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The statistical properties of galaxy clusters can only be used for cosmological purposes if obser-
vational effects related to cluster detection are accurately characterized. These effects include the
selection function associated to cluster finder algorithms and survey strategy. The importance of the
selection becomes apparent when different cluster finders are applied to the same galaxy catalog, pro-
ducing different cluster samples. We consider parametrized functional forms for the observable-mass
relation, its scatter as well as the completeness and purity of cluster samples, and study how prior
knowledge on these function parameters affects dark energy constraints derived from cluster statis-
tics. Under the assumption that completeness and purity reach 50% at masses around 1013.5M�/h,
we find that self-calibration of selection parameters in current and upcoming cluster surveys is pos-
sible, while still allowing for competitive dark energy constraints. We consider a fiducial survey
with specifications similar to those of the Dark Energy Survey (DES) with 5000 deg2, maximum
redshift of zmax ∼ 1.0 and threshold observed mass Mth ∼ 1013.8M�/h, such that completeness and
purity ∼ 60% − 80% at masses around Mth. Perfect knowledge of all selection parameters allows
for constraining a constant dark energy equation of state to σ(w) = 0.033. Employing a joint fit
including self-calibration of the effective selection degrades constraints to σ(w) = 0.046. External
calibrations at the level of 1% in the parameters of the observable-mass relation and complete-
ness/purity functions are necessary to improve the joint constraints to σ(w) = 0.041. In the lack
of knowledge of selection parameters, future experiments probing larger areas and greater depths
suffer from stronger relative degradations on dark energy constraints compared to current surveys.

I. INTRODUCTION

The properties of dark matter halos have been char-
acterized with increasing accuracy through dark matter
N-body simulations of multiple cosmological models [1–
5]. However real clusters of galaxies observed in surveys
spanning different wavelengths carry a number of obser-
vational effects [6–13]. For the cosmological use of galaxy
clusters, it is necessary to parametrize these effects in
terms of intrinsic cluster parameters such as mass and
redshift. An ideal self-consistent analysis must then con-
strain both cosmological parameters of interest as well as
nuisance parameters related to astrophysical and obser-
vational effects, despite intrinsic degeneracies [6–8, 14–
21]. In this context, external calibrations of nuisance
parameters may help improve constraining cosmology.

Given a set of true halos and the matter tracers as-
sociated to them (e.g. optical galaxies), the first step is
to characterize the performance of algorithms for cluster
identification [22–28]. Cluster finders may fail to iden-
tify a fraction of clusters related to dark matter halos, as
well as detect false clusters with no association to halos.
These two problems can be quantified by the so-called
completeness and purity of the cluster sample [12, 13, 23],
which typically reflect limitations of the cluster finder al-
gorithm, such as e.g. artificial over-merging or fragmen-
tation of clusters relative to their corresponding halos.
Whereas completeness and purity may depend on vari-
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ous factors – such as survey specifications, the quality of
photometric redshifts (photo-zs) and the observable-mass
relation – they are mainly properties of the cluster finder
itself. We will often refer to completeness and purity as
describing the cluster selection function.

Next we must consider the observable-mass relation,
typically characterized by a mean relation and a scat-
ter [6, 7, 14, 15]. For optical clusters the observable is
the cluster richness representing the number of cluster
member galaxies. Richness may also refer to a subsam-
ple of member galaxies whose properties more closely re-
late to halo mass (e.g. richness can be based on red-
sequence galaxies within a cluster [26, 27], as opposed to
all member galaxies ). In simulations, clusters correctly
matched to dark matter halos can be used to charac-
terize the observable-mass relation [12, 29–33]. Observa-
tionally, optical clusters may be matched to detections in
other wavelengths (e.g. millimeter or X-ray) from which
observable-observable scaling relations can be estimated
[34–36], and under the assumption of hydrostatic equilib-
rium, observable-mass relations may be derived. Alter-
natively, lensing masses may be available for a fraction of
the optical clusters [37–43]. In conjunction, simulations
and observational cross-matches allow for independent
external calibrations of the observable-mass relation.

The scatter in the observable-mass relation may also
be assessed from simulations and observations, and it can
be tied to different sources [11]. An intrinsic scatter ex-
ists even for a perfect cluster finder (i.e. one with unit
completeness and purity) and represents instances where
a cluster of given richness has a range of masses due to
intrinsic variability in the physical processes that relate
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these quantities, turning them stochastic [29, 30]. On
the other hand, imperfections in the matching of clusters
may artificially change this otherwise intrinsic scatter, as
well as other observational issues [11]. We will also refer
to the effective selection function, which is characterized
by a combination of the actual selection function (com-
pleteness/purity) and the observable-mass relation.

There may be an interplay between the derived
observable-mass relation and the sample selection func-
tion, as the characterization of both depend on the
matching process of clusters and halos (in simulations)
and clusters and clusters (in multi-wavelength observa-
tions). For instance, clusters catastrophically scattered
in and out of a given richness bin may affect the sam-
ple completeness and purity, an effect which may be
parametrized by altering the observable-mass distribu-
tion to include an extra Gaussian term [10]. Conversely,
using only clusters and/or halos which are believed to
have been correctly matched to define the observable-
mass relation may produce a relation with unrealistically
low scatter. Despite these issues, it is conceptually sim-
pler to keep the definitions of completeness and purity
decoupled from the observable-mass relation, and we will
follow this approach in this work by parametrizing these
functions independently.

Finally, we must characterize errors in the cluster pho-
tometric redshifts (photo-zs) [8]. We will again take the
simpler approach of decoupling photo-z errors from com-
pleteness and purity issues, as photo-z errors are mainly
tied to degeneracies in color-magnitude-redshift space
and the efficiency of photo-z algorithms [44–46]. The se-
lection function of cluster finders that make direct use of
photo-zs [23, 41] is clearly affected by the photo-z quality,
which may translate to additional sources of overmerging
and fragmentation of clusters in the line-of-sight. How-
ever, for cluster galaxies we expect the photo-z errors to
be considerably smaller than for field galaxies. Therefore
in this work we will neglect such effects, as our goal is
to assess the direct impact of completeness and purity
issues on cluster cosmology. Our analysis is conservative
in this sense, since by including the extra dependencies of
completeness and purity on observable-mass and photo-z
parameters would effectively decrease the number of nui-
sance parameters to constrain, potentially increasing the
sensitivity of cluster observables.

