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“To myself I am only a child playing on the beach, while vast oceans of truth lie
undiscovered before me”

— Isaac Newton
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Abstract

In this work, we study the Localizability Problem for relativistic quantum systems. We do it on
two fronts. In the first part of this thesis, we extend Newton-Wigner’s localization approach to
homogeneous globally hyperbolic spacetimes, defining generalized (local) Newton-Wigner po-
sition operators. We also give criteria to classify which unitary representations of the spacetime
isometry group give origin to localizable representations, showing that the stabilizer group of
the spatial isometry group plays a fundamental role.

In the second part, we present a novel approach to the Localizability Problem, utilizing
techniques from the Modular Theory of Tomita-Takesaki. We argue that position measure-
ments must follow logical principles, incorporated in a mathematical structure referred to as a
logic. The core idea is to include the causality structure of Minkowski spacetime in this logic so
that the causality problems inherent in Newton-Wigner’s approach are solved. We do it through
the Modular Localization map [1] for arbitrary massive representations of P+. Our main contri-
bution is the construction of a (quasi-) probability measure on the logic structure of spacetime
for each algebraic state (which we interpret as the probability of detection of the system in these
spacetime regions), and of a position observable in the logic-theoretic sense. Additionally, we
compare our new approach with Newton-Wigner’s localization, showing they are approximate
in certain regimes.

Keywords: Localizability Problem; Newton-Wigner Localization; Modular Localization; Newton-
Wigner operators; Homogeneous globally hyperbolic spacetimes.
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Resumo

Neste trabalho, estudamos o Problema de Localizabilidade para sistemas quânticos relativísti-
cos, atacando o problema em duas frentes. Na primeira parte desta tese, estendemos a abor-
dagem de localização de Newton-Wigner para espaços-tempo homogêneos globalmente hiper-
bólicos, definindo operadores generalizados de Newton-Wigner locais. Também fornecemos
critérios para classificar quais representações unitárias do grupo de simetria do espaço-tempo
dão origem a representações localizáveis, mostrando que o grupo estabilizador do grupo de
simetria espacial desempenha um papel fundamental.

Na segunda parte, apresentamos uma nova abordagem para o Problema da Localizabili-
dade, baseada em técnicas provenientes da Teoria Modular de Tomita-Takesaki. Argumenta-
mos que as medições de posição devem seguir princípios lógicos, incorporados em uma estru-
tura matemática chamada de lógica. A ideia principal é incluir a estrutura de causalidade do
espaço-tempo de Minkowski nessa lógica para que os problemas de causalidade na abordagem
de Newton-Wigner sejam resolvidos. Fazemos isso por meio do mapa de Localização Modular
[1] para representações massivas arbitrárias de P+. Nossa principal contribuição é a construção
de uma (quasi-) medida de probabilidade sobre a estrutura lógica do espaço-tempo para cada es-
tado algébrico (que interpretamos como a probabilidade de detecção do sistema nessas regiões
do espaço-tempo), e de um observável de posição no sentido lógico-teórico. Além disso, com-
paramos nossa nova abordagem com a localização de Newton-Wigner, mostrando que elas são
aproximadas em certos regimes.

Palavras-chave: Problema da Localizabilidade; Localização de Newton-Wigner; Localiza-
ção Modular; Operadores de Newton-Wigner; Espaços-temporais globalmente hiperbólicos ho-
mogêneos.
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Chapter 1

Introduction

Ihr naht euch wieder, schwankende Gestalten, die früh sich einst dem trüben Blick

gezeigt. Versuch’ ich wohl, euch diesmal festzuhalten? Fühl’ ich mein Herz noch

jenem Wahn geneigt? Ihr drängt euch zu! nun gut, so mögt ihr walten, wie ihr aus

Dunst und Nebel um mich steigt.
J. W von Goethe

Quantum Field Theory and its offspring theory, modern Particle Physics, have been incred-

ibly successful, both theoretically and experimentally. These theories were at the center of

the scientific revolution of the past century; together, they redefined our paradigms of what is

matter, and pushed the limits of human knowledge to a completely new level, by demanding

unprecedentedly complex experiments and deep theoretical and mathematical foundations.

Quantum Field theory is probably among the most sophisticated and profound products of

the human mind and has many faces and possible approaches, where none of them could be

classified as better than the other, as they have very different goals. On one side we have a

pragmatical perspective, which aims at computing certain observables, without entering many

mathematical details, and measuring them in accelerators and particle detectors. This is the path

of ordinary Particle Physics. In the other extreme, we have mathematically rigorous quantum

field theories, which aspire to establish the foundations of the necessary mathematical struc-

tures, but lacking in predictive power when compared to the first approach.

By getting deep into the mathematical structure, it is a remarkable and mysterious fact that

we simultaneously (and necessarily) deepen into the laws of Physics. At this trench, deep

into the ocean of scientific knowledge, physical, mathematical, and philosophical questions can

hardly be distinguished, and are often one and the same. One can think of any physical theory

as having two components:

• The experimental component aims to develop techniques, instruments, and technologies

1



Chapter 1. Introduction

to probe the physical system. This involves preparing the system in a way that allows

specific and objective questions to be answered, without ambiguity and free from external

influences.

• The theoretical component aims to formulate a concise and as complete as possible

theory that explains why the results of the experiments are as they are, and to formulate a

model of reality.

The burden of fabricating our paradigmatic view of the universal laws is carried on the

courageous hands of the second, while the solid feet of the first make contact with the real world.

Let us start by giving a very broad perspective on physical measurements. In the measurement

process, we can distinguish at least four parts of it:

1. The object on which the measurement is performed, that is, the physical system. We will

use Greek letters as symbols for these objects (α1, α2, etc).

2. The measuring apparatus, that is, the instruments used to perform the measurement. We

will use the symbols Q1, Q2, etc to refer to these objects.

3. The observer performing the measurement.

4. The environment in which the measurement is being done.

It is part of the scientific procedure to minimize the effects of 3 and 4 (although some argue that

this cannot be done completely. See [2], for example), such that we can focus on the first two.

When measuring a physical system α with an apparatus Q, the result is a real number. We use

lowercase letters p, q, etc., to refer to these results. A measurement is usually repeated a large

number of times, such that a statistical treatment is in place. If we measure a system α with the

measurement apparatus Q, and the result p appears np times out of a total of N runs, we can

obtain the ratio np/N . For a very large N , it is reasonable to assume that this ratio converges to

a specific value:

wQα (p) = lim
N→∞

np
N
.

The quantity wQα (p) is then interpreted as the probability of obtaining the value p when measur-

ing the system α with the apparatus Q.

In this broad perspective on physical measurements, we can define two essential concepts

which appear in any area of Physics: states and observables. Let us define these concepts in

this broad perspective on physical measurements. Let us denote the set of all objects α1, α2, ...

2



Chapter 1. Introduction

as Σ, and the set of all measuring instruments Q1, Q2, ... as A. We say that two objects α1 and

α2 are equivalent, α1 ∼ α2, if there are no instruments that can distinguish between them in the

sense that:

wQα1
(p) = wQα2

(p)

for every Q ∈ A and every p ∈ R. This is indeed an equivalence relation since it is clearly

reflexive, symmetric, and transitive. Hence, Σ is partitioned into equivalence classes. We denote

the equivalence class of an object α as [α]. Likewise, we say that two measurement instruments

Q1 and Q2 are equivalent, Q1 ∼ Q2, if:

wQ1
α (p) = wQ2

α (p)

for every α ∈ Σ and every p ∈ R. We denote the equivalence class of Q as [Q]. With these

quantities, we follow Araki’s [3] definition of states and observables.

Definition 1.1. We define a (experimental) state as an equivalence class [α], where α ∈ Σ,

and an (experimental) observable as an equivalence class [Q], where Q ∈ A.

We refer to these objects as experimental since they are defined exclusively in terms of the

results of experiments. In contrast, there will be theoretical observables, which are defined in

terms of the model of the theory, as we discuss below. Note that, so far, our analysis is com-

pletely general, and doesn’t make reference to any specific theory or model. These concepts

refer to the results of experiments, exclusively, and we are, therefore, only in the realm of the

experimental component discussed above. When specific theories come into play, the theoret-

ical component formulates a model of the theory, which includes a “translation” of the above

concepts into the mathematical structure of the model. Let us attempt to give a heuristic view

of what we mean by that. Suppose we have a specific theory (such as Classical Mechanics,

Quantum Mechanics, General Relativity, etc), which we will refer to by T. We will denote the

experimental component of this theory as Exp(T), and the theoretical component as The(T).

The first is composed of triples ([α], [Q], w[Q]
[α] ) ∈ Exp(T), while the later is written in mathemat-

ical language and is composed of corresponding triples in terms of the mathematical structures

involved. The goal of a model is to construct The(T) and a map T : Exp(T) → The(T):

Exp(T) ∋ ([α], [Q], w
[Q]
[α] )

T7−→ (O[α],O[Q], µ
O[Q]

O[α]
) ∈ The(T), (1.1)

where O[α],O[Q] are elements of the mathematical structure of the theory modeling [α] and

3



Chapter 1. Introduction

[Q], which we refer to as the theoretical states and theoretical observables, and µ
O[Q]

O[α]
is a

“probability measure”, defined in some suitable structure in The(T). Of course, the theoretical

part should not only contain the triples on the right-hand side, but also the way they relate

and interfere with each other. A good model should also provide an “inverse” for the map T ,

meaning that it is always consistent with experimental outcomes. Finally, a solid model must

also determine its own domain of validity, which should be in agreement with other models and

theories when their domains intersect.

For example, let TQT := non-relativistic quantum theory. Then, the map TQT is given by:

Σ ∋ [α] 7→ ψ ∈ H (1.2)

A ∋ [Q] 7→ A = A∗ =

∫
σ(A)

λdE(λ) ∈ L (H) (1.3)

wQα 7→ µAψ(B) = ⟨ψ,E(B)ψ⟩, B ∈ B(σ(A)), (1.4)

where H is a Hilbert space, L (H) is the set of linear operators acting on it, and µAψ is a prob-

ability measure on B(σ(A)). A complete understanding of a model should provide a T that

can map every triple in Exp(T) to triples in The(T). That this is not the case for relativistic

quantum theory is the starting point of this thesis. More specifically, let TRQT := relativistic

quantum theory, which we think about as the intersection of special relativity theory and quan-

tum theory. Let [Q]pos denote the observable consisting of instruments that measure the system’s

position. The main problem that we attack in this work is:

The Localizability Problem is the absence of a map TRQT such that

TRQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
∈ The(TRQT ) is well defined and fully compatible with

relativistic principles.

Observe that this is not a problem in non-relativistic quantum theory. For instance, consider

a single quantum particle moving in one dimension. The Hilbert space is given by L2(R, dx),

and we have that:

TQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
=
(
ψ,Q, µQψ

)
∈ The(TQT ),

4



Chapter 1. Introduction

where Q is the self-adjoint operator:

(Qψ)(x) = xψ(x)

D(Q) =

{
ψ ∈ L2(R, dx)

∣∣∣ ∫
R
|(Qψ)(x)|2dx <∞

}
,

and the probability measure is:

µψ(B)
.
= ⟨ψ, χBψ⟩, B ∈ B(σ(Q)) = B(R),

where χB is the characteristic function of B. Analogously, the first natural idea is to find a self-

adjoint operator for the position observable for relativistic quantum systems. However, when

the causal structure of spacetime is included, things get way more complicated. Despite the

many proposed solutions, none have been unanimously accepted by the scientific community.

It is, from our point of view, a surprising fact that this problem has been so much overlooked

by the majority of theoretical physicists, even though the position observable in non-relativistic

Quantum Mechanics played such a central role. In Ruijsenaars words [4]: “This is so in spite of

the fact that the approximate determination of the position of a physical system may be regarded

as the most fundamental measurement of all”. A possible explanation for that is the advent

and the overwhelming success of Quantum Field Theory, where the quantum field operators

became the protagonists, a change of paradigm took place, and a position operator (or something

similar) was no longer seen as essential.

The first attempt to define a relativistic self-adjoint position operator was made in 1949 by

Newton and Wigner in their seminal paper [5]. The main idea of this work is to give criteria to

understand which states of an elementary system are localized in a given region of space. These

localized states are then shown to be (generalized) eigenvectors of a self-adjoint operator QNW ,

nowadays known as the Newton-Wigner position operator. Hence, Newton-Wigner’s proposed

solution is:

TRQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
=
(
ψ,QNW , µNWψ

)
, (1.5)

where ψ is now an element of a relativistic Hilbert space, and QNW is written as:

QNW =

∫
R
xdPNW (x),

where x is a spatial coordinate function, PNW is a projection-valued measure coming from

5



Chapter 1. Introduction

Newton-Wigner’s localization scheme (see Definition 3.2), and the probability measure is:

µNWψ (B) = ⟨ψ, PNW (B)ψ⟩, B ∈ B(σ(QNW )) = B(R).

Therefore, Newton-Wigner’s approach is equal in nature to the non-relativistic case but adapted

to Hilbert spaces describing relativistic systems.

The underlying endeavor in this approach is the attempt to give a particle ontology to rela-

tivistic quantum systems. This enterprise is motivated by the experimentally observed property

of elementary systems being observed as “particles”, that is, individual, countable, extremely

localized entities. Indeed, this raises the question of what precisely is a particle? or, in other

words, which are the states that we observe as particles? This is a question that certainly has

some connections with the Localizability Problem, but they are not the same, and we will not

try to answer it directly in this work. For the particle ontology discussion, we refer the inter-

ested reader to [6–8]. For the notion of states describing particles in the context of Algebraic

Quantum Field Theory, we refer to [9–17].

Following Newton-Wigner, Wightman published a paper in 1962 [18], where he emphasized

the role of systems of imprimitivity (see Chapter 2) as the main mathematical object in the defini-

tion of the Newton-Wigner localization. With that, Newton-Wigner localization received a solid

mathematical formulation. Nonetheless, in the following years, many realized that there were

severe incompatibilities with the causal structure in this approach. Namely, if in a given time, a

state is localized in a compact region of space, it can then propagate outside the future light cone

of this region, as first realized by Fleming in [19], and later by Hegerfeldt in [20]. Many results

in this direction appeared in the next decades, basically ruling out Newton-Wigner’s approach

as a solution to the Localizability Problem. Furthermore, numerous so-called No-go Theorems

were also proven, excluding the possibility of using spectral measures and self-adjoint operators

to define localizability. Among them, we have Malament’s Theorem [21], Hegerfeldt’s Theo-

rem [20, 22], and strengthened versions of these theorems that followed, such as Halvorson’s

Theorem [6, 23] (see also Section 3.1 below).

A new approach was necessary. The most natural one was to weaken the definition of a

spectral measure and require only a positive operator-valued measure (POVM) instead. In this

case, there is no position operator, and the proposed solution is:

TRQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
=
(
ψ,E, µEψ

)
,

where ψ is an element of the relativistic Hilbert space, B(R) ∋ B 7→ E(B) is a POVM, and the

6



Chapter 1. Introduction

probability measure is:

µEψ (B) = ⟨ψ,E(B)ψ⟩, B ∈ B(R).

Many works were done in this direction: Jauch [24, 25] pioneered this idea to describe position

measurements of the photon, followed by Angelopoulos, Bayen, Flato [26], and Kraus [27].

For the localizability of massive particles within this approach, we refer to the many nice works

by Castrigiano [28–30], Beck’s book [31], and the recent papers by Moretti and De Rosa [32,

33]. Some forms of the mentioned No-go Theorems were also extended to this framework [23,

34].

Let us now explain the objectives and achievements of this work. The thesis is divided into

Part I and Part II, with its respective goals:

1. Part I: In this part, the main goal is to formulate Newton-Wigner localization on homo-

geneous globally hyperbolic spacetimes. As previously mentioned, the primary math-

ematical object in Newton-Wigner localization on Minkowski spacetime is a system of

imprimitivity, which is closely related to induced representations, as discussed in Chapter

2. However, the techniques used to construct and study these objects can be extended

to much more general contexts, including curved spacetimes. The aim is to understand

the essence of Newton-Wigner localization by giving up on the numerous symmetries of

Minkowski spacetime and determining the bare minimal requirements on the background

spacetime that allows this type of localization. Even though the map TRQT is basically the

same as in equation (1.5), and we don’t expect the causality problems in Newton-Wigner’s

approach to be solved, we consider this endeavor to be important for the following rea-

son: many of the new ideas to solve the Localizability Problem take inspiration in the

Newton-Wigner approach, and they all somehow “orbit” around it, being approximate to

Newton-Wigner in different ways. Hence, it is essential to have a complete understanding

of this formalism. In Part II we propose a new approach to the problem, and also in our

case, there is a close relation with Newton-Wigner, as exposed in Section 7.3.1.

Our second objective here is to classify which representations of the spacetime isometry

group give origin to a localizable system. The idea is to give a similar classification to

what was done in Minkowski spacetime, where it was proved (see Theorem 3.4) that

only massive representations are localizable on the spatial Cauchy surface. Our method

only applies to induced representations of the spacetime isometry group, and we give

criteria to determine when it is localizable. If this group is of the form of a regular semi-
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Chapter 1. Introduction

direct product, then we are able to classify any unitary representation. We show that the

stabilizer group of the spatial isometry group has a decisive role in this classification.

Note that, in this context, there is no notion of massive representations, as this appeared

as a consequence of the representation theory of the Poincaré group. We also investigate

the problem of the uniqueness of the notions of localizability by dividing all possible

ones into equivalence classes (the so-called Thompson components) and giving a physical

interpretation of these.

Finally, in the remaining sections of Chapter 4, we explore applications and consequences

of our generalized notion of localization. We examine states that follow geodesics (Sec-

tion 4.1), decompositions of the representation space induced by the position operator

(Section 4.2), and the effects of perturbations on Minkowski spacetime on the Newton-

Wigner operators (Section 4.3).

2. Part II: In this part, we propose a new approach to the Localizability Problem on Minkowski

spacetime. The idea is that the way in which position measurements are performed, that

is, the way in which the instruments [Q]pos are used, inherently follows a logic. The word

logic here has a precise mathematical meaning (Definition 5.5). This structure appears

in different contexts and is also hidden behind Newton-Wigner’s localization approach.

The spacetime itself has a logic structure (Section 5.4), and our main idea is to incor-

porate this logic in the way the instruments [Q]pos are used. This automatically solves

all the causality problems in Newton-Wigner localization, as the causal structure is in-

corporated from the start. However, this implementation is not trivial, and we prove a

No-go result in Theorem 7.4, showing how delicate things are. To achieve our goal, we

use the mathematical tools of Modular Localization (Section 6.3), which are based on

the mathematical structure of the Modular Theory of Tomita-Takesaki, a theory that has

many profound applications in Quantum Field Theory [35]. In our new approach, the

map TRQT is:

TRQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
=
(
ω, xML

q , µω
)
,

where the ingredients are the following:

• The mathematical structures in The(IRQT ) necessary to define the triple in the right-

hand side are: the spacetime logic LΣ (Definition 5.7), a massive representation U

of P+ on a Hilbert space H, and the modular localization map (equation (6.16)),

which implements the spacetime logic in the representation space.

8



Chapter 1. Introduction

• ω is an algebraic state (Definition 6.10) on B(H).

• xML
q is an observable (in the logic-theoretic sense 5.6) defined on the logic LΣ.

Check equation (7.21).

• µω is a (quasi)-probability measure ( in the logic-theoretic sense 5.8) defined on the

logic LΣ. Check Definition 7.12.

An interesting point is that the probability measures µω can only be approximate (in a way ex-

plained in Corollary 7.11). We discuss the physical consequences of this fact in Section 7.4.

Moreover, we give an explicit example in Section 7.3 for Minkowski spacetime in 1+1 dimen-

sions, and in Subsection 7.3.1 we compare our new approach with Newton-Wigner localization.

The organization of the thesis is the following: in both Part I and Part II, the first two chapters

give background material, and no new results are presented: in Chapter 2 we present the main

definitions and result in the theory of induced representations and systems of imprimitivity,

which are the central mathematical objects in the definition of Newton-Wigner localization; in

Chapter 3, we provide a review on Newton-Wigner localization in flat spacetime, presenting

the results in a directed way, preparing the reader for the more abstract constructions in the

following chapter; in Chapter 5 we present the mathematical theory of logics and its connections

with measurements in Physics; in Chapter 6, we give background material in Quantum Field

Theory and its connections with the Modular Theory of Tomita-Takesaki. In the third chapter

in each part, we present our new results. Finally, in Appendix A we present basic material in

Functional Analysis, that may serve as an auxiliary tool for some readers.
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Part I

Newton-Wigner Localization on

Homogeneous Globally-Hyperbolic

Spacetimes

10



Chapter 2

Induced Representations and Systems of

Imprimitivity

Mathematics has sort of inevitable structure which unfolds as one studies it

perceptively. It is as though it were already there and one had only to uncover it.
G. W. Mackey

As discussed in the introduction 1, the central mathematical object in the definition of local-

izability in the sense of Newton-Wigner is a System of Imprimitivity (SI): (E,U). This object

is composed of a spectral measure E (Definition A.10) and a unitary representation (Definition

2.14) U of some relevant group in such a way that the spectral measure transforms covariantly

with respect to this representation (see Definition 2.34 for a precise definition). It turns out

that this apparently simple mathematical object carries a very rich theory behind it, with many

applications in mathematical physics. In particular, there is a deep connection between SI’s and

induced representations, which is made precise by a Theorem due to Mackey (Theorem 2.36).

One of the first and most important applications of induced representations in Physics is due

to Wigner [36]. In this work, he classified all unitary, irreducible representations of the Poincaré

group using the (at that time, heuristic) method of induction. It was Mackey [37–39] who later

realized that the heuristic methods of Wigner could be made mathematically precise and not

just for the Poincaré group, but rather for a large class of groups, namely, locally compact

topological groups.

As pointed out in the Introduction, when it comes to the Localizability Problem in Newton-

Wigner’s approach, it was Wightman who noticed that their whole program could be synthe-

sized in this unique mathematical object (for a relativistic quantum system defined on Minkowski

spacetime). The starting point of the work described in Part I of this Thesis is to realize that

the general techniques developed by Mackey allow us to extend Wightman’s approach to ho-
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mogeneous globally hyperbolic spacetimes, where U is a unitary representation of the (spatial)

isometry group.

The goal of this chapter is to introduce the necessary mathematical objects and prepare the

reader for the results shown in chapter 4. For that, we need to introduce Mackey’s theory in its

full generality. We start studying basic facts and definitions about homogeneous G-spaces and

representations of locally compact topological groups. Next, we study induced representations

and their connections with SI’s.

2.1 Topological Groups and Homogeneous spaces

Let us start with some basic definitions. The goal of these first pages is to prepare the reader for

the core concepts of topological groups and homogeneous spaces, which constitute the first ba-

sic mathematical structures necessary for our work. We try to give a comprehensive exposition

in terms of definitions and basic structural results, without delving into proofs, since these can

be found in good books such as [40–42].

Definition 2.1. Let X be an arbitrary set and τ a collection of subsets of X satisfying:

1. ∅ ∈ τ .

2. If A ∈ τ and B ∈ τ , then A ∩B ∈ τ .

3. If Ai ∈ τ for an arbitrary index set I , then
⋃
i∈I Ai ∈ τ .

Then, we call the pair {X, τ} a topological space. Every element in τ is called an open set, and

a neighborhood of an element x ∈ X is an arbitrary set that contains an open set containing x.

The definition of a topology on a set is critical because it defines two fundamental notions,

namely, convergence and continuity.

Definition 2.2. Let {xn}, xn ∈ X , be a sequence. We say that this sequence converges to

an element x ∈ X if, for each open set A ∈ τ containing x, there is an integer N such that

for n ≥ N , xn ∈ A. A mapping f : X → Y from a topological space {X, τ} into another

topological space {Y, τ ′} is continuous if for each open set A ∈ Y it follows that f−1(A)

is an open set in X . A continuous one-to-one mapping is an homeomorphism if f−1 is also

continuous.

For the same arbitrary set X , changing the topology could change completely these two

above-defined concepts. For example, in the trivial topology defined as τ = {∅, X} every
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sequence is convergent to each point x ∈ X , while in the discrete topology, defined as the set of

all subsets of X , a sequence converges to x if, and only if, xn = x for every n ≥ N , for some

N ∈ N. In particular, a space where the limiting point of a convergent sequence is not unique

could be very hard to handle. To solve this, we have the following definition.

Definition 2.3. Let {X, τ} be a topological space. We say that this space is a Hausdorff space

if for every pair of distinct points x1 and x2 there exists neighborhoods A1 and A2 such that

x1 ∈ A1, x2 ∈ A2, and such that A1 ∩ A2 = ∅.

