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ABSTRACT
We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by
combining the galaxy density maps and weak lensing shear maps for a ∼116 deg2 area of
the Dark Energy Survey (DES) Science Verification data. This method was first developed
in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al. 2016) with
rigorous simulation tests and analytical treatment of tomographic measurements. In this work
we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy
sample. We find the galaxy bias and 1σ error bars in 4 photometric redshift bins to be 1.12±
0.19 (z = 0.2−0.4), 0.97±0.15 (z = 0.4−0.6), 1.38±0.39 (z = 0.6−0.8), and 1.45±0.56
(z = 0.8− 1.0). These measurements are consistent at the 2σ level with measurements on
the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing,
with most of the redshift bins consistent within the 1σ error bars. In addition, our method
provides the only σ8-independent constraint among the three. We forward-model the main
observational effects using mock galaxy catalogs by including shape noise, photo-z errors and
masking effects. We show that our bias measurement from the data is consistent with that
expected from simulations. With the forthcoming full DES data set, we expect this method to
provide additional constraints on the galaxy bias measurement from more traditional methods.
Furthermore, in the process of our measurement, we build up a 3D mass map that allows
further exploration of the dark matter distribution and its relation to galaxy evolution.
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1 INTRODUCTION

Galaxy bias is one of the key ingredients for describing our observ-
able Universe. In a concordance ΛCDM model, galaxies form at
overdensities of the dark matter distribution, suggesting the possi-
bility of simple relations between the distribution of galaxies and
dark matter. This particular relation is described by a galaxy bias
model (Kaiser 1984). Galaxy bias bridges the observable Universe
of galaxies with the underlying dark matter. For a full review of lit-
erature on galaxy bias, we refer the readers to Eriksen & Gaztanaga
(2015) and references therein.

Observationally, several measurement techniques exist for
constraining galaxy bias. The most common approach is to mea-
sure galaxy bias through the 2-point correlation function (2PCF) of
galaxies (Blake et al. 2008; Simon et al. 2009; Cresswell & Perci-
val 2009; Coupon et al. 2012; Zehavi et al. 2011). Counts-in-cells
(CiC) is another method where the higher moments of the galaxy
probability density function (PDF) are used to constrain galaxy
bias (Blanton 2000; Wild et al. 2005; Swanson et al. 2008). Al-
ternatively, one can combine galaxy clustering with measurements
from gravitational lensing, which probes the total (baryonic and
dark) matter distribution. Such measurements include combining
galaxy clustering with galaxy-galaxy lensing (Simon et al. 2007;
Jullo et al. 2012; Mandelbaum et al. 2013) and lensing of the cos-
mic microwave background (CMB) (Schneider 1998; Giannanto-
nio et al. 2016). The method we present in this work also belongs
to this class.

With ongoing and upcoming large galaxy surveys (the Hyper
SuprimeCam1, the Dark Energy Survey2, the Kilo Degree Survey3,
the Large Synoptic Survey Telescope4, the Euclid mission5, the
Wide-Field Infrared Survey Telescope6), statistical uncertainties on
the galaxy bias measurements will decrease significantly. It is thus
interesting to explore alternative and independent options of mea-
suring galaxy bias. Such measurements would be powerful tests for
systematic uncertainties and break possible degeneracies.

In this paper, we present a new measurement of the redshift-
dependent galaxy bias from the Dark Energy Survey (DES) Science
Verification (SV) data using a novel method. Our method relies on
the cross-correlation between weak lensing shear and galaxy den-
sity maps to constrain galaxy bias. The method naturally combines
the power of galaxy surveys and weak lensing measurements in a
way that only weakly depends on assumptions of the cosmological
parameters. In addition, the method involves building up a high-
resolution 3D mass map in the survey volume which is interesting
for studies of the dark matter distribution at the map level. The re-
lation between the galaxy sample and the mass map also provides
information for studies of galaxy evolution.

The analysis in this paper closely follows Amara et al. (2012,
hereafter A12) and Pujol et al. (2016, hereafter Paper I). A12 ap-
plied this method to COSMOS and zCOSMOS data and discussed
different approaches for constructing the galaxy density map and
galaxy bias. Paper I carried out a series of simulation tests to ex-
plore the regime of the measurement parameters where the method
is consistent with 2PCF measurements, while introducing alterna-
tive approaches to the methodology. Building on these two papers,

1 www.naoj.org/Projects/HSC
2 www.darkenergysurvey.org
3 kids.strw.leidenuniv.nl
4 www.lsst.org
5 sci.esa.int/euclid
6 wfirst.gsfc.nasa.gov

this work applies the method to the DES SV data, demonstrating
the first constraints with this method using photometric data. Sim-
ulations are used side-by-side with data to ensure that each step in
the data analysis is robust. In particular, we start with the same set
of “ideal” simulations used in Paper I and gradually degrade until
they match the data by including noise, photometric redshift errors,
and masking effects.

The paper is organized as follows. In §2 we overview the ba-
sic principles of our measurement method. In §3 we introduce the
data and simulations used in this work. The analysis and results are
presented in §4, first with a series of simulation tests and then with
the DES SV data. We also present a series of systematics tests here.
In §5 we compare our measurements with bias measurements on
the same data set using different approaches. We conclude in §6.

2 BACKGROUND THEORY

2.1 Linear galaxy bias

In this work we follow Paper I, where the overdensities of galaxies
δg is linearly related to the overdensities of dark matter δ at some
given smoothing scale R, or

δg(z,R) = b(z,R)δ (z,R). (1)

We define δ ≡ ρ−ρ̄

ρ̄
, where ρ is the dark matter density and ρ̄ is

the mean dark matter density at a given redshift. δg is defined sim-
ilarly, with ρ replaced by ρg, the number density of galaxies. b
can depend on galaxy properties such as luminosity, color and type
(Swanson et al. 2008; Cresswell & Percival 2009). This definition
is often referred to as the “local bias” model. According to Manera
& Gaztañaga (2011), at sufficiently large scales (& 40 Mpc/h co-
moving distance), b(z,R) in Eqn. 1 is consistent with galaxy bias
defined through the 2PCF of dark matter (ξdm) and galaxies (ξg).
That is, the following equation holds,

ξg(r) = 〈δg(rrr0)δg(rrr0 + rrr)〉= b2〈δ (rrr0)δ (rrr0 + rrr)〉= b2
ξdm(r), (2)

where rrr0 and rrr0+rrr are two positions on the sky separated by vector
rrr. The angle bracket 〈〉 averages over all pairs of positions on the
sky separated by distance |rrr| ≡ r. Our work will be based on scales
in this regime.

2.2 Weak Lensing

Weak lensing refers to the coherent distortion, or “shear” of galaxy
images caused by large-scale cosmic structures between these
galaxies and the observer. Weak lensing probes directly the total
mass instead of a proxy of the total mass (e.g. stellar mass, gas
mass). For a detailed review of the theoretical background of weak
lensing, see e.g. Bartelmann & Schneider (2001).

