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Closed Universe
• FRW metric (background) with positive curvature (k > 0):

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]

• Friedmann equations (matter only):

(
ȧ

a

)2

=
8πGρ̄m

3
− k

a2

ä

a
= −4πG

3
ρ̄m
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Closed Universe
• FRW metric (perturbations):

ds2 = −(1− 2Ψ)dt2 + a2(t)(1 + 2Ψ)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]

• Poisson equation:

∇2Ψ = 4πGa2δρm

where δρm = ρm − ρ̄m
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Newtonian Interpretation

• Energy of test particle m:

E =
1

2
mv2 − GMm

r
= const.

→
(
ṙ

r

)2

=
8πG

3
ρ̄m +

const.

r2

• Closed universe: const < 0
represents curvature. Gravitational
potential energy wins over kinetic
energy.

• Precise value of const given in GR.
W. Hu
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Newtonian Interpretation

• Force on test particle m:

F = m
d2r

dt2
= −GMm

r2

→ r̈

r
= −4πG

3
ρ̄m

• Acceleration equation does not
involve curvature.

• Should be true also for spherical
top-hat perturbations !

W. Hu
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Spherical Collapse

• Idealized model: qualitative features of cluster formation.

• Homogeneous top-hat spherical perturbation within a
homogeneous background.

• Perturbation expands, reachs a maximum radius (turns around)
and collapses (virializes).

• Initial top-hat remains a top-hat during evolution.

• Cluster expands and collapses as a separate closed universe:
Birkhoff theorem in GR.

• Allows analytical (numerical) computation of linear overdensity
at collapse δc and overdensity at virialization ∆vir, for
interpretation in Press-Schechter theory.
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Spherical Collapse: Newtonian

• Background (flat):

(
ȧ

a

)2

=
8πG

3
ρ̄m

• Spherical top-hat perturbation
(separate closed universe):

r̈

r
= −4πG

3
ρm
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Spherical Collapse: Relativistic

• More generally, use GR and consider fluid equations:

∂δ

∂t
+

1

a
∇ · (1 + δ)v = 0 , Continuity

∂v

∂t
+

1

a
(v · ∇)v +Hv = −1

a
∇Ψ , Euler

where δ = δρm/ρ̄m. For a top-hat, v = A(t)r, so combine eqs.:

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
∇2Ψ , Full

• In linear theory δ = δL ≪ 1 and

∂2δL
∂t2

+ 2H
∂δL
∂t

=
∇2Ψ

a2
, Linear
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Spherical Collapse

δ̈ + 2Hδ̇ − 4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
∇2Ψ , Full

• Mass conservation during collapse:

M = (4π/3)r3ρ̄m(1 + δ) = const.

• Replace δ → r, and use ∇2Ψ = 4πGa2δρm:

r̈

r
= −4πG

3
ρ̄m − ∇2Ψ

3a2

= −4πG

3
ρm

• Same result as Newtonian approach!
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Spherical Collapse: Matter only

• Background + Spherical Perturbation:

(
ȧ

a

)2

=
8πG

3
ρ̄m Background

r̈

r
= −4πG

3
ρm Spherical Perturbation

• Analytical solution for a(t):

a(t) ∝ t2/3

• Parametric cyclic solution for r(t):

r(θ) ∝ 1− cos θ

t(θ) ∝ θ − sin θ
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Linear collapse density contrast

• Beginning: θ = 0.

• Turn-around: θta = π.

• Collapse: θc = 2π.

• Since solution fully known, can compute exactly important
quantities for the collapse.

• By definition r = 0 and δ = ∞ at collapse ac.

• But linear theory value extrapolated to ac remains finite:

δc = δL(ac) =
3

5

(
3π

4

)2/3

≈ 1.686
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Virial overdensity

• In reality, perturbations not spherical, nor top-hat (profile)→
Shell-crossing. Assume virialization happens before collapse.
Virial equilibrium achieved when

U = −2K Virial Theorem

• Energy conservation at turn-around (ata) and virialization (avir)

E = U +K = U(ata) =
1

2
U(avir)

• Top-hat sphere: U = 3/5GM2/r, so rvir = rta/2 → θvir = 3π/2.