It follows that in every Hausdorff space, every convergent sequence has a unique limit (see

[43]). The next important concept, which will be fundamental in the representation theory of

topological groups developed in the next sections, is that of compactness and local compactness.

Definition 2.4. We say that a Hausdorff space X is compact if every collection of open sets,

whose union covers X , contains a finite subcollection, whose union covers X . We say that it is

locally compact if each point has a compact neighborhood.

As an example, it is easy to see that a topological space with the discrete topology is com-

pact if, and only if, it is finite: if it is infinite, the cover X =
⋃
x∈X{xi} does not contain a finite

subcover. However, every discrete space is locally compact. The compactness of a topological

Hausdorff space is clearly preserved under homeomorphisms, but also under continuous trans-

formations: if X is compact and Y is Hausdorff, and if there is a continuous transformation

between these spaces, then Y is also compact.

Moving forward, we now merge the two very important notions of topological spaces and

abstract groups into the concept of topological groups. First, let us recall what is an abstract

group.

Definition 2.5. A group G is a non-empty set with a binary operation · : G × G → G called

product, and a bijective unary operation “−1” called inverse such that:

1. Associativity: For every a, b, c ∈ G, it is true that (a · b) · c = a · (b · c).

2. Neutral element: There exists an unique element e ∈ G, called the identity, such that

e · g = g · e = g for all g ∈ G.

3. For each g ∈ G, there exists an unique h ∈ G, called the inverse, such that h · g = g ·h =

e.

A topological group is nothing more than a topological space such that the algebraic group

operations are compatible with the topological ones. More precisely.

13
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Definition 2.6. A topological group is a set G such that:

1. G is an abstract group

2. G is topological space.

3. the function a 7→ a−1 is a continuous map from G → G and the function (a, b) 7→ a.b is

a continuous function from G×G→ G.

We say that G is a compact (resp. locally compact) topological group if G is compact (resp.

locally compact) as a topological space.

Accordingly, operations on a topological group should be compatible with both algebraic

and topological structures. For example, a topological subgroup H ⊆ G should not only be

a subgroup of G, but it must also be a closed subset (otherwise, it would not be a topological

space). Neither the algebraic nor the topological properties alone are sufficient to characterize

completely a topological group. For instance, the group consisting of all matrices of the form: ea 0

0 eb

 , a, b ∈ R

and the group of all matrices of the form: ea b

0 e−a

 , a, b ∈ R

are both homeomorphic to R2 and, hence, topologically equivalent. However, the first group is

abelian while the second is not. On the other hand, we could construct two different topological

groups by giving distinct topologies to one single group. Hence, we can only say that two

topological groups are equivalent or, more precisely, isomorphic, when there is a one-to-one

correspondence which is both a group isomorphism and a homomorphism.

It is easy to be convinced that the notion of a topological group is very important in Physics

since it includes all matrix groups (with the topology coming from Rn) and all Lie groups.

It might even look like this is a too broad and abstract definition since it includes so many

examples, and it wouldn’t influence so much in the actual application to problems in Physics.

Nonetheless, for the specific problem that we are aiming to contribute (namely, the localization

of relativistic quantum systems), these properties will be especially important, as will be clear

in later sections. Our next important concept is that of a homogeneous space.

14
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Definition 2.7. A topological space {X, τ} is homogeneous if for any pair of elements x, y ∈
X there exists a homeomorphism f of {X, τ} onto itself such that f(x) = y.

As a first example, we notice that every topological group is homogeneous. Let x, y ∈ G be

any two elements. Then:

y = ax, a
.
= yx−1

and, because of the uniqueness of the inverse and continuity of the multiplication, this map is a

homeomorphism. It is clear that a homogeneous space has a much simpler structure when com-

pared to a general topological space since we can study the space in the vicinity of a point and

this can be carried to the rest by homeomorphisms. In the above example, the homeomorphisms

are given by the left translations which are, in some sense, the group “acting” on itself. We can

generalize this notion to topological groups acting on general topological spaces as follows.

Definition 2.8. Let Γ be a topological space and G a topological group. Then, we say that G

acts by the left on Γ if

1. For each g ∈ G there is associated a homeomorphism γ 7→ gγ of Γ to Γ.

2. The identity e ∈ G is associated with the identity homeomorphism of Γ.

3. The mapping (g, γ) 7→ gγ of G× Γ into Γ is continuous.

4. (g1g2)γ = g1(g2γ) for every g1, g2 ∈ G and γ ∈ Γ.

The topological space Γ is then called a G-space.

We could, similarly, define the right group action. The difference would be in the order

in which an element gh, for g, h ∈ G, acts on an element γ ∈ Γ: for the left action, h acts

first, while for the right action, g acts first. Let us distinguish some important types of actions:

we say that G acts transitively on Γ if for every pair of points γ1, γ2 ∈ Γ there exists at least

one element g ∈ G such that γ2 = gγ1; the action is simply transitive if there exists a unique

element in G such that the previous statement is true; if e is the only element of G which leaves

each γ ∈ Γ fixed, the action is called effective; the action is free if e is the only element with

fixed points (that is if there exists one γ ∈ Γ such that gγ = γ, then g = e). An action is simply

transitive if, and only if, it is transitive and free. Given any point γ ∈ Γ, we call the subset

Oγ
.
= {ξ ∈ Γ|ξ = gγ, g ∈ G} the orbit of γ under the action of G. Clearly, the space Γ is split

into orbits and the action of G is transitive in each of them.
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Let us note that ifG acts transitively on Γ, then by Definition 2.7, Γ is a homogeneous space,

where the homeomorphisms are given by the group action (according to property 1 in Definition

2.8). Homogeneous spaces under a group action form one of the basic structures necessary for

Part I of this thesis, and in the following, we try to give a better characterization of these spaces.

It turns out that the structure of a homogeneous space is highly dependent on the stability group

(in Physics literature, sometimes also called the little group) of γ ∈ Γ, which is defined as the

subgroup of G which leaves γ fixed (see Theorem 2.9 below). On homogeneous spaces, we can

talk about the stability subgroup since any two points can be connected by a homeomorphism,

and hence the stability groups of any two points are isomorphic.

Let us start to show the importance of the stability group by constructing a homogeneous

space with it: let G be a topological group, and H ⊂ G a closed subgroup. We denote by G/H

the collection of left cosets, that is, the collection of all subsets of the form xH , x ∈ G (note

that, unless H is a normal subgroup, the space G/H will not be a group). The right cosets are

similarly defined as the collection of all subsets of the form Hx, x ∈ G. We define the topology

on G/H with the canonical projection π : G ∋ x 7→ xH ∈ G/H . More precisely, we say that

a set A ⊂ G/H is open if π−1(A) is open in G. We define the (left) action of G on G/H by

assigning to each g ∈ G the map g : xH 7→ gxH . With these definitions, it is clear that G/H is

a homogeneous space under this action, and that H is the stability group of this space. It turns

out that every homogeneous space under the action of a topological group is of this form, as is

shown in the following theorem.

Theorem 2.9. Let G be a locally compact topological group with a countable basis acting

transitively on a locally compact Hausdorff space Γ. Let γ be any point of Γ and H its stability

subgroup. Then:

1. H is closed.

2. The map

gH 7→ gγ

is a homeomorphism of G/H onto Γ.

Proof. See Theorem 3.2 in [44].
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2.2 Invariant and Quasi-invariant measures

Homogeneous spaces appear frequently in Physics and are often associated with space/spacetime

regions. For reasons that will become more clear in the next sections, it is very important to

understand if/when we can define measures on these spaces that are invariant (or, slightly less

stringent, quasi-invariant) under the action of the associated group. For instance, in the Eu-

clidean space example, the Lebesgue measure is the (unique!) invariant measure with respect to

the action of the Euclidean group, while in the Poincaré group example, the Lorentz invariant

measure is the (also unique) invariant measure, but this time defined on the mass-shell in the

momentum space. Do these measures always exist in general homogeneous spaces? If they

exist, are they unique? How much can they differ from each other? These are the questions we

will answer in this subsection. From this section on, we will always assume that the group G

acting on Γ is a topological locally compact group.

We start with a particular case: let us consider a homogeneous space Γ under the action of

a group G with a trivial stability group, that is, H = {e}. In this case, Theorem 2.9 tells us that

Γ is homeomorphic with G itself, and hence we are looking for invariant measures on locally

compact groups. In this case, the answers to all the above questions are given in terms of the

Haar measures.

Definition 2.10. Let G be a locally compact group, and let C0(G) and C+
0 (G) denote the space

of continuous and continuous non-negative functions on G with compact support, respectively.

A positive Radon measure is a positive linear map µ on C0(G) which is non-negative on

C+
0 (G). If, in addition, this measure is left-invariant, that is,

µ(TLg f) = µ(f), where (TLg f)(x)
.
= f(g−1x), x, g ∈ G, and f ∈ C0(G),

then it is called a left Haar measure.

We could, similarly, define a right Haar measure, by changing TLg with TRg (right translation)

in the above definition. The fundamental result is the following.

Theorem 2.11. Every locally compact group has a left Haar measure µ. If ν is any other

non-zero left Haar measure, then ν = cµ for some positive number c.

Proof. See Chapter 2 in [41].

It can be easily shown that the existence of a left Haar measure implies the existence of a

right Haar measure, although it does not necessarily coincide with the left Haar measure. A
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measure that is both left and right invariant is called an invariant measure. So far the measures

are defined on the above-described function spaces. However, by Riesz theorem, there is a Borel

measure on the measurable sets in G (which we also denote by µ) such that:

µ(f) =

∫
G

f(g)dµ(g),

and the left-invariance of the Haar measure implies that:

µ(gX) = µ(X),

for all measurable X ⊂ G, and all g, x ∈ G.

When the stability group is not trivial, the above theorem does not apply and it is not guar-

anteed that invariant measures exist. In fact, it can be shown that they, in general, do not exist

(see counter-example in Chapter 4 in [41]). This leads us to define the following, more general,

kind of measure.

Definition 2.12. A positive measure µ onX .
= G/H is called quasi-invariant if it is equivalent

to the measure µg(A)
.
= µ(gA), A ⊆ X measurable, for every g ∈ G.

Hence, while an invariant measure µ equals µg for every g ∈ G, a quasi-invariant measure

is only required to be equivalent. With this relaxation, we can guarantee existence.

Theorem 2.13. Let G be a locally compact separable group, H a closed subgroup, and X =

G/H . Then

1. There exists a quasi-invariant measure on X . In addition, any two quasi-invariant mea-

sures are equivalent.

2. If an invariant measure exists, it is unique up to a multiplicative constant.

Proof. See Chapter 4, Theorem 1 in [41].

2.3 Representation Theory basics

Groups and their representations play a fundamental whole in Theoretical Physics. They of-

ten appear as groups of symmetries, and if the quantum system being analyzed is symmetric

“enough”, then a lot can be said about the systems just by analyzing the group and its represen-

tations. Of course, what precisely we mean by enough will depend on the specific problem we

are trying to solve. For Localizability Problem within the Newton-Wigner approach, enough
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means a homogeneous space, where the topological space Γ represents a globally hyperbolic

spacetime, and G is its group of isometries. As we will see, the homogeneity assumption is

enough to formulate Newton-Wigner localization only using representation theory techniques.

For this reason, we include this short subsection on the representation theory of groups, even

though this topic is extremely broad. Throughout this section, G will be a locally compact, sep-

arable, and unimodular (that is, the right and left Haar measures coincide) topological group, H
will be a separable, complex Hilbert space, and B(H) will denote the set of bounded operators

acting on H.

Definition 2.14. A map G ∋ x 7→ T (x) ∈ B(H) is a representation of G in H if

1. T (xy) = T (x)T (y).

2. T (e) = I.

The first condition says that the map defining the representation is a homomorphism of G

into the bounded, linear operators in H. The second condition says that these operators are

invertible:

T (x)T (x−1) = T (x−1)T (x) = T (e) = I =⇒ T−1(x) = T (x−1).

For technical reasons, it is important to impose continuity conditions on the representations as

well. We will always require that the representation is strongly continuous, which means that

for any y ∈ G:

∥T (x)u− T (y)u∥ → 0, as x→ y,

for every u ∈ H. The easiest example of a representation is the trivial representation, defined as

T (x) = I for all x ∈ G. A representation is unitary if each T (x), x ∈ G, is a unitary operator.

Let T1(x) be a representation of G in H1. If S : H1 → H2 is any bounded isomorphism,

then we can easily see that T2(x)
.
= ST1(x)S

−1 defines a representation of G in H2. However,

these representations are, for most uses in representation theory, essentially the same. Hence, it

is useful to partition all possible representations into equivalence classes.

Definition 2.15. Let G be a group and T1, T2 two representations acting on H1 and H2, respec-

tively. A linear operator U : H1 → H2 such that

UT1(x) = T2(x)U
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is valid for all x ∈ G is called an intertwiner. The set of all intertwiners between two represen-

tations forms a linear space, which we denote byR(T1, T2). Two representations are equivalent

if there exists an inversible intertwiner between them. They are unitarily equivalent if, in ad-

dition, the intertwiner is a unitary operator.

The next very important concept in representation theory is that of reducibility of represen-

tations.

Definition 2.16. Let T be a representation of a group G in H. A subspace H1 ⊆ H is called

invariant if u ∈ H1 implies T (x)u ∈ H1 for every x ∈ G. The representation is said to be

irreducible if it has no proper closed invariant subspaces. If a representation is not irreducible,

then it is called reducible.

If there is an invariant subspace H1 for a representation T in H, then we can form a new

representation just by restricting T to H1. This representation is called a subrepresentation

of T . Let us analyze another example of a reducible representation. Let T1 and T2 be two

representations of the group G, acting on H1 and H2, respectively. Then, we can define a

representation of their direct sum as:

(T1 ⊕ T2)(x)(u1, u2)
.
= (T1(x)u1, T2(x)U2), x ∈ G,

where ui ∈ Hi. Clearly, both H1 and H2 are proper invariant subspaces of H1 ⊕H2, and hence

the representations is reducible. On the other way around, suppose we have a representation T

acting on H, and subrepresentations Ti acting on invariant subspaces Hi such that H =
⊕

iHi.

Then, we write:

T =
⊕
i

Ti.

If each Ti in the decomposition above is irreducible, we say that T is completely reducible.

Note, however, that it might not always be possible to decompose a reducible representation

in such a way. For finite-dimensional (meaning that H is finite-dimensional) unitary represen-

tations, though, this is always possible. In Quantum Mechanics and Quantum Field Theory,

however, we are mostly working with infinite-dimensional Hilbert spaces. In addition, as we

will discuss in more detail later, there is an intrinsic connection between irreducible representa-

tions of symmetry groups and elementary quantum systems. Therefore, it is very important to

understand the relation between a given unitary representation and its irreducible components.

For the general case, the direct sum is not enough and is substituted by its generalized version
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named direct integral (Definition A.23). The following theorem is quite general and is valid

even for non-unitary representations.

Theorem 2.17. Let T be a representation of a locally compact group G acting on a Hilbert

space H. Then, there is a measure space (Λ, µ) and a direct integral decomposition H =∫ ⊕
Λ
H(λ)dµ(λ) such that:

T =

∫
Λ

T (λ)dµ(λ),

where each T (λ) is an irreducible representation acting on H(λ).

Proof. See Section 2.6 in [39].

Up to now, we have studied representations of locally compact groups and their decompo-

sitions, but we haven’t addressed a fundamental question: given an arbitrary topological group

G, does it always have (nontrivial) irreducible representations? The following theorem answers

this question positively, and there are even irreducible representations that are nontrivial enough

to separate points.

Theorem 2.18 (Gelfand-Raikov Theorem). Let G be a separable topological group. Then for

every two elements x1, x2 ∈ G, with x1 ̸= x2, there exists an irreducible representation T such

that T (x1) ̸= T (x2).

Proof. See Chapter 6, Theorem 2, in [41].

To close this section, we study the representations of a very important class of groups for

Physics and our future applications to the localization problem, namely, compact groups. Let

G be a compact group, T a representation acting on a separable, complex Hilbert space H,

where an inner product ⟨, ⟩ is defined. The first important fact that we notice is that on every

compact G we have an invariant measure µ, that is, the left and right Haar measures coincide

(see Chapter 2, Proposition 2 in [41]). We can use this measure to define a new inner product

on H:

⟨u, v⟩G
.
=

∫
G

⟨T (x)u, T (x)v⟩dµ(x),

where u, v ∈ H, and x ∈ G. Let ∥.∥G be the norm defined from this inner product. Then we

have:

Theorem 2.19. Let G be a compact group, and T a representation acting on a separable,

complex Hilbert space H. Then
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1. The norm ∥.∥G and the original norm ∥.∥ on H are equivalent. This means that H is also

a Hilbert space with the inner product ⟨., .⟩G.

2. With respect to ⟨, ⟩G, the representation T is unitary.

Proof. See Chapter 7 in [41].

The theorem above is basically saying that every representation of a compact group is equiv-

alent to a unitary representation. This theorem shows that representations of compact groups

are very special. In fact, even more can be said about them.

Theorem 2.20. LetG be a compact group and T a unitary representation acting on a separable,

complex Hilbert space H. Then

1. If T is irreducible, then it is a finite-dimensional representation.

2. If T is reducible, then it is a countable direct sum of finite-dimensional unitary represen-

tations.

Proof. See Chapter 7 in [41].

2.4 Induced Representations

Now that the basic definitions and results about the existence and decomposition of representa-

tions have been studied, we explore the next obvious question: how do we obtain the represen-

tations of a given group? The answer to this question can vary greatly, and depend highly on

the structure of the group we are interested in. For the applications we have in mind, the most

appropriate technique is that of induction. The idea is the following: given a locally compact

group G (whose representations we are interested in), we obtain (in a constructive way) some

unitary representations of this group from unitary representations of a closed subgroup K ⊆ G.

In this sense, we are inducing a representation of the larger group from a representation of the

smaller. This method is very useful because the smaller group often has a simpler structure.

For instance, the subgroup K could be compact, even if G is not, and as we saw in the last

section, those are much easier to work with. The method of induction (for finite groups) goes

back to Frobenius, and it was used in a heuristic way by Wigner [36] in his celebrated paper

on the irreducible, unitary representations of the Poincaré group. Nonetheless, it was Mackey

who formalized the method and generalized it to locally compact groups. In some cases, the

technique of induction is so powerful that it allows us to obtain all unitary, irreducible represen-

tations of a given group (Theorems 2.46 and 2.47). In this section, we define and analyze the

basic properties of induced representations for a locally compact, separable group G.
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2.4.1 The carrier Space

Let K be a closed subgroup of G and K ∋ k 7→ L(k) a unitary representation of K in a

separable Hilbert space H. The first step in the induction method is to construct the Hilbert

space (also called the carrier space) where the induced representation of G will act. This space

is dependent on L and we will denote it by HL. Let µ be any quasi-invariant measure on the

homogeneous space of right cosets X .
= K \ G = {Kg|g ∈ G} (remember Theorem 2.13),

and π : G→ X the canonical projection. All the following constructions and results also work

for the space of left cosets with minor changes (see Section 2.7). We define the carrier space as

follows.

Definition 2.21. The carrier space HL is defined as the set of all (vector-valued) functions

f : G→ H satisfying the following conditions:

1. The function g 7→ ⟨f(g), v⟩H is measurable for all v ∈ H.

2. f(kg) = L(k)f(g), for all k ∈ K and all g ∈ G.

3.
∫
X
∥f(g)∥2Hdµ(π(g)) <∞

Notice that condition 3 is well-defined because condition 2, together with the fact that L is

unitary, ensures that:

∥f(kg)∥H = ∥L(k)f(g)∥H = ∥f(g)∥H.

Hence, ∥f(g)∥H is a function that depends only on the right cosets. The space HL is clearly a

complex-linear vector space. The next step is to transform it into a Hilbert space. We do it by

defining the following inner product.

Proposition 2.22. The vector space HL is a Hilbert space with the following inner product:

⟨f1, f2⟩HL
.
=

∫
X

⟨f1(g), f2(g)⟩Hdµ(π(g)).

Proof. See Chapter 16, Lemma 1 in [41].

Due to condition 1 in Definition 2.21, the function ⟨f1(g), f2(g)⟩H is measurable, and due

to condition 2, it depends only on the right cosets. This Hilbert space, as we will show, is

the appropriate space to construct the (induced) representation of G. Before we construct this

representation, let us remember the following basic fact about equivalent measures. If two
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positive measures, dµ1 and dµ2, are equivalent, then according to the Radon-Nykodym Theorem,

there exists a function ρ(x) ≥ 0 such that:

dµ1(x) = ρ(x)dµ2(x).

The function ρ(x) .
= dµ1(x)/dµ2(x) is called the Radon- Nikodym derivatie. Let µ be any

of the quasi-invariant measures defined on X . Then, µg(A)
.
= µ(Ag) and µ are equivalent and

there is a Radon-Nikodym derivative ρg(x) for every g ∈ G in such a way that the composition

rule:

ρg1g2 = ρg1(x)ρg2(xg1) (2.1)

is satisfied. We are now in a position to define a representation of G on HL.

Lemma 2.23. The map G ∋ s 7→ UL(s) given by:

(UL(s)f)(g)
.
= (ρs(g))

1/2 f(gs), s, g ∈ G, f ∈ HL, (2.2)

defines a unitary representation of G in HL, which we denote as the induced representation of

G by L.

Proof. See Chapter 16, Lemma 2 in [41].

Notice that, because of condition 2 in Definition 2.21, the right-hand side in (2.2) can also

be written as:

(ρs(g))
1/2 f(gs) = (ρs(g))

1/2 L(g)f(s),

which makes the dependence on L more explicit. Finally, it can be proven that the space HL

is non-trivial, that is, there are indeed non-zero functions that satisfy all the requirements. The

following theorem not only proves that this space is non-trivial, but it shows how to construct a

dense set of functions in this space.

Theorem 2.24. Let G ∋7→ w(g) ∈ H be an arbitrary, continuous functions and define:

ŵ(g)
.
=

∫
K

L−1(k)w(kg)dk,

where dk is the right Haar measure in K. Then:

1. ŵ(g) is a continuous function on G with compact support on K \G.
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2. ŵ(g) ∈ HL.

3. The set CL
0 = {ŵ(g)|w(g) = λ(g)v, where λ(g) ∈ C0(G), v ∈ H} is dense in HL.

Proof. See Chapter 16, Proposition 3 in [41].

It turns out that there is another way of constructing the carrier space of the induced repre-

sentation, in terms of a function space of square-integrable functions, which will be more useful

and intuitive for the applications we have in mind. For that, we need a technical decomposition

theorem, the Mackey decomposition.

Theorem 2.25. Let G be a separable, locally compact group and K a closed subgroup. Then

there exists a Borel set S in G such that every element g ∈ G can be uniquely represented as:

g = kglg, (2.3)

where k ∈ K and l ∈ S.

Proof. See Chapter 2 in [41].

We are now ready for the alternative construction of the carrier space.

Theorem 2.26. The space HL constructed above is isomorphic to the Hilbert space of square-

integrable vector-valued functions L2(X,µ,H), where X = K \G. The isomorphism is given

by the map:

f(g) = L(kg)f̃(π(g)),

where f̃ ∈ L2(X,µ,H), and kg is the factor of g in the Mackey decomposition given in (2.3).

Proof. See Chapter 16, Lemma 1 in [41].

Having constructed a new carrier space, we now define the action of the induced represen-

tation on this space. For simplicity, we will also denote this representation by UL, and we will

drop the tilda over the functions in L2(X,µ,H), since it will always be clear from the context.

Lemma 2.27. The map G ∋ s 7→ UL(s) given by

(UL(s)f)(x) = (ρs(x))
1/2L(klgs)f(xs), s, g ∈ G, f ∈ L2(X,µ,H), (2.4)

is a unitary representation of G in L2(X,µ,H), where x = π(g) ∈ X , and klgs is the unique

element in the Mackey decomposition (2.3) of the element lgs (and lg is the unique element in

the decomposition of g).
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Proof. See Chapter 16, Proposition 5 in [41].

Even though this second method of construction of the carrier space and the induced rep-

resentation might look at first as being more complicated, it can actually be more intuitive for

problems in Physics, as will be the case in Newton-Wigner localization. One natural question

that arises at this point is about the dependence of the results with the choice of quasi-invariant

measure µ: what if we choose another quasi-invariant measure ν? The following theorem guar-

antees that the corresponding constructions are (unitarily) equivalent.

Theorem 2.28. Let µ and ν be two quasi-invariant measures in X = K \ G. Denote by

HL
µ and HL

ν the corresponding carrier spaces and by UL
µ and UL

ν the corresponding induced

representations. Then, there exists a unitary transformation V : HL
µ → HL

ν such that:

V UL
µ (g)V

−1 = UL
ν (g)

for all g ∈ G.

Proof. See Chapter 16, Proposition 4 in [41].

