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Notes on Spherical Collapse

I. COMBINING FLUID EQUATIONS

Consider the nonlinear continuity and Euler equations for a pressureless fluid in a gravitational potential:
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Taking the derivative of the first equation, and using the original first and second equations, we have
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We can write the third term as
VA= (V- (14+0)v)v—((L+0)(v-V)v] = =V; (Vi(1+)vi)vj — V; (14 0)(v:Vi)) v; (7)
= *VjVi [(1 + 6)1}1] v — Vj [(1 + (s)”Uz] Vz"Uj (8)
= =V;V; [(1+0)vivy] 9)
. 82(1 + (S)Uﬂ}j
- 8581836] (10)
Therefore
625 o)y} 1 62(14’6)111'1}3‘ o 1

For a top-hat profile, § is spatially constant, i.e. it is only a function of time. Therefore from the continuity
equation:
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Since the RHS is only a function of time, the LHS must also be spatially constant. If that’s the case, and we
preserve spherical symmetry, we must take v = Ar for a constant A, such that
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And we have
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During collapse, the total mass of the perturbation is conserved:
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or equivalently
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From these, we have
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Differentiating once more, we have
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and since
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we have
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Therefore:
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Finally, using the Friedmann equations
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and using this along with the collapse equation, we have
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For ACDM w = —1, ppg = pa and V2¥ = 471Ga?8p,,, so

7 4nG 47 G B
- = ——— [pm + (1 4+ 3w)ppE] — —— (Pm — Pm)
r 3 3

A7 G

= T o+ (14 3w)pn]

So the collapse proceeds as if the perturbation were a separate closed universe with density py,.
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