The main weak lensing observable is the complex shear γγγ =
γ1+ iγ2, which is estimated by the measured shape of galaxies. The
cosmological shear signal is much weaker than the intrinsic galaxy
shapes. The uncertainty in the shear estimate due to this intrinsic
galaxy shape is referred to as “shape noise”, and is often the largest
source of uncertainty in lensing measurements. Shear can be con-
verted to convergence, κ , a scalar field that directly measures the
projected mass. The convergence at a given position θθθ on the sky
can be expressed as

κ(θθθ , ps) =
∫

∞

0
dχ q(χ, ps)δ (θθθ ,χ), (3)

MNRAS 000, 000–000 (0000)
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where q(χ, ps) is the lensing weight

q(χ, ps)≡
3H2

0 Ωmχ

2c2a(χ)

∫
∞

χ

dχs
χs−χ

χs
ps(χs). (4)

Here, χ is the comoving distance, Ωm is the total matter density
of the Universe today normalised by the critical density today, H0
is the Hubble constant today, and a is the scale factor. ps(χ) is
the normalized redshift distribution of the “source” galaxy sample
where the lensing quantities (γγγ or κ) are measured. In the simple
case of a single source redshift plane at χs, ps is a delta function
and the lensing weight becomes

q(χ,χs)≡
3H2

0 Ωm

2c2a(χ)
χ(χs−χ)

χs
. (5)

In the flat-sky approximation, conversion between γγγ and κ in
Fourier space follows (Kaiser & Squires 1993, KS conversion):

κ̃(`̀̀)− κ̃0 = D∗(`̀̀)γ̃γγ(`̀̀); γ̃γγ(`̀̀)− γ̃γγ0 = D(`̀̀)κ̃(`̀̀), (6)

where “X̃” indicates the Fourier transform of the field X , `̀̀ is the
spatial frequency, κ̃0 and γ̃γγ0 are small constant offsets which can-
not be reconstructed and are often referred to as the “mass-sheet
degeneracy”. D is a combination of second moments of `̀̀:

D(`̀̀) =
`2

1− `2
2 + i2`1`2

|`̀̀|2
. (7)

In this work we follow the implementation of Eqn. 6 as de-
scribed in Vikram et al. (2015) and Chang et al. (2015) to construct
κ and γγγ maps as needed.

2.3 κg: a convergence template from galaxies

Following the same approach as A12 and Paper I, we now define
κg by substituting δ with δg in Eqn. 3, or

κg(θθθ , ps) =
∫

∞

0
dχ q(χ, ps)δg(θθθ ,χ). (8)

Physically, κg is a “template” for the convergence κ . In particular,
in the case of a constant galaxy bias b, where δg = bδ everywhere,
Eqn. 8 trivially gives κg = bκ . The relation between κ , κg and b in
the case of redshift-dependent galaxy bias (Eqn. 1) becomes more
complicated. This requires the introduction of the “partial” κg, or
κ ′g below. Alternatively, one can adopt the approach used in A12
and include a parametrized galaxy bias model in constructing κg.

To construct κ ′g, instead of integrating over all foreground
“lens” galaxies in Eqn. 8, we only consider the part of the template
contributed by a given lens sample. This gives

κ
′
g(θθθ ,φ

′, ps) =
∫

∞

0
dχ q(χ, ps)φ

′(χ)δg(θθθ ,χ)

=
∫

∞

0
dχ q(χ, ps)φ

′(χ)

(
ρg(θθθ ,χ)

ρ̄g(χ)
−1
)
, (9)

where φ ′(χ) is the radial selection function of the lens sample of
interest. ρg is the number of galaxies per unit volume and ρ̄g is the
mean of ρg at a given redshift. φ ′(χ) is different from p′(χ) in Eqn.
20 of Paper I only by a normalization:

∫
dχ p′(χ) = 1, while φ ′(χ)

integrates to a length, which is the origin of the ∆χ ′ in Eqn. 20 in
Paper I. We choose to use φ ′(χ) here to facilitate the derivation
later, but note that Eqn. 14 below is fully consistent with Eqn. 20
in Paper I. Similarly we define also a partial κ field, which we will
later use in §2.4,

κ
′(θθθ ,φ ′, ps) =

∫
∞

0
dχ q(χ, ps)φ

′(χ)δ (θθθ ,χ). (10)

In practice, when constructing κ ′g, we assume a fixed source
redshift χ̄s and take the mean lensing weight q̄′ and ρ̄g outside the
integration of Eqn. 9. This approximation holds in the case where
q and ρ̄g are slowly varying over the extent of φ ′, which is true for
the intermediate redshift ranges we focus on. We have

κ
′
g(θθθ ,φ

′, χ̄s)≈ ∆χ
′q̄′(χ̄s)

( ∫ ∞

0 dχφ ′(χ)ρg(θθθ ,χ)

ρ̄g∆χ ′
−1
)
, (11)

where

∆χ
′ =

∫
∞

0
dχφ

′(χ). (12)

We further simplify the expression by defining the partial 2D sur-
face density Σ′ and Σ̄′, where

Σ
′ =

∫
∞

0
dχφ

′(χ)ρg(θθθ ,χ), Σ̄
′ =

∫
∞

0
dχφ

′(χ)ρ̄g. (13)

Eqn. 11 then becomes

κ
′
g(θθθ ,φ

′, χ̄s)≈ ∆χ
′q̄′(χ̄s)

(
Σ′(θθθ)

Σ̄′(θθθ)
−1
)
, (14)

which is what we measure as described in §4.1.

2.4 Bias estimation from the galaxy density field and the
weak lensing field

The information of galaxy bias can be extracted through the cross-
and auto-correlation of the κ and κ ′g fields. (In the case of constant
bias, we can replace κ ′g by κg in all equations below.) Specifically,
we calculate

b′ =
〈κ ′gκ ′g〉
〈κ ′gκ〉

=
〈κ ′g(θθθ ,φ ′, χ̄s)κ

′
g(θθθ ,φ

′, χ̄s)〉
〈κ ′g(θθθ ,φ ′, χ̄s)κ(θθθ , ps)〉

, (15)

where 〈〉 represents a zero-lag correlation between the two fields in
the brackets, averaged over a given aperture R. We can write for the
most general case,

〈κAκB〉=
4π

π2R4

∫ R

0
dr1r1

∫ R

0
dr2r2

∫
π

0
dηωAB(Θ), (16)

where κA and κB can be any of the following: (κ,κ ′,κg,κ
′
g),

Θ2 = r2
1 + r2

2−2r1r2 cosη , and ωAB(Θ) is the projected two-point
angular correlation function between the two fields, defined

ωAB(Θ) =
∫

∞

0
dχA

∫
∞

0
dχBqAqBφ

′
Aφ
′
BξκAκB(r), (17)

where qA (qB) and φ ′A (φ ′B) are the lensing weight and lens redshift
selection function associated with the fields κA (κB). ξκAκB(r) is
the 3D two-point correlation function. In the case of κA = κB = κ ,
ξκAκB reduces to ξdm in Eqn. 2.

