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I. SPHERICAL COLLAPSE

The background scale factor a and a top-hat overden-
sity of radius r are described by

(
ȧ

a

)2

=
8πG

3
[ρm + ρDE] (1)

r̈

r
= −4πG

3
[(1 + 3wcluster)ρcluster + (1 + 3weff)ρeff ]

(2)

The critical density is defined as

ρcrit(a) =
3H2(a)

8πG
(3)

with H(a) = ȧ/a and densities relative to critical

Ωα(a) =
ρα(a)

ρcrit(a)
(4)

It is useful to normalize a and r to their values at turn-
around time tta:

x =
a

ata
, (5)

y =
r

rta
(6)

Assuming that wm = 0 and wDE = −1 in the back-
ground, we have

ρm = ρm,tax
−3 , (7)

ρDE = ρDE,ta (8)

and Eq.(1) becomes

(
ȧ

a

)2

=
H2

ta

ρcrit,ta

[
ρm,tax

−3 + ρDE

]
(9)

or

(
ẋ

x

)2

=

[
Ωm,tax

−3 +
ρDE

ρcrit,ta

]
(10)

where the dot in Eq.(12) denotes derivative with re-
spect to the scaled time τ = Htat. Inside the perturba-
tion we assume wcluster = 0 so that

ρcluster = ρcluster,tay
−3 (11)

This also results simply from mass conservation inside
the cluster after turn-around. We have

r̈

r
= − H2

ta

2ρcrit,ta

[
ρcluster,tay

−3 + (1 + 3weff)ρeff

]
r̈

H2
tar

= −1

2

[
ρm,ta

ρcrit,ta

ρcluster,ta

ρm,ta
y−3 + (1 + 3weff)

ρeff

ρcrit,ta

]
(12)

or

ÿ

y
= −1

2

[
Ωm,taζy

−3 + (1 + 3weff)
ρeff

ρcrit,ta

]
(13)

where

ζ =
ρcluster,ta

ρm,ta
(14)

To solve the equations we must provide a prescription
for how ρeff scales (with a or r). For DE models we simply
have ρeff = ρDE and for modifications of gravity it will
in general have some dependency on a and r. In the
latter case, Birkhoff’s Theorem does not apply since the
density of the “stuff” causing the background expansion
scales differently within and outside the perturbation.

A. Initial Conditions

We can obtain the appropriate initial conditions to
evolve these equations by assuming that the effects of
ρDE on the background and and ρeff on the perturbation
are negligible very early on. We have

(
ẋ

x

)2

= Ωm,tax
−3 (15)

ÿ

y
= −1

2
Ωm,taζy

−3 (16)
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The first equation is just the solution for a matter dom-
inated universe:

τ =

∫
dτ =

∫
x1/2dx√

Ωm,ta

=
2

3

x3/2√
Ωm,ta

(17)

or

x =

(
3

2

)2/3

Ω
1/3
m,taτ

2/3 (18)

The equation for y can be similarly integrated after
multiplying it by 2ẏy

2ÿẏ = −Ωm,taζẏy
−2

d

dτ

(
ẏ2
)

= Ωm,taζ
d

dτ

(
1

y

)
(19)

so that

ẏ2 = Ωm,taζ

(
1

y
− 1

)
(20)

where we integrated and used the boundary condition
at turn-around (ẏ = 0 when y = 1). Very early on, the
first term on the RHS dominates and we get an equation
similar to Eq.(16)

(
ẏ

y

)2

= Ωm,taζy
−3 (21)

from which the solution can be obtained imediately

y =

(
3

2

)
(Ωm,taζ)1/3τ2/3 (22)

or

y = ζ1/3x (23)

B. Solution in ΛCDM

Here we have weff = wDE = −1, and ρeff = ρDE =
ρΛ = ρΛ,ta.

(
ẋ

x

)2

=
[
Ωm,tax

−3 + ΩΛ,ta

]
(24)

ÿ

y
= −1

2

[
Ωm,taζy

−3 − 2ΩΛ,ta

]
(25)

In this case, there is an analytical solutions for the
background and the perturbation evolution is that of
a closed universe with scaled energy densities. For the
background we have (Appendix)

x =

(
Ωm,ta

ΩΛ,ta

)1/3

sinh2/3

(
3
√

ΩΛ,ta

2
τ

)
(26)

which reduces to x ∼ τ2/3 at low τ and x ∼
exp

√
ΩΛ,taτ at high τ). For the perturbation, after mul-

tiplying Eq.(26) by 2ẏy, we have

2ÿẏ = −
[
Ωm,taζẏy

−2 − 2ΩΛ,taẏy
]

(27)

so that

d

dτ

(
ẏ2
)

=
d

dτ

(
Ωm,taζ

y
+ ΩΛy

2

)
(28)

which, after integrating and using the boundary con-
dition at turn-around produces

ẏ2 =

(
Ωm,taζ(

1

y
− 1) + ΩΛ(y2 − 1)

)
(29)

This can be rewritten as

(
ẏ

y

)2

=

(
Ωm,taζy

−3 + ΩΛ +
−(Ωm,taζ + ΩΛ)

y2

)
=

(
Ωcluster,tay

−3 + ΩΛ +
−(Ωcluster,ta + ΩΛ)

y2

)
(30)

This is the same equation of a closed universe with
a matter density scaled from the background by ζ and
curvature density −Ωk = Ωcluster,ta+ΩΛ. In a true closed
universe however, we would have Ωk = 1−Ωcluster,ta−ΩΛ.
Here since −Ωk > 0, it is in fact a closed universe. For
a universe with matter only, an analytic solution exists
with a parametrized cycloid (see Appendix) and we can
obtain many parameters, including ζ ∼ 5.5517 and δlin

c ∼
1.68647.