In this paper we study how the inclusion of the cluster
sample completeness and purity impacts the cosmolog-
ical constraints derived from that sample. For a given
parametrization of these functions, we also explore how
prior knowledge on the selection can help constrain dark
energy parameters in current and upcoming galaxy sur-
veys. We start in § II discussing the characterization of
the selection function via the sample completeness and
purity. In § III we discuss the formalism for predicting
cluster counts and covariance, including selection effects.
In § IV we detail the Fisher Matrix formalism to predict
dark energy constraints and biases from cluster statis-
tics and in § V we present the fiducial model, including

selection parametrizations. In § VI we present our main
results and in § VII we discuss these results and conclude.

II. COMPLETENESS AND PURITY

We define the completeness of a cluster catalog as the
fraction of galaxy clusters correctly identified relative to
the number of true dark matter halos. Likewise, the pu-
rity of the same catalog is defined as the fraction of galaxy
clusters correctly identified relative to the total number
of detected clusters. Clearly both concepts are impor-
tant to characterize the cluster finder selection function,
since nearly all algorithms lead to samples that are both
incomplete and impure in certain ranges of masses and
redshifts. A low completeness indicates an inefficiency
of the cluster finder in detecting systems that it should
have detected (or which a perfect cluster finder detects),
whereas a low purity indicates a high fraction of false-
positives in the sample, i.e. detections incorrectly made
(and which a perfect cluster finder would not have made).

The completeness and purity of a cluster finder depend
on the assumptions it makes and also on observing con-
ditions of a specific survey. For instance, a cluster finder
which uses information from the galaxy red-sequence –
observed in most low-redshift clusters – has the possi-
bility of outperforming a cluster finder that ignores this
information. On the other hand, if the assumption of
a red-sequence is extrapolated into a domain in which
it may not apply (e.g. at higher redshifts), such cluster
finder may produce samples that are either incomplete or
impure. As a result, different performances may be ob-
served when comparing different cluster finders applied
to the same data set as well as the same cluster finder
applied to different surveys.

From the above definitions of completeness and purity,
these quantities require matching clusters to dark matter
halos. Strictly speaking this can only be directly assessed
in simulated catalogs, where information about the true
underlying dark matter halos is fully available. How-
ever cross-checks from real observations may also pro-
vide useful hints into the selection function of a given
cluster finder. Here we will assume that simulations
representative of the observing conditions are available
for purposes of roughly estimating the cluster finder se-
lection function as well as the observable-mass relation.
Clearly, simulations of this kind necessarily make certain
assumptions that may not apply to real observed data.
Nonetheless they are useful to roughly calibrate cluster
finders and estimates of their selection under these as-
sumptions. When performing a cosmological analysis on
real data, one would not fully trust simulation results,
but they might inspire functional forms for parameter-
izing the cluster selection and observable-mass relation
[29, 30], whose parameter values can then be obtained
from a self-consistent cosmological analysis of the cluster
sample.

For pedagogical reasons, let us outline the process of
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using a simulated galaxy catalog and its associated dark
matter halos for defining the cluster sample complete-
ness, purity and observable-mass relation. Given the list
of true dark matter halos of mass M and redshift z, and
the catalog of galaxies populating these halos, one may
run a cluster finder producing a list of clusters with cer-
tain observed properties (e.g. richness and photo-zs for
optical clusters). Since the considerations made here ap-
ply to detections not only of optical clusters, but for mul-
tiple wavelengths, we will often refer to the observed mass
Mobs instead of the direct observable O. Here Mobs is
simply the mass inferred from the observable O, being
therefore equivalent to it, but in mass units. Therefore
we will formally characterize individual clusters by their
values of Mobs and photo-z, denoted zphot. Given the
number Nh of halos found and the number Nc of clusters
detected, we may then consider the following steps to-
wards characterizing the cluster finder selection function
and the observable-mass distribution:

• Rank the Nh halos by mass M and the Nc clusters
by observable O.

• Perform a matching of halos and clusters, produc-
ing Nmat matches.

• Plot O versus M for the matches to determine the
observable-mass relation and its scatter. A cluster
mass computed from this relation using the value
of the observable O represents the cluster observed
mass Mobs.

• For each bin of halo mass M and redshift z, com-
pute the completeness c(M, z) as

c(M, z) =
Nmat(M, z)

Nh(M, z)
. (1)

• For each bin of cluster observed mass Mobs and
photo-z zphot, compute the purity p(Mobs, zphot)
as

p(Mobs, zphot) =
Nmat(M

obs, zphot)

Nc(Mobs, zphot)
. (2)

Clearly these definitions depend on the specific match-
ing criterium imposed in the second step above (see fur-
ther discussion on a related issue in § III A). We may also
use these matches to estimate cluster zphot errors, which
depend both on the quality of galaxy photo-zs and on
the cluster finder performance in assigning redshifts to
clusters. In this work, we will assume that the effect of
photo-z errors is already encapsulated into the estimated
completeness and purity and does not represent an extra
source of cosmological degeneracies [8]. Obviously such
assumption should be checked for each cluster finder, es-
pecially for those which heavily rely on galaxy photo-z
estimates.

If reliable mock catalogs for a given survey are not
available, calibration of scaling relations is possible from
lensing masses measured for a fraction of the detected
clusters or from matching e.g. optical clusters to de-
tections at other wavelenghts. In both cases, it is diffi-
cult to extract information on the completeness and pu-
rity of the cluster sample, because no observed catalog
can be taken as a truth table. We may however obtain
limited information about the observable-mass relation
and its scatter. In the worst-case scenario, we could
assume a very generic selection function and fully self-
calibrate its parameters from the observed cluster data
alone. Fortunately, we expect reliable simulations, lens-
ing masses, multiple external cross-calibrations and spec-
troscopic follow-ups to be available for a self-consistent
cosmological analysis of most current and future cluster
surveys.

