so we may solve for one of the $\Omega$ 's in terms of the others. Typically we choose the curvature, so

$$
\begin{equation*}
\Omega_{k}=1-\left(\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\Omega_{\Lambda}\right) \tag{2.92}
\end{equation*}
$$

The Friedmann eq. can then be written as

$$
\begin{equation*}
E^{2}(t)=\frac{H^{2}(t)}{H_{0}^{2}}=\left[\left(1-\Omega_{\mathrm{m}}-\Omega_{\mathrm{r}}-\Omega_{\Lambda}\right) a^{-2}+\Omega_{\mathrm{m}} a^{-3}+\Omega_{\mathrm{r}} a^{-4}+\Omega_{\Lambda}\right] \tag{2.93}
\end{equation*}
$$

### 2.4 Solutions to the Friedmann Equation

## Matter

For a Universe with only matter, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2} \Omega_{\mathrm{m}} a^{-3} \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2} \Omega_{\mathrm{m}} a^{-1} \\
a^{1 / 2} d a & =H_{0} \sqrt{\Omega_{\mathrm{m}}} d t \tag{2.91}
\end{align*}
$$

integrating and setting imposing $a=0$ at $t=0$, we obtain

$$
\begin{equation*}
\frac{2}{3} a^{3 / 2}=H_{0} \sqrt{\Omega_{\mathrm{m}}} t \tag{2.92}
\end{equation*}
$$

or

$$
\begin{equation*}
a(t)=\left(\frac{3}{2} \sqrt{\Omega_{\mathrm{m}}} H_{0} t\right)^{2 / 3} \quad \text { (Matter Domination) } \tag{2.93}
\end{equation*}
$$

For an Einstein-de Sitter (EdS) Universe, $\Omega_{m}=1$ and the age of the Universe ( $t=$ today, with $a=1)$ is .

$$
\begin{equation*}
t=\frac{2}{3} H_{0}^{-1} \tag{2.94}
\end{equation*}
$$

## Radiation

For a Universe with only radiation, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2} \Omega_{\mathrm{r}} a^{-4} \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2} \Omega_{\mathrm{r}} a^{-2} \\
a d a & =H_{0} \sqrt{\Omega_{\mathrm{r}}} d t \tag{2.92}
\end{align*}
$$

integrating, we obtain

$$
\begin{equation*}
\frac{1}{2} a^{2}=H_{0} \sqrt{\Omega_{\mathrm{r}}} t \tag{2.93}
\end{equation*}
$$

or

$$
\begin{equation*}
a(t)=\left(2 \sqrt{\Omega_{\mathrm{r}}} H_{0} t\right)^{1 / 2} \quad \text { (Radiation Domination) } \tag{2.94}
\end{equation*}
$$

Notice the Universe grows slower than in matter domination. For $\Omega_{\mathrm{r}}=1$ we have the age is

$$
\begin{equation*}
t=\frac{1}{2} H_{0}^{-1} \tag{2.95}
\end{equation*}
$$

## Cosmological Constant

For a Universe with only cosmological constant, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2} \Omega_{\Lambda} \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2} \Omega_{\Lambda} a^{2} \\
\frac{d a}{a} & =H_{0} \sqrt{\Omega_{\Lambda}} d t \tag{2.93}
\end{align*}
$$

integrating, we obtain

$$
\begin{equation*}
\ln (a)=H_{0} \sqrt{\Omega_{\Lambda}} t+\text { const } \tag{2.94}
\end{equation*}
$$

and we find

$$
\begin{equation*}
a(t) \propto \exp \left(\sqrt{\Omega_{\Lambda}} H_{0} t\right) \quad \text { (Cosmological Constant Domination) } \tag{2.95}
\end{equation*}
$$

Notice the Universe grows exponentially fast in this case. In this case we cannot set $a=0$ initially.