In Fig. 1 , we show the collapse density δc as a function
of collapse redshift zc for a flat universe and different
values of Ωm,0. When Ωm,0 = 1.0, one can show that

δc = 3/5(3π/2)2/3 ∼ 1.68647 (see Appendix). For lower
values of Ωm,0, the collapse density is smaller at lower
collapse redshifts.
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FIG. 1: Linear collapse density δc as a function of collapse redshift zc for different values of Ωm and ΩΛ in a flat ΛCDM cosmology. These
results were generated evolving Eqs.(25) and (31). Evolving Eq. (26) seems to be much less stable than (31) and I often get my code to
crash. Note that Eq.(31) automatically imposes the boundary conditions (y = 1 and ẏ = 0 at turn-around). However, it is necessary to
evolve Eq.(31) for anything beyond ΛCDM.

Appendix A: Background evolution in flat ΛCDM

The Friedman equation in a closed universe with CDM
only is given by

(
ẋ

x

)2

=
(
Ωm,tax

−3 + ΩΛ,ta

)
(A1)

which can be rewritten as

dx

dτ
=
√

Ωm,tax−1 + ΩΛ,tax2

(A2)

or

τ =

∫
dt =

∫
dx√

Ωm,tax−1 + ΩΛ,tax2

=

∫
x1/2dx√

Ωm + ΩΛ,tax3

=
1√

Ωm,ta

∫
x1/2dx√

1 + (ΩΛ,ta/Ωm,ta)x3

Change u2 = ΩΛ,ta/Ωm,tax
3, so that u =√

ΩΛ,ta/Ωm,tax
3/2 and du = 3/2

√
ΩΛ,ta/Ωm,tax

1/2dx we
have

τ =
1√

Ωm,ta

2

3

√
Ωm,ta

ΩΛ,ta

∫
du√

1 + u2

=
2

3

1√
ΩΛ,ta

sinh−1 u

=
2

3

1√
ΩΛ,ta

sinh−1
√

ΩΛ,ta/Ωm,tax
3/2

or inverting

x =

(
Ωm,ta

ΩΛ,ta

)1/3

sinh2/3

(
3
√

ΩΛ,ta

2
τ

)
(A3)

Notice that for small τ

x ∼
(

Ωm,ta

ΩΛ,ta

)1/3
(

3
√

ΩΛ,ta

2
τ

)2/3

∼
(

3

2

)2/3

Ω
1/3
m,taτ

2/3 (A4)
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and for large τ

x ∼
(

Ωm,ta

ΩΛ,ta

)1/3

exp

(
3
√

ΩΛ,ta

2
τ

)2/3

∼
(

Ωm,ta

ΩΛ,ta

)1/3

exp
(√

ΩΛ,taτ
)

(A5)

Appendix B: CDM Closed Universe Solution

The Friedman equation in a closed universe with CDM
only is given by

(
ȧ

a

)2

= H2
0

(
Ωma

−3 +
Ωk

a2

)
(B1)

which can be written as

da

dt
= H0

√
Ωma−1 + Ωk

(B2)

or

t =

∫
dt =

1

H0

∫
da√

Ωma−1 + Ωk

=
1

H0

∫
a1/2da√

Ωm + Ωka

=
1

H0

√
Ωm

∫
a1/2da√

1 + (Ωk/Ωm)a

It is easier to first solve for the conformal time η, de-
fined by dη = dt/a. We have

η =

∫
dη =

∫
dt

a
=

1

H0

√
Ωm

∫
a−1/2da√

1 + (Ωk/Ωm)a

Changing u2 = −Ωk/Ωma, so that u =
√
−Ωk/Ωma

1/2

and du = 1/2
√
−Ωk/Ωma

−1/2da we have

η =
1

H0

√
Ωm

2

√
Ωm

−Ωk

∫
du√

1− u2

=
2

H0

√
−Ωk

sin−1 u

or inverting

u = sin(θ/2) (B3)

θ = H0

√
−Ωkη (B4)

Under the same change of variables (a → u), since
u2du = 1/2(−Ωk/Ωm)3/2a1/2da the equation for t be-
comes

t =
1

H0

√
Ωm

∫
a1/2da√

1 + (Ωk/Ωm)a

=
1

H0

√
Ωm

2

(
Ωm

−Ωk

)3/2 ∫
u2du√
1− u2

=
2Ωm

H0(−Ωk)3/2

∫
u2du√
1− u2

(B5)

or, changing u = sin(θ/2), du = cos(θ/2)dθ/2, and
using cos(θ) = cos2(θ/2)− sin2(θ/2) = 1− 2 sin2(θ/2) we
get

t =
Ωm

H0(−Ωk)3/2

∫
sin2(θ/2)dθ

=
Ωm

2H0(−Ωk)3/2

∫
1− cos(θ)dθ

=
Ωm

2H0(−Ωk)3/2
(θ − sin(θ))