III. OBSERVED CLUSTER PROPERTIES

A. Cluster Counts

We parametrize the theoretical dark matter halo mass-
function as

dn̄(z,M)

d lnM
=
ρ̄m
M

d lnσ−1

d lnM
f(σ) , (3)

where σ2(M, z) is the variance of the linear density
field in a spherical region of radius R enclosing a mass
M = 4πR3ρ̄m/3 at the present background matter den-
sity ρ̄m. We take f(σ) from a fit to simulations by Tinker
et al [47], with parameter values appropriate for over-
density ∆ = 200 with respect to the background matter
density. The predicted comoving number density n̄α of
clusters in the observed mass bin indexed by α is ob-
tained by integrating the mass-function convolved with
all observational effects mentioned previously as [6–8]

n̄α(z) =

∫ Mobs
α+1

Mobs
α

d lnMobs

∫ ∞
0

d lnM
dn̄obs
d lnM

, (4)

where the observed mass-function

dn̄obs
d lnM

=
dn̄(z,M)

d lnM
P (Mobs|M)

c(M, z)

p(Mobs, zphot)
(5)

carries the effects of completeness, purity and observable-
mass distribution P (Mobs|M), assumed to be Gaussian
in lnM . The number counts in the ith photo-z bin are
then obtained by integrating the comoving number den-
sity in comoving volume or redshift, including the photo-z
error distribution as [8]

m̄α,i =

∫ zphoti+1

zphoti

dzphot
∫ ∞
0

dzP (zphot|z) r
2(z)

H2(z)
n̄α(z) ,(6)

where H(z) is the Hubble parameter at redshift z and
r(z) is the comoving angular diameter distance, identified
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here with the comoving radial distance since we only con-
sider flat cosmologies. As mentioned previously, we will
not consider the effect of photo-z errors explicitly here.
In the above description, this implies taking P (zphot|z)
to be a Dirac delta function, which then allows us to per-
form one of the redshift integrals trivially. In this case,
we denote the effective cluster selection f(Mobs|M) as
the combination

f(Mobs|M) = P (Mobs|M)
c(M)

p(Mobs)
. (7)

The separation of f into these three components is
mostly pedagogical, as the effective selection itself can
be measured directly from simulations (with no refer-
ence to separate components). In fact, it is possible to
consider completeness and purity effects (partially) as a
propagation of projection effects into the otherwise in-
trinsic observable-mass relation P (Mobs|M), turning it
into f(Mobs|M) [10]. Whereas simulations indicate that
P (Mobs|M) can be parametrized as a log-gaussian distri-
bution [29–31] with observable-mass relations displaying
low scatter [30], f(Mobs|M) would then have a non-log-
gaussian component [10].

However, contamination by projection effects is not the
only issue that may affect the total selection. One sim-
ple effect, which however is likely always present, is a
mismatch between the effective overdensity ∆c used to
define observed clusters and the overdensity ∆h of the
dark matter halos associated to them (either halos di-
rectly matched to clusters in simulations or halos whose
mass-function is used to predict the cluster abundance).
For instance, if we use a halo mass-function appropri-
ate for ∆h to predict the cluster abundance as described
above, but our cluster finder detects clusters at an ef-
fective overdensity ∆c 6= ∆h, a mismatch of halo and
cluster properties will follow if not accounted for explic-
itly. Notice that these effects may happen even for a
perfect cluster finder, and because they are associated to
the cluster detection itself, they cannot be corrected af-
ter detection by simply redefining cluster masses with a
more appropriate overdensity or even a new observable.
For clusters detected using signal-to-noise ratios or fixed
apertures, which do not correspond to a fixed halo over-
density, it may be even trickier to interpret comparisons
of cluster and halo properties.

From the considerations above, it is clear that com-
pleteness and purity depend on specific assumptions un-
derlying cluster finder algorithms. In this work we will
parametrize the selection via separate functions for the
sample completeness and purity as described in § V.

B. Cluster Covariance

The local number counts mα,i(x) of clusters at position
x fluctuate spatially around the mean predicted values
m̄α,i, following the matter density contrast δ(x) as

mα,i(x) = m̄α,i[1 + bα(z)δ(x)] , (8)

where bα(z) is the average cluster bias defined as

bα(z) =
1

n̄α(z)

∫ ∞
0

d lnM
dn̄α
d lnM

b(M, z) .

(9)

Notice that bα(z) is consistently predicted from the
number density in Eq. 4, and therefore carries the
observable-mass and selection effects. Here b(M, z) is
the halo bias for which we will take a fit to simulations
by Tinker et al. 2010 [48] as

b (M, z) = 1−A νa

νa + δac
+Bνb + Cνc , (10)

where ν(M, z) = δc/σ(M, z), δc = 1.686 and we fix val-
ues for the parameters A,B,C, a, b, c appropriate for the
same overdensity ∆ = 200 used in the abundance predic-
tions.

The cluster counts have a sample covariance Sαβij due

to the large scale structure of the Universe given by [7, 49]

Sαβij = 〈(mα,i − m̄α,i) (mβ,j − m̄β,j)〉

= m̄α,ibα,im̄β,jbβ,j

∫
d3k

(2π)
3P (k)W ∗i (k)Wj(k) ,

(11)

where Wi(k) is the Fourier transform of the volume win-
dow function in bin i and we set bα,i ≈ bα(zi) at the bin
centroid zi, which is valid for sufficiently small redshift
bins.

Here we will take a window to be a cylinder with a
small angular radius (θs . 10 deg) and height δri, in
which case Wi(k) is given by [8, 50]

Wi(k) = 2 exp
(
ik‖ri

)
j0

(
k‖δri

2

)
J1 (k⊥θsri)

k⊥θsri
, (12)

where k = (k‖,k⊥). The counts are also subject to Pois-
son variance or shot noise given by

Mαβ
ij = δαβδijm̄α,i , (13)

such that the total covariance Cαβij is the sum of sample
covariance and Poisson variance

Cαβij = Sαβij +Mαβ
ij . (14)

IV. FISHER MATRIX

We use the Fisher matrix formalism to study the effects
of parametrizing the cluster selection function, given the
predictions of cluster counts and covariance described in
the previous section. We split the counts in redshift,
mass and angular cells. For convenience of notation, we
let the index i denote binning in photo-z, observed mass
and angular pixel, and arrange the counts into a single
vector m̄̄m̄m. Similarly we arrange the sample covariance,
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Poisson variance and total covariance of m̄̄m̄m into matrices
SSS, MMM and CCC = SSS +MMM .