## Curvature Dominated

For a Universe with only curvature, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2} \Omega_{k} a^{-2} \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2} \Omega_{k} \\
d a & =H_{0} \sqrt{\Omega_{k}} d t \tag{2.93}
\end{align*}
$$

integrating, we obtain

$$
\begin{equation*}
a(t)=H_{0} \sqrt{\Omega_{k}} t \quad \text { (Curvature Domination) } \tag{2.94}
\end{equation*}
$$

With $\Omega_{k}=1$ the age is

$$
\begin{equation*}
t=H_{0}^{-1} \tag{2.95}
\end{equation*}
$$

## Matter + Curvature

For a Universe with both matter and non-zero curvature, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2}\left[\Omega_{\mathrm{m}} a^{-3}+\Omega_{k} a^{-2}\right] \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2}\left[\Omega_{\mathrm{m}} a^{-1}+\Omega_{k}\right] \tag{2.94}
\end{align*}
$$

Therefore

$$
\begin{align*}
\rightarrow H_{0} d t & =\frac{d a}{\sqrt{\Omega_{\mathrm{m}} a^{-1}+\Omega_{k}}} \\
& =\frac{1}{\sqrt{\Omega_{\mathrm{m}}}} \frac{a^{1 / 2} d a}{\sqrt{1+\left(\Omega_{k} / \Omega_{\mathrm{m}}\right) a}} \tag{2.94}
\end{align*}
$$

It turns out that it is easier to first solve for the conformal time $d \eta=d t / a$. We have

$$
\begin{equation*}
\eta=\int d \eta=\int \frac{d t}{a}=\frac{1}{H_{0} \sqrt{\Omega_{\mathrm{m}}}} \int \frac{a^{-1 / 2} d a}{\sqrt{1+\left(\Omega_{k} / \Omega_{\mathrm{m}}\right) a}} \tag{2.95}
\end{equation*}
$$

Let us assume we have a closed universe, i.e. $k>0$ and therefore $\Omega_{k}=-k / H_{0}^{2}<0$. Then let $u^{2}=-\Omega_{k} / \Omega_{\mathrm{m}} a$, so that $u=\sqrt{-\Omega_{k} / \Omega_{\mathrm{m}}} a^{1 / 2}$ and $d u=1 / 2 \sqrt{-\Omega_{k} / \Omega_{m}} a^{-1 / 2} d a$. We have

$$
\begin{align*}
\eta & =\frac{1}{H_{0} \sqrt{\Omega_{\mathrm{m}}}} 2 \sqrt{\frac{\Omega_{\mathrm{m}}}{-\Omega_{k}}} \int \frac{d u}{\sqrt{1-u^{2}}} \\
& =\frac{2}{H_{0} \sqrt{-k}} \sin ^{-1} u \tag{2.95}
\end{align*}
$$

or inverting

$$
\begin{align*}
u & =\sin (\theta / 2)  \tag{2.96}\\
\theta & =H_{0} \sqrt{-\Omega_{k}} \eta \tag{2.97}
\end{align*}
$$

Under the same change of variables $(a \rightarrow u), u^{2} d u=1 / 2\left(-\Omega_{k} / \Omega_{\mathrm{m}}\right)^{3 / 2} a^{1 / 2} d a$, and the equation for $t$ becomes

$$
\begin{aligned}
t & =\frac{1}{H_{0} \sqrt{\Omega_{\mathrm{m}}}} \int \frac{a^{1 / 2} d a}{\sqrt{1+\left(\Omega_{k} / \Omega_{\mathrm{m}}\right) a}} \\
& =\frac{1}{H_{0} \sqrt{\Omega_{\mathrm{m}}}} 2\left(\frac{\Omega_{\mathrm{m}}}{-\Omega_{k}}\right)^{3 / 2} \int \frac{u^{2} d u}{\sqrt{1-u^{2}}} \\
& =\frac{2 \Omega_{\mathrm{m}}}{H_{0}\left(-\Omega_{\mathrm{k}}\right)^{3 / 2}} \int \frac{u^{2} d u}{\sqrt{1-u^{2}}}
\end{aligned}
$$