For infinitely thin redshift bins, or constant bias, b′ in Eqn. 15
directly measures the galaxy bias b of the lens. However, once the
lens and source samples span a finite redshift range (see eg. Fig-
ure 1), b′ is a function of the source and lens distribution and is
different from b by some factor f (φ ′, ps), so that

b′ = f (φ ′, ps)b. (18)

Note that f can be determined if b(z) is known. Since we have
b(z) = 1 for the case of dark matter, we can calculate f by calcu-
lating b′ and setting b(z) = 1, or

f (φ ′, ps) =
〈κ ′κ ′〉
〈κ ′κ〉

=
〈κ ′(θθθ ,φ ′, χ̄s)κ

′(θθθ ,φ ′, χ̄s)〉
〈κ ′(θθθ ,φ ′, χ̄s)κ(θθθ , ps)〉

, (19)

where κ ′ is defined in Eqn. 10 and follows the same assumptions

MNRAS 000, 000–000 (0000)
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Table 1. f factor (Eqn. 19) calculated from data. f depends on the specific
sample that is used. In this table we list numbers only for the main mea-
surement in §4.4, where the NGMIX shear catalog and the SKYNET photo-z
catalog is used.

Source Lens redshift
redshift 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0
0.4−0.6 0.61 – – –
0.6−0.8 0.61 0.58 – –
0.8−1.0 0.61 0.59 0.67 –
1.0−1.2 0.62 0.60 0.72 0.53

in Eqn. 14, where the lensing weight depends on only the mean
distance to the source sample χ̄s. f here corresponds to f2 in Eqn.
26 in Paper I. Table 1 shows an example of the f values calculated
from the data.

We use a slightly different estimator for b′ compared to
Eqn. 15 in practice. Combined with Eqn. 18, our estimator for
galaxy bias is:

b =
1
µ
, (20)

µ = f
〈γ ′α,gγ ′α 〉

〈γ ′α,gγ ′α,g〉−〈γ
′N
α,gγ

′N
α,g〉

, (21)

with α = 1,2 referring to the two components of γγγ .
Here we replaced κ ′ by γ ′α , which is possible since the two

quantities are interchangeable through Eqn. 6. The main reason to
work with γ ′α is that in our data set, γ ′α is much noisier compared to
the κ ′g due to the presence of the shape noise, therefore converting
γ ′α to κ ′α would be suboptimal to converting κ ′g to γ ′α,g. This choice
depends somewhat on the specific data quality at hand. In addi-
tion, the term 〈γ ′Nα,gγ

′N
α,g〉 is introduced to account for the shot noise

arising from the finite number of galaxies in the galaxy density field
(see also Paper I). The term is calculated by randomizing the galaxy
positions when calculating γ ′α,g. Finally, since 〈γ ′α,gγ ′α 〉 is noisy and
can become close to zero, measuring directly the inverse of Eqn. 21
results in a less stable and biased estimator. Therefore, we measure
the inverse-bias, µ , throughout the analysis and only take the in-
verse at the very end to recover the galaxy bias b. This approach
is similar to that used in A12. We show in Appendix A the results
using b instead of µ as our main estimator.

The measurement from this method would depend on assump-
tions of the cosmological model in the construction of κ ′g and the
calculation of f . Except for the literal linear dependence on H0Ωm,
due to the ratio nature of the measurement, most other parame-
ters tend to cancel out. Within the current constraints from Planck,
the uncertainty in the cosmological parameters affect the measure-
ments at the percent level, which is well within the measurement
errors (> 10%). All cosmological parameters used in the calcula-
tion of this work are consistent with the simulations described in
§3.5.

2.5 Multiple source-lens samples

Whereas Eqn. 20 and Eqn. 21 describes how we measure galaxy
bias for one source sample and one lens sample, in practice mul-
tiple different samples of lenses and the sources are involved. We
define several source and lens samples, or “bins”, based on their
photometric redshift (photo-z), with the lens samples labeled by i
and the source samples labeled by j. We use the notation µα

i j to

represent the inverse-bias measured with γα using the source bin j
and lens bin i.

Our estimate of the galaxy bias in each lens redshift bin i is
calculated by combining µα

i j estimates from the two components of
shear and all source redshift bins j. To combine these, we consider
a least-square fit to the following model

Di = µ̄iM, (22)

where D= {µα
i j} is the data vector containing all the measurements

µα
i j of galaxy bias in this lens bin i (including measurement from

the two shear components and possibly multiple source bins), µ̄i
is the combined inverse-bias in each bin i we wish to fit for, and
M is a 1D array of the same length as Di with all elements being
1. Our final estimate of inverse-bias for redshift bin i, µ̄i, and its
uncertainty σ(µ̄i) are:

µ̄i = MT
i C−1

i Di[MT
i C−1

i Mi]
−1, (23)

σ(µ̄i)
2 = (MT

i C−1
i Mi)

−1, (24)

where C−1
i is the unbiased inverse covariant matrix (Hartlap et al.

2007) between all µα
i j measurements, estimated by Jack-Knife (JK)

resampling:

C−1
i = τ Cov−1[Di], (25)

where τ =(N−ν−2)/(N−1). N is the number of JK samples, and
ν is the dimension of Ci. Note that the matrix inversion of Ci be-
comes unstable when the measurements µα

i j are highly correlated.
This is the case in the noiseless simulations. For the noisy simula-
tions and data, however, it does not affect the results. The galaxy
bias and its uncertainty is then

b̄i =
1
µ̄i

(26)

and

σ
2(b̄i) =

σ2(µ̄i)

µ̄2
i

. (27)

The uncertainty estimated through JK resampling does not ac-
count for cosmic variance and its coupling with the mask geometry.
In §4.3, we further include the uncertainty from cosmic variance
using simulations.

3 DATA AND SIMULATIONS

In this section we describe the data and simulation used in this
work. We use the DES SV data collected using the Dark Energy
Camera (Flaugher et al. 2015) from November 2012 to February
2013 and that have been processed through the Data Management
pipeline described in Ngeow et al. (2006); Sevilla et al. (2011); De-
sai et al. (2012); Mohr et al. (2012). Individual images are stacked,
objects are detected and their photometric/morphological proper-
ties are measured using the software packages SCAMP (Bertin
2006), SWARP (Bertin et al. 2002), PSFEX (Bertin 2011) and
SEXTRACTOR (Bertin & Arnouts 1996). The final product, the
SVA1 Gold catalog7 is the foundation of all catalogs described be-
low. We use a ∼116.2 deg2 subset of the data in the South Pole

7 http://des.ncsa.illinois.edu/releases/sva1

MNRAS 000, 000–000 (0000)
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Figure 1. Normalized redshift distribution of the lens (top) and source (bot-
tom) samples as estimated from the photo-z code SKYNET. Each curve rep-
resents the stacked PDF for all galaxies in the photo-z bin determined by
zmean as listed in the labels.

Telescope East (SPT-E) footprint, which is the largest contigu-
ous region in the SV dataset. This data set is also used in other
DES weak lensing and large-scale structure analyzes (Vikram et al.
2015; Chang et al. 2015; Becker et al. 2015; The Dark Energy Sur-
vey Collaboration et al. 2015; Crocce et al. 2016; Giannantonio
et al. 2016).

3.1 Photo-z catalog

The photo-z of each galaxy is estimated through the SKYNET code
(Graff et al. 2014). SKYNET is a machine learning algorithm that
has been extensively tested in Sánchez et al. (2014) and Bonnett
et al. (2015) to perform well in controlled simulation tests. To test
the robustness of our results, we also carry out our main analysis
using two other photo-z codes which were tested in Sánchez et al.
(2014) and Bonnett et al. (2015): BPZ (Benı́tez 2000), and TPZ
(Carrasco Kind & Brunner 2013, 2014). We discuss in §4.5 the
results from these different photo-z codes.