2.4.2 Fundamental Theorems of Induced Representations

In this subsection, we collect some technical results on the properties of induced representations.

These will be useful for our future applications.

The first property that we want to study is the interplay between induced representations

and direct sums, or direct integrals. Consider two unitary representations L1 and L2 of a closed

subgroup K ⊆ G, acting on H1 and H2, respectively. We can construct the direct sum repre-

sentation as the operator:

(L1 ⊕ L2)(u1, u2)
.
= (L1u1, L2u2),

where ui ∈ Hi, i = {1, 2}, which acts on the Hilbert space H1

⊕
H2. Since the inner product

in the direct sum space is given by ⟨, ⟩H1
⊕

H2 = ⟨, ⟩H1 + ⟨, ⟩H2 , it is clear that a vector (u1, u2)

will be in HL1⊕L2 if, and only if, each vector ui ∈ Hi satisfy, individually, the conditions in

Definition 2.21. Hence, the operations of induction and direct sum are interchangeable. More

generally, we have the following theorem.
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Theorem 2.29. Let K ⊆ be a closed subgroup of a locally compact separable group G. Let L

be a unitary representation of K, which can be decomposed into a direct integral

L =

∫
Λ

L(λ)dµ(λ),

acting on the Hilbert space:

H =

∫ ⊕

Λ

H(λ)dµ(λ).

Then the representation UL is unitarily equivalent to
∫
Λ
UL(λ)dµ(λ).

Proof. See Chapter 16, part B, Theorem 1 in [41].

Corollary 2.30. If the representation UL of G is irreducible, then the representation L is also

irreducible.

We emphasize that the converse of this corollary is not true. The next important property of

induced representations that we consider is the so-called induction in stages. Let N ⊆ K ⊆ G

be two closed subgroups of G. Starting from a representation L of N , we can construct an

induced representation of G in two ways: we can induce directly a representation of G, or we

can first induce a representation of K and, with this representation, induce a representation of

G. What is the difference between the resulting representations ofG? This question is answered

by the following theorem.

Theorem 2.31. Consider the groups N,K,G as above. Let L be a representation of N , and

UL,K and UL,G be the induced representation of K and G, respectively. Then the representa-

tions UL,G and UUL,K
of G are unitarily equivalent.

Proof. See Chapter 16, part C, Theorem 2 in [41].

The last important result on induced representations that we want to consider is the so-called

Induction- Reduction Theorem. The idea is the following. Let N,K be any two subgroups of

a group G, not necessarily one contained in the other. It is often very important to understand

the restriction of a given representation to subgroups. For example, if U is a unitary represen-

tation of G, then U |N is a unitary representation of N . Is there a method to decompose this

restricted representation in terms of irreducible representations of N? With this generality, this

is a very hard problem. However, if U is an induced representation (say, from K), then we do

have a method to determine this decomposition. This is the content of the Induction-Reduction

Theorem.
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Let us start with an illustration of the idea of the method. Let UL be a representation of

G induced by a representation L of K, and X .
= K \ G. Of course, G acts transitively on

X . However, the subgroup N does not in general act transitively on X . Suppose there are two

subsets, X1 andX2, which are invariant underN , and such thatX = X1∪X2 andX1∩X2 = ∅.

Denote by H1 and H2 the subspaces of HL consisting of functions which vanish outsideX1 and

X2, respectively. Then, it is clear that these spaces are orthogonal complements of each other

since they are invariant under UL|N . In this way, the carrier space can be written as:

HL = H1

⊕
H2,

and the restriction of the induced representation as:

UL|N = U1 ⊕ U2,

where U1 and U2 acts on the respective invariant subspaces. Note, however, that the subspaces

Xi, i ∈ {1, 2}, are not necessarily homogeneous with respect to N . That means that we can

decompose each of them into orbits relative to N . Let us assume for the moment that each

invariant subset can be decomposed into a countable set of orbits Xj
i , such that Xi = ∪j∈NXj

i .

These are elements of the double-coset space D .
= K\G/N (that is, the set of elements of the

form KgN , g ∈ G). Then, we have:

HL =
⊕
i,j

Hi,j, UL|N = ⊕i,jUi,j.

This double summation above is clearly a sum of all elements of D. The Induction-Reduction

Theorem extends this construction for the case when the orbits of the double-coset are not

necessarily countable and in addition it tells us how to obtain the representations Ui,j in terms

of induction from a smaller subgroup.

Before we get to the theorem, we need first some technicalities. An admissible measure on

D is any measure constructed in the following way. Let ν̃ be any finite measure in G with the

same sets o measure zero as the Haar measure. Define the map s : g 7→ KgN which associates

to each g ∈ G its double-coset in D. Then we define a measure ν in D as ν .
= ν̃(s−1(D)), for

D ∈ D. We also need the following regularity conditions on the subgroups K and N .

Definition 2.32. Let K,N,G be as above. We say that K and N act regularly in G, by

g(k, n) = k−1gn, if there exists a sequence of Borel sets Zi ⊂ G such that

1. ν̃(Z0), and Zi(k, n) = Zi, for each (k, n) ∈ K ×N and all i.
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2. Every orbit O not contained in Z0 relative to the action of K ⊗ N , is an intersection of

sets Zi containing the orbit O.

Theorem 2.33 (Induction-Reduction). Let G be a separable, locally compact group, and K

and N be any closed subgroups of G acting regularly in G. Let UL be a representation of G

induced by the representation L of K. Then

1.

UL|N ≃
∫
D
UN(D)dν(D),

where D ∈ D .
= K\G/N , UN(D) is a unitary representation of N , and ν is any admis-

sible measure on D.

2. The representations UN(D) in the decomposition above are determined (within unitary

equivalence) by a double-coset D. These can be chosen as induced representations in

the following way. For every g ∈ D, the subgroup N ∩ g−1Kg of N depends on the

double-coset D only. Hence, the representation UN(D) can be chosen as an induced

representation from this subgroup.

3. Let xD = x0gD for some gD ∈ G, and where x0 = e = K. Then N ∩ g−1
D KgD is the

stabilizer group of xD under the action of N .

Proof. See Chapter 18, Theorem 1 in [41].

2.5 Systems of Imprimitivity

In this section, we introduce a new mathematical object, namely, systems of imprimitivity (SI).

This is the single most important mathematical object in the study of Newton-Wigner local-

ization. As we will see in the next chapters, it encompasses mathematically all the minimum

(and most important) physical requirements of localization. In this section, though, we will

restrict our attention to the mathematical understanding of these objects, while the connection

with Physics will be postponed for later. Systems of imprimitivity are deeply connected, in a

non-obvious way, with induced representations. Hence, the comprehension of the first implies a

better understanding of the latter. For some classes of groups (which include important groups

for Physics, like the Poincaré or Euclidean groups), this connection between SI’s and induced

representations is so important that its understanding allows us to obtain all irreducible, unitary

representations of the group.
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Definition 2.34. Let G be a separable, locally compact group, and U a unitary representation of

G in a separable Hilbert space H. A System of Imprimitivity (SI) based on X is a pair (E,U)

where:

1. E : X → P(H) is a spectral measure, that is, it associates to each Borel set Z ⊆ X an

orthogonal projection E(Z) ∈ P(H) and satisfies the following relations:

• E(X) = I, E(∅) = 0.

• E(Z1 ∩ Z2) = E(Z1)E(Z2).

• E(
⋃
n∈N Zn) = s- limk→∞

∑k
n=1E(Zn).

2. The pair (E,U) satisfies the covariance relation:

U(g)E(Z)U(g−1) = E(Zg−1). (2.5)

If a representation U admits the existence of a spectral measure E such that (E,U) is a SI,

then we say that the representation U is imprimitive. We start our analysis of SI’s by showing

that every induced representation is imprimitive. Let K be a closed subgroup of a separable,

locally compact group G, L a unitary representation of K in H, and UL the induced represen-

tation of G in HL. Let X .
= K\G denote the homogeneous space of right-cosets, Z ⊆ X be an

arbitrary Borel set, and χZ its characteristic function. Let us define an operator E(Z) acting on

HL as:

(E(Z)f)(g)
.
= χZ(π(g))f(g), g ∈ G, (2.6)

where π(g) = Kg is the canonical projection on X . The first thing we need to check is that

the right-hand side of this equation is again an element of HL. Since χZ and π are measurable

functions, it follows that this function is weakly measurable. Moreover, we have that:

E(Z)f(kg) = χZ(π(g))f(kg) = L(k)(χZ(π(g))f(g)) = L(K)E(Z)f(g),

and hence condition 2 in Definition 2.21 is also satisfied. Finally, we also have∫
Z

∥χZ(π(g))f(g))∥2dµ(π(g)) =
∫
Z

χZ(π(g))∥f(g))∥2dµ(π(g))

=

∫
Z

∥f(g))∥2dµ(π(g)) <∞,
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which concludes the proof that (2.6) is an element of HL. We now prove that (E,UL) is always

a SI. It is easy to see that this map also defines a spectral measure, that is, the conditions in item

1 in Definition 2.34 are satisfied. Due to the importance of this particular spectral measure, we

will call it from now on the canonical spectral measure. The covariance relation (2.5) can

readily be verified:

(UL(h)E(Z)UL(h−1)f)(g) = [ρh(g)]
1/2(E(Z)UL(h−1)f)(gh)

= [ρh(g)]
1/2χZ(π(gh))(U

L(h−1)f)(gh)

= [ρh(g)]
1/2[ρh−1(gh)]1/2χZ(π(gh))f(g)

= [ρh(g)]
1/2[ρh−1(gh)]1/2χZh−1(π(g))f(g)

= E(Zh−1)f(g),

where in the last step we used the composition law (2.1) for the Radon-Nikodym derivatives.

Hence, we conclude that every induced representation is imprimitive with respect to the canon-

ical spectral measure. We denote the corresponding SI the canonical system of imprimitivity,

which is naturally based onX . Similar to what is done to group representations, we can attribute

to SI’s the notion of irreducibility and equivalence, as follows.

Definition 2.35. Let (P,U) be an SI based on a homogeneous space X , and acting on H.

1. We say that (P,U) is irreducible, if for an arbitrary V ∈ B(H), g ∈ G, and a Borel

subset Z ⊆ X:

V U(g) = U(g)V, and V P (Z) = P (Z)V,

implies that V = λI, λ ∈ C.

2. Let (P̃ , Ũ) be another SI, also based on X , and acting on H̃. We say that (P,U) and

(P̃ , Ũ) are equivalent (in symbols, (P,U) ≃ (P̃ , Ũ)) if there exist a unitary operator

V : H → H̃ such that

V U(g) = Ũ(g)V, and V P (Z) = P̃ (Z)V,

for all g ∈ G, and all Borel sets Z ⊆ X .

We showed in the previous paragraphs that to every induced representation there is always

a system of imrpimitivity associated with it, namely, the canonical SI. A natural question that
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arises is if the converse is true, that is: can we associate to every system of imprimitivity an

induced representation? The answer is yes, and it goes by the name of Imprimitivity Theorem.

Theorem 2.36 (Mackey’s Imprimitivity Theorem). Let K be a closed subgroup of a separa-

ble, locally compact group G, and (P,U) a system of imprimitivity based on the homogeneous

space X = K\G and acting on a separable Hilbert space H. Then, there exists a unique (up

to unitary equivalence) representation L of K and a unitary operator W : H → HL such that:

WU(g)W−1 = UL(g), for all g ∈ G,

WP (Z)W−1 = E(Z), for every Borel set Z ⊆ X,

where (E,UL) is the canonical system of imprimitivity acting on HL obtained by induction

from L.

Proof. See Chapter 16, paragraph 3, Theorem 1 in [41]. For an alternative proof, check Section

6.5 in [45].

Hence, we see that every system of imprimitivity is unitarily equivalent to an induced repre-

sentation induced by a representation of the stabilizer subgroup. This theorem shows the close

connection between induced representations and SI’s. In addition, it shows that the stabilizer K

in a homogeneous space X = K\G encodes much of the structure of systems of imprimitivity

based on this space. In fact, representations of the stabilizer subgroup determine completely all

possible SI’s based on X . This is shown by the following theorems.

Theorem 2.37. Let (E,UL) and (Ẽ, U L̃) be two canonical systems of imprimitivity of a group

G, based on X .
= K\G, and acting on the carrier spaces HL and HL̃, where L and L̃ are uni-

tary representations of K. Let R(L, L̃) be the set of all intertwining operators ( see Definition

2.15) and S be the set of all linear operators V ∈ L (HL,HL̃) from HL to HL̃ such that:

1. U L̃(g)V = V UL(g), for all g ∈ G.

2. Ẽ(Z)V = V E(Z), for all Borel sets Z ⊆ X .

Then, the spaces R(L, L̃) and S are isomorphic. In particular, a linear operator U ∈ R(L, L̃)

is unitary if, and only if, the corresponding operator V ∈ S is also unitary.

Proof. See Chapter 16, part B, Theorem 3 in [41].

The sets R(L, L̃) and S contain all the information about the equivalence classes (with their

respective meanings) of the representations of K and the SI’s on X , respectively. Therefore,
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the above isomorphism shows that one is completely determined by the other. In particular,

choosing L = L̃ and L irreducible (which means that R(L,L) = {λI|λ ∈ C}), it follows from

this theorem that S = {λI|λ ∈ C}, and we have the following corollary.

Corollary 2.38. Let UL be a representation of a locally compact, separable group G induced

by a representation L of K ⊆ G. Then, the canonical system of imprimitivity (E,UL) is

irreducible if, and only if, the representation L is irreducible.

Therefore, even though the irreducibility of L is not enough (in general) to guarantee the

irreducibility of UL, it is enough to guarantee the irreducibility of the canonical system of

imprimitivity. It also follows immediately from the last assertion of the theorem the following

result.

Corollary 2.39. The systems of imprimitivity (E,UL) and (Ẽ, U L̃) are unitarily equivalent if,

and only if, L and L̃ are unitarily equivalent.

2.6 Induced Representations of Regular Semi-direct Prod-

ucts

So far, the method of induced representations proved to be a powerful tool to obtain unitary rep-

resentations of a vast class of groups (namely, separable, locally compact topological groups) in

terms of representations of closed subgroups. The power of the method relies on the fact that it

is constructive, that is, we construct explicitly the induced representation and the corresponding

carrier space. Since groups and their representations appear very frequently in Physics, this

technique finds there an extensive field for applications. Still, it is interesting to know when

we can go one step further and determine the irreducible unitary representations of the group.

When the group under consideration is an isometry group of a given spacetime, these are re-

lated, according to Wigner’s interpretation, to elementary systems. Nonetheless, as we saw in

the last section, it is not possible with such a level of generality, to guarantee that the induced

representation UL will be irreducible, even if L is.

Hence, the most natural strategy is to put more conditions on the structure of the groups,

such that we can guarantee that UL is irreducible (for irreducible L). This was done by Mackey,

and the most general class of groups such that this property is guaranteed to be valid is that of

(regular) semi-direct products, where the normal group is also abelian. Fortunately, this class

is still large enough to include many important groups for Physics, such as the Poincaré, the

Euclidean, and the Galilean groups. The goal of this section is to show that, for this type of
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group, not only we can obtain unitary, irreducible representations by induction, but all such

representations can be obtained by this method. Let us start by defining precisely what is a

regular semi-direct product of groups.

The idea is to construct, from two given groups N and H , a third group G = N ⋊H , where

⋊ denotes the semi-direct product. However, the two groups cannot be completely unrelated.

The group H must be homomorphic with a subgroup of the group of all automorphisms of N ,

Aut(N). There are two ways of constructing a semi-direct product: the first, called inner semi-

direct product, we start with a group G, a normal subgroup N , and an arbitrary subgroup H .

If some conditions between these groups are satisfied (see Definition 2.40 below), we say that

G is the inner semi-direct product of the two; the second, called outer semi-direct product, we

start with any two groups N and H (with the condition that H is homomorphic with a subgroup

of Aut(N)) and construct a third one from the Cartesian product of the two, which will be the

outer semi-direct product of N and H . Both constructions are equivalent and we will later on

only say semi-direct product when referring to G = N ⋊H .

Definition 2.40. Let G be an arbitrary group, N a normal subgroup, and H an arbitrary sub-

group. If any element g ∈ G can be written as g = nh, where n ∈ N and h ∈ H , and in

addition N ∩H = {e}, we say that G = N ⋊H is the inner semi-direct product of N and H .

Note that, if g1 = n1h1 and g2 = n2h2, then

g1g2 = n1h1n2h2 = n1h1n2h
−1
1 h1h2 = n1(h1n2h

−1
1 )h1h2,

and (h1n2h
−1
1 ) ∈ N , since N is normal. Note further that the map ϕh : N ∋ n 7→ ϕh(n) =

(h1n2h
−1
1 ) ∈ N is an automorphism ofN , andH ∋ h 7→ ϕh(.) ∈ Aut(N) is an homomorphism

from H to Aut(N). With that in mind, the connection with the next definition of semi-direct

product is clear.

Definition 2.41. Let N and H be any two groups and ϕ : H → Aut(N) a homomorphism.

Then the outer semi-direct product G = N ⋊ H is defined as the set G .
= N × H , together

with the group multiplication law:

(n1, h1) · (n2, h2) = (n1ϕh1(n2), h1h2). (2.7)

Some properties of semi-direct products will later be useful:

• If eN and eH denotes the identities in N and H , then the subsets of elements of the form

(n, eH) and (eN , h), with n ∈ N and h ∈ H , are isomorphic with the groups N and H ,
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respectively. Furthermore, N is a normal subgroup.

• The space of left cosets G/N is isomorphic with H .

• If ϕ is the trivial homomorphism (ϕh = eN , ∀h ∈ H), then the semi-direct product

coincides with the direct product.

• The Levi-Malcev Theorem (see Chapter 1, paragraph 3, Theorem 5 in [41]) says that every

connected Lie group is locally isomorphic with a semi-direct product.

The representation theory of semi-direct products also presents special characteristics. From

now on, we will assume that N and H are topological groups. Equipping G = N ⋊ H with

the product topology, it also becomes a topological group. Let T be a representation of G,

and lets denote by U .
= T |N and V .

= T |H its restrictions to N and H , respectively. Since

(n, h) = (n, eH) · (en, h) for all n ∈ N and h ∈ H , we have that:

T (g) = T (n, h) = U(n)V (h), (2.8)

which means that a representation of a semi-direct product G = N ⋊ H is completely deter-

mined by its restrictions. Note, however, that due to the special multiplication law (2.7), not

every representation U and V are acceptable: they need to be consistent with the multiplication

law. More explicitly, let g1 = (n1, h1) and g2 = (n2, h2) be any two elements of G. Then, since

T (g1)T (g2) = T (g1 · g2), and g1 · g2 = (n1ϕh1(n2), h1h2), we have that:

T (g1)T (g2) = U(n1)V (h1)U(n2)V (h2)

= U(n1ϕh1(n2))V (h1h2),

which implies that:

V (h1)U(n2) = U(ϕh1(n2))V (h1).

Since this relation must be true for any elements in N and H , we can just drop the indices and

write V (h)U(n) = U(ϕh(n))V (h), which can be put in the form:

V (h)U(n)V −1(h) = U(ϕh(n)). (2.9)

This equation is surprisingly similar to the covariance equation defining a system of imprimi-

tivity (2.5), the only difference being that in this last equation, we don’t have a spectral mea-
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sure. Nonetheless, we can get to an exact equality if we assume further that N is abelian.

In this case, we can try to use the spectral measure on the dual space of N which comes

from the decomposition of U in the famous SNAG Theorem (check, for instance, Chapter

6, paragraph 2, in [41]). Let us be more precise. Let N̂ denote the group of all charac-

ters of N . We want to define an action of H on N̂ and transform it into an H-space, in

the sense of Definition 2.8. If n̂ : N ∋ n 7→ n̂(n) = ⟨n, n̂⟩ ∈ C is a character, and

h ∈ H , then ϕ̂h(n̂) : N ∋ n 7→ ⟨ϕh(n), n̂⟩ ∈ C is also a character. Furthermore, the map

N̂ ∋ n̂ 7→ ϕ̂h(n̂) ∈ N̂ is an automorphism of N̂ , and H ∋ h 7→ ϕ̂h ∈ Aut(N̂) is a homomor-

phism. Thus, we can define the right action of H on N̂ by:

n̂h
.
= ϕ̂h(n̂),

or with a different notation by:

⟨n, ϕ̂h(n̂)⟩ = ⟨ϕh(n), n̂⟩. (2.10)

With this action, N̂ is now a H-space. We can even extend this action to the whole group G by

defining the action of N on N̂ as the trivial action, that is:

n̂g
.
= n̂h = ϕ̂h(n̂), (2.11)

where g = (n, h) ∈ G. Next, applying the SNAG Theorem, and from equation (2.9), we have

that:

V (h)U(n)V −1(h) = U(ϕh(n))

=

∫
N̂

⟨ϕh(n), n̂⟩dP (n̂)

=

∫
N̂

⟨n, n̂⟩dP (ϕ−1
h (n̂)),

where P is a spectral measure on N̂ , and where we used (2.10) in the last step. On the other

hand, the left-hand side of (2.9) is:∫
N̂

⟨n, n̂⟩d(V (h)P (n̂)V (h)−1),
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which gives: ∫
N̂

⟨n, n̂⟩d(V (h)P (n̂)V (h)−1) =

∫
N̂

⟨n, n̂⟩dP (ϕ−1
h (n̂)).

This equation, together with the fact that characters separate points in N , allow us to conclude

that the spectral measures must be the same and:

V (h)P (Z)V (h)−1 = P (Zh−1),

for every Borel set Z ⊆ N̂ . That is, the pair (P, V ) is a system of imprimitivity based on N̂ .

Furthermore, since U(n)P (Z)U(n)−1 = P (Z) for all Z, it follows that T (g)P (Z)T−1(g) =

P (Zg−1): in other words, every unitary representation of a semi-direct product (withN abelian)

is imprimitive.

This analysis shows that the problem of finding a pair of representations U and V of N and

H such that T (n, h) .
= U(n)V (h) is a representation of G = N ⋊ H is equivalent to finding

a system of imprimitivity (P, V ) based on N̂ . We will show that there is a procedure to obtain

the irreducible representations of G. The first step is to note that H does not have, necessarily,

a transitive action on N̂ . Thus, we split N̂ into orbits:

N̂ =
⋃
n̂∈N̂

On̂, (2.12)

where On̂ is the set of all n̂h for a given character n̂ and for all h ∈ H . Since any orbit

is a homogeneous space, it follows from Theorem 2.9 that each orbit is homeomorphic with

the right-coset space On̂ ≃ Kn̂\H , where Kn̂ is the stabilizer of n̂. From Theorem 2.13, we

know that there exists a quasi-invariant (with respect to H) measure µ on each orbit. For our

next step, it is important to understand if these quasi-invariant measures are concentrated in

an orbit or not. In general, this is not true (see Chapter 17, Example 1, in [41] for a counter-

example). Therefore, to guarantee that this pathological case does not occur, we make the

further assumption that the semi-direct product is regular.

Definition 2.42. We say that G = N ⋊ H is a regular semi-direct product if N̂ contains a

countable family Z1, Z2, ... of Borel subsets, each a union of G orbits, such that every orbit in

N̂ is the intersection of the members of a subfamily Zn1 , Zn2 , ... containing that orbit.

The importance of this property appears in the following proposition.

Proposition 2.43. Let T be a unitary representation of a regular semi-direct product G = N ⋊

H , and let E(.) be the spectral measure associated with the restriction U of the representation
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T to N . Then, if T is irreducible there exists an orbit On̂ where E is concentrated, that is,

E(On̂) = I and E(N̂ −On̂) = 0.

Proof. See Chapter 17, Proposition 1 in [41].

Hence, let T be an irreducible, unitary representation, E(.) the associated spectral measure

of U = T |N , OT the orbit associated to T by the above proposition, and KT the stability group

of OT such that OT ≃ KT\H . Because the action of N on N̂ is trivial (equation (2.11)), it is

also true that OT ≃ N ⋊KT\G. Then, we can write:

T (g)E(Z)T (g)−1 = E(Zg−1),

where Z ⊆ OT is a Borel set. We can now apply the Imrpimitivity Theorem 2.36 to con-

clude that every irreducible representation T of G is equivalent to a representation UL which

is induced from a representation L of N ⋊ KT . The representation UL is realized in the

Hilbert space HL = L2(OT , µ,H), where H is the Hilbert space where the representation

L of N ⋊KT is acting. Consider the set S defined in Theorem 2.37. If V ∈ S, this implies that

V ∈ R(UL, UL). Since T and UL are unitarily equivalent, this also implies that V ∈ R(T, T ).

Hence, R(T, T ) = S, and according to Theorem 2.37 the set S is isomorphic with R(L,L).

Since T is by assumption irreducible, it follows that L is also irreducible.