Now changing $u=\sin (\theta / 2), d u=\cos (\theta / 2) d \theta / 2$, we have

$$
\begin{align*}
t & =\frac{2 \Omega_{\mathrm{m}}}{H_{0}\left(-\Omega_{\mathrm{k}}\right)^{3 / 2}} \int \frac{\sin ^{2}(\theta / 2) \cos (\theta / 2) d \theta / 2}{\sqrt{1-\sin (\theta / 2)^{2}}} \\
& =\frac{\Omega_{\mathrm{m}}}{H_{0}\left(-\Omega_{\mathrm{k}}\right)^{3 / 2}} \int \sin ^{2}(\theta / 2) d \theta \tag{2.93}
\end{align*}
$$

Now using $\cos (\theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=1-2 \sin ^{2}(\theta / 2)$, we find

$$
\begin{align*}
t & =\frac{\Omega_{\mathrm{m}}}{2 H_{0}\left(-\Omega_{\mathrm{k}}\right)^{3 / 2}} \int 1-\cos (\theta) d \theta \\
& =\frac{\Omega_{\mathrm{m}}}{2 H_{0}\left(-\Omega_{\mathrm{k}}\right)^{3 / 2}}(\theta-\sin (\theta)) \tag{2.92}
\end{align*}
$$

Finally, recall that $a=-\left(\Omega_{\mathrm{m}} / \Omega_{k}\right) u^{2}=-\left(\Omega_{\mathrm{m}} / \Omega_{k}\right) \sin ^{2}(\theta / 2)$ so that we have a parametric solution for a cycloid

$$
\begin{align*}
a & =\frac{\Omega_{\mathrm{m}}}{-2 \Omega_{k}}[1-\cos (\theta)]  \tag{2.93}\\
t & =\frac{\Omega_{\mathrm{m}}}{2 H_{0}\left(-\Omega_{k}\right)^{3 / 2}}[\theta-\sin (\theta)]  \tag{2.94}\\
\theta & =H_{0} \sqrt{-\Omega_{k}} \eta \tag{2.95}
\end{align*}
$$

Notice that for small values of $\theta$, we have

$$
\begin{equation*}
t \approx \frac{\Omega_{\mathrm{m}}}{12 H_{0}\left(-\Omega_{k}\right)^{3 / 2}} \theta^{3} \rightarrow \theta=\left(\frac{12 H_{0}}{\Omega_{\mathrm{m}}}\right)^{1 / 3}\left(-\Omega_{k}\right)^{1 / 2} t^{1 / 3} \tag{2.96}
\end{equation*}
$$

so that

$$
\begin{equation*}
a \approx \frac{\Omega_{\mathrm{m}}}{-4 \Omega_{k}} \theta^{2}=\frac{\Omega_{\mathrm{m}}}{-8^{2 / 3} \Omega_{k}}\left(\frac{12 H_{0}}{\Omega_{\mathrm{m}}}\right)^{2 / 3}\left(-\Omega_{k}\right) t^{2 / 3}=\left(\frac{3}{2} \sqrt{\Omega_{\mathrm{m}}} H_{0} t\right)^{2 / 3} \tag{2.98}
\end{equation*}
$$

## Matter + Cosmological Constant

For a Universe with both matter and cosmological constant, we have

$$
\begin{align*}
\frac{\dot{a}^{2}}{a^{2}} & =H_{0}^{2}\left[\Omega_{\mathrm{m}} a^{-3}+\Omega_{\Lambda}\right] \\
\left(\frac{d a}{d t}\right)^{2} & =H_{0}^{2}\left[\Omega_{\mathrm{m}} a^{-1}+\Omega_{\Lambda} a^{2}\right] \tag{2.98}
\end{align*}
$$

Therefore

$$
\begin{align*}
\rightarrow H_{0} d t & =\frac{d a}{\sqrt{\Omega_{\mathrm{m}} a^{-1}+\Omega_{\Lambda} a^{2}}} \\
& =\frac{1}{\sqrt{\Omega_{\mathrm{m}}}} \frac{a^{1 / 2} d a}{\sqrt{1+\left(\Omega_{\Lambda} / \Omega_{\mathrm{m}}\right) a^{3}}} \quad\left(\text { Let } u^{2}=\Omega_{\Lambda} / \Omega_{\mathrm{m}} a^{3}\right) \\
& =\frac{2 / 3}{\sqrt{\Omega_{\Lambda}}} \frac{d u}{\sqrt{1+u^{2}}} \tag{2.96}
\end{align*}
$$



