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Abstract

We simulate a deposition model with a break of symmetry induced by a point source. We
1nd that Tsallis anomalous distribution for random walks n(x) = N (A)=[1 + b(q − 1)x2]q=(q−1)

produces a good 1t to the data. We obtain the mean square displacement 〈x2〉 and the total
number of deposited particles N , and compare them to the Gaussian case. Our main conclusions
are twofold: 1rst, the parameter q is size dependent; second, long range correlations imply in a
violation of the law of great numbers. c© 2001 Elsevier Science B.V. All rights reserved.
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The problem of describing the growth of a system is one of the basic questions of
dynamics. In particular, the study of far from equilibrium kinetics of interfaces has
found a wide range of applications in the growth of bacterial colonies and crystalline
solids [1], etching of a crystalline solid by a liquid [2] and stress in rough surfaces in
contact [3]. Those have enormous applications in physics [1], chemistry [4], geophysics
[3] and many other 1elds of science [1].
In this paper, we propose a simple model for deposition from a single source of

particles at a height H and at a position i = 0, i.e., at the coordinate (0; H) of the
xy plane. The model is atomistic in the sense that the particles have unit size and
each discrete motion is a composition of a step down and a horizontal random step
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either to the left or to the right. In the beginning, the particles fall in diagonal with
equal probability to the left or to the right. However, as deposition evolves, one of
the particles may have its path blocked by a previously deposited particle, thus falling
down one step vertically. The motion continues until the particle reaches the bottom
of the surface at the position (i; 1) or until it reaches the top of another particle at the
position (i; ni+1) (i=−H+1; : : : ; 0; : : : ; H−1), where ni=0; 1; : : : ; H−1 is the number
of deposited particles at the site i. Consequently, the number of deposited particles is
increased by one, ni→ ni + 1, and the particle stops. The process continues until H
particles are deposited at the column i = 0.
Now that our cellular automata model has been established, we can study the growth

process as a diJusion process. Since the particles have unit size, the height hi of the
column is equal to the number of particles, i.e., hi = ni. As well, for large numbers,
we may use the continuous notation ni→ n(x) = h(x).
We shall consider here two possibilities of distributions to 1t the curve: First, the

Gaussian one:

n(x) =
N√
2��2

e−
x2

2�2 ; (1)

where �2 = 〈x2〉 is the mean square displacement and N the number of deposited
particles. Second, the Tsallis distributions [5–10]:

n(x) = N
A

[1 + b(q− 1)x2]�
; (2)

where �= q=(q− 1). We shall call the random walks described by Eq. (1) as normal
random walk (NRW) and any other as anomalous or generalized random walk, GRW.
One should notice that as q→ 1 the right hand side of Eq. (2) becomes a Gaussian
and we expect that the usual diJusion holds.
In Fig. 1, we plot the number of deposited particles n(x) as a function of the

position x. The particles fall from a height H = 700 and we take an average over
1000 experiments. The number of particles deposited in each curve are: curve
(a) 8102 particles; curve (b) 16 205 particles; curve (c) 24 307 particles; and curve
(d) 32 046 particles. Those curves show the evolution of the height distributions or of
the density of deposited particles n(x). As the number of particles deposited grows, the
curves behave more and more like a power law with 1(a) q=1:06, 1(b) q=1:17; 1(c)
q=1:29; and 1(d) q=1:63. This is an apparent contradiction to the law of great num-
bers which states that the larger a distribution is, the closer to a Gaussian it becomes.
It is possible to 1t Gaussians to curves 1(a) to 1(d). However the curves obtained
by using the Eq. (2) do it better (they have a smaller standard deviation than the
Gaussians).
The evolution of the pile heights towards a power law is a measure of the dependence

of the system on its history. A particle can 1ll a position (i; hi) only if its step is not
blocked. As more particles are deposited the increasing correlation between the particle
and its neighbors increases the possibility of a frustrated motion. Thus the deviation
from the law of great numbers is not a failure of Tsallis approach, it is a consequence
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Fig. 1. We plot the density of deposited particles n(x) as a function of x. The particles falls from a source
at height H = 700. Every curve is an average of 1000 experiments. The number of deposited particles are:
(a) 8102; (b) 16 205; (c) 24 307; (d) The curve saturates with 32 046 particles. As the piles grow the
curves get away from Gaussian, violating the law of the great numbers.

Fig. 2. We plot the mean square displacement 〈x2〉 as a function of height H for the saturated deposition
(a) The theoretical value for a Gaussian distribution; (b) The data are from the simulation and the line is
its 1tting.

of the long range correlation. Since q measures the degree of non-additivity, increasing
the number of particles and its correlation will make q deviate from 1: The law of the
great numbers is for uncorrelated distributions. It is worthwhile to remark that LKevy
[11–13] distributions have in1nite � =

√〈x2〉 for 1nite H , consequently we shall rule
out the possibility of LKevy distributions. Notice as well that the set of experiments
described on Figs. 2–4 are better described by the Eq. (2).
This system does not present translational symmetry. Consequently, it does not sat-

isfy the Family–Viesek scaling relation [14]. Recently [2], we used a combination of
Gaussians and LKevy curves to 1t the heights Luctuations for corrosion in a solid–solid
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Fig. 3. The total number of deposited particles at the saturation N as a function of the height H (3=2). Both
axes are divided by 1000. (a) The theoretical value for the Gaussian distribution; (b) The line is the 1t of
the data.