The following Lemma give us an useful description of the reduction of L to N , understood

as a subgroup of N ⋊KT .

Lemma 2.44. Let L be as above, H be the Hilbert space where L is acting, and L|N be the

restriction of L to N . Then:

L|Nu = ⟨n, n̂⟩u,

where u ∈ H and n̂ ∈ OT .

Proof. See Chapter 17, Lemma 2 in [41].

From this lemma and the above discussion, one could ask how much the irreducible repre-

sentation L is determined by a representation M of KT . Our next lemma answers this question.

Lemma 2.45. Every irreducible unitary representation L of N ⋊ KT is determined by and

determines an irreducible unitary representation M of KT .

Proof. See Chapter 17, Lemma 3 in [41].
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We summarize the above discussion in the following theorem.

Theorem 2.46. LetG = N⋊H be a regular, semi-direct product of separable, locally compact

groups N and H , and let N be abelian. Let T be an irreducible, unitary representation of G.

Then:

1. We can associate with T an orbit OT in N̂ with stabilizer group KT .

2. T is unitarily equivalent to an induced representation UL, where L is an irreducible,

unitary representation of N ⋊ KT , which is completely determined by an irreducible,

unitary representation M of KT . The representation UL is realized in the Hilbert space

HL = L2(OT , µ,H).

Hence, we have shown that every irreducible representation of G is unitarily equivalent to

an induced representation. The next theorem proves the converse, namely, that every induced

representation is irreducible.

Theorem 2.47. Let G be as in the previous theorem. Then:

1. With each orbit On̂ in N̂ (with stabilizer Kn̂), and with each irreducible representation L

of N ⋊ Kn̂ (which comes from a irreducible representation M of Kn̂) we can construct

the induced representation UL which is irreducible. Because a representation of a semi-

direct product is of the form (2.8), and because the restriction to N is determined by

Lemma 2.44, the representation UL acts on HL = L2(O, µ,H) as:

(UL(g)f)(n̂) = ⟨n, n̂⟩UM(h)f(n̂), (2.13)

where g = (n, h) ∈ G, and where UM is a representation of H induced by Kn̂.

2. The spectral measure E(.) coming from the restriction of UL to N is concentrated on the

orbit O.

Proof. See Chapter 17, Theorem 5 in [41].

Combining the last two theorems, we have a complete understanding of all the irreducible,

unitary representations of G in terms of induced representations. We finish this section with an

overview of an application of this theory to a very important group: the Poincaré group.

Example 2.48. The construction of all irreducible, unitary representations of the Poincaré group

was first done by Wigner in his seminal paper [36]. Many of his steps, however, were “heuris-

tic”. Nonetheless, they served as an inspiration to Mackey to construct rigorously the mathe-

matical machinery of induced representations presented in the last chapters. Here, we only give
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an overview of the construction of these representations, since a full presentation would be very

lengthy. We refer to [41, 46] for a full analysis.

We will focus our attention on the universal cover of the proper orthocronus Poincaré group

P̃↑
+, that is, the identity connected, time orientation preserving component of P̃ . This group

can be written as the regular semi-direct product P̃↑
+ = R4 ⋊ SL(2,C). Following the steps

described in this section, we define the action of SL(2,C) on R̂4 as in equation (2.10). This

action partitions R̂4 into orbits, like in equation (2.12). The next step is to understand these

orbits. We have the following possibilities:

• O±
m: Choose the vector R̂4 ∋ n̂ = (±m, 0, 0, 0), m ∈ R. The action of SL(2,C) gener-

ates the mass hyperboloid Ωm = {n̂ ∈ R̂4|n̂µn̂µ
.
= n̂0n̂0 − n̂1n̂1 − n̂2n̂2 − n̂3n̂3 = m2}.

The stability group of this orbit is the (cover of) the rotation group, SU(2). The ir-

reducible representations of this group are parametrized by j = 0, 1/2, 1, 3/2, ... with

dimension 2j + 1. Hence, the irreducible representations arising from this orbit are

parametrized by a pair (m, j), interpreted as the mass and spin of an elementary system.

• Oim: Choose the vector R̂4 ∋ n̂ = (0,m, 0, 0). The stability group for this orbit is

SL(2,R). This group has three series of irreducible representations, denoted by principal

series, discrete series, and the supplementary series.

• O±
0 : We take the representative R̂4 ∋ n̂ = (1/2, 0, 0, 1/2). The stability group of this

orbit is Ê(2) = R2 ⋊ S1, the cover of the two-dimensional Euclidean group. As this

group has the form of a regular semi-direct product, its irreducible representations are,

again, obtained by induction. In complete analogy, we define the action of S1 on R̂2,

which splits this space into orbits given by circles with radius r. If r = 0, the stability

group is S1, whose irreducible representations are parametrized by j = 0,±1/2,±1, ....

The obtained representations of P̃↑
+ correspond to massless particles with finite helicity

j. If r > 0, the stability group is {I,−I}, which possess only the trivial and the adjoint

representations, labeled by τ = 0 or τ = 1. Hence, the obtained representations of P̃↑
+

have two parameters (τ, r). These are the so-called infinity spin representations.

• O0
0: In this case, the only representative is R̂4 ∋ n̂ = (0, 0, 0, 0), and the stability group

is the whole SL(2,C), the Lorentz group. This group has two series of irreducible repre-

sentations: the principal series, and the supplementary series. We refer to [41] for more

details.

These are all the orbits and, according to the theorems of this section, they give rise to all

unitary, irreducible representations of P̃↑
+. The carrier space of each of these representations is
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L2(O, µ,KO), where µ is a quasi-invariant measure, and KO is the representation space of the

representations of the stabilizer of each orbit. For example, for the massive representaions this

space is given by L2(Ω, µm,C2j+1), where µm is the Lorentz-invariant measure µm = dp3/ω,

ω =
√
p2 +m2.

2.7 Formulation for left-action

In this chapter, most of our constructions were done assuming the right action of a group on the

homogeneous space. All of the results, however, can be equivalently written for the left action.

In the following, we summarize how this is done.

Condition 2 in the Definition 2.21 of HL now reads:

f(gk) = L(k−1)f(g),

for all k ∈ K and g ∈ G, and the action of UL on HL, previously given by equation (2.2) is

now:

(UL(s)f)(g)
.
= (ρs(g))

1/2 f(s−1g), s, g ∈ G, f ∈ HL.

For the formulation on the carrier space L2(X,µ,H), the action of UL, previously given by

equation (2.4), is now:

(UL(s)f)(x) = (ρs(x))
1/2L(klgs)f(s

−1x), s, g ∈ G, f ∈ L2(X,µ,H).

Finally, for the regular semi-direct products, equation (2.10) is substituted by:

⟨n, ϕ̂h(n̂)⟩ = ⟨ϕ−1
h (n), n̂⟩.
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Chapter 3

Newton-Wigner Localization on

Minkowski Spacetime

I venture to say that any notion of localizability in three-dimensional space which

does not satisfy (the Newton-Wigner axioms) will represent a radical departure

from present physical ideas.
A. S. Wightman

As we will see below, the Newton-Wigner localization formalism is based on very few, weak

assumptions, which led Wightman to state the above quote in his seminal paper [18] on the

localizability of quantum mechanical systems. In a very natural sense, it is the most straight-

forward generalization of the successful notion of the position observable in non-relativistic

Quantum Mechanics. It relies on the foundational axioms of Quantum Mechanics, namely,

that every observable (in the sense of Definition 1.1) of a quantum system is implemented in

the theory’s mathematical structure by a self-adjoint operator, whose spectrum corresponds to

the possible outcomes of experiments (remember the map TQT in equation (1.2)). The most

fundamental theories we presently have, describe the universe in different aspects: on one side

the quantum mechanical description of the structure of matter, and on the other the relativistic

description of space and time. In the attempt to join both of these theories a “back reaction” is

expected: quantum mechanical principles should change the way we understand the spacetime

structure, while the causality constraints of spacetime should be incorporated into the mathe-

matics of Quantum Mechanics. While a complete understanding of this intersection remains in

distant dreams, we can only hope to take small steps in this direction.

The Newton-Wigner localization is an attempt to incorporate the causality structure of

spacetime while retaining the axioms of Quantum Mechanics intact. That this was a failed

enterprise, is both a surprise and an indication that the introduction of new mathematical ob-
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jects in the theory of relativistic quantum systems ought to be considered. The traditional idea

of an observable as a self-adjoint operator might have to be replaced by more general mathemat-

ical structures. This idea is already present in nowadays research, where the spectral measure is

replaced by positive operator-valued measures (POVM). This is used, for example, in attempts

to define a time operator [47, 48]. In the second part of this thesis, we will provide an analogous

abstraction of the idea of an observable, introducing a notion of an observable associated with a

logic. Before venturing into this endeavor, however, it is necessary to have a deep understand-

ing of why the natural proposal of Newton and Wigner fails. For that we dedicate both this and

the next chapter: first, we concentrate on the full description of Newton-Wigner localization in

Minkowski spacetime, showing its successes and failures. To get to the bottom of this local-

ization scheme, we get rid of the special features of Minwkoski spacetime and generalize its

construction to general homogeneous globally hyperbolic spacetimes in Chapter 4.

The organization of this chapter is as follows. We start by giving a straightforward derivation

of the Newton-Wigner operator and its most immediate properties. We then proceed to give

an abstract definition, based on the theory of systems of imprimitivity developed in the last

chapter. Finally, we close the chapter by displaying some of the many No-go Theorems on the

Localizability Problem.

We start with the position operator in non-relativistic Quantum Mechanics. Let H =

L2(R3, dx3) be the Hilbert space of a free particle moving in the three-dimensional space. Then,

the position operators are defined as:

(Qiψ)(x) = xiψ(x)

D(Qi) =

{
ψ ∈ L2(R3, dx3)

∣∣∣ ∫
R3

|(Qiψ)(x)|2dx3 <∞
}
,

where i = 1, 2, 3. These are unbouded, self-adjoint operators with σ(Qi) = R. Furthermore,

these operators can be obtained through a spectral integral with respect to the canonical spectral

measure in this space:

Qi =

∫
R
xidE(xi),

where

(E(B)ψ)(x) = χB(x)ψ(x), B ∈ B(R3). (3.1)

Let F : L2(R3, dx3) → L2(R3, dp3) denote the Fourier transform into the momentum space.
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In this space, the position operators have the form:

FQiF−1 = i
∂

∂pi
, (3.2)

and they are hermitian with respect to the inner product in L2(R3, dp3). On the other hand, the

Hilbert space of a relativistic particle is L2(Ωm, µm), where Ωm is the mass hyperboloid, and

µm is the Lorentz-invariant measure. In this space, the inner product is given by:

⟨ψ, ϕ⟩ =
∫
Ωm

ψ(p)ϕ(p)
dp3

ω
, (3.3)

where ω =
√
p2 +m2. An immediate question that arises is: can we also define (3.2) as a

position operator acting on the relativistic Hilbert space? Although this is still a well-defined

operator, we cannot interpret it as modeling an observable anymore, simply because it is not a

hermitian operator with respect to the inner product (3.3):〈
ψ, i

∂

∂pi
ϕ

〉
= i

∫
R3

ψ(p)

(
∂

∂pi
ϕ(p)

)
dp3

ω

=

∫
R3

ϕ(p)

[(
−i ∂
∂pi

+ i
pi

p2 +m2

)
ψ

]
(p)

dp3

ω

̸=
〈
i
∂

∂pi
ψ, ϕ

〉
,

where we did a partial integration in the second step.

Hence, we see that only the Fourier transform is not enough to carry successfully the posi-

tion operator from L2(R3, dx3) to L2(Ωm, µm). We can, however, try to “correct” the unitary

map between these spaces, such that we have a self-adjoint operator. Let us define the map

W : L2(Ωm, µm) → L2(R3, dx3) as:

(Wψ)(x)
.
=

[
F−1

(
ψ

ω1/2

)]
(x). (3.4)

This map can be shown to be unitary (see Chapter 20 in [41]). We can now define the following

operators:

QNW
i

.
= W−1QiW = i

(
∂

∂pi
− pi

2ω2

)
.

These are the so-called Newton-Wigner position operators. We can immediately see that this

operator is hermitian (and self-adjoint) with respect to the inner product (3.3) since the ω term

in the definition of W compensates for the ω term in the inner product. Also, these operators
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can similarly be obtained by a spectral integral:

QNW
i =

∫
R
xidP

NW (xi),

where PNW = W−1EW is the spectral measure.

Let us now have a closer look at the properties of these operators. Let g be the metric tensor

in Minkowski spacetime M, with signature (+ − −−), where we assume a time orientation is

given. Let V+ denote a preferred half of the open cone of time-like vectors representing the

future-directed time-like vectors. Define:

T+
.
= {v ∈ V+|v unit, time-like, and future-oriented}.

Every n ∈ T+ defines a reference frame in M. We denote by Σn,t the three-dimensional

Cauchy-surface to which n is normal, where t denotes the proper time of n. The Euclidean

group E(3) corresponds to the subgroup of P↑
+ that preserves n. We denote by (x0, x1, x2, x3)

a set of coordinates on M which is co-moving with n. With this choice of structure, we put

extra labels “t” and “n” in the Newton-Wigner operator QNW
i,n,t and on the spectral measure PNW

n,t

such that the choice of a reference frame, a co-moving set of coordinates, and a foliation into

Cauchy- surfaces Σn,t is implicit. If the context permits, we also drop the label “n” to simplify

the notation.

Proposition 3.1. Let U be a unitary, irreducible, massive, spinless representation of P↑
+ acting

on H, and consider the Newton-Wigner operator QNW
i,n,t and spectral measure PNW

n,t , as above.

Then:

1. Poincaré covariance:

U(h)PNW
n,t (B)U−1(h) = PNW

Λn,th
(hB), h = (Λ, a) ∈ P↑

+, B ∈ B(Σn,t).

2. Euclidean covariance:

U(g)PNW
n,t (B)U−1(g) = PNW

n,t (gB), g ∈ E(3), B ∈ B(Σn,t).

3. Heisenberg commutation relations:

[QNW
i,n,t , Q

NW
j,n,t] = 0 = [Pi,n, Pj,n], [QNW

i,n,t , Pj,n] = iδi,j,
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where the Pi, n’s are the momentum operators.

4. Heisenberg uncertainty principle:

∆ψ(Q
NW
i,n,t )∆ψ(Pi,n) ≥

ℏ
2
,

where ∆ψ denotes the standard deviation with respect to ψ ∈ H.

5. Time evolution:

U((I, τ))−1QNW
i,n,0U((I, τ)) = QNW

i,n,τ ,

where τ denotes a time translation vector.

6. Time-like worldline of position expectation values: the four-vector

(
t, ⟨ψ,QNW

1,n,tψ⟩, ⟨ψ,QNW
2,n,tψ⟩, ⟨ψ,QNW

3,n,tψ⟩
)
∈ M

is time-like for every t ∈ R and every ψ ∈ H.

Proof. See Proposition 8, Proposition 13, and Corollary 14 in [32].

The above proposition shows that Newton-Wigner localization has many appealing features

similar to the position observable in non-relativistic Quantum Mechanics. Additionally, items

1 and 6 in the proposition demonstrate some agreement with relativistic principles (though see

the No-Go theorems in the next section). The Euclidean covariance item is a direct consequence

of the Poincaré covariance, which might seem redundant. However, we listed them separately

to emphasize an important point: the Euclidean group acts on Σn,t, and the spectral measure

transforms covariantly with this group’s action on Borel spatial subsets. On the other hand,

Poincaré covariance would not hold if we considered a Borel subset of spacetime B ∈ B(M)

instead of a Borel subset B of the spatial slice.

Finally, the Newton-Wigner approach offers a candidate solution to the (spatial) Localizabil-

ity Problem since we can construct a family of probability measures for each ψ ∈ L2(Ωm, µm)

with it:

µNWψ,t (B)
.
= ⟨ψ, PNW

n,t (B)ψ⟩, B ∈ B(Σn,t), (3.5)

and then TRQT
(
[α], [Q]pos, w

[Q]pos

[α]

)
=
(
ψ,QNW , µNWψ,t

)
as discussed in the Introduction 1.
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Up to this point, we constructed the Newton-Wigner program concretely, starting with an

irreducible, massive, spinless, unitary representation of the proper, orthochronus Poincaré group

acting on H = L2(Ωm, µm). However, we can also approach it more abstractly using the

tools from the previous chapter. We now rederive the Newton-Wigner program in the abstract

language of systems of imprimitivity. This prepares us for the next chapter, where we will use

this language for all our constructions.

Note that we have two fundamental ingredients in the construction we made above:

1. A spectral measure: With this object we can construct a probability measure for each

vector in the Hilbert space and, through a spectral integral of the co-moving coordinates,

self-adjoint operators with the properties of position observables.

2. Covariance of the spectral measure with respect to the spatial isometry group: The

spectral measure takes values on the Borel sets in Σn,t, which means that it must be

covariant with respect to a unitary representation V of the Euclidean group E(3).

The interesting point is that a pair (P, V ) of a spectral measure and a unitary representation V

of E(3) such as above is the precise definition of a system of imprimitivity (check Definition

2.34) which is based on Σn,t. We can then give the following definition.

Definition 3.2. A Newton-Wigner localization scheme at time t in a Hilbert space H is a sys-

tem of imprimitivity (P, V ) based on Σn,t, where V is a unitary representation of the Euclidean

group.

The action of the Euclidean group on Σn,t is transitive, meaning that this is a homogeneous

space, and a E(3)-space, in the sense of Definitions 2.7 and 2.8, respectively. Hence, from

Theorem 2.9 it is homeomorphic to a space of left cosets with the stability group, which is

SO(3) in this case, that is, Σn,t ≃ E(3)/SO(3). Note that, in this chapter, we are using the

left-action convention, which is the standard one in Physics literature. In contrast, we used the

right-action convention in the previous chapter, in accordance with the Mathematics literature.

This, however, poses no difficulty. The results and definitions in one convention can be easily

translated into the other, as is done in Section 2.7.

We now come to an important point: we can directly apply Mackey’s Imprimitivity Theorem

2.36 to conclude that any Newton-Wigner localization scheme is unitarily equivalent to the

canonical one in the induced Hilbert space. More precisely:

• If (P, V ) is a Newton-Wigner scheme on H and based on Σn,t ≃ E(3)/SO(3), then

there exists a unique (up to unitary equivalence) representation L of SO(3) and a unitary
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operator W : H → HL such that (P, V ) is unitarily equivalent to (E,UL), the canonical

system of imprimitivity.

• The canonical spectral measure is defined on Σn,t ≃ E(3)/SO(3) and is defined as in

equation (2.6).

• The induced representation UL of E(3), giving by equation (2.2), acts on the carrier space

HL (see Definition 2.21). Equivalently, the carrier space is giving byL2(E(3)/SO(3), dx3,K),

where dx3 is the (invariant) Lebesgue measure, and K is the representation space of L.

The action of the induced representation in this space is given in equation (2.4).

By the third item, we see that a Newton-Wigner localization scheme naturally leads to a space

of (vector-valued) square-integrable functions on the spatial section Σn,t ≃ E(3)/SO(3), whose

functions give a spatial probability distribution. Let us exemplify the abstract characterization

with an important case. Consider that L is the trivial representation. In this case, the carrier

space of the representation of P↑
+ is given by L2(Σn,t, dx

3), and the canonical spectral measure

is exactly the one given in equation (3.1). The unitary map (3.4) is an example of the unitary

map between H and HL that appears in Mackey’s Imprimitivity Theorem.

Let us now think more carefully about the Hilbert space H where we define a Newton-

Wigner localization scheme. If H = L2(R3, dx3), as in the non-relativistic case described at the

beginning of this chapter, a Newton-Wigner localization scheme corresponds to the usual local-

ization in non-relativistic Quantum Mechanics for a massive, spinless particle, and the position

operator to the usual one. In our language, this Hilbert space is the carrier space of a repre-

sentation of the Galilean group, obtained by induction from the trivial representation of SO(3).

Likewise, by choosing nontrivial representations of the stability groups of other orbits, we ob-

tain by induction all irreducible representations of the Galilean group (as a consequence of it

being a semi-direct product and Theorems 2.46 and 2.47) corresponding to massive or massless

particles with arbitrary spin, and a Newton-Wigner localization scheme is again the usual one

for non-relativistic systems. Hence, when restricted to Hilbert spaces of non-relativistic ele-

mentary systems, the Newton-Wigner localization coincides with the standard localization in

Quantum Mechanics.

The interesting point is that the same procedure applies when H describes a relativistic sys-

tem. Remember that, similar to the Galilean group, all irreducible representations of the proper,

orthochronus Poincaré group can be obtained by induction (Example 2.48) since both of these

groups are semi-direct products. These irreducible representations all act on Hilbert spaces with

the form H = L2(O, µ,KO), where O is some orbit which determines the representation, µ is
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some quasi-invariant measure, and KO is the representation space of the stability group of the

orbit O. In complete analogy with the non-relativistic case, any Newton-Wigner localization

scheme (P, V ) defined on these relativistic spaces will be unitarily equivalent to the canonical

system of imprimitivity on L2(Σn,t, dx
3,K) for some representation L of SO(3). A first strat-

egy to construct a Newton-Wigner localization scheme is to start with one of these irreducible

representations, restrict it to the Euclidean group, and check if there is any spectral measure

such that this pair is a system of imprimitivity based on Σn,t. Since each of the irreducible

representations of P↑
+ carry the important interpretation of representing an elementary particle,

we can classify which irreducible representations are localizable, in the sense of giving rise or

not to a Newton-Wigner localization scheme, and likewise for general unitary representations.

This is the idea of the following definition.

Definition 3.3. Let U be a unitary representation of P↑
+. We say that U defines a localizable

system on Σn,t, or that it is a localizable representation, if there is a spectral measure P such

that (P,U |E(3)) is a Newton-Wigner localization scheme.

Next, we show that every massive, unitary representation of P↑
+ is localizable. Observe that,

due to the Imprimitivity Theorem, a representation is localizable if, and only if, U |E(3) is an

induced representation of SO(3). In this case, the canonical system of imprimitivity is based on

E(3)/SO(3) ≃ R3 and the canonical spectral measure on the induced representation, together

with this representation, defines a Newton-Wigner localization scheme.

Theorem 3.4. Let U be a unitary representation of P↑
+. Then U defines a localizable system on

Σn,t ≃ R3 if, and only if, it is a direct integral of massive, irreducible (arbitrary spin), unitary

representations.

Proof. This proof is an adaptation and an extension of Proposition 1, Chapter 20, in [41]. Let

us start by classifying the irreducible representations of P↑
+ that are localizable. Note that direct

sums or direct integral representations of the localizable irreducible representations will also

be localizable due to Theorem 2.29. The main tool for this goal is the important Induction-

Reduction Theorem 2.33. In the present case, we choose the groups G, N , and K appearing in

the formulation of this theorem to be P↑
+, E(3), and R4 ⋊ SO(3), respectively. This means that

the induced representation UL of G coming from a representation L of K = R4 ⋊ SO(3) is an

irreducible, massive representation with arbitrary spin. Then, the Induction-Reduction theorem

says that:

UL|E(3) ≃
∫
D
UE(3)(D)dν(D), (3.6)
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where D ∈ D = R4 ⋊ SO(3)\P↑
+/E(3), UE(3) is a unitary representation of E(3), and ν is

any admissible measure on D. By our previous argument, UL|E(3) will be localizable if, and

only if, all the representations of the Euclidean group appearing in the direct integral (3.6) are

induced from SO(3). Next, let us understand better the space of double cosets D. The space

R4 ⋊ SO(3)\P↑
+ of right-cosets is well known to be homeomorphic to the mass hyperboloid

Ωm. Then, the space D is formed by the orbits of Ωm under the action of E(3). From items 2

and 3 in the Induction-Reduction Theorem, it follows that the representations UE(3) are induced

representations from the stabilizer subgroups of each of these orbits. However, each point

in Ωm is invariant under the action of E(3), meaning that each point in the hyperboloid is

an orbit with the same stabilizer, namely, SO(3). We conclude that all irreducible massive

representations UL induced from R4 ⋊ SO(3) are localizable in R3. Furthermore, these are the

only irreducible representations of P↑
+ that are localizable, since the stabilizer groups would

be different for other irreducible representations. Finally, using Theorem 2.29 we conclude

that any unitary representation which is a direct integral of massive (arbitrary spin) irreducible,

unitary representations of P↑
+ is also localizable.

Hence, we see that the only localizable systems on a Cauchy surface in Minkowski space-

time are massive. We could extend our definition of localizability to include different homoge-

neous subregions of Minkowski spacetime rather than just Σn,t. In this case, different symmetry

groups under which the spectral measures are covariant would be involved, but the general ap-

proach is just the same. There are proposals in this direction for massless particles [24, 26] but,

since we are focusing on systems that are localizable in a Cauchy surface, we don’t get into

further details.