Figure 2.3: Scale factor $a(t)$ as a function of $H_{0} t$ (cosmic time normalized by the Hubble time $H_{0}^{-1}$ ) for a universe with only matter and curvature, with different values of $\Omega_{m}$ and $\Omega_{k}=1-\Omega_{m}$. Since $\Omega_{k}=-k / H_{0}$, $\Omega_{k}<0$ corresponds to a closed Universe $(k>0)$, which reaches a maximum turn-around scale factor $a_{\mathrm{ta}}=\Omega_{\mathrm{m}} /\left(-\Omega_{k}\right)$ at time $H_{0} t_{\mathrm{ta}}=(\pi / 2) \Omega_{\mathrm{m}} /\left(-\Omega_{k}^{3 / 2}\right)$. As $\Omega_{k} \rightarrow 0$, both $a_{\mathrm{ta}}, t_{\mathrm{ta}} \rightarrow \infty$ and the solution approaches that of a flat Universe without turn-around, i.e. $a(t)=\left(3 / 2 \sqrt{\Omega_{\mathrm{m}}} H_{0} t\right)^{2 / 3}$.
integrating, we obtain

$$
\begin{equation*}
H_{0} t=\frac{2 / 3}{\sqrt{\Omega_{\Lambda}}} \sinh ^{-1}(u)=\frac{2 / 3}{\sqrt{\Omega_{\Lambda}}} \sinh ^{-1}\left(\sqrt{\frac{\Omega_{\Lambda}}{\Omega_{\mathrm{m}}}} a^{3 / 2}\right) \tag{2.97}
\end{equation*}
$$

and

$$
\begin{equation*}
a(t)=\left(\frac{\Omega_{\mathrm{m}}}{\Omega_{\Lambda}}\right)^{1 / 3} \sinh ^{2 / 3}\left(\frac{3 \sqrt{\Omega_{\Lambda}} H_{0}}{2} t\right) \quad(\text { Matter }+ \text { Cosmological Constant }) \tag{2.98}
\end{equation*}
$$

which reduces to the matter dominated solution for small $t$ :

$$
\begin{equation*}
a(t) \approx\left(\frac{\Omega_{\mathrm{m}}}{\Omega_{\Lambda}}\right)^{1 / 3}\left(\frac{3 \sqrt{\Omega_{\Lambda}} H_{0}}{2}\right)^{2 / 3} t^{2 / 3}=\left(\frac{3}{2} \sqrt{\Omega_{\mathrm{m}}} H_{0} t\right)^{2 / 3} \tag{2.99}
\end{equation*}
$$

and recovers the cosmological constant solution for large $t\left[\sinh (a t)=\left(e^{a t}-e^{-a t}\right) / 2 \rightarrow e^{a t} / 2\right]$

$$
\begin{equation*}
a(t) \propto\left[\exp \left(\frac{3 \sqrt{\Omega_{\Lambda}} H_{0}}{2} t\right)\right]^{2 / 3}=\exp \left(\sqrt{\Omega_{\Lambda}} H_{0} t\right) \tag{2.100}
\end{equation*}
$$

### 2.5 Photon Geodesics and Energy

Recall we defined the 4-momentum $P^{\alpha}=(E, \mathbf{p})$ for a massive particle as

$$
\begin{equation*}
P^{\alpha}=m \frac{d x^{\alpha}}{d \tau} \tag{2.101}
\end{equation*}
$$

But for a massless particle (e.g. a photon), both $m=d \tau=0$, so we need an alternative definition. We define it then with respect to a general implicit parameter $\lambda$ along the particle trajectory:

$$
\begin{equation*}
P^{\alpha}=\frac{d x^{\alpha}}{d \lambda}=\left(\frac{d E}{d \lambda}, \frac{d \mathbf{p}}{d \lambda}\right) \tag{2.102}
\end{equation*}
$$