Given a set of parameters θα, the Fisher matrix quanti-
fies the information in both the cluster counts and cluster
covariance as [7, 8]

Fαβ = m̄̄m̄m,αCCC
−1m̄̄m̄m,β

T +
1

2
Tr
[
CCC−1SSS,αCCC

−1SSS,β
]
, (15)

where the first term contains information on the counts
and the second term the information on the covariance of
these counts. The clustering properties of galaxy clusters
- enconded in their covariance - bring extra information
to the cluster counts, which helps on self-calibration of
observable-mass distribution [7, 8, 15, 16, 51] and, as we
shall see, of the cluster selection function. The inverse
Fisher matrix approximates the covariance matrix of the
parameters Cαβ ≈ [F−1]αβ . The marginalized error on a

single parameter θα is σ(θα) = [F−1]
1/2
αα . In case we have

prior information on parameter θα at the level of σp(θα),
we add to the Fisher matrix a diagonal contribution of
σ−2p (θα)δαβ before inversion.

Finally, variations on the number counts of ∆m̄̄m̄m and
on the sample covariance of ∆SSS, relative to their values
in the fiducial model, induce a systematic error or bias
b(θα) = δθα on a derived parameter θα, given by [10, 52]

b(θα) = F−1αβ

{
m̄̄m̄m,βCCC

−1∆m̄̄m̄m+
1

2
Tr
[
CCC−1SSS,βCCC

−1∆SSS
]}

.

(16)

This equation can be used for assessing the bias on
inferred cosmological parameters when neglecting the in-
clusion of selection function parameters, given that the
true counts in the fiducial model require these additional
parameters.

V. FIDUCIAL MODEL

We choose a fiducial cosmology from a flat wCDM
model with best-fit parameters consistent with the re-
sults form Planck [53], as h2Ωm = 0.14, h2Ωb = 0.022,
w = −1, As = 2.13× 10−9 (corresponding to σ8 = 0.83),
ns = 0.96, τ = 0.089. We also set priors of 1% on all
parameters, except for the h2Ωm and w, which will vary
freely as we wish to study the potential for galaxy clus-
ters to constrain dark energy in the presence of cluster
selection parameters.

We assume a survey area of 5000 deg2, similar to that
planned for the final observations of the Dark Energy
Survey (DES) [54]. We consider the counts and covari-
ance within 500 cells of 10 deg2 each. To reflect expecta-
tions and limitations of cluster finders in current optical
surveys, we restrict the analysis to 9 redshift bins of ∆z =
0.1 from z = 0.1 to zmax = 1.0. We also include seven
bins of observed mass of ∆ log[Mobs/(M�h

−1)] = 0.2
from a threshold mass of Mobs

th = 1013.8M�/h, where the
last bin was reshaped to log[Mobs/(M�h

−1)] = [15.0 :
17.0] to include all high-mass clusters.

The observable-mass P (Mobs|M) distribution will be
assumed to be Gaussian in lnM with a scatter σlnM and
bias lnMbias

P (Mobs|M) =
1√

2πσ2
lnM

exp

[
−χ

2
(
Mobs

)
2

]
(17)

where

χ
(
Mobs

)
=

lnMobs − lnM − lnMbias

σlnM
. (18)

Since we expect a smooth evolution of the mass bias
with redshift, we take [7]

lnMbias(z) = Ab + nb ln(1 + z), (19)

where the fiducial values are Ab = nb = 0. Since we
expect the mass scatter in the relation to increase for
high redshifts and low masses, we take

σ2
lnM (z,M)

0.22
= 1 +B0 +Bz(1 + z) (20)

+BM

(
lnMs

lnM

)
,

with the fiducial values of B0 = Bz = BM = 0 and we
fix the pivot mass Ms = 1014.2M�/h .

As clusters of high mass stand out in observations, we
expect less ambiguity in detecting them. Therefore the
completeness and purity should approach unity at high
enough values of M and Mobs. Similarly, for low masses,
the number of clusters increase and we expect the con-
fusion to be larger, so the completeness and purity de-
crease. We set a functional form for both completeness
and purity that interpolates between these two limits of
high and low masses as

c(M, z) =
[M/Mc(z)]

nc

[M/Mc(z)]nc + 1
, (21)

p(Mobs, zphot) =
[Mobs/Mobs

p (z)]np

[Mobs/Mobs
p (z)]np + 1

, (22)

where Mc(z) and Mp(z) are parametrized functions and
we take the exponents nc and np to be constants. We
consider 2 different cases, as shown in Table I: case (1)
sets values nc = 3 and np = 1, therefore the ratio c/p
goes to zero in the limit of low M and Mobs; case (2)
sets values nc = 1 and np = 3, therefore the ratio c/p
goes to infinity in the limit of low M and Mobs. These
two cases should bracket a reasonable range of possible
parametrizations for the selection and their dependence
on mass and redshift. For the mass scales Mc and Mobs

p ,
which control the transition in completeness and purity
function, we take linear relations:

logMc(z) = log M̃c + c0 + c1(1 + z) (23)

logMobs
p (z) = log M̃obs

p + p0 + p1(1 + z) (24)
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case(1)
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0.4

0.6

0.8
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c(
M
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p(
M

o
bs
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lnM=lnMobs−σlnM

lnM=lnMobs

lnM=lnMobs+σlnM

case(1)

case(2)

FIG. 1. Completeness and purity as a function of mass for cases (1) and (2) at z = 0. The red vertical line denotes the
threshold mass Mobs

th = 1013.8M�/h assumed in the fiducial model. (Left): both functions are shown separately and the red
shaded regions display the mass spread around this threshold at 1, 2 and 3σlnM . (Right): Ratio of completeness and purity
(see Eq. 7) as a function of mass. As a result, case (1) produces an increase on cluster counts for higher masses and a decrease
at lower masses, while case (2) induces the opposite behavior.

with fiducial values of c0 = p0 = c1 = p1 = 0. Here M̃c

and M̃obs
p are arbitrary pivot masses where completeness

and purity decrease to 50% in the fiducial model. For
illustrative purposes we fix them to M̃c = 1013.6M�/h

and M̃obs
p = 1013.5M�/h, which results in complete-

ness ≈ (80%, 61%) and purity ≈ (67%, 89%) around the
threshold mass for cases (1,2).

For reference, we consider an additional case of perfect
cluster detection, i.e. completeness and purity equal to
unit for all masses and redshifts. We will denote this as
case (0) and will consider the bias induced on dark en-
ergy parameters when case (0) is assumed whereas the
true model is either case (1) or (2). We will also con-
sider the dark energy constraints derived within cases (1)
and (2) and the impact of prior knowledge on nuisance
parameters describing the observable-mass relation and
cluster selection.