So far, we have found a way to construct Newton-Wigner localization schemes by start-

ing with massive representations. Fixing one such representation U , can we guarantee the

uniqueness of the system of imprimitivity? Note that, in principle, there can be unitary maps

Y : H → H that commute with U |E(3) but that do not commute with the spectral measure.

Therefore, there is some arbitrariness in this process. Let us understand how this can affect our

notion of localizability. Let (P,U |E(3)) and (Q,U |E(3)) be Newton-Wigner localization schemes

for the same representation U acting on H. Then, according to the Imprimitivity Theorem, there

exist unitary maps W,Z : H → L2(Σn,t, dx
3,K) such that both these systems of imprimitivity

are equivalent to the canonical one in L2(Σn,t, dx
3,K), respectively. For a given ψ ∈ H, let

f(x)
.
= (Wψ)(x) and g(x) .= (Zψ)(x) denote the corresponding functions in L2(Σn,t, dx

3,K).
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Then, the probability measures are defined as:

µPψ (B) = ⟨ψ, P (B)ψ⟩ = ⟨f, χBf⟩

µQψ (B) = ⟨ψ,Q(B)ψ⟩ = ⟨g, χBg⟩,

for B ∈ B(Σn,t). Obviously, these probability measures do not necessarily coincide, and they

can predict the same state ψ ∈ H to be located in completely different regions. The question

of uniqueness was answered by Wightman in [18]. Uniqueness holds for elementary systems

(when U is an irreducible massive representation) and under further technical regularity require-

ments.

Finally, we can extend the probability measure defined in equation (3.5) to include general

algebraic states on B(H) (see Definition 6.10).

Definition 3.5. Let U be an arbitrary massive, unitary representation of P↑
+ acting on H, and let

ω : B(H) → C be an arbitrary algebraic state. Consider a Newton-Wigner localization scheme

(P,UE(3)) at time t. Then, we define the Newton-Wigner probability measures on B(Σn,t) as:

µNWω,t (B)
.
= ω(PNW

n,t (B)), B ∈ B(Σn,t).

A fair question to ask at this point is: what is the probability measure associated with the

vacuum state? Recall that the vacuum state is invariant under the action of the Poincaré group,

meaning that it arises from the trivial representation of this group. However, this representation

is not included in the localizable representations according to Theorem 3.4. Hence, the vacuum

representation is non-localizable with respect to the Newton-Wigner localization approach, and

there is no probability measure associated with the vacuum state.

3.1 Problems with Newton-Wigner and No-go Theorems

The Newton-Wigner approach, despite the many good features displayed in the last section, is

not considered to be the solution to the Localizability Problem. We will explain the reason for

that in this section. The main issue is that, even though the starting point of its construction is

a representation of the Poincaré group, the Newton-Wigner localization is not entirely compat-

ible with the causal structure of special relativity. This is expressed in the failure to satisfy a

causality condition called “Castrigiano’s condition” [29], to be explained below. Furthermore,

the problem is shown to be difficult by many so-called No-go Theorems that have been proven

in the last decades. These theorems, which have Newton-Wigner as the first victim, also put

51



Chapter 3. Newton-Wigner Localization on Minkowski Spacetime

severe constraints on alternative approaches to the Localizability Problem. We will refrain from

an extensive exposition on the topic of these theorems, as it would be too lengthy. Instead,

we will focus on a theorem proved by Malament [21], as we will present an analogous result

in Section 7.1. In this section, for simplicity, we restrict our attention to unitary, irreducible,

massive, spinless representations of P↑
+.

Suppose we know that a relativistic quantum system in a one-particle state ψ ∈ H =

L2(Ωm, µm) is localized in a compact region ∆ ⊂ Σn,t at time t, meaning that µNWψ,t (∆) = 1.

Let ∆′ be the intersection of the causal future of this region (denoted by J+(∆)) with another

Cauchy surface Σn,t′ , that is, ∆′ .= J+(∆) ∩ Σn,t′ , as in the figure below.

Figure 3.1: Causal future of a compact region ∆.

The idea of Castrigiano’s causality condition is to guarantee that µNWψ,t′ (A) = 0 for any

A ∈ B(Σn,t\∆′), meaning that there is no faster than light propagation. The precise definition

of this condition, as formulated in [32], is the following.

Definition 3.6 (Castrigiano’s Causality Condition). Let µψ
.
= {µψ,n,t|n ∈ T+, t ∈ R} denote

an arbitrary family of probability measures on L (Σn,t) (Lebesgue measurable sets), for each

ψ ∈ H. Then, we say that µψ defines a causal family of probability measures if for every

∆ ∈ L (Σn,t):

µψ,n,t(∆) ≤ µψ,n′,t′(∆
′), ∆′ .= (J+(∆) ∪ J−(∆)) ∩ Σn′,t′

for all n, n′ ∈ T+, and for all t, t′ ∈ R.

The need to use the Lebesgue measurable sets L (Σn,t) instead of the Borel sets is that, if

∆ ∈ B(Σn,t), it may happen that ∆′ /∈ B(Σn,t), as proved in Lemma 16 in [29].

Proposition 3.7. The Newton-Wigner family of probability measures µNWψ
.
= {µNWψ,n,t|n ∈

T+, t ∈ R} is not causal.

52



Chapter 3. Newton-Wigner Localization on Minkowski Spacetime

Proof. See Corollary 20 in [32].

This result represents a drastic strike on Newton-Wigner’s localization, as it implies that

a system localized in a compact region can later be detected outside its causal future. This

probability, however, is extremely low: check [4] for a numerical estimate. Due to this fact,

one could argue that Newton-Wigner is correct up to a very good precision and that we should

not worry about its limitations. However, this conflict with the causal structure indicates that

something deep is hidden behind all this, and that the pursuit of a solution to this problem

might lead to a new understanding and a change in our perspective on how we should interpret

the position observable in the relativistic context. After this fatal blow to the Newton-Wigner

approach, physicists have been trying to come up with new definitions of something similar

to a Newton-Wigner localization scheme. The problem is difficult, though, because Newton-

Wigner’s approach is already very minimal: we only require a spectral measure covariant under

a representation of the spatial symmetry group. What conditions in this definition could be

weakened such that we have a hope to counter the causality issues? Let us try the following,

even more minimal approach.

Consider any family of orthogonal projections (not necessarily a spectral measure) {P (B)|B ∈
B(Σn,t) and bounded} on a Hilbert space H with the following properties:

1. Localizability: If A,B ∈ B(Σn,t) are disjoint, then P (A)P (B) = 0.

2. Translation covariance: Let U be a representation of the translation group R4. For any

B ∈ B(Σn,t) and for any translation a ∈ R4, U(a)P (B)U−1(a) = P (B + a).

3. Energy bounded below: For any time-like translation a, the generator H(a) of the one

parameter group {U(ta)|t ∈ R} has a spectrum bounded from below.

4. Microcausality: Let A,B ∈ B(Σn,t) be disjoint sets with a non-zero distance between

them. Then, for any time-like translation a, there is an ϵ > 0 such that [P (A), P (B +

ta)] = 0 for all |t| < ϵ.

Note that these are way more general conditions since there are no spectral measures in-

volved, no Poincaré group or Euclidean group representations, and no systems of imprimitivity.

Nonetheless, we have the following no-go result.

Theorem 3.8 (Malament’s No-go Theorem). Let {P (B)|B ∈ B(Σn,t) and bounded} be a

family of orthogonal projections satisfying conditions 1 to 4 above. Then, P (B) = 0 for all

B ∈ B(Σn,t).
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Proof. See [21].

This theorem does not apply to the Newton-Wigner localization since condition 4 is not

satisfied. This is an example among many No-go theorems on the localizability of relativistic

systems. We refer to [23] for a more complete exposition of the topic. Even more minimal

approaches appeared in the last decades. The most popular so far is to substitute the orthogonal

projections with positive operator-valued measures (POVM’s). Many interesting works have

been done with this approach [29, 30, 32, 33]. However, some of these No-go theorems were

also extended to this context [23, 34], showing how difficult the problem is. In the second part

of this thesis, we prove our own version of this theorem in the context of orthocomplemented

lattices (see Theorem 7.4).
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Chapter 4

Newton-Wigner Localization on

Homogeneous Globally Hyperbolic

Spacetimes

I’m enough of an artist to draw freely on my imagination.

A. Einstein

In this chapter, we present our extension of the Newton-Wigner formalism from Minkowski

spacetime to homogeneous globally hyperbolic spacetimes. Let us set our goals very clearly:

1. First and foremost, our goal is to formulate Newton-Wigner localization in this context.

More precisely, we want to define an analogous definition of a Newton-Wigner localiza-

tion scheme (Definition 3.2).

2. With this definition in place, we want to construct (as in the flat spacetime case) a position

observable, as well as a family of probability measures, one for each state in the relevant

Hilbert space. We also discuss the lack of uniqueness of the Newton-Wigner localization

scheme, and we provide a further classification in terms of Thompson components (see

below).

3. We aim to classify what are the representations of the spacetime isometry group that gives

origin to a notion of localization, in the spirit of Theorem 3.4.

Besides these three main points, we also provide, in the next sections, some applications and

decompositions of the Hilbert space that are induced by the position operators.

We start by defining our framework: we assume that (M, g) is a connected, time-oriented,

lorentzian, globally hyperbolic smooth manifold of dimension dim(M) = m and metric g,
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which is homogeneous under the (right) action of its spacetime isometry group. We will refer

to an M with such a mathematical structure as our “spacetime”. We distinguish two groups

of symmetries: GST is the isometry group of the spacetime, and GS is the subgroup of

spatial isometries, namely, the subgroup of GST that preserves Σ. We assume that both of

these groups are separable and locally compact. These manifolds allow for a “separation” of

the spatial component. This is the content of the following theorem.

Theorem 4.1. Consider a connected, time-oriented, globally hyperbolic spacetime (M, g).

Then, M is isometric to R × Σ with metric −βdt2 + gt where β is a smooth positive func-

tion, gt is a Riemannian metric on Σ depending smoothly on t ∈ R and each {t} × Σ is a

smooth spacelike Cauchy hypersurface in M.

Proof: See [49].

□

Hence, if dim(M) = m, then Σ is a submanifold with dimension dim(Σ) ≡ n = m − 1,

and the pair (Σt, gt), where Σt
.
= {t} × Σ, is a Riemannian manifold for any t. We will define

the notion of Newton-Wigner localization for a fixed, arbitrary time, say t = 0. The choice of t

is unimportant since all Σt are diffeomorphic (see Lemma 2.2 in [49]). With this notation, the

group GST corresponds to all diffeomorphisms on M that preserves the metric g, and GS is the

subgroup of diffeomorphisms preserving g0. Due to the assumption that GST acts transitively

onM (and as a consequence,GS acts transitively on Σ), we can write (remember Theorem 2.9):

M ≃ KST\GST

Σ ≃ KS\GS,

where KST and KS are the stability groups under the actions of GST and GS , respectively. For

instance, if M is the Minkowski spacetime, GST is the Poincaré group, KST is the Lorentz

group, while GS is the Euclidean group, and KS is SO(3).

The next important ingredient in our construction is the Hilbert space where our notion of

localizability will be established. Recall that in flat spacetime, this Hilbert space was derived as

a representation of the spacetime isometry group, obtained through induction. This symmetry

group was the central object, being “big enough”, such that the whole construction could rely

entirely on the information provided by this group. As a consequence of Theorems 2.46 and

2.47, all irreducible representations can be obtained by the induction process. However, in

the framework we are currently working on, we cannot expect the isometry group to provide
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so much information and allow such a complete construction. Nonetheless, we claim that the

assumption of an isometry group acting transitively on M provides the minimal and sufficient

framework for our purposes, namely, the construction of localizability:

• As the reader might already have guessed, the central mathematical object for a notion

of localizability will again be a system of imprimitivity. Mackey’s Imprimitivity Theo-

rem 2.36 provides a direct connection between this object and induced representations.

Therefore, we need to work in a framework where induction is possible.

• With the assumption that M is homogeneous, the induction method remains applicable,

allowing us to study systems of imprimitivity. However, we can no longer guarantee

that all representations can be obtained in this manner, nor that the ones obtained will be

irreducible.

• Whatever the method used to construct the Hilbert space describing a quantum system on

M , it will have to carry a representation of GST . We want to study and possibly classify,

which of these representations are localizable. As we will see, if this representation is one

obtained by induction, we can classify it. Otherwise, there is nothing we can say about it.

The following definitions are very natural extensions of Definitions 3.2 and 3.3.

Definition 4.2. A (generalized) Newton-Wigner localization scheme at time t in a Hilbert

space H is a system of imprimitivity (P, V ) based on Σt, where V is a unitary representation of

GS .

Definition 4.3. Let U be a unitary representation of GST . We say that U defines a localizable

system on Σt, or that it is a localizable representation, if there is a spectral measure P such

that (P,U |GS) is a Newton-Wigner localization scheme.

From Definition 4.2 alone, we can already obtain strong conclusions, very similar to those

in the previous chapter. It follows from Mackey’s Imprimitivity Theorem that:

• If (P, V ) is a Newton-Wigner scheme on H and based on Σt ≃ KS\GS , then there

exists a unique (up to unitary equivalence) representation L of KS and a unitary operator

W : H → HL such that (P, V ) is unitarily equivalent to (Ec, U
L), the canonical system

of imprimitivity.

• The canonical spectral measure Ec is defined on Σt and given in equation (2.6).
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• The induced representation UL of GS , given by equation (2.2), acts on the carrier space

HL (see Definition 2.21). Equivalently, the carrier space is given by L2(KS\GS, µ,K),

where µ is a quasi-invariant measure, and K is the representation space of L. The action

of the induced representation in this space is given in equation (2.4).

• The measure µ can be determined more precisely: note that the volume measure νt (lo-

cally defined as νt =
√
gtdx

1 ∧ ... ∧ dxn, for local coordinates (x1, ..., xn) ) on B(Σt) is

invariant under the action of the spatial isometry group GS . Hence, as a consequence of

item 2 in Theorem 2.13, this is the unique (up to a multiplicative constant) measure on

KS\GS and the carrier space can be written as L2(KS\GS, νt,K).

The general carrier spaceL2(KS\GS, νt,K) has an interesting resemblance with the Minkowski

spacetime case. In flat spacetime, the carrier space is given by L2(R3, dx3,K), where K is the

representation space of SO(3). The irreducible representations of SO(3) are finite-dimensional

and are interpreted as the spin degrees of freedom of the quantum system. For irreducible rep-

resentations L, the carrier space can then be written as L2(R3, dx3,CN) ≃ L2(R3, dx3) ⊗ CN .

It is a profound and fascinating fact, that the quantum property of spin, representing internal

degrees of freedom, arises as representations of the stabilizer group SO(3), a subgroup of the

spatial isometry group. Even more intriguing: the same holds true for the general case, where

K is the representation space of the stabilizer groupKS . Because (Σt, gt) is a Riemannian man-

ifold, its stabilizer group under the action of GS is necessarily compact (see Corollary 1.78 in

[50]). Therefore, since every irreducible representation of a compact group is finite-dimensional

(Theorem 2.20), it also follows that in this case the general carrier space has the form:

L2(KS\GS, νt,K) ≃ L2(KS\GS, νt)⊗ CN . (4.1)

Nonetheless, it is not clear how to physically interpret KS and the internal degrees of free-

dom coming from its irreducible representations when compared to the spin. Mathematically,

however, they are perfectly analogous.

Given a Newton-Wigner localization scheme, we can follow a directly analogous construc-

tion to what we did in the flat spacetime case. Let us start by defining a position operator on

H. Recall that we constructed it in the flat spacetime case by performing a spectral integral of a

coordinate function which, in that case, was a global coordinate function. In general, in homo-

geneous manifolds, curvature might be present, such that we can only define local coordinates.

We then have the following definition of a position operator.

Definition 4.4. Let (P, V ) be a Newton-Wigner localization scheme in a Hilbert space H, based
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on Σt. Let {(Uα, ϕα)}α∈I be an atlas on Σt, and define the following extension of the local

coordinate function:

hiUα
(s)

.
=

0 , if s /∈ Uα

ϕiα(s) , if s ∈ Uα.

Then, we define the (generalized) Newton-Wigner operators as the spectral integral:

QNW
i,α

.
=

∫
Σt

hiUα
(s)dP (s),

where the sub-index α is a reference to the local chart (Uα, ϕα).

Due to the equivalence between (P, V ) and (Ec, U
L) through a unitary map W : H →

L2(Σt, νt,K), the Newton-Wigner operators are unitarily equivalent to the operator:

Mi,α
.
=

∫
Σt

hiUα
(s)dEc(s),

which acts on L2(Σt, νt,K). The operators QNW
i,α and Mi,α have the following immediate prop-

erties, as can be seen from Proposition A.18:

1. It is self-adjoint, since hiUα
is real-valued.

2. It is bounded if, and only if, ϕiα(s) < C ∀s ∈ Uα, for some C <∞.

3. Spectrum σ(QNW
i,α ) = σ(Mi,α) = hiUα

(Σt) = {0} ∪ ϕiα(Uα). Note that 0 is the unique

eigenvalue. The associated eigenvectors have interesting localization properties. We see

that:

(Mi,α − 0I)f(s) = 0 (4.2)

(Mi,αf)(s) = 0 (4.3)

Thus, f ∈ L2(Σt, νt,K) is an eigenvector with eigenvalue 0 if, and only if, its support lies

outside Uα. If 0 is not in the image of the local coordinate function, then ϕiα(Uα) is purely

continuous. Otherwise, it is a purely continuous spectrum with a single eigenvalue in the

middle of the continuous spectra.

Also in complete analogy with the Newton-Wigner probability measures in the flat space-

time framework (Definition 3.5), we can define:
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Definition 4.5. Let (P, V ) be a Newton-Wigner localization scheme at time t in a Hilbert space

H, based on Σt. Let ω : B(H) → C be an arbitrary algebraic state. Then, we define the

(generalized) Newton-Wigner probability measures on B(Σt) as:

µNWω,t (B)
.
= ω(P (B)), B ∈ B(Σt).

Hence, we have a well-defined notion of Newton-Wigner localizability on M . Our next

task is, in the spirit of Theorem 3.4, to classify the unitary representations U of GST that are

localizable.

Theorem 4.6. Let GST , GS , and KS be as above, and Z an arbitrary closed subgroup of GST .

Assume further that GS and Z act regularly (Definition 2.32) on GST . Let UL denote a unitary

representation of GST induced by a unitary representation L of Z. Then:

1.

UL|GS ≃
∫
D
U |GS(D)dν(D),

where D = Z\GST/GS , U |GS is a unitary representation of GS , and ν is any admissible

measure.

2. The representation UL is localizable if, and only if, ν has measure zero on orbits D ∈ D
that doesn’t have KS as the stabilizer group under the action of GS .

3. Let Z = KS . If KS is a normal subgroup of GST , then all representations UL are

localizable.

Proof. This proof follows similar steps to the proof of Theorem 3.4. The first item in the theo-

rem is a direct application of the Induction-Reduction Theorem 2.33. Let us prove the second.

Note that if the representationUGS is induced fromKS , then the canonical system of imprimitiv-

ity originating from the induction is based on KS\GS ≃ Σt. Hence, if the only representations

appearing in the direct integral are of this kind, the representation UL|GS is localizable. On the

other direction, if UL|GS is localizable, then due to the Imprimitivity Theorem it is unitarily

equivalent to a representation induced from KS . Finally, to prove the last assertion, we use item

3 in the Induction-Reduction Theorem, which asserts that for an arbitrary xD = KSgD ∈ D,

gD ∈ GST , its stability group is given by GS ∩ g−1
D KSgD. From the normality condition of KS ,

and the fact that it is contained in GS , it follows that KS is the stability group of an arbitrary

xD.
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Therefore, we see that we have a partial classification of localizable representations. How-

ever, observe that, when compared to the flat spacetime scenario, this classification has lim-

itations: since it is not guaranteed that all (if any) irreducible representations of GST can be

obtained by induction, our classification method does not apply to all representations, only

those obtained by induction. If U is not of this form, there is nothing we can say about it.

Notwithstanding, remember from Section 2.6 that if GST is in the form of a regular semi-direct

product, then all irreducible representations can be obtained by induction. Hence, in this case,

Theorem 4.6 allows us to classify all representations of GST .

The next point we want to address is that of the uniqueness of a Newton-Wigner Localization

scheme. In Minkowski spacetime, it was proved that for a fixed representation V of E(3), there

is a unique Newton-Wigner localization scheme for each elementary system [18]. However,

this result requires further regularity conditions, which are dependent on the symmetries of

Minkowski spacetime, and we cannot expect the same result in such a general framework.

Nonetheless, we propose a new classification method. Let us fix a representation V of GS and

consider a Newton-Wigner localization scheme (P, V ). Then, all other systems of imprimitivity

with this same representation V are obtained by unitary maps Y : H → H that commute with

V but not with P . Our goal is to further classify these unitarily equivalent spectral measures.

For that, we use the following partition of B(H)+ (the set of positive bounded operators) into

equivalence classes, first proposed by Thompson in [51].

Definition 4.7. Let A,B ∈ B(H)+. We say that A and B are equivalent A ∼ B if, and only

if, there exists positive numbers α, β such that:

A ≤ αB and B ≤ βA.

We name each equivalence class as a Thompson component.

These Thompson components have interesting geometrical structures and are well studied

in the literature [52–54]. Let (P, V ) and (Q, V ) be two Newton-Wigner localization schemes

for the same representation V . Our objective is to use the partition into Thompson components

to understand what is the physical difference between them. For the projections in the spectral

measures, and for an arbitrary B ∈ B(Σt), the equivalence condition above can be written as

the existence of α, β > 0 such that:

⟨ψ, P (B)ψ⟩ − α⟨ψ,Q(B)ψ⟩ ≤ 0 and ⟨ψ,Q(B)ψ⟩ − β⟨ψ, P (B)ψ⟩ ≤ 0, ∀ψ ∈ H.
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Equivalently, we can write:

µNWψ,t (B)− αλNWψ,t (B) ≤ 0 and λNWψ,t (B)− βµNWψ,t (B) ≤ 0,∀ψ ∈ H,

where µNWψ,t (B)
.
= ⟨ψ, P (B)ψ⟩ and λNWψ,t (B)

.
= ⟨ψ,Q(B)ψ⟩. The important point here is

that these equations can only be satisfied if for every ψ given a non-zero probability measure

µNWψ,t (B) ̸= 0 on B it is also true that λNWψ,t (B) ̸= 0 and vice versa. The physical interpretation

is that if the Newton-Wigner localization scheme (P, V ) predicts a non-zero probability of de-

tecting the quantum system in the state ψ in B, then (Q, V ) is (locally) equivalent to (P, V ) if

it also predicts a non-zero probability. We give the following defiition.

Definition 4.8. Let (P, V ) and (Q, V ) be two Newton-Wigner localization schemes at time t.

We say that they are locally equivalent in B ∈ B(Σt) if P (B) ∼ Q(B). We say that (P, V )

and (Q, V ) are totally equivalent (P, V ) ∼ (Q, V ) if they are locally equivalent for every

B ∈ B(Σt).

It follows that if two Newton-Wigner localization schemes are totally equivalent then they

cannot be too different: if one says that there is a non-zero probability of detection in an arbitrary

region, then the other says the same.

4.1 States following geodesics

A problem related to the Localizability Problem is determining which states of a quantum sys-

tem are particle states. An even deeper question would be: what exactly are particles? We will

not get into this discussion in this work (we refer the interested reader to [6–8]), but in this

section we would like to explore one possible criterion. In experiments probing the position of

a quantum system, we often observe particles following (classical) trajectories in spacetime, for

instance, in Bubble Chambers [55]. From item 6 in Proposition 3.1, we see that, for irreducible,

massive, spinless representations of the Poincaré group, these trajectories can be obtained from

the expectation values of the Newton-Wigner operators. These are causal curves on Minkowski

spacetime for every ψ ∈ L2(Ωm, µm) (see also [56]). We would like to formulate a similar idea

in our present framework. However, since we are in a possibly curved background, instead of

straight lines, we need to look for geodesics. For this section only, we make the further assump-

tion that there is a one-parameter group describing time evolution such that we can time evolve

the Newton-Wigner operators t 7→ QNW
i (t) through a unitary representation of this group, and

that the operatorsQNW
i,α are bounded, meaning that ϕiα(Uα) ⊂ Rn is bounded for all i = 1, ..., n.
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Recall that the spectrum of any QNW
i,α is given by:

σ(QNW
i,α ) = {0} ∪ ϕiα(Uα).

For simplicity and without loss of generality, suppose that ϕiα(Uα) > 0 for all i = 1, ..., n.

Hence, according to our Lemma A.9, we have:

N(QNW
i,α ) = co(σ(QNW

i,α )).