The photo-z codes output a PDF for each galaxy describing
the probability of the galaxy being at redshift z. We first use the
mean of the PDF, zmean to separate the galaxies into redshift bins,
and then use the full PDF to calculate Eqn. 19. In Figure 1, we show

the normalized redshift distribution for each lens and source bin as
defined below.

3.2 Galaxy catalog

To generate the κg maps, we use the same “Benchmark” sample
used in Giannantonio et al. (2016) and Crocce et al. (2016). This is a
magnitude-limited galaxy sample at 18 < i < 22.5 derived from the
SVA1 Gold catalog with additional cleaning with color, region, and
star-galaxy classification cuts (see Crocce et al. 2016, for full de-
tails of this sample). The final area is ∼ 116.2 square degrees with
an average galaxy number density of 5.6 per arcmin2. Six redshift
bins were used from zmean = 0.0 to zmean = 1.2 with ∆zmean = 0.2.
The magnitude-limited sample is constructed by using only the sky
regions with limiting magnitude deeper than i = 22.5, where the
limiting magnitude is estimated by modelling the survey depth as
a function of magnitude and magnitude errors (Rykoff et al. 2015).
Various systematics tests on the Benchmark has been performed in
Crocce et al. (2016) and Leistedt et al. (2015).

3.3 Shear catalog

Two shear catalogs are available for the DES SV data based on
two independent shear measurement codes NGMIX (Sheldon 2014)
and IM3SHAPE (Zuntz et al. 2013). Both catalogs have been tested
rigorously in Jarvis et al. (2015) and have been shown to pass the
requirements on the systematic uncertainties for the SV data. Our
main analysis is based on NGMIX due to its higher effective number
density of galaxies (5.7 per arcmin2 compared to 3.7 per arcmin2

for IM3SHAPE). However we check in §4.5.2 that both catalogs pro-
duce consistent results. We adopt the selection cuts recommended
in Jarvis et al. (2015) for both catalogs. This galaxy sample is
therefore consistent with the other DES SV measurements in e.g.,
Becker et al. (2015); The Dark Energy Survey Collaboration et al.
(2015). Similar to these DES SV papers, we perform all our mea-
surements on a blinded catalog (for details of the blinding proce-
dure, see Jarvis et al. (2015)), and only un-blind when the analysis
is finalized.

γ1 and γ2 maps are generated from the shear catalogs for five
redshift bins between zmean = 0.4 and zmean = 1.4 with ∆zmean =
0.2. Note part of the highest redshift bin lies outside of the rec-
ommended photo-z selection according to Bonnett et al. (2015)
(zmean = 0.3−1.3). We discard the highest bin in the final analysis
due to low signal-to-noise (see §4.4), but for future work, however,
it would be necessary to validate the entire photo-z range used.

3.4 Mask

Two masks are used in this work. First, we apply a common mask
to all maps used in this work, we will refer this mask as the “map
mask”. The mask is constructed by re-pixelating the i > 22.5 depth
map into the coarser (flat) pixel grid of 5×5 arcmin2 we use to con-
struct all maps (see §4.1). The depth mask has a much higher res-
olution (nside = 4096 Healpix map) than this grid, which means
some pixels in the new grid will be partially masked in the original
Healpix grid. We discard pixels in the new grid with more than
half of the area masked in the Healpix grid. The remaining par-
tially masked pixels causes effectively a ∼ 3% increase in the total
area. The partially masked pixels will be taken into account later
when generating κg (we scale the mean number of galaxy per pixel
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Figure 2. Mask used in this work. The black region shows where the galaxy
bias is calculated (the bias mask). The black+grey map region is where all
maps are made (the map mask).

by the appropriate pixel area). We also discard pixels without any
source galaxies.

Pixels on the edges of our mask will be affected by the
smoothing we apply to the maps. In addition, when performing the
KS conversion, the mask can affect our results. We thus define a
second “bias mask”, where we start from the map mask and fur-
ther mask pixels that are closer than half a smoothing scale away
from any masked pixels except for holes smaller than 1.5 pixels8

3.5 Simulations

In this work we use the same mock galaxy catalog from the MICE
simulations9 (Fosalba et al. 2015b; Crocce et al. 2015; Fosalba et al.
2015a) which is described in detail in Paper I. MICE adopts the
ΛCDM cosmological parameters: Ωm = 0.25, σ8 = 0.8, ns = 0.95,
Ωb = 0.044, ΩΛ = 0.75 and h= 0.7. The galaxy catalogue has been
generated according to a Halo Occupation Distribution (HOD) and
a SubHalo Abundance Matching (SHAM) prescription described
in Carretero et al. (2015). The main tests were done with the re-
gion 0◦ <RA< 30◦, 0◦ <Dec< 30◦, while we use a larger region
(0◦ <RA< 90◦, 0◦ <Dec< 30◦) to estimate the effect from cos-
mic variance. We use the following properties for each galaxy in
the catalog – position on the sky (RA, Dec), redshift (z), apparent
magnitude in the i band, and weak lensing shear (γγγ).

In addition, we incorporate shape noise and masking effects
that are matched to the data. For shape noise, we draw randomly
from the ellipticity distribution in the data and add linearly to the
true shear in the mock catalog to yield ellipticity measurements
for all galaxies in the mock catalog. We also make sure that the

8 The reason for not apodizing the small masks is that it would reduce
significantly the region unmasked and thus the statistical power of our mea-
surement. We have tested in simulations that the presence of these small
holes do not affect our final measurements.. We consider only pixels sur-
viving the bias mask when estimating galaxy bias. Figure 2 shows both
masks used in this work.
9 http://cosmohub.pic.es/

source galaxy number density is matched between simulation and
data in each redshift bin. For the mask, we simply apply the same
mask from the data to the simulations. Note that the un-masked
simulation area is ∼ 8 times larger than the data, thus applying the
mask increases the statistical uncertainty.

Finally, to investigate the effect of photo-z uncertainties, we
add a Gaussian photo-z error to each MICE galaxy according to
its true redshift. The standard deviation of the Gaussian uncertainty
follows σ(z) = 0.03(1+z). This model for the photo-z error is sim-
plistic, but since we use this set of photo-z simulations mainly to
test our algorithm (the calculation of f in Eqn. 19), we believe a
simple model will serve its purpose.

We note that the larger patch of MICE simulation used in this
work (∼ 30×30 square degrees) is of the order of what is expected
for the first year of DES data (∼2,000 degree square and ∼ 1 mag-
nitude shallower). Thus, the simulation measurements shown in
this work also serves as a rough forecast for our method applied
on the first year of DES data.

4 ANALYSIS AND RESULTS

4.1 Procedure

Before we describe the analysis procedure, it is helpful to have a
mental picture of a 3D cube in RA, Dec and z. The z-dimension is
illustrated in Figure 1, with a coarse resolution of five redshift bins
for both lenses and sources. Each lens and source sample is then
collapsed into 2D maps in the RA/Dec-dimension. For each source
bin, we can only constrain the galaxy bias using the lens bins at the
foreground of this source bin. That is, for the highest source redshift
bin there are five corresponding lens bins, and for the lowest source
redshift bin there is only one lens bin. The analysis is carried out in
the following steps.