The functional forms proposed for completeness and
purity are shown on the left panel of Fig. 1. While pu-
rity is a function of the observed mass of clusters, com-
pleteness depends on true mass of the dark matter halos.
Therefore for a given value of observed mass, the effective
completeness results from the contribution of a range of
true masses determined by the scatter in the observable-
mass relation. This feature is illustrated on the left panel
of Fig. 1, where the vertical red line indicates the fidu-
cial observed mass threshold Mobs

th = 1013.8M�h
−1), and

the red shaded regions delineate the scatter at 1, 2 and
3σlnM levels for the effective selection.

The right panel of Fig. 1 shows the ratio of complete-
ness and purity (c/p), which affects the effective cluster

Case completeness purity c/p( as M → 0)

0 c = 1 p = 1 1

1 nc=3 np=1 0

2 nc=1 np=3 ∞

TABLE I. Cases considered for completeness and purity pa-
rameter values.

selection in Eq. 7. For each of the cases (1) and (2), the
ratio c/p has limits indicated in Table I. In both cases,
the ratio c/p→ 1 in the limit of high masses, since both
c and p approach unit in this limit. For case (1) the ra-
tio c/p→ 0 at lower masses; however, in the mass range
investigated (≥ 1013.8M�h

−1), the ratio c/p > 1, result-
ing in more detected clusters than case (0). An opposite
effect occurs for case (2), resulting in fewer cluster detec-
tions.

VI. RESULTS

Before studying the impact of selection parameters on
dark energy constraints, we first look at the effect on
cluster abundance from each cosmological and nuisance
parameter. In Fig. 2 we show the cluster number counts
as a function of cluster redshift, as predicted from Eq. 6,
for selection parameters of case (1).

We compute counts for the fiducial model (thick solid
line) and for positive variations of 0.2 in each parameter
considered. We assume a flat universe, so an increase in



7

0

10k

20k

30k

ΩDE w Mbias Ab
nb

0.5 1.0 1.5
0

10k

20k

30k

σlnM

cl
u
st
er
n
u
m
be
r
co
u
n
ts

B0

Bz
Bm

0.5 1.0 1.5

redshift

comp. c0
c1
nc

0.5 1.0 1.5

pur. p0

p1

np

FIG. 2. Number counts of clusters as a function of cluster redshift in case (1) and for changes in parameters of dark energy,
observable-mass relation and completeness and purity. The black solid line is the fiducial case, and the colored lines indicate a
positive variation of 0.2 in each parameter.

ΩDE results in a reduction for Ωm and the overall abun-
dance of clusters is reduced. Increasing w causes the dark
energy behavior to be closer to that of non-relativistic
matter, also resulting in an increase on cluster counts.

From the definition of mass bias Mbias in Eq. 18, in-
creasing its value results in a lower effective mass thresh-
old, therefore increasing the counts of clusters. The same
is true for the mass scatter [7], though with a lower sen-
sitivity compared to the mass bias.

Increasing the completeness parameters c0 and c1 in-
creases the mass scale Mc in which completeness be-
comes 50%, lowering the values of completeness across
all masses and reducing the counts of detected clusters.
An increase on nc makes the drop in completeness at
M < Mc sharper, resulting in a slight increase of com-
pleteness for M > Mc and a decrease for M < Mc. Since
the mass threshold adopted (Mobs

th = 1013.8M�h
−1) is

higher than the fiducial value of Mc (1013.5M�h
−1), in-

creasing nc produces a slight increase in the counts.
Finally, given our effective cluster selection from Eq. 7,

purity has an inverse effect compared to the the com-
pleteness for the the counts. In fact, since completeness
and purity have the same functional form, changes in
each purity parameter causes opposite effects on counts
compared to changes in the corresponding completeness

parameter.

These results indicate how parameters are (anti) corre-
lated, i.e. how changes in one parameter can compensate
for changes in other parameters. These effects, however,
reflect the dependency around the fiducial model when
fixing all other parameters at their fiducial value. When
marginalizing over parameters, the resulting correlations
may change.

A. Selecting Cases

The first issue we consider is whether it is worth in-
cluding completeness and purity parameters in the clus-
ter analysis for purposes of constraining dark energy. In-
cluding extra nuisance parameters increases the accuracy,
but decreases the precision of cosmological constraints.
When completeness and purity effects are ignored, i.e.
when case (0) is assumed despite imperfect selection, the
resulting cosmological parameters θα constrained have
a bias b(θα) (Eq. 16). The assumption of perfect de-
tection can still provide reliable cosmological parameter
constraints as long as the bias is smaller than the param-
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eter constraints

b(θα) . γσ(θα) = γ
(
F−1

)1/2
αα

, (25)

where γ = 1, 2, 3 indicate biased predictions inside the
68, 95, 99% confidence levels. Here ∆m̄̄m̄m and ∆SSS in Eq. 16
are the differences in counts and sample covariance be-
tween predictions in case (0) and cases (1,2).
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b(
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FIG. 3. Comparison between i) the 1, 2, 3σ constraints (blue
shaded regions) on dark energy parameters θDE = (ΩDE, w)
for case (0) of perfect cluster selection and the ii) percent
bias b(θDE) (lines) on dark energy caused by ignoring com-
pleteness and purity effects as given by cases (1,2) (solid,
dashed). As the bias becomes comparable to 1σ constraints

b(θα) ≈
√
F−1
αα , the assumption of perfect detection results

in significantly incorrect best-fit predictions. For the thresh-
old mass considered of log[Mobs

th /(M�h
−1)] = 13.8 (vertical

red line), the bias b(ΩDE) is larger than the corresponding 2σ
constraint for both cases (1,2), whereas b(w) is comparable to
the 1σ constraint.

Fig. 3 shows the bias induced on dark energy pa-
rameters (ΩDE, w) as a function of the observed mass
threshold used Mobs

th , if we assume case (0) when in re-
ality counts are described by case (1) (solid line) and
(2) (dashed line). Also shown are the 1,2 and 3σ con-
fidence levels on (ΩDE, w) in case (0) (blue shaded re-
gions). The bias on ΩDE surpasses the 1σ constraints at
a threshold log[Mobs

th /(M�h
−1)] < 14.2 for both cases (1)

and (2). In fact, the bias is larger than 2σ for case (1)
and 3σ for case (2) around the fiducial threshold mass
log[Mobs

th /(M�h
−1)] = 13.8. The bias on w is around 1σ

at log[Mobs
th /(M�h

−1)] = 13.8, indicating that this pa-
rameter is less sensitive to the selection effects. However
w is less well constrained than ΩDE so a bias compara-
ble to 1σ constraints may be even more significant when
constraining models of dark energy.