That is, the possible values of the expectation values of QNW
i,α are given by the closed interval in

the real line, ranging from 0 to the maximum value of ϕiα.

Next, let us define the following function on the manifold M (defined in terms of the local

coordinates of Uα) for each ψ ∈ H:

γψ(t) =
(
t, ⟨ψ,QNW

1,α (t)ψ⟩, ..., ⟨ψ,QNW
n,α (t)ψ⟩

)
. (4.4)

If ⟨ψ,QNW
i,α (t)ψ⟩ ∈ ϕiα(Uα) for every i = 1, ..., n, then γψ(t) defines a curve on M expressed

in local coordinates. This will be the case if ψ ∈ P (Uα)H, since σ(QNW
i,α |P (Uα)H) = ϕiα(Uα) =

N(QNW
i,α |P (Uα)H). The relevant question is then: for which states ψ ∈ H is the geodesic equa-

tion:

d2γλψ
dt2

(t) + Γλµν
dγµψ
dt

(t)
dγνψ
dt

(t) = 0 (Γλµν : Christoffel symbols)

satisfied? It is not clear that, like in Minkowski spacetime, all these curves will be causal

geodesics.

4.2 Decompositions of L2(Σt, νt) induced by Mi,α

The spectral theorem in the direct integral form (Theorem A.25) says that any bounded, self-

adjoint operator induces a direct integral such that the operator acts as multiplication by el-

ements of the spectrum on this space. In this section, we will obtain this decomposition for

the specific case when the carrier space in equation (4.1) is L2(KS\GS, νt) ≃ L2(Σt, νt) (that

is, the representation L of KS is the trivial representation), and the operator Mi,α is bounded

(ϕiα(Uα) has finite volume). The space L2(Σt, νt) will usually have non-trivial invariant sub-

spaces under the action of Mi,α. We will also find a countable decomposition of L2(Σt, νt) into

a countable direct sum of invariant subspaces where each of them possesses a cyclic vector. We
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start with this second decomposition.

Definition 4.9. LetA be a (possibly unbounded) self-adjoint operator. A vectorψ ∈ ∩∞
n=0D(An)

is called a cyclic vector if span{Anψ|n ∈ N} is dense in H. If A has a cyclic vector, then we

say that it has a simple spectrum.

Alternatively, an operator A has a cyclic vector if, and only if, the linear span of vectors

EA(B)ψ is dense in H, where EA is the spectral measure associated with A, and B varies over

all Borel subsets of the spectrum (see [57] for proof of this equivalence).

Example 4.10. Consider the Hilbert space L2(R, dx), where dx is the Lebesgue measure, and

consider the global position operator on this space given by

(Mxf)(x) = xf(x)

D(Mx) = {f ∈ L2(R, dx)|xf ∈ L2(R, dx)}.

This operator has a cyclic vector. Recall that the spectral measure associated with this operator

is the multiplication by the characteristic functions of the Borel subsets of R. Define the vector

ψ(x) =
∞∑

k=−∞

2−|k|χ[k,k+1)(x).

Then, ψ ∈ L2(R, dx) and the linear span of vectors of the form χBψ, B ∈ B(R), contains the

characteristic functions of all bounded Borel sets of the real line. Since this space is dense in

L2(R, dx), ψ is a cyclic vector.

However, local position operators do not posses cyclic vectors. Let O ∈ R be a bounded

interval. Then, the local position operator is given by

(MOf)(x) = χO(x)xf(x)

D(MO) = {f ∈ L2(R, dx)|χOxf ∈ L2(R, dx)}.

Clearly, the image of this operator is in the closed subspace χOL2(R, dx), and it can not be

equal to the whole space if O ̸= R.

The second part of this example teaches us that the local position operators, in general,

possess non-trivial invariant subspaces. The identification of all these invariant subspaces is our

first goal in this section. In addition, if an operator has a simple spectrum, then the associated

direct integral has a simple expression.
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Lemma 4.11. Let A ∈ B(H) be a self-adjoint operator with cyclic vector ψ. Let µψ be the

unique measure such that

⟨ψ, f(A)ψ⟩ =
∫
σ(A)

f(λ)dµψ(λ),

for all continuous, real valued functions f defined on σ(A). Then, there exists a unitary map

U : H −→ L2(σ(A), µψ) such that

[UAU−1ϕ](λ) = λϕ(λ)

for all ϕ ∈ L2(σ(A), µψ)

Proof. See [58].

Hence, for position operators with simple spectrum, the two decompositions proposed in

this section have simpler forms. However, as illustrated in the above example, this is not the

case in general. The following lemma guarantees that the decomposition into direct sums is

possible.

Lemma 4.12. Suppose A ∈ B(H) is a self-adjoint operator. Then, H can be decomposed as

an orthogonal direct sum

H =
⊕
j=1

Wj,

where each Wj is a closed, non-zero, subspace invariant under A, and such that the restriction

of A to each Wj has a cyclic vector ψj . The number of Wj’s is either finite or countably infinite.

Proof. See [58].

Our first goal is to find the decomposition of L2(Σt, νt) in terms of the direct sum of these

invariant (under a fixed Mi,α) subspaces. For concreteness and simplicity, let us fix i = 1 and

perform our analysis for the operator M1,α. Unfortunately, there is no algorithm to find these

invariant subspaces and the respective cyclic vectors that work for all operators. A good place

to start is the following. Consider the closed subspace of functions with support in Uα. By the

orthogonal decomposition theorem, we have:

L2(Σt, νt) = L2(Uα, νt)⊕ (L2(Uα, νt))
⊥.
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Its is clear that L2(Uα, νt) is invariant underM1,α. It can be proven that, if V is an invariant sub-

space for a bounded operator A, then V ⊥ is invariant under A∗ (see [58]). Hence, (L2(Uα, νt))
⊥

is also invariant under M1,α. Unfortunately, these subspaces do not possess cyclic vectors for

the restriction of the position operator, and we need to search if these subspaces possess proper

invariant subspaces. Let us begin with the following proposition.

Proposition 4.13. (L2(Uα, νt))
⊥ = L2(U c

α, νt).

Proof. It is obvious that L2(U c
α, νt) ⊂ (L2(Uα, νt))

⊥. We want to prove the converse relation.

Let f ∈ (L2(Uα, νt))
⊥. Hence

⟨χUα , f⟩ =
∫
Uα

f(s)dνt(s) = 0.

The function f can be decomposed into real and imaginary parts, fr and fi, respectively, such

that

f(s) = fr(s) + ifi(s),

where fr and fi are real-valued, measurable functions. Next, define the positive and neg-

ative parts of a real-valued, measurable function g as g+(s) ≡ max{0, g(s)} and g−(s) ≡
max{0,−g(s)}, respectively. These are positive, measurable components, and we can write

fr(s) = f+
r (s)− f−

r (s)

fi(s) = f+
i (s)− f−

i (s).

It follows that

0 = ⟨χUα , f⟩ =
∫
Uα

f(s)dνt(s)

=

∫
Uα

f+
r (s)dνt(s)−

∫
Uα

f−
r (s)dνt(s) + i

∫
Uα

f+
i (s)dνt(s)− i

∫
Uα

f−
i (s)dνt(s).

Let supp(f+,−
r,i ) denote the supports of each component. Then

∫
Uα

f(s)dνt(s) =

∫
Uα∩suppf+r

f+
r (s)dνt(s)−

∫
Uα∩suppf−r

f−
r (s)dνt(s)

+ i

∫
Uα∩suppf+i

f+
i (s)dνt(s)− i

∫
Uα∩suppf−i

f−
i (s)dνt(s).

However, f must be orthogonal to all functions in L2(Uα, νt) and, in particular, it must be

66



Chapter 4. Newton-Wigner Localization on Homogeneous Globally Hyperbolic Spacetimes

orthogonal to all characteristic functions of the type χUα∩suppf+,−
r,i

∈ L2(Uα, νt). This implies,

for example, that
∫
Uα∩suppf+r

f+
r (s)dνt(s) = 0. Since f+

r is a non-negative function, then it

is zero almost-everywhere in Uα. This also implies that f−
r is zero almost-everywhere in Uα.

Repeating this same argument for the imaginary part, we conclude that the function f is null

almost-everywhere on Uα and the proposition is proven.

Therefore, up to now, we have the decomposition in invariant subspaces

L2(Σt, νt) = L2(Uα, νt)⊕ L2(U c
α, νt). (4.5)

The second component of this direct sum corresponds to the space of eigenvectors with eigen-

value 0 (see equation (4.2)). Since it is a subspace of a separable Hilbert space, it is also

separable. Then, there is a countable orthonormal basis, call it {hi}i∈N, that span L2(U c
α, νt) in

the sense that

L2(U c
α, νt) = span{h1} ⊕ span{h2} ⊕ .... (4.6)

In any component of this sum, the operator M1,α acts as multiplication by zero. Hence, each

subspace span{hi} is invariant under M1,α with cyclic vector hi, because the set:

{hi,M1,αhi, (M1,α)
2hi, ...} = {hi, 0, 0, ...}

is dense in span{hi}. We have thus found a decomposition of the second component in (4.5)

into invariant subspaces with cyclic vectors. Let us do the same for the first component.

We identify the first component with the space:

L2(Uα, νt) ≃ L2(ϕα(Uα), dx),

where dx = dx1dx2...dxn is the product of the Lebesgue measures in each component of Rn.

By its turn, this last space can be seen as an L2-space constructed from the product σ-algebra of

the Lebesgue σ-algebras on each ϕiα(Uα), with the product measure dx = dx1 ⊗ ...⊗ dxn (see

[59]). That is, we have

L2(ϕα(Uα), dx) = L2(ϕ1
α(Uα), dx1)⊗ ...⊗ L2(ϕnα(Uα), dxn),
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where

(f 1 ⊗ ...⊗ fn)(x1, ..., xn) = f 1(x1)...f
n(xn),

for f i ∈ L2(ϕiα(Uα)). On this space, the operator M1,α acts as multiplication by x1 on the first

component and as identity on the others, that is, M1,α =Mx1 ⊗ I⊗ ...⊗ I.

Let {eij}j∈N denote orthonormal basis for the spaces L2(ϕiα(Uα), dxi) for i = 2, ..., n. Then,

we can write

L2(ϕα(Uα), dx) = L2(ϕ1
α(Uα), dx1)⊗

{
span{e21} ⊕ span{e22} ⊕ ...

}
⊗ ...

...⊗ {span{en1} ⊕ span{en2} ⊕ ...}

By the distributive property between the tensor product and the direct sum, we have as a result

a countable direct sum of tensor product spaces

L2(ϕα(Uα), dx) =
⊕
a∈N

La, (4.7)

where each element of the sum is of the form

La = L2(ϕ1
α(Uα), dx1)⊗ span{e2j} ⊗ ...⊗ span{enl }

for some j, l ∈ N.

Proposition 4.14. Every La, a ∈ N, in equation (4.7) is invariant under M1,α and has cyclic

vector fac = χϕ1α(Uα)(x1)⊗ ...⊗ enl (xn).

Proof. Call L1 the space

L1 = L2(ϕ1
α(Uα), dx1)⊗ span{e21} ⊗ ...⊗ span{en1}

where the low index is 1 for all the spans. For simplicity and concreteness, we will prove the

Proposition for L1, but the proof is essentially the same for every a ∈ N. The operator M1,α

acts on L1 as

M1,α

[
f 1(x1)⊗ ...⊗ en1 (xn)

]
= x1f

1(x1)⊗ ...⊗ en1 (xn).

Because Mx1 is bounded on L2(ϕ1
α(Uα), dx1), it is everywhere defined and L2(ϕ1

α(Uα), dx1) is

an invariant space for Mx1 . Since M1,α acts as identity on the other components of the tensor
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product, it follows that L1 is an invariant subspace under this position operator.

Let us check that f 1
c is indeed a cyclic vector. We have that

(M1,α)
mf 1

c = (x1)
m ⊗ ...⊗ en1 (xn),

for m = 0, ...,∞. As a consequence of the Stone-Weierstrass Theorem, polynomials are dense

in L2(ϕ1
α(Uα), dx1) and the set {(M1,α)

mf 1
c |m = 0, ...,∞} is dense in L1.

Therefore, we succeeded in our first purpose: we have found a countable direct sum decom-

position of L2(Σt, νt) in terms of invariant subspaces under M1,α with cyclic vectors, which is

given by

L2(Σt, νt) =

(⊕
a∈N

La

)
⊕ span{h1} ⊕ span{h2} ⊕ ... (4.8)

Let us now find the direct integral representation induced by the generalized position oper-

ator. The subspace L2(U c
α, νt) is an eigenspace and, according to our discussion after Theorem

A.25, it can be isometrically embedded into the direct integral representation. Since the restric-

tion ofM1,α to each La has simple spectrum, we can apply Lemma 4.11 directly. Then, for each

La, there exists a unitary map

Wa : La −→ L2(ϕ1
α(Uα), µfac ),

where the measure is given by µfac (B) = ⟨fac , PM1,α(B)fac ⟩La , for B ∈ σ(M1,α|La) = σ(M1,α),

and where PM1,α is the spectral measure of M1,α. For example, in L1, this measure is given by

µfac (B) = ⟨fac , PM1,α(B)fac ⟩L1

= ⟨χϕ1α(Uα)(x1), χB(x1)χϕ1α(Uα)(x1)⟩L2(ϕ1α(Uα),dx1)⟨e21, e21⟩span{e21}...⟨e
n
1 , e

n
1 ⟩span{en1 }

= volume(B).

In fact, this measure will be the same for any La, since the eij’s are orthonormal in their respec-

tive spaces. For this reason, we will drop the subscript a in the measure henceforth.

Recall from our Example A.24 that each space L2(ϕ1
α(Uα), µfac ) can be thought as a direct

integral with respect to the measure µfac where we associate to each λ ∈ σ(M1,α|La) the Hilbert

69



Chapter 4. Newton-Wigner Localization on Homogeneous Globally Hyperbolic Spacetimes

space Ha
λ = C. Next, define

Hλ =
⊕
a∈N

Ha
λ,

for λ ∈ σ(M1,α), where to the eigenvalue 0 we associate the space H0 = L2(U c
α, νt). Since the

measures µfac are all equal, let us call it ξ. Let us perform the direct integral of this collection of

Hilbert spaces with respect to the measure ξ. We have that∫ ⊕

σ(M1,α)

Hλdξ(λ) =

∫ ⊕

σ(M1,α)

⊕
a∈N

Ha
λdξ(λ)

=
⊕
a∈N

∫ ⊕

σ(M1,α)

Ha
λdξ(λ)

=

(⊕
a∈N

L2(ϕ1
α(Uα), ξ)

)
⊕ L2(U c

α, νt)

=

(⊕
a∈N

L2(ϕ1
α(Uα), dx1)

)
⊕ L2(U c

α, νt).

By the other hand, we have that L2(Σt, νt) =
(⊕

a∈N La
)
⊕ L2(U c

α, νt). Then, finally, define

the unitary map U : L2(Σt, νt) −→
∫ ⊕
σ(M1,α)

Hλdξ(λ) given by

U :

 L2(U c
α, νt)

I−→ L2(U c
α, νt)

La
Wa−−→ L2(ϕ1

α(Uα), dx1)

That is, we have that

L2(Σt, νt)
U−→

(⊕
a∈N

L2(ϕ1
α(Uα), dx1)

)
⊕ L2(U c

α, νt) =

∫ ⊕

σ(M1,α)

Hλdξ(λ) (4.9)

Therefore, we have found the direct integral representation of the position operator M1,α. This

construction can be repeated for any Mi,α.

4.3 Newton-Wigner operator on perturbed Minkowski space-

time

In this section, we aim to investigate the effects of perturbations in the spatial metric on the

Newton-Wigner operators. This is motivated by the fact that our laboratories are situated in a
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spacetime that is not perfectly flat, but rather slightly curved. We will do it in the framework

of Minkowski in 1+1 dimensions for a massive, spinless, irreducible representation of P↑
+. The

Hilbert space of this system is H = L2(R, dp/ω), and equation (3.4) gives a unitary map

W : L2(R, dp/ω) → L2(R, dx).

Our strategy is to add a perturbation on the Euclidean metric in the following way. The

Euclidean metric is defined as

g(x)(v, w) = ⟨v, w⟩, (4.10)

where v, w ∈ TxR and ⟨, ⟩ denotes the usual inner product. If we multiply this metric by a

positive-definite real function ϕ(x), the resulting metric is still Riemannian. For example, for

ϕϵ(x) = 1− ϵe−x
2 , where 0 < ϵ < 1, we have the perturbed metric

gϵ(x)(v, w) = (1− ϵe−x
2

)⟨v, w⟩. (4.11)

The corresponding volume measure νϵ will be

νϵ(A) =

∫
A

√
detgijϵ dx (4.12)

=

∫
A

√
ϕϵ(x)dx, (4.13)

where A ∈ B(R).
Our next steps are the following. We begin by finding a unitary operator between L2(R, νϵ)

and L2(R, dx) to map the position operator Mϵ (multiplication operator by the coordinate x) on

the first space into the second; then we use the unitary map W−1 to map it to H. Let us define

the map T : L2(R, νϵ) −→ L2(R, dx) as:

(Tg)(x) = ϕ1/4
ϵ (x)g(x), (4.14)

where g ∈ L2(R, νϵ). It is straightforward to see that this is an unitary map

⟨Tg, Th⟩L2(R,dx) =

∫
R
(Tg)(x)(Th)(x)dx (4.15)

=

∫
R
g(x)h(x)

√
ϕϵ(x)dx (4.16)

= ⟨g, h⟩L2(R,νϵ). (4.17)

It is also easy to check that the inverse map is given by (T−1g)(x) = ϕ
−1/4
ϵ (x)g(x). Next, we
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examine how this unitary operator maps the position operator Mϵ into L2(R, dx). To this end,

we Taylor expand the function ϕ1/4
ϵ (x) and its inverse around ϵ = 0 at first order, finding that

ϕ1/4
ϵ (x) ≈ 1− ϵ

4
e−x

2

(4.18)

ϕ−1/4
ϵ (x) ≈ 1 +

ϵ

4
e−x

2

. (4.19)

Then, it follows that

(TMϵT
−1g)(x) = TMϵ

(
g(x) +

ϵ

4
e−x

2

g(x)
)

(4.20)

= T
(
xg(x) +

xϵ

4
e−x

2

g(x)
)

(4.21)

=
(
1− ϵ

4
e−x

2
)(

xg(x) +
xϵ

4
e−x

2

g(x)
)

(4.22)

= xg(x) +
xϵ

4
e−x

2

g(x)− xϵ

4
e−x

2

g(x)− xϵ2

16
e−2x2g(x) (4.23)

= xg(x)− ϵ2x

16
e−2x2g(x). (4.24)

Hence, the action of Mϵ in L2(R, dx) is the usual position operator plus a correction which

depends quadratically on the perturbation parameter.

Let F : L2(R, dx) −→ L2(R, dp) denote the Fourier transform into the momentum space and

ĝ(p)0 (F(g)) (p). We have that

[
F
(
TMϵT

−1
)
F−1ĝ

]
(p) =

[
F
(
xg − ϵ2x

16
e−x

2

g

)]
(x) (4.25)

= −i∂ĝ(p)
∂p

− ϵ2

16
F
(
xe−2x2g(x)

)
(4.26)

= −i
[
∂ĝ(p)

∂p
+

ϵ2

128
pe−p

2/8 ∗ ĝ(p)
]
, (4.27)

where in the last line we used the Convolution Theorem, and where ∗ denotes the convolution.

Finally, we can map this operator we obtained in the last equation to H using the unitary map

Z : L2(R, dp) → L2(R, dp/ω) given by (Zψ)(p) ≡
√
ωψ(p). Since W−1 is the composition

of F followed by Z, the resulting operator is the perturbed Newton-Wigner operator, QNW
ϵ .
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We can compute directly to find:

(QNW
ϵ ψ)(p) =

[
ZFTMϵT

−1F−1Z−1ψ
]
(p) (4.28)

=

[
Z

(
−i ∂
∂p

)
Z−1ψ

]
(p) +

[
Z

(
−i ϵ

2p

128
e−p

2/8

)
∗ (Z−1ψ)

]
(p) (4.29)

= i

(
∂

∂p
− p

2ω2

)
ψ(p)− iϵ2

[√
ω

128

(
pe−p

2/8
)
∗
(
ψ√
ω

)]
(p). (4.30)

Therefore, the perturbed Newton-Wigner operator corresponds to the usual operator plus a cor-

rection depending quadratically on the perturbation parameter. This construction was done for

a simple gaussian perturbation, but the same steps could be followed for a more complicated

perturbation.
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Modular Localization and the

Localizability Problem
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Chapter 5

Logics and Measurements

I believe that mathematical reality lies outside us, that our function is to discover

or observe it, and that the theorems which we prove, and which we describe

grandiloquently as our “creations,” are simply the notes of our observations.
G.H. Hardy

When looking at the fundamental laws of Physics, it always astonished me that these laws

are so general that they accommodate not only the reality of what is but also what could have

been. Cosmologists say that observations of the matter distribution in the Universe indicate

that the Universe is approximately flat, or at least with a mild curvature. However, General

Relativity is so powerful, that even if the matter content were completely different from what

it is, it would still be able to describe the Universe. In these alternative realities, we could

have positively or negatively curved spacetime or even closed causal curves. General Relativity

transcends what it is to whatever could have been. At least as far as our current understanding

allows us to go. As if this was not far enough, Mathematics seems to go one step further and

fluctuate above it all, governing and being obeyed. When General Relativity becomes old and

obsolete, Mathematics will welcome the new theory with its timeless youthfulness.

Yet, even Mathematics itself has its own basic rules, and many would agree that Logic lies

at the very bottom of its structure. Logical principles, such as implication, negation, and quan-

tifiers, are at the axiomatic formulation of Set Theory, for instance, and appear explicitly or

implicitly in any branch of Mathematics. On the other hand, some problems in Physics are so

involved, and the most obvious attempts fail so drastically, that we are forced to give up on

complex mathematical structures and demand only the bare logical minimum. This approach

goes beyond specific models and relies only on fundamental logical principles. As we will see,

this is the case for the Localizability Problem. However, before we focus on this specific prob-

lem, let us discuss a few more general examples. Given a physical system that we want to study
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(and we don’t specify at the moment whether it is classical or quantum), all that we can learn

about this system comes from experiments. In the language introduced in the Introduction 1,

these experiments are performed by instruments Q, whose equivalence classes form the (exper-

imental) observables [Q], as in Definition 1.1. However, the way in which these instruments

are used necessarily follows logical rules. These rules can be translated into a precise mathe-

matical language, which we will call a logic (Definition 5.5). With this, we are not providing a

model for the physical system. We are simply adding constraints that necessarily will have to

be incorporated into the model.

We illustrate with an example. Suppose we have an experiment that can determine whether

a given system is inside a cylinder B1 in R3 or not, as in the figure below (think about it as a

Geiger counter represented by the set B1).

Figure 5.1: Cylinder B1 in R3.

In this case, B1 represents an instrument that measures the system’s position. Consider now

that we have another cylinder B2 which represents a similar experiment that is equally capable

of determining if the system is inside it or not. In addition, suppose that B2 is contained in B1,

as in the figure below.

Figure 5.2: Cylinder B2 ⊂ B1 in R3.

Our first encounter with a logical principle is then very clear: if the system is inside B2,

this implies that it is also inside B1. Suppose now (with a bit more abstraction) that these two

cylinders intersect, as in the next figure.

If the system is detected in the region where these cylinders intersect, then it is inside both
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Figure 5.3: Intersecting cylinders in R3.

B1 and B2. Next, consider that we have a big cylinder B3 that contains both B1 and B2 in such

a way that B3 is the union of B1 and B2 and such that these don’t intersect.

Figure 5.4: Union of cylinders in R3.

If B3 detects the system, this means that it is inside B1 or B2. Finally, given a cylinder B1,

if the system is not detected in it, this means that it must be outside of B1. Thus we say that the

system is not in this cylinder. In other words, we negate that the system is in B1.

Let us now translate all this into a precise mathematical language: we associate to each

possible detector a subset of R3. We will choose these to be Borel subsets (that is, elements

of the Borel σ-algebra B(R3)) since these carry a sufficiently rich mathematical structure; the

implication rule can be translated into a partial order “≤” (that is, an antisymmetric, reflexive,

transitive relation), in this case, given by the inclusion of sets; the logical connectives and

and or can be translated into the intersection “∩” and union “∪” of sets, respectively; finally,

the negation is translated into the set complement “c”. In summary, we have a mathematical

structure L given by a quintuple L = (B(R3),≤,∪,∩,c ). This structure is just a specific

example of a general structure called logic, which we now define. The following definitions

and concepts can be found in standard textbooks such as [60, 61].
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5.1 Basic Concepts

Definition 5.1. Let (X,≤) be a partially ordered set. We call it a lattice if every pair of elements

a, b ∈ X has both a least upper bound (denoted by “a ∨ b” and also called join) and a greater

lower bound (denoted by “a ∧ b” and also called meet).