First, we generate all the necessary maps for the measurement:
γ1, γ2 maps for each source redshift bin j, and γ ′1,g, γ ′2,g, γ

′N
1,g, and

γ
′N
2,g maps for each lens bin i and source bin j. We generate random

maps (γ
′N
1,g, γ

′N
2,g) for the calculation of 〈γ ′Nα,gγ

′N
α,g〉 in Eqn. 21. All

maps are generated using a sinusoidal projection at a reference RA
of 71◦ and 5 arcmin square pixels on the projected plane. These
maps are then smoothed by a 50 arcmin boxcar filter while the map
mask is applied. The chosen pixel and smoothing scales are based
on tests described in Paper I. For a given source bin, the value of
each pixel in the γ1 and γ2 maps is simply the weighted mean of the
shear measurements in the area of that pixel. The weights reflect
the uncertainties in the shear measurements in the data, while we
set all weights to 1 in the simulations. For a given lens bin, the
pixel values of the γ ′1,g, γ ′2,g maps are calculated through Eqn. 14,
where Σ′ is the number of galaxies in that pixel, and Σ̄′ is the mean
number of galaxies per pixel in that lens bin. For each combination
of lens-source bins, we calculate µα

i j (Eqn. 21) from the maps after
applying the bias mask. We assume ∆χ ′ ≈ the width of the photo-
z bin. f is calculated analytically through Eqn. 19, where we use
φ ′(z) ∝ p′l(z), the estimated normalized redshift distribution from
our photo-z code for each lens bin.

We combine all estimates for the same lens bin i through
Eqn. 23 and Eqn. 24, where the covariance between the different
measurements is estimated using 20 JK samples defined with a “k-
mean” algorithm (MacQueen 1967). The k-mean method splits a
set of numbers (center coordinate of pixels in our case) into several
groups of numbers. The split is made so that the numbers in each
group is closest to the mean of them. In our analysis it effectively
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divides our map into areas of nearly equal area, which we use as our
JK regions. The different JK samples are slightly correlated due to
the smoothing process. We estimate the effect of this smoothing on
the error bars by comparing the JK error bars on the zero-lag auto
correlation of a random map (with the same size of the data) be-
fore and after applying the smoothing. For 20 JK samples, this is
a ∼10% effect on the error bars, which we will incorporate in the
data measurements. We have also verified that the results are robust
to the number of JK samples used. The above procedure is applied
to the data and the simulations using the same analysis pipeline.

As hinted in §2.5, the error bars from JK-resampling do not
fully account for the uncertainties from cosmic variance. A more
complete account for the uncertainty is to measure µ̄i for a large
number of simulations that are closely matched to the data. We
compare in §4.3 the resulting error estimation with and without
including cosmic variance.

4.2 Linear fit

In the final step of our analysis, we fit a simple linear model
of galaxy bias to the data. To do this, we take into account the
full covariance between the µ̄i measurements in different redshift
bins, which we estimate through simulations. In particular, we use
a least-square approach similar to Eqn. 23 and consider a linear
model for the inverse galaxy bias in the following form

D = µ̄µµZ, (28)

where D = {µ̄i} is now the vector containing the measured inverse
galaxy bias in each lens redshift bin, µ̄µµ = {µ̄0 µ̄1} is the vector

composed of the two coefficients for the linear fit, and Z =

(
1
z̄i

)
is a 2D matrix with the first row being 1 and the second row con-
taining the mean redshift of each lens bin. The least-square fit to
this model and the errors on the fit then becomes

µ̄µµ = ZTC−1D[ZTC−1Z]−1, (29)

σ(µ̄µµ)2 = (ZTC−1Z)−1, (30)

where

C−1 = τ Cov−1[D]. (31)

Here τ = (N− ν − 2)/(N− 1) corrects for the bias in the inverse
covariance matrix due to the finite number of simulations (Hartlap
et al. 2007), where N is the number of simulation samples, and ν is
the dimension of C. In §4.4, we only use the four lower redshift bin
for the linear fit, as the highest redshift bin is unstable and noisy, so
ν = 4 in our final measurement for the data.

4.3 Simulation tests

Following the procedure outlined above, we present here the re-
sult of the redshift-dependent galaxy bias measurements from the
MICE simulation. We start from an ideal setup in the simulations
that is very close to that used in Paper I and gradually degrade the
simulations until they match our data. Below we list the series of
steps we take:

(i) use the full area (∼ 900 deg2) with the true γγγ maps
(ii) repeat above with photo-z errors included
(iii) repeat above with shape noise included
(iv) repeat above with SV mask applied

(v) repeat above with 12 different SV-like areas on the sky, and
vary the shape noise 100 times for each

Figure 3 illustrates an example of how the γ1,g and γ1 maps degrade
over these tests. The left column shows the γ1,g maps while the right
column shows the γ1 maps. Note that the color bars on the upper
(lower) two maps in the right panel are 2 (4) times higher compared
to the left column. This is to accommodate for the large change in
scales on the right arising from shape noise in the γ1 maps. The first
row corresponds to (i) above, and we can visually see the corre-
spondence of some structures between the two maps. Note that the
γ1,g map only contributes to part of the γ1 map, which is the reason
that we do not expect even the true γ1,g and γ1 maps to agree per-
fectly. The second row shows the map with photo-z errors included,
corresponding to the step (ii). We find that the real structures in the
maps are smoothed by the photo-z uncertainties, lowering the am-
plitude of the map. The smoothing from the photo-z is more visible
in the γ1,g map, since the γ1 map probes an integrated effect and is
less affected by photo-z errors. The third row shows what happens
when shape noise is included, which corresponds to the step (iii)
above. We find the structures in the γ1 map becomes barely visible
in the presence of noise, with the amplitude much higher than the
noiseless case as expected. The bottom row corresponds to the step
(iv) above, where the SV mask is applied to both maps. For the γ1
map this is merely a decrease in the area. But for the γ1,g map, this
also affects the conversion from κg to γγγg, causing edge effects in
the γ1,g map which are visible in the bottom-left map in Figure 3.
Step (v) is achieved by moving the mask around and drawing dif-
ferent random realizations of shape noise for the source galaxies.