Notice that the bias behavior as a function of Mobs
th is

not monotonic. This occurs mainly due to the fact that

the ratio c/p of completeness and purity is also not mono-
tonic, as seen on the right panel of Fig. 1. For very large
thresholds c/p indeed approaches unit, as in case (0) and
the bias is small. For masses around the fiducial thresh-
old, the bias is caused mainly by the upper/lower bump
in c/p for case (1)/(2). For lower masses, the bias be-
comes much larger and is dominated by the rapid change
in c/p for both cases (1) and (2).

Given that log[Mobs
th /(M�h

−1)] = 14.2 represents the
minimum mass threshold that still allows for somewhat
reliable dark energy constraints under case (0), we now
investigate for what mass thresholds the constraints un-
der cases (1) and (2) become better than those from case
(0) under log[Mobs

th /(M�h
−1)] = 14.2. As we go to lower

threshold masses and need to fully model the selection
with a larger number of nuisance parameters, we also in-
crease considerably the number of clusters probed, which
brings more cosmological information.

The left panel of Fig. 4 shows 1σ constraints for cases
(0), (1) and (2) as a function of the observed mass thresh-
old Mobs

th . The dotted lines mark the mass threshold
log[Mobs

th /(M�h
−1)] = 14.2 and the corresponding con-

straints for case (0). As we decrease the threshold mass,
the constraints for cases (1,2) improve. At the fidu-
cial threshold log[Mobs

th /(M�h
−1)] = 13.8, the marginal-

ized constraints of ΩDE and w for both cases (1) and
(2) are lower than those from case (0) with threshold
log[Mobs

th /(M�h
−1)] = 14.2.

The right panel of Fig. 4 shows the joint dark energy
constraints for multiple cases at different thresholds. The
solid and dashed lines correspond to cases (1) and (2) re-
spectively with the fiducial threshold, whereas the blue
shaded region corresponds to case (0) and the higher
threshold in which this case is marginally reliable. We
see that a fiducial threshold log[Mobs

th /(M�h
−1)] = 13.8

is enough to significantly improve dark energy constraints
relative to case (0), despite the increase in the number of
nuisance parameters from the selection function.

It is interesting to notice that, as we consider even
lower threshold masses than the fiducial one assumed
here, we continue to improve dark energy constraints.
However that requires us to trust that the selection can
still be well described by the parametrized functional
forms assumed here down to those lower masses. That
assumption has to be backed up by multiple methods,
including trustworthy simulations and comparisons to
other cluster detections at multiple wavelengths. Using
a slightly incorrect selection at low masses could highly
bias the derived constraints. More conservatively, in go-
ing to lower masses, one needs to consider more general
forms for the selection with increasing number of nui-
sance parameters, which would likely degrade cosmolog-
ical constraints.

It becomes clear nonetheless that if one can properly
model the survey completeness and purity down to levels
of around ∼ 60% – for which the assumption of perfect
selection can no longer be made – the information in
cluster counts and clustering is enough to self-calibrate
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FIG. 4. (Left): Constraints on dark energy parameters (ΩDE, w) as a function of threshold mass for different cases (0), (1) and
(2). Even though the constraints are somewhat similar, for case (0) they are only reliable down to log[Mobs

th /(M�h
−1)] = 14.2

(dotted vertical line). (Right): Constraints for cases (0),(1) and (2) at different threshold masses. The blue shaded region
shows constraints for case (0) under its minimum threshold log[Mobs

th /(M�h
−1)] = 14.2. Both cases (1) and (2), which include

completeness and purity and go to a lower threshold log[Mobs
th /(M�h

−1)] = 13.8, produce better constraints than case (0).

case (0) Case (1) Case (2)

θOM θCP σ(ΩDE) σ(w) σ(ΩDE) σ(w)

fix fix 0.006 0.033 0.006 0.036

free fix 0.009 0.044 0.010 0.047

fix free 0.009 0.042 0.010 0.045

free free 0.010 0.046 0.012 0.049

1% free 0.009 0.042 0.010 0.045

free 1% 0.009 0.044 0.010 0.048

1% 1% 0.006 0.041 0.007 0.042

TABLE II. Constraints on dark energy parameters (ΩDE, w)
for different prior on observable-mass parameters θOM and
completeness/purity parameters θCP.

observable-mass and selection parameters, providing bet-
ter dark energy constraints than fixing conservatively
higher thresholds in order to ignore selection effects.

B. Completeness and Purity Effects

In this section, for illustrative purposes we focus our
discussion on the constraints from case (1), but the re-
sults and conclustions for case (2) are similar (see e.g.
Table II). We start considering baseline constraints for
the fiducial model described in § V, assuming perfect
knowledge of the observable-mass relation as well as the
completeness and purity. In this case the dark energy
constraints are σ(ΩDE, w) =(0.006, 0.033). If we let

the observable-mass parameters vary freely, but keep the
completeness/purity parameters fixed, these constraints
degrade to (0.009, 0.044).
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FIG. 5. Fisher constraints derived for nuisance parameters
in case (1) (blue solid line) and case (2) (green dashed line).
The parameters are related to the observable-mass relation
(top panel) and completeness/purity (bottom panel). No pri-
ors were assumed for these nuisance parameters.
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of priors σp(θOM) on all observable-mass relation parameters and priors σp(θCP) on all completeness/purity parameters. The
degradation is considered for case (1) and relative to the case of perfect nuisance parameters (for which σp(θOM) = σp(θCP) = 0).
For DθDE < 20%, subpercent level priors on all nuisance parameters are required.

Next, we consider the effect of varying the parameters
of completeness and purity. First we fix the observable-
mass parameters and let completeness/purity parameters
vary freely. In this case the dark energy constraints be-
come (0.009, 0.042). If we now let both the observable-
mass and completeness/purity parameters vary freely,
the constraints become (0.010, 0.046). This corresponds
to a degradation of (70%, 36%) relative to the case where
these functions are perfectly known, but of only (4%,
2%) relative to the case where only the selection if fixed.
Therefore, including completeness and purity effects on
top of observable-mass parameters avoids biased param-
eters without degrading the constraints significantly.

