of High En-
ergy Physics. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, ir-

MNRAS 000, 1–15 (2017)



Galaxy sample for DES Y1 BAO measurements 15

revocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.

This paper has gone through internal review by the DES col-
laboration. The DES publication number for this article is DES-
2017-0305. The Fermilab pre-print number is FERMILAB-PUB-
17-585.

REFERENCES

Alam S. et al., 2017, MNRAS, 470, 2617
Alonso D., 2012, ArXiv e-prints 1210.1833
Annis J. et al., 2014, ApJ, 794, 120
Ata M. et al., 2018, MNRAS, 473, 4773
Avila et al., 2017, submitted to MNRAS, DES-BAO-MOCKS
Bautista J. E. et al., 2017, A&A, 603, A12
Benı́tez N., 2000, ApJ, 536, 571
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Beutler F. et al., 2011, MNRAS, 416, 3017
Beutler F. et al., 2017, MNRAS, 464, 3409
Blake C., Bridle S., 2005, MNRAS, 363, 1329
Blake C. et al., 2011, MNRAS, 415, 2892
Camacho et al., 2017, in prep., DES-BAO-`-METHOD
Carlstrom J. E. et al., 2011, PASP, 123, 568
Carnero A., Sánchez E., Crocce M., Cabré A., Gaztañaga E., 2012, MN-
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Crocce M., Cabré A., Gaztañaga E., 2011, MNRAS, 414, 329
Crocce M. et al., 2016, MNRAS, 455, 4301
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Le Fèvre O. et al., 2005, A&A, 439, 845
Leauthaud A. et al., 2007, ApJS, 172, 219
Mohr J. J. et al., 2012, in Proc. SPIE, Vol. 8451, Software and Cyberinfras-

tructure for Astronomy II, p. 84510D
Morganson et al., 2017, in prep.,
Padmanabhan N. et al., 2005, MNRAS, 359, 237
Padmanabhan N. et al., 2007, MNRAS, 378, 852

Percival W. J. et al., 2001, MNRAS, 327, 1297
Percival W. J. et al., 2010, MNRAS, 401, 2148
Planck Collaboration et al., 2016, A&A, 594, A13
Ross A. J. et al., 2017a, MNRAS, 472, 4456
Ross A. J. et al., 2017b, MNRAS, 464, 1168
Ross A. J. et al., 2011a, MNRAS, 417, 1350
Ross A. J., Percival W. J., Crocce M., Cabré A., Gaztañaga E., 2011b, MN-
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