With all maps generated, we then calculate the redshift-
dependent galaxy bias following Eqn. 23 and Eqn. 24 for each of
the steps from (i) to (v). In Figure 4 we show the result for the
different stages, overlaid with the bias from the 2PCF measure-
ment described in Paper I. In step (i), our measurements recover the
2PCF estimates, confirming the results in Paper I, that we can in-
deed measure the redshift-dependent bias using this method under
appropriate settings. Our error bars are smaller than that in Paper
I, which is due to the fact that we have combined measurements
from several source bins, and that we estimate inverse-bias instead
of bias directly. Since the only difference between this test and the
test in Paper I is the inclusion of the KS conversion, we have also
shown that the KS conversion in the noiseless case does not intro-
duce significant problems in our measurements. The error bars on
the highest redshift bin is large due to the small number of source
and lens galaxies. In step (ii), we introduce photo-z errors. We find
that the photo-z errors do not affect our measurements within the
measurement uncertainties. In step (iii), the error bars increase due
to the presence of shape noise. In (iv), we apply the SV mask, mak-
ing the result much noisier due to the smaller area. We repeat this
step on 12 different SV-like areas in a larger (30×90 deg2) simu-
lation area and vary the shape noise realisation 100 times for each
area. The orange points in Figure 4 shows the average measurement
and JK error bars of these 1,200 simulations. We find that albeit the
large uncertainties, our method indeed gives an unbiased estima-
tion of the redshift-dependent of bias which is consistent with the
2PCF estimations. In (v), we account for the additional uncertainty
in our measurements due to cosmic variance. The red points are
the same as the orange points, except that the error bars are esti-
mated from the standard deviation of the 1,200 measurements in
the simulations. We find that the contribution to the uncertainties
from cosmic variance can be important especially at low redshift.
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Figure 3. Example of simulation maps used in this work. The left column show γ1,g maps and the right column show γ1 maps. This γ1,g maps are generated
from the source redshift bin z (or zmean)= 1.0−1.2 and the lens redshift bin z (or zmean)= 0.4−0.6. The γ1 maps are generated from the source redshift bin z
(or zmean)= 1.0−1.2. The galaxy bias for the lens galaxies can be measured by cross-correlating the left and the right column. From top to bottom illustrates
the different stages of the degradation of the simulations to match the data. The first row shows the γ1,g map against the true γ1 map for the full 30×30 deg2

area. The second row shows the same maps with photo-z errors included, slightly smearing out the structures in both maps. The third row shows the same
γ1,g map as before against the γ1 that contains shape noise, making the amplitude higher. Finally, the bottom row shows both maps with the SV mask applied,
which is also marked in the third row for reference. Note that the color scales on the γ1 maps is 2 (4) times higher in the upper (lower) two panels than that of
the γ1,g maps.
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Figure 4. Redshift-dependent galaxy bias measured from simulations with
different levels of degradation from the ideal scenario tested in Paper I. The
grey line shows the bias from the 2PCF measurement, which we take as
“truth”. The black, blue, green, orange and red points corresponding to the
steps (i), (ii), (iii), (iv) and (v) in §4.3, respectively. The error bars in (i) (ii)
and (iii) correspond to the JK error bars (Eqn. 24). The error bars for (iv) is
the mean JK error bars for 1,200 simulations while the error bars for (v) is
the standard deviation of the measurements of 1,200 simulations.

With the series of simulation tests above, we have shown that
our measurement method itself is well grounded, but the presence
of measurement effects and noise can introduces large uncertainties
in the results. In the next section, we continue with the same mea-
surement on DES SV data and will use the full simulation covari-
ance derived in this section for the final fitting process. We believe
the simulation covariance matrix captures the dominant sources of
uncertainties in the problem.

4.4 Redshift-dependent galaxy bias of DES SV data

We now continue to measure redshift-dependent galaxy bias with
the DES SV data using the same procedure as in the simulations.
Figure 5 shows some examples of the maps. The right-most panel
shows the γ1 map at redshift bin zmean = 1.0−1.2, while the rest of
the maps are the γ1,g maps at different redshift bin evaluated for this
γ1 map. We see the effect of the lensing kernel clearly: the left-most
panel is at the peak of the lensing kernel, giving it a higher weight
compared to the other lens bins. We also see correlations between
γ1,g maps at different redshift bins. This is a result of the photo-z
contamination.

In Figure 6 we show the galaxy bias measurement for our
magnitude-limited galaxy sample from DES SV together with two
other independent measurements with the same galaxy sample (dis-
cussed in §5). We have excluded the highest redshift bin since with
only a small number of source galaxies, the constraining power
from lensing in that bin is very weak. The black data points show
the measurement and uncertainty estimated from this work, with a
best-fit linear model of: µ(z) = 1.07±0.24− 0.35±0.42z. The error
bars between the redshift bins are correlated, and has been taken
into account during the fit. Table 2 summarizes the results.

As discussed earlier, our method becomes much less con-
straining going to higher redshift, as the source galaxies become
sparse. This is manifested in the increasingly large error bars going
to high redshifts. Here we only performed a simple linear fit to the
data given the large uncertainties in our measurements. In the fu-

ture, one could extend to explore more physically motivated galaxy
bias models (Matarrese et al. 1997; Clerkin et al. 2015).

Compared with A12, our data set is approximately∼105 times
larger, but with a (source) galaxy number density ∼11.6 times
lower. This yields roughly ∼ 3 times lower statistical uncertainty
in our measurement. Our sample occupies a volume slightly larger
than the 0< z< 1 sample in A12. Note, however, that due to photo-
z uncertainties and the high shape noise per unit area, we expect a
slightly higher level of systematic uncertainty in our measurement.
Since in A12, the emphasis was not on measuring linear bias, one
should take caution in comparing directly our measurement with
A12. But we note that the large uncertainties at z > 0.6 and the
weak constraints on the redshift evolution in the galaxy bias is also
seen in A12. To give competitive constraints on the redshift evolu-
tion, higher redshift source planes would be needed.

4.5 Other systematics test

In §4.3, we have checked for various forms of systematic effects
coming from the KS conversion, finite area, complicated mask ge-
ometry, and photo-z errors. Here we perform three additional tests.
First, we check that the cross-correlation between the B-mode shear
γγγB and γγγg is small. Next, we check that using the second DES shear
pipeline, IM3SHAPE gives consistent answers with that from NG-
MIX. Finally, we check that using two other photo-z codes also give
consistent results. These three tests show that there are no signifi-
cant systematic errors in our measurements.

4.5.1 B-mode test

Lensing B-mode refers to the divergent-free piece of the lensing
field, which is zero in an ideal, noiseless scenario. As a result, B-
mode is one of the measures for systematic effects in the data. In
Jarvis et al. (2015), a large suite of tests have been carried out to
ensure that the shear measurements have lower level of system-
atic uncertainties compared to the statistical uncertainties. Never-
theless, here we test in specific the B-mode statistics relevant to
our measurements.

We construct a γγγB field by rotating the shear measurements in
our data by 45 degrees, giving:

γγγB = γB,1 + iγB,2 =−γ2 + iγ1. (32)

Substituting γγγB into γγγ in our galaxy bias calculation (Eqn. 21) gives
an analogous measurement to b, which we will refer to as bB. Since
we expect γγγB not to correlate well with γγγg, 1/bB would ideally
go to zero. In Figure 7, we show all the bB measurements using
both shear component and all lens-source combinations. We see
that all the data points are consistent with zero at the 1–2 σ level,
assuring that the B-modes in the shear measurements are mostly
consistent with noise. We also show the weighted mean of all the
data points and the corresponding B-mode measurements from one
of the simulation used in §4.3 (iv). We see that the level and scatter
in the data is compatible with that in the simulations.

4.5.2 IM3SHAPE test

As described in §3.3, two independent shear catalogs from DES SV
were constructed. Here, we perform the same measurement in our
main analysis using the IM3SHAPE catalog. The IM3SHAPE catalog
contains less galaxies, thus the measurements are slightly noisier.
The resulting redshift-dependent galaxy measurements are shown
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Table 2. Bias measurement and 1σ error bars from DES SV using the method tested in this work, with all possible lens-source combinations. We also compare
here our main measurements with that using alternative shear and photo-z catalogs. Finally we compare our results with other measurement methods carried
out on the same data set. The C16 estimates are from Tables 3 in that paper, while the G16 estimates are from Table 2 in that paper.