Finally, in order to quantify the effects of priors
σp(θn) assumed on nuisance parameters θn = (θOM, θCP),
namely observable-mass parameters θOM and/or com-
pleteness/purity parameters θCP, we define the degra-
dation factor DθDE

on the constraints of dark energy pa-
rameters θDE = (ΩDE, w) as

DθDE [σp(θn)] =
σ[θDE|σp(θOM), σp(θCP)]

σ(θDE)|ref
− 1 . (26)

This factor represents the relative difference between
constraints on θDE given priors σp(θOM ) and σp(θCP )
and the reference ideal case σ(θDE)|ref = σ[θDE|0, 0]
where nuisance parameters are perfectly known.

Applying priors of 1% (or 10−2 when the fiducial value
is zero) on the observable-mass relation parameters but
letting the completeness/purity parameters vary freely,
the constraints become (0.009, 0.042). Conversely, if we
let the observable-mass relation vary freely and apply
a 1% prior on the completeness/purity parameters, the

constraints become (0.009, 0.044). Finally, applying a
1% prior to all nuisance parameters, the constraints be-
come (0.006, 0.041). This corresponds to a degradation
of (8%, 21%) relative to the case in which these nuisance
parameters are perfectly known.

External priors may come from multiple sources, in-
cluding detailed simulations, lensing masses for a sub-
sample of clusters, or cross-matches to clusters detected
at other wavelenghts, e.g. X-ray and/or millimeter. In
all cases, these priors are likely to provide clues on the
correct functional forms for these functions and conser-
vative ranges for both the observable-mass relation and
the completeness/purity parameters.

Fig. 5 shows Fisher constraints – relative to the fidu-
cial value – for each nuisance parameter θn. Given that
none of these parameters are constrained to better than
10%, having 1% priors on any of these nuisance param-
eters would have an important effect in constraining the
parameters themselves. However, as we have seen the ef-
fect on improving dark energy constraints is very small.

Fig. 6 shows contours of constant degradation DθDE

on dark energy parameters θDE = (ΩDE, w) – relative
to perfect nuisance parameters – as a function of priors
on observable-mass relation σp(θOM) and on complete-
ness/purity parameters σp(θCP). Notice that both panels
of Fig. 6 present a similar qualitative behavior, though
constraints on w do not degrade as much as constraints
on ΩDE. We see that it is important to improve priors
on both observable-mass as well as completeness/purity
parameters. For degradations on dark energy constraints
to remain lower than 20%, it is necessary to have quite
strong external priors at the subpercent level, which are
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case (0) Case (1) Case (2)

zmax σ(ΩDE) σ(w) σ(ΩDE) σ(w)

0.3 0.033 0.201 0.051 0.254

0.5 0.018 0.089 0.025 0.100

0.7 0.014 0.068 0.017 0.077

1.0 0.010 0.046 0.012 0.049

1.2 0.009 0.040 0.010 0.044

1.5 0.008 0.035 0.010 0.039

1.7 0.008 0.034 0.009 0.037

2.0 0.008 0.033 0.009 0.035

TABLE III. Constraints for dark energy as a function of max-
imum redshift zmax. Here all nuisance parameters describing
the effective selection function (observable-mass, complete-
ness and purity) vary freely.

clearly very hard to achieve even in optimistic scenarios.

C. Future Surveys

Future surveys [55–57], will allow for improvements on
both total survey area and depth and the effects of com-
pleteness and purity across these improvements tend to
become more important. The impact of survey depth
or maximum redshift zmax on dark energy constraints in
shown in Fig. 7 and Table III.

Optical cluster finders applied to the SDSS in the
last decade were limited to relatively shallow magni-
tudes. For instance the MaxBCG cluster catalog [22]
had zmax = 0.3, which in our Fisher analysis produces
constraints σ(ΩDE, w) =(0.033, 0.201), corresponding to
a degradation of (235%, 341%) relative to our fiducial
case (zmax = 1.0). More recently, the redMaPPer cluster
finder [26, 27] has been applied to both the SDSS and
the DES Science Verification data, producing catalogs
that go up to zmax ∼ 0.7, corresponding to constraints
of (0.014, 0.068), a degradation of (43%, 48%) relative
to our fiducial model. Since redMaPPer makes use of
the red sequence for detecting optical clusters, it may be
challenging to extend its results to redshifts much larger
than these.

For upcoming surveys planned to extend observations
to higher redshifts, we find constraints of (0.008, 0.033)
for zmax = 2, an improvement of (22%, 28%). Case (2)
presents a higher degradation when lowering zmax than
case (1), however, the improvement is lower when we
extend zmax.

We now quantify the impact of completeness and pu-
rity for different values of zmax by considering the degra-
dation DθDE

on dark energy constraints from Eq. 26,
for the case with free completeness and purity param-
eters σ[ΩDE|σp(θCP ) = ∞] relative to the case of per-
fect knowledge σ[ΩDE|σp(θCP ) = 0]. In Fig. 8 we see
that DθDE

has a significant overall improvement (i.e. de-
crease) with the increase of zmax for cases (1,2), up to

0.65 0.70

ΩDE

−1.0

−0.9

−0.8

w

zmax

0.3

0.7

1.0

2.0

FIG. 7. Effect on dark energy constraints when changing the
survey maximum redshift zmax from 0.3 (pink), 0.7 (blue), 1.0
(green) and 2.0 (red). Solid lines refer to case (1) and shaded
regions refer to case (2).

zmax ∼ 1.0 − 1.2. Beyond those redshifts, the degrada-
tion increases again, especially for w in case (1). No-
tice however that these higher degradations are on top of
much improved dark energy constraints (see Table III).
Therefore to fully exploit improvements on cluster dark
energy constraints coming from larger survey depths, it
will be important to properly account for selection ef-
fects, despite the fact that it may be significantly harder
to quantify these effects at these higher redshifts.

Finally we quantify the effect of changes in survey
area. We keep our approach of considering sample co-
variance from cells of 10 deg2 and notice that the Fisher
Matrix has a linear dependence on total area. This
means all constrained parameters have the same degrada-
tion/improvements due changes on the survey area. Our
fiducial area of 5000 deg2 is similar to what will be ob-
served by the DES. An area twice as large (1/4 of sky)
results in an improvement of ∼ 29% on both dark energy
constraints For half-sky is observations, constraints im-
prove by ∼ 50%, and for full-sky they improve by ∼ 65%.