Recall that a = −(Ωm/Ωk)u2 = −(Ωm/Ωk) sin2(θ/2)
so the parametric solution is

a = =
Ωm

−2Ωk
(1− cos(θ)) (B6)

t =
Ωm

2H0(−Ωk)3/2
(θ − sin(θ)) (B7)

θ = H0

√
−Ωkη (B8)

Appendix C: Top-hat perturbation predictions

A top-hat perturbation in a CDM universe evolves as
a closed universe according to

(
ẏ

y

)2

=

(
Ωcluster,tay

−3 +
−(Ωcluster,ta)

y2

)
(C1)

So, we can identify terms and immediately write the
solution if we think this top-hat perturbation is actually
merged in a ΛCDM background:

y = =
1

2
(1− cos(θ)) (C2)

τ =
1

2
√

Ωcluster,ta

(θ − sin(θ)) (C3)

τ =
2

3

x3/2√
Ωm,ta

from background (C4)
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Early on θ ∼ τ ∼ y ∼ x ∼ 0, to zeroth order.
At turn-around θ ∼ π, y = 1,x = 1. This allows us to

get the relation

τta =
π

2
√

Ωcluster,ta

=
2

3
√

Ωm,ta

(C5)

or

ζ =
Ωcluster,ta

Ωm,ta
=

(
3π

4

)2

∼ 5.5517 (C6)

At collapse, θ = 2π, y = 0, τc = π/
√

Ωcluster,ta, so we
can get xc

τc =
π√

Ωcluster,ta

=
2

3

x
3/2
c√

Ωm,ta

(C7)

so

xc =

(
3π

2

)2/3(
Ωm,ta

Ωcluster,ta

)1/3

=

(
3π

2

)2/3(
4

3π

)2/3

= 22/3 = 1.5874 (C8)

Expanding sines and cossines

sin θ = θ − θ3/6 + θ5/120− ... (C9)

cos θ = 1− θ2/2 + θ4/24− ... (C10)

we have

y =
1

2

(
θ2

2
− θ4

24
+ ...

)
(C11)

τ =
1

2
√

Ωcluster,ta

(
θ3

6
− θ5

120
+ ...

)
(C12)

or

y =
θ2

4

(
1− θ2

12
+ ...

)
(C13)

τ =
θ3

12
√

Ωcluster,ta

(
1− θ2

20
+ ...

)
(C14)

To leading order θ ∼ (12
√

Ωcluster,taτ)1/3. Iterating on
the equation for τ itself, we have

τ =
θ3

12
√

Ωcluster,ta

(
1−

(12
√

Ωcluster,taτ)2/3

20
+ ...

)
(C15)

or

θ ∼ (12
√

Ωcluster,taτ)1/3

(
1 +

(12
√

Ωcluster,taτ)2/3

60
− ...

)
(C16)

and the solution for y can be approximated by

y ∼ θ2

4

(
1− θ2

12
+ ...

)
∼

(12
√

Ωcluster,taτ)2/3

4

(
1 +

(12
√

Ωcluster,taτ)2/3

30
− ...

)

x

(
1−

(12
√

Ωcluster,taτ))2/3

12
+ ...

)

∼
(12
√

Ωcluster,taτ)2/3

4

(
1−

(12
√

Ωcluster,taτ)2/3

20
− ...

)

∼

(
3
√

Ωcluster,taτ

2

)2/3
1− 1

5

(
3
√

Ωcluster,taτ

2

)2/3


∼ xζ1/3

(
1− 1

5
xζ1/3

)
(C17)

The first term is the leading solution y ∼ xζ1/3 and the
second term is the linear theory correction to the relation
between y and x. The full solution is the whole series.

The density contrast at any given time is

δ =
Ωcluster − Ωm

Ωm
(C18)

=
Ωcluster

Ωm
− 1 (C19)

=
Ωcluster,tay

−3

Ωm,tax−3
− 1 (C20)

= ζ

(
x

y

)3

− 1 (C21)

We can evaluate the linear theory density constrast by
using Eq.(B25)

xζ1/3

y
|lin = 1 +

1

5
xζ1/3 (C22)

or

ζ

(
x

y

)3

|lin = 1 +
3

5
xζ1/3 (C23)

We have

δlin =
3

5
xζ1/3 =

3

5

(
3π

4

)2/3

x (C24)
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At turn-around x = y = 1, and, whereas the true
overdensity is δta = ζ − 1 ∼ 4.5517, the linear prediction
is δlin

ta = 3/5ζ1/3 ∼ 1.0624.
At collapse, xc = 22/3 and yc = 0. Formally δc = ∞,

but linear theory predicts

δlin
c =

3

5

(
3π

2

)2/3

∼ 1.68647 (C25)