• Overdensity at collapse (virialization):

∆vir =
ρm(avir)

ρ̄m(ac)
=

ρm(θ = 3π/2)

ρ̄m(θ = 2π)
= 18π2 ≈ 178
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Spherical Collapse: Matter + DE

• Matter + Dark Energy with constant wDE:

(
ȧ

a

)2

=
8πG

3
[ρ̄m + ρ̄DE ] Background

r̈

r
= −4πG

3
[ρm + ρ̄DE(1 + 3wDE)] Perturbation

• Analytical solution for a(t) ∝ sinh2/3(Bt).

• No analytical or parametric solution for r(t).

Must be solved numerically to compute δc and ∆vir.
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ΛCDM: δc

 1.64

 1.65

 1.66

 1.67

 1.68

 1.69

 0  2  4  6  8  10

δ
c

zc

Ωm=1.00, ΩΛ=0.00
Ωm=0.90, ΩΛ=0.10
Ωm=0.24, ΩΛ=0.76
Ωm=0.10, ΩΛ=0.90
Ωm=0.01, ΩΛ=0.99

• Dark energy changes
collapse time and linear
growth.

• Small change in δc
compared to matter-only
Universe.

• Changes also in ∆vir.
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Halo Mass-Function: Press-Schechter

• Define σ2(M): variance of the linear density field smoothed on a
scale R corresponding to mass M :

σ2(M) =
1

(2π)3

∫

d3k|W̃ (kR)|2PL
m(k) ,

Pm(k): Linear power spectrum and

W̃ (kR): top-hat window of radius R(M) with M = ρ̄m4πR
3/3.

• Initial density field approximately Gaussian:

P (δ|M) =
1√

2πσ(M)
exp

[

− δ2

2σ2(M)

]

• Peak density: ν2 = δ2c/σ
2.
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Halo Mass-Function: Press-Schechter

• Spherical collapse: dark matter regions with contrast δ > δc
evolve to form collapsed virialized halos.

• Fraction F (> M) of matter that ends up in halos of mass > M :

F (> M) =

∫ ∞

δc

dδP (δ|M)
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Halo Mass-Function: Press-Schechter
• Spherical collapse: dark matter regions with contrast δ > δc

evolve to form collapsed virialized halos.

• Fraction F (> M) of matter that ends up in halos of mass > M :

F (> M) =
1√

2πσ(M)

∫ ∞

δc

dδ exp

[

− δ2

2σ2(M)

]

=
1

2
erfc

[
ν2√
2

]

where peak density: ν = δc/σ.

• Even when σ(M) → 0, F (> M) = 1/2, i.e. only half of the dark
matter is in halos.

• Integrating above δc, only overdense regions participate in the
collapse. In reality, underdense regions also contribute.
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Halo Mass-Function: Press-Schechter
• To compensate, multiply by an ad hoc factor or 2. Peacock 1999

• Differential fraction dF/dM of matter at halos in [M,M + dM ]

dF

dM
= 2

dF

dν

dν

dM
= 2

1√
2πσ2

exp

[

− δ2c
2σ2

] [

−δc
dσ

dM

]

=

√

2

π

d ln σ−1

dM
ν exp

[

−ν2

2

]

• Matter number density nm = ρ̄m/M

• Then the differential halo number density or mass-function:

dn

d lnM
= nm

dF

d lnM
=

√

2

π

ρ̄m
M

d ln σ−1

d lnM
ν exp

[

−ν2

2

]
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Halo Mass-Function
• More generally, mass-function written as

dn(M, z)

d lnM
= f(ν)

ρ̄m
M

d ln σ−1

d lnM
,

• Press-Schechter mass-function:

f(ν) = f(σ, δc) =

√

2

π
ν exp

[

−ν2

2

]

Press-Schechter

• Ellipsoidal collapse: improvement over the spherical model.
One dimension collapses first, resulting ellipsoid becomes the
halo. Based on this idea, Sheth and Tormen 99 proposed

f(ν) = A[1 + (aν2)−p]
√
aν2 exp

[

−a
ν2

2

]

Sheth-Tormen
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Halo Mass-Function
• Sheth-Tormen: a = 0.75 and p = 0.3 fit to N -body simulations.