Fig. 4. The parameter q as a function of the height H . As the number of deposited particles grows the
q increases and the curve deviates from a Gaussian and becomes more and more a power law. This too
con1rms the result of curve Fig. 1 for diJerent heights.

surface. Since those satisfy the Family–Viesek scaling relation, they are not appropriate
to describe our distributions.
We notice as well in Fig. 1 that the curves start out as Gaussians and change

their shapes as the pile grows. This is a direct consequence of the “collisions” with
another particles. The 1rst characteristic of a normal random walk is that the mean
square displacement is just �2 = 〈x2〉=H , i.e., the number of steps. Consequently that
corresponds to the 1rst idea to be investigated.
In Fig. 2, we compute 〈x2〉 versus H for a large number of saturated distributions

such as that of Fig. 1(d). The result can be cast in the form

〈x2〉= aHH ; (3)
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where aH = 0:82. Notice that we would expect aH¡ 1 since we predict that some
particles will be frustrated in their attempt to do a NRW.
The surprising result is that Eq. (3) is similar to that obtained using a Gaussian

distribution of the form in Eq. (1). An easy way to compare the Gaussians, Eq. (1), with
the power law, Eq. (2), is to notice that for Gaussians the total number of deposited
particles for a given H is N =

√
2�H 3=2. This is readily obtained from Eq. (1) if we

make n(0) = H:
In Fig. 3, we plot the total number of particles N as function of H 3=2. The axes are

divided by 1000. Fig. 3(a) is a Gaussian while Fig. 3(b) is the 1t to the experiments.
The result of this 1gure can be summarized as

N = bH 3=2 : (4)

Here b ≈ 1:72 while for the Gaussians b=
√
2� ≈ 2:50.

There is no doubt that the power law, Eq. (1), will 1t better the set of simulations
than the Gaussians. However, there is a price to pay, mainly the parameter q becomes
size dependent as can be seen in Fig. 4, where we plot the parameter q as a function
of the height H . Data are the same as for Figs. 2 and 3. Notice that q is an increasing
function of H , that is, an increasing function of the number of deposited particles.
Since we are working with a saturated distribution, the evolution of q is not so drastic
as in the experiment described in Fig. 1. However, q is clearly an increasing function
of the number of particles. As H grows q is governed by the law q = qmax − c=H�,
with qmax = 1:82± 0:09, �= 0:11± 0:06, and c= 0:38± 0:02. It is important to notice
that some of the authors [10] considered the evolution of the Tsallis distributions,
Eq. (2), and demonstrated that they are scaling dependent, consequently we would
expect q= q(N ).
Our simulations are in the range 20¡H¡2000. For values of H larger than those

discussed here the computer time becomes prohibitive. However, 1nite eJects starts to
disappear for H¿5000. The fact that the main characteristic of the Gaussians are kept,
i.e., Eq. (3) and Eq. (4), one may think about an eJective average number of steps in
the vertical, NSV = aVH , and an eJective average number of steps in the horizontal,
NSH = aHH . For Gaussians, obviously aV = aH = 1. Since, in general, aH is more
complex, we try to understand 1rst the average number of steps in the vertical. For a
column of height hi, the particle will take H − hi steps. Consequently, the number of
steps for each column will be (2(H − 1) − hi)hi=2 and the total number of steps per
particle in the vertical will be

NSV =
1
2N

H−1∑
i=−H+1

(2(H − 1)− hi)hi =
(
H − 1

2

)
− 1

2N

∑
h2i : (5)

Hence,

aV = 1− 1
2H

− �(2�− 1=2)�(�)
2�(2�)�(�− 1=2)

: (6)
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The 1rst term at the right of Eq. (6) is a Gaussian, the second is a 1nite size eJect, and
the last one is the correction we want. Nevertheless its form is almost independent of
H . For the range of heights we worked with, aV ≈ 0:7. One main question that arises
is why NSH¿NSV? The number of steps in the horizontal is the combination of two
competing eJects. First, the number of vertical steps decreases because the particles
1nd the column 1lled with some particles as in Eq. (6). Second, the frustration in the
horizontal is more likely to occur when the particles approach the origin than when
they get away from it. That favors large 〈x2〉. Those competitors give the surprising
results we obtain, mainly 〈x2〉˙H and N˙H 3=2 which are the same result, except
for the coePcients, obtained exactly for Gaussians. This is a surprising result since for
a GRW one would expect for example 〈x2〉˙H�, with 1¡�¡ 2.
In conclusion, we study a deposition model that occurs when a single source is

sited at the origin. We compare the result when the number of deposited particles in
a position n(x) is either a Gaussian or a Tsallis distribution. From Gaussians, without
frustration, it is possible to obtain the mean square displacement and the total number
of particles as a power of the type cH� . Surprisingly the computer experiment agrees
with that and so does the result obtained by the power law distribution n(x). Thus, the
exponents are the same for both, and the coePcient is more precise for the Tsallis dis-
tribution. Thus, Tsallis distribution seems to describe the statistical features of systems
in which the presence of long-range correlations implies in a violation of the law of
great numbers.
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