Lens redshift (zmean)
0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0

This work (NGMIX+SKYNET) 111...111222±±±000...111999 000...999777±±±000...111555 111...333888±±±000...333999 111...444555±±±000...555666
This work (IM3SHAPE+SKYNET) 1.21±0.25 1.12±0.24 0.90±0.19 0.91±0.28

This work (NGMIX+TPZ) 1.23±0.23 1.07±0.18 1.39±0.40 1.29±0.44
This work (NGMIX+BPZ) 0.84±0.11 1.00 ±0.16 1.13±0.26 0.95±0.24

Crocce et al. (2016) 1.07 ±0.08 1.24±0.04 1.34±0.05 1.56±0.03
Giannantonio et al. (2016) 0.57 ±0.25 0.91±0.22 0.68±0.28 1.02±0.31
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Figure 5. Example of maps from DES SV data. The right-most panel shows the γ1 map generated from the source redshift bin zmean = 1.0− 1.2, while
the other panels show the γ1,g maps generated for the source redshift bin zmean = 1.0− 1.2 and for different lens redshifts (left: zmean = 0.4− 0.6, middle:
zmean = 0.6− 0.8, right: zmean = 0.8− 1.0). The title in each panel for γ1,g indicate the lens and source redshift, while the title for γ1 indicates the source
redshift. Note that the color bars are in different ranges, but are matched to the simulation plot in Figure 3. In addition, the left-most and the right-most panels
correspond to the bottom row of that figure.

in Table 2 and are overall slightly higher than the NGMIX measure-
ments, and there is almost no constraining power on the evolution.
The best-fit linear bias model is: µ(z) = 0.64±0.28 + 0.56±0.52z,
which is consistent with the NGMIX measurements at the 1σ level.
The B-modes (not shown here) are similar to Figure 7.

4.5.3 Photo-z test

As mentioned in §3.1, several photo-z catalogs were generated for
the DES SV data set and shown in Bonnett et al. (2015) to meet
the required precision and accuracy for the SV data. All above an-
alyzes were carried out with the SKYNET photo-z catalog. Here we
perform the exact same analysis using the other two catalogs: BPZ
and TPZ. In specific, to be consistent with the other DES SV ana-
lyzes (Becker et al. 2015; The Dark Energy Survey Collaboration
et al. 2015), we keep the tomographic bins unchanged (binned by
SKYNET mean redshift), but use the p(z) from the different photo-z
codes to calculate f . The lensing or galaxy maps themselves remain
unchanged.

Table 2 lists the results from the different photo-z catalogs.
Since SKYNET and TPZ are both machine learning codes and re-
spond to systematic effects in a similar fashion, while BPZ is a
template fitting code, we can thus view the difference between the
results from BPZ and the others as a rough measure of the poten-
tial systematic uncertainty in our photo-z algorithm (see also dis-
cussion in Bonnett et al. 2015), which is shown here to be within
the 1σ error bars.

5 COMPARISON WITH OTHER MEASUREMENTS

The redshift-dependent galaxy bias has been measured on the same
data set using other approaches. Here we compare our result with
two other measurements – galaxy clustering (Crocce et al. 2016,
hereafter C16) and cross-correlation of galaxies and CMB lensing
(Giannantonio et al. 2016, hereafter G16).We note that both these
analyzes assumed the most recent Planck cosmological parameters
(Planck Collaboration et al. 2014), which is slightly different from
our assumptions (see §3.5). But since our measurement depends
very weakly on the assumption of cosmological parameters (as dis-
cussed in §2.4), the stronger cosmology dependencies come from
the cosmological parameters assumed in C16 and G16, which are
known well within our measurement uncertainties. We also note
that the results we quote in Table 2 are based on the photo-z code
TPZ, which means our redshift binning is not completely identical
to theirs.

5.1 Bias measurement from galaxy clustering

In C16, galaxy bias was estimated through the ratio between the
projected galaxy angular correlation function (2PCF) in a given
redshift bin and an analytical dark matter angular correlation func-
tion predicted at the same redshift. The latter includes both linear
and nonlinear dark matter clustering derived from CAMB (Lewis
et al. 2000) assuming a set of cosmological parameters. In C16, a
flat ΛCDM+ν cosmological model based on Planck 2013 + WMAP
polarization + ACT/SPT + BAO was used. The results in C16 as
listed in Table 2 were shown to be consistent with the independent
measurement from the CFHTLS (Coupon et al. 2012).
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Figure 6. Redshift-dependent bias measured from the DES SV data. The
black data points show the result from this work. The red and green points
show the measurements on the same galaxy sample with different methods.
The grey dashed line is the best fit to the black data points.
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Figure 7. All 1/bB(z) measurements from the B-mode shear and the same
γγγg in our main analysis. Each small blue data point represents a measure-
ment from a combination of lens redshift, source redshift, and shear com-
ponent. Note that the low redshift bins contain more data points, as there
are more source galaxies that can be used for the measurement. The large
blue points are the weighted mean of all measurements at the same redshift
bin from the DES SV data, while the red points are that from simulations
that are well matched to data.

Compared to C16, our work aims to measure directly the local
galaxy bias (Eqn. 1) instead of the galaxy bias defined through the
2PCF (Eqn. 2). Although the two measurements agree in the linear
regime where this work is based on, comparing the measurements
on smaller scales will provide further insight to these galaxy bias
models. Our method is less sensitive to assumptions of cosmologi-
cal parameters compared to the 2PCF method. In particular, it does
not depend strongly on σ8, which breaks the degeneracy between
σ8 and the measured galaxy bias b in other measurement methods.
Finally, since our measurement is a cross-correlation method (com-
pared to C16, an auto-correlation method), it suffers less from sys-
tematic effects that only contaminate either the lens or the source
sample. On the other hand, however, lensing measurements are in-
trinsically noisy and the conversion between shear and convergence
is not well behaved in the presence of noise and complicated mask-

ing. In addition, we only considered a one-point estimate (zero-lag
correlation), which contains less information compared to the full
2PCF functions. All these effects result in much less constraining
power in our measurements.

As shown in Figure 6 and listed in Table 2, our measurements
and C16 agree very well except for the redshift bin z = 0.4− 0.6
(slightly more than 1σ discrepancy). We note, however, both C16
and our work may not have included the complete allocation of
systematic errors (especially those coming from the photo-z uncer-
tainties), which could introduce some of the discrepancies.

5.2 Bias measurement from cross-correlation of galaxies and
CMB lensing

In G16, galaxy bias is estimated by the ratio between the galaxy-
CMB convergence cross-correlation and an analytical prediction
of the dark matter-CMB convergence cross-correlation, both cal-
culated through the 2PCF (and also in harmonic space through the
power spectrum). Since the lensing efficiency kernel of the CMB
is very broad and the CMB lensing maps are typically noisy, this
method has less constraining power than C16. However, by us-
ing an independent external data, the CMB lensing maps from the
South Pole Telescope and the Planck satellite, this measurement
serves as a good cross check for possible systematic effects in the
DES data.