• Press-Schechter: a = 1 and p = 0.

• Empirical fits to simulations improved mass-function accuracy
beyond theoretical models. Drop δc dependence, so f(ν) = f(σ)

• PS approach still motivates the general functional form of the
fits. For instance, Jenkins et al 2001 provides a fit for spherical
overdensity (SO) detected halos in ΛCDM:

f(σ) = 0.316 exp(−| ln σ−1 + 0.67|3.82) Jenkins

• More recently, Tinker et al 2008 fits for a suite of high-resolution
simulations and SO halos:

f(σ) = A

[(σ

b

)−a
+ 1

]

exp
[

− c

σ2

]

Tinker
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Tinker Mass-Function

• Tinker fits simulation results
within 10− 20% accuracy.

• Sheth-Tormen (dashed) and Jen-
kins (blue) generally consistent
as well, but less accurate.

Tinker et al. 2008
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f (R) gravity: Halo-mass function

• |fR0| = 10−4

• Large enhancement at high
masses.

• Full fR: Less enhancement
due to chameleon effect.

Schmidt, Lima, Oyaizu, Hu 2009
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f (R) gravity: Halo-mass function

• |fR0| = 10−5

• Less relative deviation.

• Enhanced chameleon effect.

Schmidt, Lima, Oyaizu, Hu 2009
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Cluster Abundance Prediction
• Abundance described by mass function:

dn(M, z)

d lnM
= f(σ)

ρ̄m
M

d ln σ−1

d lnM
, f(σ) ∝ exp

(
−1/σ2

)

where

σ2(R) =

∫
d3k

(2π)3
|W̃ (kR)|2PL

m(k, z) , R = (3M/4πρ̄m)
1/3

• Exponential sensitivity to cosmology via PL
m(k, z), as long as

precise measurements of M and z.

Spherical Collapse and Galaxy Clusters – p.25



Density and Counts: Perfect Case

• Number density in mass bin α:

n̄α(z) =

∫ Mα+1

Mα

d lnM
dn(M, z)

d lnM
,

• Number counts in redshift bin i:

N̄αi =

∫ zi+1

zi

dz
D2

A(z)

H(z)
︸ ︷︷ ︸

dV : volume

n̄α(z) ,

• For a flat Universe, the comoving angular-diameter distance is
simply the radial comoving distance DA = χ and

χ(z) =

∫ z

0

dz

H(z)
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Number Density: MO Relation

• Number density in observed mass bin α:

n̄α(z) =

∫ Mobs
α+1

Mobs
α

d lnMobs

∫

d lnM
dn(M, z)

d lnM
P (Mobs|M)
︸ ︷︷ ︸

mass-observable

,

where

P (Mobs|M) =
1

√

2πσ2lnM

exp

[
(lnMobs − lnM − lnMbias)

2

2σ2lnM

]

• lnMbias(z,M) and σ2lnM (z,M): functional forms from

simulations, calibration sets, or simply self-calibrated.
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Number Counts: Photo-zs
• Number counts in photometric redshift bin i:

N̄αi =

∫ zphoti+1

zphoti

dzphot
∫

dz
D2(z)

H(z)
nα(z)P (zphot|z) ,

where

P (zphot|z) = 1
√

2πσ2z
exp

[
(zphot − z − zbias)

2

2σ2z

]

• zbias(z,M) and σ2z(z,M): functional forms from simulations,
calibration sets, or simply self-calibrated.
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Counts and Photo-z Parameters

• zbias: systematic shifts in dN/dz.

σz: random scatter in different bins. Compensating effects.

Lima and Hu 2007
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Halo and Cluster Finders
• In N-body simulations, one has to identify dark matter halos

from the positions (and velocities) of dark matter particles.