VII. DISCUSSION

We have explored the effects of completeness and pu-
rity on dark energy constraints from the abundance and
clustering of galaxy clusters. We parametrized the se-
lection of cluster samples to reflect a decrease in com-
pleteness and purity at lower masses such that they both
reach ∼ 50% at a mass scale M ∼ 1013.5M�/h. The ra-
tio (c/p) determines the effective selection. Within our
parametrization, (c/p) either goes to zero (case 1) or in-
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FIG. 8. Percent degradation DθDE on constraints for dark
energy parameters θDE = (ΩDE, w) as a function of max-
imum redshift zmax, for selection function parametrized in
case (1) (solid line) and case (2) (dashed line). Degradations
are computed for the case where the completeness and purity
parameters are free [σp(θCP) =∞] relative to the case where
these parameters are perfectly known [σp(θCP) = 0]. DθDE

decreases with zmax up to zmax ∼ 1 and increases for higher
redshifts. The dark energy constraints themselves always im-
prove for higher values of zmax, but the relative sensitivity to
knowledge on selection parameters increases.

finity (case 2) as M → 0.

We first considered the bias induced on dark energy
constraints when neglecting completeness and purity ef-
fects from cases (1) and (2). We found that the bias be-
comes comparable to dark energy constraints at a thresh-
old mass of Mobs

th ∼ 1014.2M�/h. As this represents
the minimum threshold for which it is safe to ignore
selection effects, we then proceeded to study the inclu-
sion of completeness and purity parameters in dark en-
ergy constraints for a lower fiducial mass threshold of
Mobs
th ∼ 1013.8M�/h .

Since the effective selection includes not only com-
pleteness and purity but also the observable-mass dis-
tribution, the impact of including completeness and pu-
rity depends on assumptions made for the observable-
mass parameters. Within case (1), baseline constraints
for fixed observable-mass parameters and fixed complete-
ness and purity are σ(ΩDE, w) = (0.006, 0.033) and when
only completeness and purity parameters vary freely,
these degrade to (0.009, 0.042). On the other hand,
if observable-mass parameters vary freely whereas com-
pleteness and purity parameters remain fixed, constraints
are σ(ΩDE, w) = (0.009, 0.044) and they only degrade to
(0.010, 0.046) if completeness and purity also vary freely.

Next we considered the impact of external priors

on observable-mass and completeness/purity parameters.
From the perspective of dark energy constraints these
are nuisance parameters. We find that joint priors on
all nuisance parameters need to be known to better than
1% in order to improve dark energy constraints signif-
icantly; with these priors, constraints are restored to
σ(ΩDE, w) = (0.006, 0.041) for case (1).

Although it seems unlikely that they will reach sub-
percent levels, interesting external priors on selection pa-
rameters for current and upcoming cluster surveys should
be possible from a combination of multiple sources, in-
cluding detailed simulations, cross-matches from other
surveys and follow-up spectroscopic observations for a
fraction of the cluster sample. For instance, the DES
has developed detailed simulations that mimic its obser-
vational properties [58, 59]. By running optical cluster
finders on these simulations, it is possible to characterize
observable-mass and completeness/purity functions [60].
Moreover, DES has a significant overlap with the South
Pole Telescope (SPT), so cross-matches of DES optical
clusters and SPT SZ clusters allow for calibrations on the
observable-mass relation [36]. A similar calibration can
be achieved from X-ray detections [61, 62] and lensing
masses [63].

Even though our results indicate that only very strin-
gent (and hard to achieve) priors on nuisance parameters
would be effective in improving dark energy constraints
from self-calibrated constraints, such priors are actually
very important for checking the validity of the assumed
functional forms, providing consistency checks for inter-
nal self-calibration of nuisance parameters.

We also investigated the effect of changing survey area
(from our fiducial ∆Ω = 5000 deg2) and maximum red-
shift (from fiducial zmax = 1.0), reflecting expectations
from future surveys. For ∆Ω = 10000 deg2 (1/4 of
sky) the constraints would improve by ∼ 29% and for
∆Ω = 40, 000 deg2 (full-sky) by ∼ 65%, relative to the
fiducial case. If we expand the maximum redshift to
zmax = 2.0, constraints on on (ΩDE, w) improve by (22%,
28%) on for case (1), though most of this improvement
is already achieved for zmax = 1.5. Despite the improve-
ments on the constraints for higher reshifts and survey
areas, these constraints also degrade more significantly in
the lack of knowledge of selection parameters. Therefore
to fully exploit the gain in precision, it will be even more
important to better understand and calibrate the cluster
selection function.

Our results were based on the parametrized functions
chosen for the effective selection, and they may depend
to some extent on these choices. We proposed func-
tional forms for completeness and purity, which are in-
spired by ongoing work involving runs of cluster finders
on DES simulations, which we will presented elsewhere
[60]. In fact, our parametrizations bracket a consider-
able range of possibilities, so we do not expect significant
changes in our conclusions when considering alternative
parametrizations. On the other hand, when extending
cluster analyses to significantly lower mass thresholds,
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one needs to be assured that the functional forms are still
valid down to those masses, which may be hard even with
simulations and multi-wavelength cross-matches. In par-
ticular, as c/p become lower than 50%, we probably need
to consider more general functions (or even an arbitrary
behavior) for completeness and purity, which may then
significantly degrade dark energy constraints (or even
bias them for an oversimplified selection), despite the in-
crease in the number of clusters probed. Again, we envi-
sion that detailed simulations and cross-matches should
help us in defining the most appropriate parametriza-
tions.

Although intrinsic degeneracies always remain to some
extent, further improvements in the theoretical model-
ing of cluster properties coming from N-body and gas-
dynamics simulations will improve our knowledge of the
halo mass-function and bias in the presence of baryonic
effects [64, 65], and help define appropriate functional
forms for the observable-mass relation and its intrinsic
scatter [29–31]. Improvements on semi-analytical Halo

Occupation Distribution models will also allow for the
creation of reliable mock galaxy catalogs on which we
may run cluster finders and calibrate cluster selection
parameters. These theoretical developments combined
with external calibrations from cluster cross-matches are
essential for cluster cosmology. The self-consistency be-
tween observations and theory predictions – which ac-
count for all relevant observational effects – will advance
our knowledge of the astrophysical processes that regu-
late observed cluster properties and simultaneously lead
to trustworthy cluster cosmological constraints.
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