The operations join and meet are easily verified to be binary, associative, and commutative.

Also, the absorption laws are satisfied, that is a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a for every

a, b ∈ X . Based on these properties, we can give another definition of a lattice, based only on

the algebraic relations just presented.

Definition 5.2 (Algebraic definition). A lattice is an algebraic structure L = (X,∨,∧) consist-

ing of a setX , and two binary, commutative, and associative operations satisfying the absorption

laws.

We already showed that a lattice according to the order-theoretic definition is a lattice with

the algebraic definition. To go the other way round, we just notice that starting with an algebraic

lattice we can define a partial order on it as: a ≤ b if a = a∧ b. Hence, we will interchangeably

refer to a lattice as an algebraic structure or a partially ordered set with the properties above.

A lattice may have a least element and a greatest element, which we will denote by 0 and 1,

respectively. In our example above, these are simply 0 = ∅ and 1 = R3. Another very important

notion in a lattice is that of a complement.

Definition 5.3. An orthocomplementation in a lattice L is a mapping L ∋ a 7→ a⊥ ∈ L such

that:

1. a⊥⊥ = a.

2. a ≤ b implies b⊥ ≤ a⊥.

3. a ∧ a⊥ = 0 and a ∨ a⊥ = 1.

A lattice with an orthocomplementation is called an orthocomplemented lattice. If only con-

dition 3 is not satisfied we call it a (pseudo-) orthocomplemented lattice.

It follows from item 2 in this definition that the meet and join are not independent. In fact,

the De Morgan laws hold:

(∧
i∈I

ai

)⊥

=
∨
i∈I

a⊥i ,

(∨
i∈I

ai

)⊥

=
∧
i∈I

a⊥i , (5.1)
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where I is any finite set. In our example above, this orthocomplementation is given by the set

complement. Two lattices can have similar structures, and this gives rise to our next definition.

Definition 5.4. Let L1 = (X,∨X ,∧X ,⊥X , 0X , 1X) and L2 = (Y,∨Y ,∧Y ,⊥Y , 0Y , 1Y ) be two

orthocomplemented lattices. A map h : X → Y is a homomorphism if

1. h(0X) = 0Y and h(1X) = 1Y .

2. h(a ∨X b) = h(a) ∨Y h(b) and h(a ∧X b) = h(a) ∧Y h(b) for every a, b ∈ L1.

3. h(a⊥X ) = h(a)⊥Y for every a ∈ L1.

We call it an isomorphism if it has the further property that h(a) = 0Y if, and only if, a = 0X .

As we see, the structure of an orthocomplemented lattice already captures (most of) the es-

sential features of the logic behind the position measurements in the example above. However,

as it stands, this structure is yet too general and hard to work with. We need some extra tech-

nical requirements, that are not physically motivated but are necessary if we want to go further

without great technical difficulties.

Definition 5.5. Let L be an orthocomplemented lattice. We call it a logic if:

1. for any countably infinite sequence {ai}i∈N of elements in L,
∧
i∈N ai and

∨
i∈N ai exist

in L.

2. if a1, a2 ∈ L and a1 ≤ a2, then there exists an element b ∈ L such that b ≤ a⊥1 and

b ∨ a1 = a2.

If the element b in item 2 above exists, it is unique and equal to a⊥1 ∧ a2. In our example

above (which is clearly a logic), this element is the relative complement of a1 with respect to

a2. We have now come to a very important point. In the example given above, the logic L =

(B(R3),∪,∩,c ) implements all the experimentally verifiable propositions about the localization

of the system, that is, to every proposition of the form:

“the system is localized in the region B ⊆ R3”,

we associate the set B in the logic L. More generally, to any (experimental) observable Q

(Definition 1.1) of the system, we can formulate a similar proposition:

“the measured value of the observable Q lies in the set E ⊆ R”.
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Our basic assumption is that the set of all experimentally verifiable propositions about a phys-

ical system forms a logic. This condition puts constraints on the way the instruments Q them-

selves are used. We also assume, for technical reasons, that these sets E in R are elements of

the Borel σ-algebra of the real line. The logic associated with a given physical system encodes

its most profound characteristics. For instance, we will see that the logic of classical systems is

intrinsically different from the logic of quantum systems. Let us proceed with some more basic

definitions first.

From now on we will assume that a logic L associated with a physical system is given. On

top of it, we will construct some important concepts.

Definition 5.6. Let L be a logic. An observable associated with L is a mapping:

x : E 7→ x(E) ∈ L

where E ∈ B(R), and such that:

1. x(∅) = 0 and x(R) = 1.

2. If E,F ∈ B(R) and E ∩ F = ∅, then x(E) ≤ x(F )⊥.

3. If E1, E2, ... is a sequence of mutually disjoint Borel sets in R, then:

x

(⋃
n∈N

En

)
=
∨
n∈N

x(En).

We denote by O(L) the set of all observables associated with the logic L.

The idea of this definition is the following: given that we used an instrument to measure the

system, we associate the proposition that the measured value of this instrument lies in the Borel

set E with the element x(E) ∈ L. In other words, an observable in the logic-theoretic sense is

a collection of elements of the logic formed by propositions of the type given above, and such

that these three properties are satisfied. If f : R → R is measurable, we denote by:

f ◦ x (5.2)

the observable whose measured value is f(r) whenever the measured value of x is r. This

observable corresponds to the mapping R ∋ E 7→ x(f−1(E)) ∈ L. For each observable, we

can formulate the idea of a spectrum as follows.
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Definition 5.7. Let x be an observable in a logic L. We define the spectrum of x, denoted by

σ(x), as:

σ(x) =
⋂

C closed, x(C)=1

C.

That is, σ(x) is the intersection of all closed Borel sets C such that x(C) = 1.

The spectrum can be discrete, bounded, or unbounded (depending on whether this intersec-

tion has these properties). The experienced reader might note the resemblance with the notion

of the spectrum of an observable usually given in Quantum Mechanics. These definitions will

in fact coincide when we analyse the logic of Quantum Mechanics, which we will do later in

this chapter. For now, we proceed with some more basic definitions.

Having defined a general notion of observables associated with a logic, we now need a

corresponding notion of states. Loosely speaking, the idea of a state of a system is something

that encodes all of its measurable characteristics, that is, knowing that the system is in a given

state should allow us to know which would be the value of any observable to be read in an

experiment, or at least it should give us the probability of reading such a value. The precise

definition is as follows.

Definition 5.8. Let L be a logic and O(L) the set of all its observables. A state of L is a map

P : O(L) ∋ x 7→ Px,

which assigns to each observable x ∈ O(L) a probability measure Px on B(R) such that for

any Borel function f : R → R and any observable x,

Pf◦x(E) = Px(f
−1(E)).

The interpretation is that, if the system is in the state P , then there is a probability Px(E)

of reading the values E ∈ B(R) when measuring the observable x. It turns out that we can

generalize the concept of probability measures (usually defined on a σ-algebras) to logics, as

follows.

Definition 5.9. Let L be a logic. A probability measure on L is a function p : L → R such

that:

1. 0 ≤ p(a) ≤ 1 for all a ∈ L.

2. p(0) = 0 and p(1) = 1.
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3. If a1, a2, ... is a sequence of mutually orthogonal elements of L and a =
∨
n an, then

p(a) =
∑

n p(an).

Since every σ-algebra is a logic, this definition coincides with the usual one when restricted

to this case. Notice that, due to condition 2 in Definition 5.5, if a1, a2 ∈ L and a1 ≤ a2, then

p(a1) + p(b) = p(a2), where b is the relative complement of a1 with respect to a2. This means

that:

a1 ≤ a2 =⇒ p(a1) ≤ p(a2).

The following result shows that there is a one-to-one correspondence between states and prob-

ability measures.

Theorem 5.10. Let L be a logic, O(L) the set of all its observables, and p a probability measure

on L. Then, for any observable x ∈ O(L), and any Borel set E ∈ B(R), the function defined

as:

P p
x (E)

.
= p(x(E))

is a probability measure on B(R) and:

P p : O(L) ∋ x 7→ P p
x

is a state on L. Conversely, if P is an arbitrary state on L, there exists one, and only one,

probability measure p such that:

Px(E) = p(x(E))

for all x ∈ O(L) and all E ∈ B(R).

Proof. See Thereom 3.5 in [60].

5.2 The Logic of Classical Mechanics

Now that we have defined the necessary basic concepts, we deepen our study by investigating

some important examples. We start by putting the Hamiltonian formulation of Classical Me-

chanics in this language. The first step is to define its logic. Consider a classical system with n
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degrees of freedom, described in a phase space F of dimension 2n with the structure of a sym-

plectic manifold. Since F is a topological space, we can consider the Borel σ-algebra generated

from its topology, which we denote as B(F). We then define the logic of Classical Mechanics

to be:

LCM
.
= (B(F),∪,∩,c ).

It is easy to verify that this is indeed a logic according to Definition 5.5. Notice further that for

any a, b, c ∈ LCM , the following identities, called the distributive laws, are satisfied:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (5.3)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (5.4)

This gives rise to the following very important definition.

Definition 5.11. We call an orthocomplemented, distributive lattice a Boolean algebra. A

Boolean σ-algebra is a Boolean algebra where
∨
i∈I ai and

∧
i∈I ai exists for every countable

subset I of the lattice.

Hence, the logic of Classical Mechanics is an example of a Boolean σ-algebra. The impor-

tance of Boolean algebras lies in the fact that they model the so-called “Propositional Calculus”,

that is, the formal language of the connectives of implication, negation, conjunction, and dis-

junction, and it finds applications in many areas, such as programming languages, statistics,

and many others [62]. Notice that not every logic needs to be Boolean since the distributive law

is not necessarily satisfied in every logic. Given an arbitrary set, the class of all its subsets is

a Boolean algebra under set union, intersection, and complementation. Also, every σ-algebra

is a Boolean σ-algebra. Does the opposite hold? That is, is it true that every Boolean algebra

is isomorphic with some σ-algebra? The answer is no, but the Loomis-Sikorski Theorem ( see

Theorem 1.3 in [60]) states that any Boolean σ-algebra is isomorphic with a quotient Σ/N ,

where Σ is a σ-algebra of measurable sets and N ⊂ Σ is a closed subset such that 0 ∈ N ,

1 /∈ N , and if a ∈ N and b ≤ a, then b ∈ N .

The next thing we want to investigate is the set O(LCM) of observables associated with

LCM . In the usual approach to Hamiltonian Classical Mechanics, the observables are taken

to be the real-valued, measurable functions on the phase space. The next theorem shows that

this notion of observable is equivalent to our logic-theoretic notion of observable defined in

Definition 5.6 exactly because the logic of classical mechanics is a Boolean σ-algebra.
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Theorem 5.12. LetX be a set and L be a Boolean σ-algebra of subsets ofX and let x : B(R) ∋
E 7→ x(E) ∈ L be an observable. Then there exists a unique measurable, real-valued function

f on X such that

x(E) = f−1(E)

for all E ∈ B(R).

Proof. See Theorem 1.4 in [60].

Finally, it only remains to understand the states on LCM . As we saw in Theorem 5.10, these

can be described by probability measures on B(F). Let r(t) ∈ F be an arbitrary point in the

phase space for a given time t (we are assuming that the evolution equation is given by the

integral curves of Hamilton’s differential equations). We can define a sharp state as:

νt(E)
.
= δr(t)(E), E ∈ B(F), (5.5)

where δr is the Dirac measure. More generally, like in the case of Statical Mechanics or Ther-

modynamics, the state of the system is not known exactly and it can not be taken to be a sharp

state. In these cases, we use statistical ensembles. These can be described as follows. Let

ρ(t, q, p) : F −→ R be a measurable function such that:

ρ(t, q, p) ≥ 0 and
∫
F
ρ(t, q, p)dµ = 1,

where µ is the symplectic measure constructed from the symplectic form on F. Then we can

define a probabilistic state on B(F) as:

νt(E)
.
=

∫
E

ρ(t, q, p)dµ, E ∈ B(F).

5.3 The Logic of Quantum Mechanics

As we have seen, the construction of the logic associated with a physical system is completely

determined by the nature of the measurements we can do on this system. It is an experimen-

tal fact that measurements in Quantum Mechanics are fundamentally different from Classical

Mechanics. This is due to the fact that in the former we have incompatible observables, and

this changes completely the structure of the logic. We illustrate with the classical example of

the position and momentum observables. Suppose we have a quantum system and we associate
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with it a logic L. Heisenberg’s uncertainty principle states that:

σxσp ≥
ℏ
2
,

where σx and σp are the standard deviations of the position and momentum measurements, re-

spectively. Let us translate this to the language of lattices and logics that we have been working

with. The standard deviation gives the precision of the measurement, and we can associate

with it an interval in the real line, meaning that the result of the experiment will be inside this

interval. Hence, we identify σx and σp with the intervals I and J in R. We can formulate a

proposition about the system in the following way:

“The measured value of the position of the system lies in the interval I ⊂ R”.

And similarly for the momentum. As we did in the last sections, we associate to this statement

an element of the logic L. However, if the product |I| · |J | is smaller than ℏ/2, there is no

experimental setup that can verify both of these propositions at the same time. As we will

see, the consequence of this fact is that a logic that admits incompatible elements cannot be a

Boolean algebra and therefore is fundamentally different from the logic of Classical Mechanics.

The precise definition of compatibility of elements in a logic is the following.

Definition 5.13. Let L be a logic. We say that two elements a, b ∈ L are compatible (or

simultaneously verifiable) if there are elements a1, b1, c ∈ L such that

1. a1, b1, c are mutually orthogonal.

2. a = a1 ∨ c and b = b1 ∨ c.

If two elements are compatible we write it as a↔ b.

This definition doesn’t look like the usual definition of incompatibility in Quantum Mechan-

ics formulated in terms of commutation rules. However, we will see below that these definitions

coincide. Let x, y ∈ O(L) be two observables. We say that they are compatible (or simulta-

neously observable) if for any two Borel subsets E,F ∈ B(R), x(E) ↔ x(F ). We denote

compatible observables by x↔ y. We have the following fundamental result.

Theorem 5.14. Let L be a logic and a, b ∈ L. Then, the following statements are equivalent.

1. a↔ b.

2. There exists an observable x and two Borel sets A,B ∈ B(R) such that x(A) = a and

x(B) = b.
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3. There exists a sublogic of L which is Boolean and contains a and b.

Proof. See Lemma 3.7 in [60].

This theorem shows that if a logic has incompatible elements, then it can not be Boolean, and

hence it is structurally different from Classical Mechanics. The following theorem characterizes

the compatible elements.

Theorem 5.15. Let L be a logic and a, b ∈ L. If a ↔ b, then the elements a1, b1 and c in

Definition 5.13 are uniquely determined by:

a1 = a ∧ b⊥

b1 = b ∧ a⊥

c = a ∧ b.

Proof. See Theorem 12.1.2 in [61].

Our next goal is to extend our understanding of compatible elements in a logic to compatible

observables. We have the following fundamental theorem.

Theorem 5.16. Let L be a logic and {xλ}λ∈D a family of observables. Suppose that xλ ↔ xλ̃

for all λ, λ̃ ∈ D. Then, there exists a set X , a σ-algebra B of subsets of X , real-valued B-

measurable functions gλ on X , and a homomorphism τ : B → L such that

τ(g−1
λ (E)) = xλ(E)

for all λ ∈ D and E ∈ B(R). Suppose further that D is countable. Then there exists an

observable x and Borel functions fλ : R → R such that (remember equation (5.2)):

xλ = fλ ◦ x

for all λ ∈ D.

Proof. See Theorem 3.9 in [60].

The first part of this theorem shows that compatible observables can always be described by

functions on a σ-algebra of sets (which is always Boolean), and the second part shows that in

a countable set of compatible observables, all observables are functions of a single one. It also

proves that logics in which all observables are mutually compatible are necessarily Boolean σ-

algebras, which resemble (and are usually understood to be associated with) classical systems.
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Furthermore, it indicates that the structure of observables in non-Boolean logics is potentially

more complicated since we cannot say that they are all functions of a single observable. This is

indeed the case for Quantum Mechanics, as we now investigate.

Following the same steps as we did in the Classical Mechanics case, we first try to define

the logic of Quantum Mechanics. Since we don’t have a phase space at our disposal anymore,

the answer to this question is not so obvious. Following the axioms of Quantum Mechanics,

we assume that there is a separable, complex Hilbert space H with inner product ⟨, ⟩ associated

with our quantum system. The first to propose a logic for quantum systems was von Neumann

and Birkhoff in their seminal paper [63]. The proposed idea is to define the logic of quantum

mechanical systems using the set of all closed subspaces of H, which we denote by M(H). Let

us define some operations on this set. We define the join of two closed subspaces M1,M2 ∈
M(H) as:

M1 ∨M2
.
= M1 +M2,

and the meet as:

M1 ∧M2
.
= M1 ∩M2.

The orthocomplementation is naturally given by the orthogonal complement:

M⊥
1
.
= {ψ ∈ H|⟨ψ, ϕ⟩ = 0 for all ϕ ∈ M1}.

With these definitions, it is easy to see that:

LQM
.
= (M(H),∨,∧,⊥)

is a logic (where 0 = ∅, 1 = H), which we call the logic of Quantum Mechanics. Notice that,

since there is a one-to-one relation between closed subspaces in a Hilbert space and orthogonal

projections, we could equivalently write this logic as:

LQM
.
= (P(H),∨,∧,⊥), (5.6)
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where P(H) is the set of all orthogonal projections, and the operations are defined as:

PM1 ∨ PM2

.
= PM1+M2

PM1 ∧ PM2

.
= PM1∩M2

P⊥
M1

.
= PM⊥

1

where PMi
denotes the orthogonal projection into Mi. With these definitions, there is an obvi-

ous isomorphism (see Definition 5.4) between these two logics, and we shall work mostly with

the second.

To convince ourselves that this logic can indeed implement the experimentally verifiable

propositions about a quantum system, we need to study what makes Quantum Mechanics intrin-

sically different from Classical Mechanics: the existence of non-compatible propositions. Let

us investigate what incompatibility in the sense of Definition 5.13 means for orthogonal projec-

tions. Let P,Q ∈ P(H) and suppose they are compatible, that is, there exists P1, Q1, R ∈ P(H)

pairwise orthogonal and such that P = P1 +R and Q = Q1 +R (check Theorem 5.15). Then:

PQ = (P1 +R)(Q1 +R)

= R2

= (Q1 +R)(P1 +R)

= QP.

That is, the compatibility of P and Q implies that they commute. Let us check the other direc-

tion. Suppose P and Q commute. Then define:

P1
.
= P − PQ

Q1
.
= Q− PQ

R
.
= PQ.

It is easy to verify that these operators are indeed orthogonal projections and that they are

pairwise orthogonal. Hence, P an Q are compatible. Therefore, for this logic, compatibility is

equivalent to commutativity. We can also conclude, due to Theorem 5.14, that LQM is not a

Boolean algebra.

Next, we want to study the set O(LQM) of observables associated with the logic of quantum

mechanics. It is straightforward to see that, for this logic, the Definition 5.6 of an observable

coincides with the definition of a spectral measure (Definition A.10) on the real line. Hence, due
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to the Spectral Theorem (Theorem A.19), there is a unique self-adjoint operator associated with

it. Therefore, O(LQM) coincides with the set of all (possibly unbounded) self-adjoint operators

acting on H. Also, the notion of the spectrum of an observable of a logic given by Definition

5.7 coincides with the usual definition for linear operators on a Hilbert space (Definition A.6).

Finally, it only remains to study the set of states of this logic. For that, we have the following

remarkable theorem.

Theorem 5.17 (Gleason’s Theorem). Let H be a finite-dimensional Hilbert space with dimen-

sion equal to or bigger than 3, or infinite-dimensional and separable. Let µ be a probability

measure on LQM (and hence a state, due to Theorem 5.10). Then, there exists a trace-class,

positive operator T ∈ B(H) such that

µ(P ) = Tr(TP ),

for all P ∈ P(H).

Proof. See [60, 64].

This is a very powerful result. In Quantum Mechanics textbooks, states defined in terms

of traces over density matrices are usually presented with a motivation coming from Physics,

namely, to accommodate the possibility of having a statistical ensemble. That is a good moti-

vation since in real-life experiments we can rarely know with certainty the state of the probed

system. However, this theorem shows that this is an emerging fact, which depends solely on

the structure of the logic behind Quantum Mechanics, and no other type of states exist. We

can go even further. In our construction, we assumed the existence of a Hilbert space, and we

constructed the logic from there. However, there are reconstruction theorems stating that a logic

that satisfies some specific properties (all of them satisfied by LQM ) is isomorphic with the logic

of closed subspaces of a Hilbert space. Hence, also the Hilbert space itself emerges from the

structure of the logic. These reconstruction theorems are very complicated, and we refrain to

get into the details. We refer to [60] and [61] for a complete exposition.

To conclude this section, we would like to mention that we could form logics with a subset

of closed subspaces of H, instead of taking all of them, as we did with LQM . Suppose that

A ⊆ B(H) is a von Neumann algebra (see Definition 6.7), and let us denote by P(H)A the

set of all projections in A. As is well known, this set determines the algebra completely by the

relation:

A = P(H)ccA ,

89



Chapter 5. Logics and Measurements

where c denotes the commutant. The set P(H)A is also a logic, under the same operations (see

Chapter 4, Section 4, in [60], and also [65]). However, this logic is in general not isomorphic

with P(H), and its properties can vary greatly. These logics are, therefore, harder to study,

since the general results showed in this section do not apply. However, these logics could be of

great interest to Physics, since von Neumann algebras are often associated with local algebras

of observables in Algebraic Quantum Field Theory (see Chapter 6). We refer to [65] for more

discussion.

5.4 The Logic of Spacetime

In the example given at the beginning of this chapter, we intentionally omitted one important

ingredient: time. It was enough for our purposes to consider only spatial regions, but in this sec-

tion, we want to examine what happens when we include time. As we will see, also in this case

there is a logic constructed with subsets of the spacetime. Moreover, this logic encompasses

its most important ingredient, namely, the causal structure. We will focus our efforts on un-

derstanding the relativistic spacetimes, even though the logic of the Galilean spacetime is also

very interesting, and finds many applications in the structural construction of non-relativistic

quantum mechanics. However, since our goal is to apply these methods to relativistic scenarios,

we will not discuss the Galilean logic. We refer the interested reader to [66].

The single most important structure in a relativistic spacetime is its causal structure. This

limitation on which points of spacetime can have any influence, or be influenced by, other points

constitutes the background structure of any fundamental theory in Physics. We can translate

this structure to the mathematical language of lattices and logics in the following way. Let

M = (R4, g) denote the four-dimensional Minkowski spacetime, where g is the Minkowski

metric with signature (+,−,−,−). This metric gives rise to the following quadratic form,

known as the spacetime interval:

Q(x) = x20 − x21 − x22 − x23,

where x = (x0, x1, x2, x3) ∈ M . We can define a partial order on M with this form: x ≤ y if

y−x is a time-like, future-oriented vector, that is, Q(y−x) > 0 and x0 < y0. This partial order

structure already encodes a lot of information about the spacetime. To show this, we enunciate

the following theorem.

Theorem 5.18. Consider the partially-ordered set (M,≤), as defined above. Let G denote the

set of all functions f :M →M that are one-to-one (not necessarily linear or continuous), and
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that both f and f−1 preserve the partial order, that is:

x ≤ y ⇐⇒ f(x) ≤ f(y)

for all x, y ∈ M . Then, G is a group under composition and is equal to the orthochronus

Poincaré group plus dilations.

Proof. See [67]

This theorem is quite surprising since it does not even require that the functions be linear or

continuous: the preservation of the partial order is enough to determine the group of isometries.

This suggests that we should put some effort into understanding the mathematical structure

of the spacetime from this point of view. Even though our results in Part II of this thesis

are restricted to flat spacetimes, we decided to introduce the lattice/logic-theoretic structure

for more general spacetimes in this section. We do this because, first, the necessary effort to

include these more general spacetimes is not much bigger than to study the flat case alone; and

second, we open the possibility to generalize our results to curved spacetimes. Our first goal is

to construct a logic associated with the spacetime.

From now on, we consider a Lorentzian spacetime of dimension d ≥ 2, equipped with a

pseudo-riemannian metric g with signature (+,−, ...,−). We say that two points p, q ∈ M

are time-connected if there exists a time-like curve that passes through p and q. We start by

defining a “complementation” relation in M . Let S be any subset of M . Then, we define the

causal complement of S as:

S⊥ .
= {p ∈M |p is not time-connected to any point of S}.