• Main two halo-finders: Spherical Overdensity (SO) and
Friends-of-Friends (FOF).

• Halo mass-function fits are connected to Halo finder and to halo
mass definition.

• E.g. M200 is mass contained within R200, the radius where the
enclosed cluster overdensity is 200 times the background
density, i.e. ∆ = 1 + δh = 200

• Methods to identify real clusters even more complicated. Can
be based on overdensity of galaxies, colors, weak lensing, x-ray
emission and SZ effect of CMB photons.

• Frequently methods fail to detect clusters, and/or identify false
clusters. Must characterize those for use in cosmology.
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Counts: Completeness and Purity

• Completeness (c): Fraction of correctly detected clusters (halos)
from total predicted clusters/halos.

• Purity (p): Fraction of correctly detected clusters from total
detected clusters.

• Example: True number of predicted clusters/halos is 100.
Finder detects 80 clusters, from which 70 are correct and 10 are
spurious. Then c = 7/10 and p = 7/8.

• Original prediction (100) must be corrected to number that ends
up being (correctly or incorrectly) detected (80), i.e multiplied by

8

10
=

7/10

7/8
=

c

p

Rozo et al 2007, Soares-Santos et al. 2010
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Counts: Completeness and Purity

• c(M, z) and p(Mobs, z
phot) must be parametrized and included in

the counts prediction. Extra functions to be integrated over:

N̄αi =

∫ zphoti+1

zphoti

dzphot
∫

dz
D2(z)

H(z)
P (zphot|z)

×
∫ Mobs

α+1

Mobs
α

d lnMobs

∫

d lnMP (Mobs|M)

× dn(M, z)

d lnM
× c(M, z)

p(Mobs, zphot)

• Else, restrict analysis to region where c ≈ p ≈ 1 (higher M ,
lower z), but lose statistics...
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Cluster Bias
• Spherical collapse: fraction of matter regions which have

collapsed to form halos depends on the matter density field.

• Overdense regions have higher probability of forming halos and
time evolution makes them even more likely to cross the
collapse threshold → cosmic capitalism from gravity.

• The large scale density field develops local enhanced peaks →
effectively lowers collapse threshold δc.

• Discrete number density of halos becomes a biased tracer of
the continuous matter density field.

• Halos trace matter field, but bias accounts for the fact that they
correspond to a special population, whose average properties
are different from those of the average density field.

• Bias increases with halo mass, as these objects are rarer and
even more unique.
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Cluster Bias

• Quantify effects by adding a background contribution δb to the
peak matter overdensity δp.

• Total overdensity given by δ = δp + δb.

• Mathematically equivalent to
keeping δ = δp and lowering the
threshold collapse overdensity
by the background contribution

δpc = δc − δb

• Peak-Background split

W. Hu
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Cluster Bias
• Mass-function found actually provides matter number density in

halo regions

nm =
dn

d lnM
= f(σ, δc)

ρ̄m
M

d ln σ−1

d lnM

• Halo number density nh obtained by changing

δc → δpc = δc − δb

ν = δpc /σ

• Express nh in terms of nm by expanding to first order

nh = f(σ, δpc )
ρ̄m
M

d ln σ−1

d lnM

=

[

f(σ, δc)−
df

dδpc
δb
]
ρ̄m
M

d ln σ−1

d lnM
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Cluster Bias

nh =

[

f(σ, δc)−
df

dδpc
δb
]
ρ̄m
M

d ln σ−1

d lnM

= f(σ, δc)
ρ̄m
M

d ln σ−1

d lnM
︸ ︷︷ ︸

nm

− 1

f

df

dν
︸︷︷︸

d ln f/dν

dν

dδpc
︸︷︷︸

1/σ

δb f
ρ̄m
M

d ln σ−1

d lnM
︸ ︷︷ ︸

nm

= nm

[

1− 1

σ

d ln f

dν
δb
]

• Since 〈δb〉 = 0 we have n̄h = n̄m.
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Cluster Bias

• In an unbiased density field, an increase of local density by δb

would turn nm → nm(1 + δb), i.e. induce a change of ∆m = nmδ
b.