In calculating the theoretical dark matter-CMB convergence
cross-correlation, G16 also assumed a fixed cosmology and derived
all predictions using CAMB. The σ8-b degeneracy is thus also
present in their analysis. We note, however, that one could apply
our method to the CMB lensing data and avoid this dependency. In
our framework, the CMB lensing plane will serve as an additional
source plane at redshift∼1100. We defer this option to future work.

The results from G16 are shown in Figure 6 and listed in Ta-
ble 2. These results come from the ratio between the measured and
the predicted power spectrum, which suffers less from non-linear
effects compared to the measurement in real space (2PCF). We find
that G16 is systematically lower than our measurement at the 1-2σ

level for all redshift bins. G16 also has more constraining power at
high redshift compared to our results, as expected. Possible reasons
for the discrepancy at low redshift include systematic errors (in e.g.
the photo-z estimation) that are not included in either C16, G16 or
this work. In addition, the redshift bins are significantly covariant,
making the overall discrepancy less significant. Finally, the scales
used in the three studies are slightly different. We refer the readers
to G16 for more discussion of this discrepancy.

6 CONCLUSION

In this paper, we present a measurement of redshift-dependent bias
using a novel technique of cross-correlating the weak lensing shear
maps and the galaxy density maps. The method serves as an al-
ternative measurement to the more conventional techniques such
as 2-point galaxy clustering, and is relatively insensitive to the as-
sumed cosmological parameters. The method was first developed
in Amara et al. (2012) and later tested more rigorously with simu-
lations in a companion paper (Pujol et al. 2016, Paper I). Here we
extend the method and apply it on wide-field photometric galaxy
survey data for the first time. We measure the galaxy bias for a
magnitude-limited galaxy sample in the Dark Energy Survey (DES)
Science Verification (SV) data.

Following from Paper I, we carry out a series of simulation
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tests which incorporate step-by-step realistic effects in our data in-
cluding shape noise, photo-z errors and masking. In each step, we
investigate the errors introduced in our estimation of galaxy bias.
We find that shape noise and cosmic variance are the main sources
of uncertainties, while the photo-z affects the measurements in a
predictable way if the characteristics of the photo-z uncertainties
are well understood. As the measurement itself is very noisy, sim-
ulation tests where we know the “truth” provide a good anchor for
building the analysis pipeline.

In our main analysis, we measure the galaxy bias with a
18 < i < 22.5 magnitude-limited galaxy sample in 4 tomographic
redshift bins to be 1.12±0.19 (z= 0.2−0.4), 0.97±0.15 (z= 0.4−
0.6), 1.38± 0.39 (z = 0.6− 0.8), and 1.45± 0.56 (z = 0.8− 1.0).
Measurements from higher redshifts are too noisy to be constrain-
ing. The best-fit linear model gives: b−1(z) = µ(z) = 1.07±0.24−
0.35±0.42z. The results are consistent between different shear and
photo-z catalogs.

The galaxy bias of this same galaxy sample has also been mea-
sured with two other techniques described in Crocce et al. (2016)
and Giannantonio et al. (2016). The three measurements agree at
the 1–2σ level at all four redshift bins, though the results from Gi-
annantonio et al. (2016) are systematically lower than our measure-
ments. We note that our method is more constraining at low red-
shift regions where there are more source galaxies behind the lens
galaxies. As pointed out in Amara et al. (2012), to constrain the
evolution of galaxy bias, our current data set may not be optimal.
A more efficient configuration would be combining a wide, shal-
low data set with a narrow, deep field. We plan on exploring these
possibilities in the future. The main uncertainty in this work comes
from the combined effect of masking, shape noise and cosmic vari-
ance. However, as we demonstrated with simulations, moving to
the larger sky coverage of the first and second year of DES data
would reduce this effect significantly.

We have demonstrated the feasibility and validity of our
method for measuring galaxy bias on a wide-field photometric data
set. Looking forward to the first and second year of DES data
(∼2,000 square degrees and ∼ 1 magnitude shallower), we expect
to explore a variety of other topics using this method with the
increased statistical power. For example, the same measurement
could be carried out on different subsamples of lens galaxies (in
magnitude, color, galaxy type etc.) and gain insight into the differ-
ent clustering properties for different galaxy populations. Also, one
can extend the measurement into the non-linear regime and mea-
sure the scale-dependencies of the galaxy bias. Finally, it would be
interesting to compare the measurement from the 2PCF method and
our method (which is a measure of local bias) on different scales
to further understand the connections between the two galaxy bias
models.
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Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015b, MNRAS, 448,

2987
Giannantonio T., et al., 2016, MNRAS, 456, 3213
Graff P., Feroz F., Hobson M. P., Lasenby A., 2014, MNRAS, 441, 1741
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Jarvis M., et al., 2015, preprint, (arXiv:1507.05603)
Jullo E., et al., 2012, ApJ, 750, 37
Kaiser N., 1984, ApJ, 284, L9
Kaiser N., Squires G., 1993, ApJ, 404, 441
Leistedt B., et al., 2015, preprint, (arXiv:1507.05647)
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
MacQueen J., 1967, in Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Volume 1: Statistics. Uni-
versity of California Press, Berkeley, Calif., pp 281–297, http://
projecteuclid.org/euclid.bsmsp/1200512992

Mandelbaum R., Slosar A., Baldauf T., Seljak U., Hirata C. M., Nakajima
R., Reyes R., Smith R. E., 2013, MNRAS, 432, 1544
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APPENDIX A: CHOICE OF ESTIMATOR

In our main analysis, we use the inverse-galaxy bias µ = 1/b as
our main estimator instead of estimating galaxy bias directly. In
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Figure A1. Same as Figure 4, but using b as the estimator.

this appendix we show the effect of using b as the estimator. The
origin of the difference comes from the fact that when combining
the multiple measurements in the same lens bin, we use the least-
square formalism Eqn. 23, which relies on the covariance matrix
Ci estimated through JK resampling. This covariance matrix can
become ill-behaved depending on the estimator used. In our case,
the denominator of b (the inverse of Eqn. 21) can become close to
zero, which makes the inversion of the covariance matrix unstable.
We find that this introduces a bias in our final result, which will
need to be calibrated.

In Figure A1 we show the equivalent of Figure 4 using b as an
estimator instead of µ . As the distribution of b estimated through
the simulations have large outliers, we exclude simulations with
bias estimates below 0 and above 5. We find that the main dif-
ference between Figure 4 and Figure A1 is in the orange and red
points, where all the observational effects are included. For the less
noisy scenarios (i)(ii) and (iii), the change is very minor. This is
because the effect is more manifested when the measurements are
noisy. The final (red) points in Figure A1 is biased from the “truth”
by ∆b due to the matrix inversion discussed above.

Once we calibrate ∆b from these simulations and apply it to
the data measurements, we have Figure A2, which is the equivalent
of Figure 6 but using b as an estimator instead of µ . We find that
after taking into account the bias derived from Figure 4, the final
measurements from the data is still consistent with our main analy-
sis in Figure 6. Nevertheless, as using b relies heavily of the quality
of the simulations and the outlier-rejection described above is not
entirely objective, we choose to use the estimator µ instead.
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Figure A2. Same as Figure 6, but using b as the estimator.
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