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so we may solve for one of the ⌦’s in terms of the others. Typically we choose the curvature, so

⌦k = 1� (⌦m + ⌦r + ⌦⇤) (2.92)

The Friedmann eq. can then be written as
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2.4 Solutions to the Friedmann Equation

Matter

For a Universe with only matter, we have
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integrating and setting imposing a = 0 at t = 0, we obtain
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For an Einstein-de Sitter (EdS) Universe, ⌦m = 1 and the age of the Universe (t =today, with
a = 1) is .
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Radiation

For a Universe with only radiation, we have
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integrating, we obtain
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or

a(t) =
⇣

2
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(Radiation Domination) (2.94)

Notice the Universe grows slower than in matter domination. For ⌦r = 1 we have the age is
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0 (2.95)

Cosmological Constant

For a Universe with only cosmological constant, we have

ȧ2

a2
= H2

0⌦⇤

✓

da

dt

◆2

= H2
0⌦⇤ a2

da

a
= H0

p

⌦⇤ dt

(2.93)

integrating, we obtain
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p

⌦⇤ t+ const (2.94)

and we find
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Notice the Universe grows exponentially fast in this case. In this case we cannot set a = 0 initially.

Curvature Dominated

For a Universe with only curvature, we have
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integrating, we obtain

a(t) = H0

p

⌦k t (Curvature Domination) (2.94)

With ⌦k = 1 the age is

t = H�1
0 (2.95)
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Matter + Curvature

For a Universe with both matter and non-zero curvature, we have
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It turns out that it is easier to first solve for the conformal time d⌘ = dt/a. We have
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Let us assume we have a closed universe, i.e. k > 0 and therefore ⌦k = �k/H2
0 < 0. Then let

u2 = �⌦k/⌦ma, so that u =
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or inverting

u = sin(✓/2) (2.96)
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Under the same change of variables (a ! u), u2du = 1/2(�⌦k/⌦m)3/2a1/2da, and the equation for
t becomes
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Now changing u = sin(✓/2), du = cos(✓/2)d✓/2, we have
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Now using cos(✓) = cos2(✓)� sin2(✓) = 1� 2 sin2(✓/2), we find

t =
⌦m

2H0(�⌦k)3/2

Z

1� cos(✓)d✓

=
⌦m

2H0(�⌦k)3/2
(✓ � sin(✓))

(2.92)

Finally, recall that a = �(⌦m/⌦k)u2 = �(⌦m/⌦k) sin
2(✓/2) so that we have a parametric solution

for a cycloid
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Matter + Cosmological Constant

For a Universe with both matter and cosmological constant, we have
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Figure 2.3: Scale factor a(t) as a function of H0t (cosmic time normalized by the Hubble time H�1
0 ) for a

universe with only matter and curvature, with di↵erent values of ⌦m and ⌦k = 1�⌦m. Since ⌦k = �k/H0,
⌦k < 0 corresponds to a closed Universe (k > 0), which reaches a maximum turn-around scale factor

ata = ⌦m/(�⌦k) at time H0tta = (⇡/2)⌦m/(�⌦3/2
k ). As ⌦k ! 0, both ata, tta ! 1 and the solution

approaches that of a flat Universe without turn-around, i.e. a(t) = (3/2
p
⌦mH0t)2/3.
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which reduces to the matter dominated solution for small t:
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and recovers the cosmological constant solution for large t [sinh(at) = (eat � e�at)/2 ! eat/2 ]
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2.5 Photon Geodesics and Energy

Recall we defined the 4-momentum P↵ = (E,p) for a massive particle as

P↵ = m
dx↵

d⌧
(2.101)

But for a massless particle (e.g. a photon), both m = d⌧ = 0, so we need an alternative definition.
We define it then with respect to a general implicit parameter � along the particle trajectory:
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