• However, actual change in nh is ∆h = −nmδ
b(d ln f/dν)/σ, i.e. it

is enhanced by

Ehm =
∆h

∆m
= − 1

σ

d ln f

dν

• Therefore, spatial fluctuations of the halo number density
δh = δnh/nh are those of the matter δm = δnm/nm plus those
from the enhancement of halos relative to matter

δh = δm + δmEhm = δm

(

1− 1

σ

d ln f

dν

)

• Halo bias defined via b ≡ δh/δm.
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Cluster Bias
• Halo bias defined via b ≡ δh/δm, can be computed for any

mass-function defined in terms of δc by

b(z,M) = 1− 1

σ

d ln f

dν

• For the PS mass-function f(ν) ∝ ν exp(−ν2/2), so

b(z,M) = 1 +
ν2 − 1

δc
Press Schechter

• For the ST mass-function

b(z,M) = 1 +
a2ν2 − 1

δc
+

2p

δc[1 + (aν2)p]
Sheth Tormen
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Cluster Bias

• Spherical collapse: approximation for the halo mass-function,

• Peak-background split: approximation for the halo bias.

• As for the mass-function, modern approach for precision
cosmology is to fit b(z,M) from N-body simulations. For
example, as done for SO halos by Tinker et al. 2010

b(z,M) = 1− A
νa

νa + δac
+Bνb + Cνc Tinker

• Average bias bi,α in bin i, α

bi,α = b(zi,Mα) =
1

N̄i,α

∫ zi+1

zi

dz
D2

A(z)

H(z)

∫ Mα+1

Mα

d lnM
dn

d lnM
b(z,M)
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Cluster Covariance
• Observed cluster counts fluctuate in space because

• The discrete counting process: Poisson Variance= δijN̄i

• They trace large-scale structure: Sample Covariance= Sij.

• Observed number density in bin i (for both redshift and mass):

ni(x) = n̄i[1 + biδ(x)]

• Number counts posses Sample Covariance Sij

Sij ≡ 〈(Ni − N̄i)(Nj − N̄j)〉

• Write Ni in terms of window Wi(x) specifying bin i

Ni =

∫

d3xWi(x)ni(x), N̄i =

∫

d3xWi(x)n̄i ≈ Vin̄i
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Cluster Covariance

Ni =

∫

d3xWi(x)ni(x), N̄i =

∫

d3xWi(x)n̄i ≈ Vin̄i

so that

Ni − N̄i =

∫

d3xWi(x) [ni(x)− n̄i]

= n̄ibi

∫

d3xWi(x)δ(x)

• Sample covariance Sij becomes

Sij = 〈bibjn̄in̄j
∫

d3xW ∗
i (x)

∫
d3k

(2π)3
δ∗(k)e−ik·x

∫

d3x′Wj(x
′)

∫
d3k′

(2π)3
δ(k′)eik

′·x′〉
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Cluster Covariance

Sij = 〈bibjn̄in̄j
∫

d3xW ∗
i (x)

∫
d3k

(2π)3
δ∗(k)e−ik·x

×
∫

d3x′Wj(x
′)

∫
d3k′

(2π)3
δ(k′)eik

′·x′〉

= bibjn̄in̄j

∫

d3xW ∗
i (x)

∫

d3x′Wj(x
′)

×
∫

d3k

(2π)3

∫
d3k′

(2π)3
〈δ(k)δ∗(k′)〉
︸ ︷︷ ︸

(2π)3δ3(k−k′)P (k)

e−ik·xeik
′·x′

= bibjN̄iN̄j

∫
d3k

(2π)3
P (k)

∫
d3x

Vi
W ∗

i (x)e
−ik·x

︸ ︷︷ ︸

W ∗
i (k)

∫
d3x′

Vj
Wj(x

′)eik·x
′

︸ ︷︷ ︸

Wj(k)

• We used N̄i ≈ niVi
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Cluster Covariance

Sij = bibjN̄iN̄j

∫
d3k

(2π)3
P (k)W ∗

i (k)Wj(k)

• Wi(k) is the volume-weighted Fourier Transform of the window.

• For a pill-box window (in the small angle approximation) at
redshift zi and radial distance ri, with angular extent θ (and solid

angle ∆Ω = πθ2), and radial extent δri, the window is given by

Wi(k) = 2eik‖ri
sin(k‖δri/2)

k‖δri/2

J1(k⊥riθ)

k⊥riθ

Hu and Kravtsov 2003

• Finally, total covariance

Cij = δijN̄i + Sij

Spherical Collapse and Galaxy Clusters – p.43



Cluster Likelihood
• Likelihood of drawing set of cluster counts N = (N1, N2, ..., Nb)

given a cosmology-dependent model for N̄ and S : L(N|N̄,S).

• Accounts for both Poisson and Sample Variance:

L(N|N̄,S) =

∫

dbN̄ ′





b∏

i=1

P (Ni|N̄ ′
i)

︸ ︷︷ ︸

Poisson



G(N̄′|N̄,S)
︸ ︷︷ ︸

Gaussian

For Ni ≫ 1, Poisson → Gaussian. After convolution, get:

L(N|N̄,S) ≈ G(N|N̄,C) Gaussian

with total covariance

Cij = δijN̄i + Sij
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Cluster Forecasts: Fisher Matrix
• Fisher Matrix: Allows projections of likelihood analyses.

• Model parameters: pα, i.e. N̄i(pα), Sij(pα).

• Defining ,α = ∂/∂pα, Fisher is:

Fαβ = −〈 ∂ lnL

∂pα∂pβ
〉

= N̄,αC
−1N̄,β +

1

2
Tr[S−1

S,αS
−1

S,β]

• Sample Variance: Noise in the first term, Signal in the second.
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Cluster Forecasts: Dark Energy

• Fisher matrix constraints on
Dark Energy: ΩDE e w.

• High precision with perfect
M and z.

• No precision calibrating M
with abundance only.

• Precision restored with
self-calibration (abundance +
clustering).

• Uncertainty on photo-z errors
for 10% degradation in w.

Lima and Hu 2007
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Cluster Forecasts: Dark Energy

• Uncertainty in zbias and σ2z
• Contours of constant

degradation in w relative to
case of perfect redshifts.

σ(zbias) = σz

√

1

N

σ(σ2z) = σ2z

√

2

N

• Requirement on N : size of
spectroscopic calibrating set.

Lima and Hu 2007
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Cluster Constraints: MCMC
• Actual constrains from full Likelihood analysis.

• MCMC: Random walk in parameter space.

• Start at initial point in parameter space piα and compute Li.

• Generate random step to pi+1
α and compute Li+1.

• Define α = Li+1/Li.

• If α > 1, take step, add new point to chain.
• Else, generate random number r ∈ [0, 1].

• If α > r, take step, add new point to chain.
• Else, do not take step, add old point to chain.

• Repeat...

• Bayes’ Theorem: Chain is fair sample of parameters’ posterior.
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Cluster MCMC: BCC Halos Results

• BCC halos, not clusters yet.

• Consistent with Fisher
prediction and BCC
cosmology.

• More parameters:
degeneracies hard to break
with clusters alone, even with
more mass bins.

• Explore priors.

• Use WZAP cluster catalog
with real-life details.

Aguena and Lima
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Cluster MCMC: BCC Halos Results
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 bin label = log10(Msun/h) 

 Ωm =  0.222 

 Ωb =  0.025 

 w =  -1.022 

 As =  2.305(*10
-9

) 

 h =  0.701 

 ns =  0.966 

 σ8 =  0.839

• BCC halos, not clusters yet.

• Consistent with Fisher
prediction and BCC
cosmology.

• More parameters:
degeneracies hard to break
with clusters alone, even with
more mass bins.

• Explore priors.

• Use WZAP cluster catalog
with real-life details.

Aguena and Lima
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