Note that the set of all subsets of M is a lattice under set union and intersection, but this com-

plementation does not define an orthocomplementation relation on it (in the sense of Definition

5.3): that is because it is not necessarily true that S ∪ S⊥ = M . Hence, since we want to

construct an orthocomplemented lattice, we need to select subsets of M . We denote by C(M)

the set of all causally-closed (or causally complete) subsets of M , that is:

C(M)
.
= {S ⊆M |S = S⊥⊥}.
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We equip this set with the following join and meet operations:

A ∨B .
= (A ∪B)⊥⊥

A ∧B .
= A ∩B,

where A,B ∈ C(M). In the following figure, we have some examples for two-dimensional

Minkowski spacetime.

(a) Join of intersecting regions.

(b) Join of causally connected regions.

Figure 5.5: Join of causally closed regions in Minkowski spacetime

Theorem 5.19. The quadruple LM
.
= (C(M),∨,∧,⊥) is a logic.

Proof. See [68].

The prototypical elements of this logic in Minkowski spacetime are diamonds, wedges, and

sets constructed from them by the join and meet. Note, however, that single points are also in

this logic. In the lattice-theoretic language, these are called atoms. More precisely, an atom is a

non-zero element b of a lattice such that the only other element it majorizes is the zero element

0. In symbols: 0 ≤ a ≤ b implies either a = 0 or b = 0. The lattice is called atomic if every
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non-zero element contains an atom, and atomistic if every non-zero element is the join of its

atoms. The lattice LM is both atomic and atomistic (check Theorem 2 in [68]). As another

example, we notice that LQM is also atomic and atomistic, where the atoms are given by the

orthogonal projections projecting on one-dimensional subspaces.

The interesting resemblance between LM and LQM goes even further. As we saw, the dis-

tinguishing characteristic between LCM and LQM is that the former contains incompatible ele-

ments, which implies that it is not a Boolean algebra, and hence the distributive law (remember

equations (5.3)) is not satisfied. Surprisingly, this is also the case for LM .

Figure 5.6: Lack of distributivity in LM .

In the figure above we can see that the distributive law does not hold: A ∧B = A ∧C = 0,

but A ∧ (B ∨ C) = A. This is an interesting fact: Classical Physics (meaning non-quantum) is

described by a Boolean algebra, but the structure of the relativistic spacetime is non-Boolean.

In this example, it is easy to check that the elements A and C are incompatible (according to

Definition 5.13). Let us try to understand more deeply this common property between LM and

LQM . The distributive law is the crucial property of Boolean algebras, but since it is not satisfied

by many important logics, mathematicians have been studying weakened versions of this law.

Definition 5.20. Let L be an orthocomplemented lattice. We say that the lattice is modular if

for all a, b, c ∈ L:

b ≤ a =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
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The lattice is called orthomodular if:

b ≤ a, c ≤ a⊥ =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Thus, it is clear that these are weaker conditions of the distributive law and that:

distributivity =⇒ modularity =⇒ orthomodularity.

Theorem 5.21. LQM is modular if, and only if, H is finite dimensional, and it is always ortho-

modular. LM is always non-modular and always orthomodular.

Proof. For the proof that LQM is always orthomodular check [61], and for the proof that LM is

always non-modular and orthomodular see [68].

Therefore, these two lattices share a weakened version of the distributive law. We mention

briefly that the reconstruction theorems remarked at the end of the previous sections do not apply

to LM , since it does not satisfy all the requirements: hence, we cannot naturally reconstruct a

Hilbert space from the spacetime logic such that LM is isomorphic with the lattice of orthogonal

projections in this space. We refer to [68] and [69] for more on this relation.

As we saw, the logic LM includes many elements since all single points are in there. For our

future purposes (see Chapter 7), this will be, in a sense that we explain later, “too big”. Hence,

we study some sublogics. From now on we will impose one more assumption on the structure

of the spacetime: we will restrict our attention to globally hyperbolic spacetimes, which means

that M ≃ R×Σ, where Σ is a Cauchy surface. Let B(Σ) denote the Borel σ-algebra on Σ. It is

clear that for any b ∈ B(Σ), the element D .
= b⊥⊥ belongs to the logic LM (since D⊥⊥ = D).

Let us denote by LΣ the set of all elements formed in this way, that is:

LΣ
.
= {D ∈ LM |D = b⊥⊥, where b ∈ B(Σ)}. (5.7)

Proposition 5.22. LΣ is a Boolean sublogic of LM .

Proof. This proposition is discussed in [69], but we give our own proof here. Let us start by

showing that it is indeed a sublogic. For that, we need to show that LΣ is closed under the logic

operations. In fact, for any two arbitrary elements D1 = b⊥⊥
1 and D2 = b⊥⊥

2 in LΣ we have:

D1 ∨D2 = b⊥⊥
1 ∨ b⊥⊥

2 = (b⊥1 ∩ b⊥2 )⊥ = (b1 ∪ b2)⊥⊥,
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and

D1 ∧D2 = b1 ∩ b2 = (b⊥1 ∨ b⊥2 )⊥ = (b1 ∩ b2)⊥⊥,

where we used the De Morgans laws given in equation (5.1). For the orthocomplementation, it

is clear that:

D⊥
1 = b⊥1 , (5.8)

and hence D⊥
1 ∈ LΣ since it is also determined by an element in B(Σ). From these relations, it

is straightforward to show that LΣ is an orthocomplemented lattice and that the join and meet of

any countably infinite sequence of elements in LΣ exist in LΣ. The relative orthocomplement

given in item 2 of the Definition 5.5 is just the double orthocomplementation of the relative set

complement of elements in B(Σ). Hence, LΣ is a logic.

It only remains to show that this logic is Boolean. We do that by showing that the distributive

law (5.3) is satisfied. Let D1 = b⊥⊥
1 , D2 = b⊥⊥

2 , D3 = b⊥⊥
3 be arbitrary elements in LΣ. Then:

D1 ∧ (D2 ∨D3) = b⊥⊥
1 ∧ (b⊥⊥

2 ∨ b⊥⊥
3 )

= (b1 ∩ (b2 ∪ b3))⊥⊥

= (b1 ∩ b2 ∪ b1 ∩ b3)⊥⊥

= (D1 ∧D2) ∨ (D1 ∧D3).

The second relation in (5.3) can be similarly verified.

The logic LΣ is simpler than LM since, as we saw in the above proof, much of its structure

comes from B(Σ), which is a Boolean σ-algebra. The prototypical elements of this logic are

diamonds and wedges whose base lies on Σ. This sublogic also has single points as its atoms,

but only those which belong to the Cauchy surface. As we will see, these will be much easier

to handle.
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Quantum Fields and Modular Theory

All beginnings are obscure. Inasmuch as the mathematician operates with his

conceptions along strict and formal lines, he, above all, must be reminded from

time to time that the origins of things lie in greater depths than those to which his

methods enable him to descend.
H. Weyl

When it comes to the greater depths of reality, the work of a mathematical physicist is to

translate this structure into a precise mathematical language and develop techniques to deal with

the broader scope. Quantum Field Theory (QFT) is, since a few decades, the most fundamental

theory of matter ever created. Its mathematical complexity goes far beyond what is currently

understood, and its full comprehension lies in the distant dreams of optimistic physicists and

mathematicians.

Nonetheless, a good part of the mathematical structure of QFT has been developed, espe-

cially for non-interacting theories. We will follow the approach of Algebraic Quantum Field

Theory (AQFT). See [70–72] for introductory material. The philosophy behind this framework

is to assume that the set of all possible observables of a given relativistic quantum system that

can be observed in a given region of spacetime B ⊆ M forms a local algebra A(B). These

algebras and their relations with the regions of spacetime and the causal structure of Minkowski

spacetime follow some axioms, which we describe in the first section of this chapter. In Part II

of this thesis, we are mainly concerned with flat spacetime, and hence we restrict our efforts to

this case. However, these axioms can also be generalized to curved spacetimes (see [73]).

Many techniques of Functional Analysis are required to give a solid mathematical basis

to AQFT. Among them, the Modular Theory of Tomita-Takesaki [74, 75] plays a distinguished

role, with profound physical and mathematical implications. In Section 6.2 we show the relation

between AQFT and this subarea of Functional Analysis, paying special attention to an important
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application, the so-called Modular Localization, which is the main technique we use in Chapter

7 to propose a new approach to the Localizability Problem.

6.1 Algebraic Quantum Field Theory

We start with some basic definitions.

Definition 6.1. Let V be a vector space over a field K = R,C, with binary operations · :

K × V → V , and + : V × V → V . Let us equip this vector space further with an associative

product ◦ : V → V ; an involution ∗ : V → V ; and a norm ∥ · ∥ : V → R+ such that this vector

space is a Banach space and an algebra satisfying:

∥A ◦B∥ ≤ ∥A∥∥B∥,

for all A,B ∈ V . We call the structure (V,K, · ,+, ◦, ∗, ∥ · ∥) a Banach *-algebra.

Definition 6.2. A abstract C∗-algebra A is a Banach ∗-algebra satisfying the condition (called

the C∗ condition) that:

∥A∗ ◦ A∥ = ∥A∗∥∥A∥, (6.1)

for all A ∈ A. We say that A is unital if it has an identity, that is, an element I such that

IA = AI for all A ∈ A.

One of the most important examples of a C∗-algebra is the set B(H) of all bounded oper-

ators acting on a complex Hilbert space H, equipped with the usual vector space structure and

where ◦ is given by composition and the involution is the adjoint. It is easy to check that the

C∗ condition is satisfied. In addition, it is clear that any norm closed ∗-subalgebra of B(H) is

again a C∗-algebra. This motivates the following definition.

Definition 6.3. A concrete C∗-algebra is a norm closed subalgebra ofB(H) which is invariant

under involution.

The following theorem shows that every abstract C∗-algebra is actually concrete for some

Hilbert space H.

Theorem 6.4. Let A be an abstract C∗-algebra. Then, there exists an isometric ∗-isomorphism

(that is, an isomorphism that preserves the norm, and maps the involution in A to the involution

in B(H)) between A and a concrete C∗-subalgebra of B(H) for some H.
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Proof. See Theorem 2.1.10 in [75].

The theory of C∗-algebras is very rich and finds many applications in Physics. These are

often associated with the observables of a quantum system. For example, in non-relativistic

Quantum Mechanics, the Weyl algebra, which incorporates the Canonical Commutation Rela-

tions, is a C∗−algebra. Our next goal is to introduce an specific type of C∗−algebra, namely,

von Neumann algebras.

Let V be an arbitrary vector space and p : V → R be a seminorm, that is, a norm without the

property that it is positive definite. Given a family of seminorms S on V , we can always generate

a topology on this set in the following way. Let x0 ∈ V , ϵ > 0, n ∈ N, and p1, ..., pn ∈ S.

Then, we define the following subset on V :

V (x0, p1, ..., pn; ϵ)
.
= {x ∈ V |pi(x− xo) < ϵ, i = 1, ..., n}.

For each x ∈ V , we denote by Vx the collection of all subsets V (x, p1, ..., pn; ϵ) as given above.

Theorem 6.5. Let S be a family of seminorms on a vector space V . Then:

1. There exists a topology τS in V such that, for each x ∈ V , it admits Vx as a neighborhoud

basis, that is:

τS = {G ⊆ V |for each x ∈ G there exists U ∈ Vx such that U ⊆ G}.

2. (V, τS) is a locally convex topological vector space.

3. Each seminorm p ∈ S is continuous with respect to τS .

Proof. See Chapter 1 in [76].

We call τS the topology generated by the family S of seminorms. We can apply these

results to generate some topologies on B(H).

Definition 6.6. Let H be a Hilbert space and B(H) denote the set of all bounded operators

acting on it. We define the following topologies which are generated by the respective family

of seminorms.

1. norm topology: p(A) = ∥A∥.

2. strong operator topology: pv(A) = ∥Av∥, v ∈ H.

3. weak operator topology: pu,v(A) = |⟨u,Av⟩|, u, v ∈ H.
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We can now give the important definition of a von Neumann algebra.

Definition 6.7. A von Neumann algebra is a weak-operator closed ∗-invariant subspace of

B(H).

One of the fundamental results about von Neumann algebras is that they have interesting

algebraic properties. Let S ⊆ B(H) be any subset of B(H). We define the commutant of S to

be:

Sc
.
= {A ∈ B(H)|BA = AB, for all B ∈ S} . (6.2)

The following theorem, due to von Neumann, shows the intrinsic relations between the topo-

logical and algebraic properties of von Neumann algebras discussed above.

Theorem 6.8 (Double Commutant Theorem). Let A be a unital ∗-invariant subalgebra of

B(H). The following are equivalent.

1. A = Acc.

2. A is weak-operator closed.

3. A is strong-operator closed.

Proof. See Theorem 2.4.11 in [75].

Hence, this theorem gives us a few alternative definitions of von Neumann algebras, one of

them being purely algebraic. One particularly important subset of any von Neumann algebra is

its subset of orthogonal projections.

Theorem 6.9. Let A be a von Neumann algebra. Denote by AP its subset of orthogonal pro-

jections, that is:

AP
.
= {P ∈ A|P = P ∗ = P 2}.

Then A = Acc
P .

Proof. See [75].

We are now in a position to formulate the axioms of AQFT.

Axioms of Algebraic Quantum Field Theory
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1. Local algebras: There is a unitalC∗-algebra A(M) and, to each causally convex bounded

region O ⊂ M of the Minkowski spacetime, there is a unital C∗-subalgebra A(O) con-

taining the unit of A(M), such that the A(O) collectively generate A(M).

2. Isotony: If O1 ⊂ O2, then:

A(O1) ⊂ A(O2).

3. Causality: If O1 and O2 are causally disjoint, then:

[A(O1),A(O2)] = 0.

4. Poincaré covariance: Let P↑
+ denote the identity connected component of the Poincaré

group. Then, to every g ∈ P↑
+, there exists an ∗-automorphism α(g) of A(M) such that:

α(g) : A(O) → A(gO),

α(e) = I,

α(g)α(h) = α(gh), for every g, h ∈ P↑
+.

5. Existence of dynamics: If O1 ⊂ O2 and O1 contains a Cauchy surface of O2, then:

A(O2) = A(O1).

We see that this list of axioms contains only the very basic requirements a relativistic quan-

tum theory should satisfy. They were inspired by the success of the mathematical structure of

Quantum Mechanics and Special Relativity, and it’s hard to imagine any physical theory that

does not satisfy these requirements. Due to the great physical and mathematical generality of

these axioms, it is often useful to impose further conditions. Due to the vast technical litera-

ture on von Neumann algebras, and due to the fact that for free theories this is the case, we

will assume that the local algebras are von Neumann algebras. One of the great advantages of

this further assumption is that it allows us to use the techniques coming from Modular Theory,

which we develop in the next section. Furthermore, we saw that von Neumann algebras are

weak-operator closed algebras. These are defined by a family seminorms that are interpreted

in Physics as expectation values of observables. Hence, von Neumann algebras have properties

that closely resemble a physical interpretation.
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There is still one ingredient missing in our abstract formulation of Quantum Fields: the

states. Notice that so far we’ve been talking exclusively about algebras of observables, and we

didn’t specify a Hilbert space. That is, in fact, one of the advantages of AQFT. Hence, we cannot

define states as elements in a Hilbert space, as is done in the traditional approach to Quantum

Mechanics. We need a more abstract definition.

Definition 6.10. Let A be a unitalC∗-algebra. A (algebraic) state on A is a positive, normalized

linear functional ω : A → C, that is:

ω(A∗A) ≥ 0 and ω(I) = 1,

for all A ∈ B(H). The state is mixed if its is a convex combination of distinct states, and its

pure otherwise.

Consider A = B(H). Then it is clear that, if ψ ∈ H, ∥ψ∥ = 1, the map:

ωψ(A)
.
= ⟨ψ,Aψ⟩

defines a (pure) state on B(H) for every ψ ∈ H. Consider now that D ∈ B(H) is any trace

class, positive operator such that Tr{D} = 1. Then, it is also straightforward to check that the

map:

ωD(A)
.
= Tr{AD}

defines a state on B(H), that can be mixed, depending on D. Hence, the abstract definition of

states on C∗-algebras includes the traditional definition of Quantum Mechanics and it imple-

ments the expected values on observables. Note, however, that not every state is necessarily of

one of the two types presented above (see [77] for more on this). Going back to our notation

given in the Introduction 1 in equation (1.1), in the present context, TRQT is relativistic quan-

tum theory, The(TRQT ) is the AQFT formulation, O[Q] the self-adjoint elements of the (local)

C∗-algebras, O[α] the algebraic states on these algebras, and µ
O[Q]

O[α]
the expectation values of the

orthogonal projections in the spectral decomposition of the self-adjoint operators.

Even though the abstract algebraic construction of field theories has proven to be the correct

approach to deal with the foundations of QFT, it can also be quite useful to work on concrete

Hilbert spaces. In this case, we will be dealing with “representations” of the algebraic relations

on the Hilbert space. More precisely:

Definition 6.11. A representation of a unital C∗-algebra A is a pair (H, π) where H is a
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Hilbert space, and π a map from A to linear operators on H, such that:

1. π(I) = I.

2. π is linear and respect products (that is, π(AB) = π(A)π(B)).

3. Each π(A) has an adjoint such that π(A)∗ = π(A∗).

A representation is said to be faithful if ker π = {0}. It is called irreducible if there are no

subspaces of H invariant under π(A), for every A ∈ A, that are not either trivial or dense in H.

Definition 6.12. Let A be a unital C∗-algebra and consider two representations, (H1, π1) and

(H2, π2). These representations are called unitarily equivalent if there is a unitary map U :

H1 → H2 such that Uπ1(A) = π2(A)U holds for all A ∈ A. They are called unitarily

inequivalent otherwise.

The existence of inequivalent representations of the algebra of observables was one of the

reasons why the algebraic approach was proposed. This fact is particularly important when

considering curved backgrouds and in the study of superselection sectors (see [70, 71, 78, 79]).

There is a nice way to construct representations starting from states on the algebra. This result

is known as the GNS (Gel’fand, Naimark, Segal) construction.

Theorem 6.13 (GNS construction). Let ω be a state on a unital C∗-algebra A. Then there is

a representation (Hω, πω) of A and a unit vector Ωω ∈ Dω such that:

1. Ωω is cyclic, that is, Hω = πω(A)Ωω.

2. ω(A) = ⟨Ωω, π(A)Ωω⟩ for all A ∈ A.

3. The triple (Hω, πω,Ωω) is unique up to unitary equivalence.

4. ω is pure if and only if the representation is irreducible, and if πω is faithful, then

∥πω(A)∥ = ∥A∥A.

Proof. See Theorem 10 in [71].

6.1.1 The Free Scalar Field

Let us finish this section with an example. We will give an overview of the construction of the

algebra of observables for a free, bosonic field on Minkowski spacetime. Let us summarize our

procedure: we start by assuming a (classical) dynamical equation (the Klein-Gordon equation);

using techniques coming from the study of Green hyperbolic operators, we construct the (real)
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vector space of solutions of this equation; this vector space can be endowed with the structure

of a symplectic vector space; to every symplectic vector space there is a unique C∗-algebra

associated with it: this is the Weyl C∗-algebra, which satisfies all of the axioms for a field

theory described above, and hence is the algebra of observables of a free, bosonic field. To

begin, we will explain the relation between symplectic vector spaces and Weyl algebras.

Definition 6.14. Let X be a (possibly infinite-dimensional) real vector space. A pair (X, σ) is

called a symplectic vector space if σ : X ×X → R is bilinear, skew-symmetric, and weakly

non-degenerate, that is: σ(u, v) = 0∀u ∈ X =⇒ v = 0. Such a map is called a symplectic

form.

Definition 6.15. Let (X, σ) be a symplectic vector space. A ∗-algebra W(X, σ) is said to be

the Weyl ∗-algebra of (X, σ) if there exists a family {W (u)}u∈X of non-zero elements, called

the generators, such that:

1. The Weyl commutation relations hold:

W (u)W (v) = e−
i
2
σ(u,v)W (u+ v)

W (u)∗ = W (−u)

for every u, v ∈ X .

2. The ∗-algebra W(X, σ) is generated by the family {W (u)}u∈X , that is, the algebra coin-

cides with the linear span of finite combinations of finite products of {W (u)}u∈X .

We call it the Weyl C∗-algebra of (X, σ), and denote it by CW(X, σ), if the norm on W(X, σ)

satisfies the C∗ condition (6.1).

The next theorem shows that, given a symplectic vector space, there is always a Weyl ∗-

algebra (and a Weyl C∗-algebra) associated with it.

Theorem 6.16. Let (X, σ) be a symplectic vector space of arbitrary dimension. Then:

1. There exists a Weyl ∗-algebra W(X, σ) associated with (X, σ).

2. Any Weyl ∗-algebra has a unit, and it holds that:

W (0) = I, W (u)∗ = W (−u) = W (u)−1, u ∈ X.

In addition, the generators are linearly independent.
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3. There exists a unique norm on W(X, σ) satisfying the C∗ condition.

4. The algebras W(X, σ) and CW(X, σ) are unique up to ∗-isomorphism.

Proof. See Theorem 11.26 in [80].

The first and easiest example is given by the finite-dimensional symplectic vector space

(R2n, σ), where σ =

 0 In
−In 0

 is the canonical symplectic form. This symplectic space is

associated with the traditional Weyl algebra of non-relativistic Quantum Mechanics, represented

in the Hilbert space of a quantum system moving in Rn, and where the Weyl generators are

given by the exponential of the sums of position and momentum operators. Furthermore, the

Stone-von Neumann Theorem guarantees that all representations of Weyl ∗-algebras of finite-

dimensional symplectic spaces are unique up to isomorphism (see Theorem 11.22 in [80]). As

we will see, this result doesn’t apply to field theories.

We are now ready to construct the algebra of observables of a free, bosonic theory. Consider

the four-dimensional Minkowski spacetime with coordinates (t, x) ∈ R4, consider the Klein-

Gordon equation:

∂2ϕ

∂t2
−∇2ϕ+m2ϕ = 0,

where ϕ is a smooth, real-valued function on the spacetime. We rewrite this equation as Pϕ = 0,

where P .
= ∂2/∂t2 − ∇2 +m2 is a (Green Hyperbolic) partial differential operator. It is well

known that the initial value problem of this equation admits unique solutions (see Proposition

3.2.9 [72] and for a more complete treatment [81]). Let us define the solution space as:

Sol =
{
ϕ ∈ C∞(R4)|Pϕ = 0

}
⊂ C∞(R4).

We can find these solutions as follows. By definition, a Green hyperbolic operator admits the

existence of retarded E+ and advanced E− Green operators. Defining the advanced-minus-

retarded Green operator as E = E− − E+, it can be proved that for any f ∈ C∞
0 (R4), the

function ϕ = Ef defines a solution of the Klein-Gordon equation. The space of solutions is a

real vector space, and it has a natural symplectic form σ : Sol × Sol → R given by:

σ(ϕ, ϕ′)
.
=

∫
R3

(
ϕ
∂ϕ′

∂t
− ϕ′∂ϕ

∂t

)
dx.

Hence, the pair (Sol, σ) is a symplectic vector space. This is an infinite-dimensional vector

space, and hence the Stone-von Neumann Theorem doesn’t apply. Using Theorem 6.16, we
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have a unique C∗-algebra associated with this space, which we denote by CW(Sol, σ). Further-

more, we can define local algebras by defining CW(Sol, σ)(O) as the C∗-algebra generated by

functions ϕ ∈ Sol with support in O, where O ⊆ M is any causally complete, bounded, open

subset of M .

Theorem 6.17. The net O 7→ CW(Sol, σ)(O) satisfies all axioms of Algebraic Quantum Field

Theory.

Proof. See Theorem 3.3.1 in [72], and [71].

This procedure can be extended to great generality: any wave function defined by a Green

hyperbolic operator on a globally hyperbolic manifold has unique solutions for the initial value

problem (see [81]). This includes theories with spin different than zero, as well as massless the-

ories, and therefore the construction of free field theories is completely understood. However,

it doesn’t include interacting theories since the differential operators defining the dynamical

equations are not Green hyperbolic in this case. Hence, the enduring challenge of construct-

ing interacting theories might require completely different methodologies. Notice that what we

have done was to start with a classical theory and (second) quantize it. Alternatively, initiating

with a quantum theory from the outset would be more advantageous. We will see in the next

section that the Modular Localization method does this job. This method also allows us to con-

struct a net of C∗-algebras for free theories, but still based on second quantization. Extensions

to interacting theories are a current topic of research (see Chapter 10 in [72], for example).

6.2 The Modular Theory of Tomita-Takesaki

The Modular Theory, also referred to as the Theory of Tomita-Takesaki, was initiated with

Tomita’s presentation of an unpublished pre-print in 1967 at the Baton Rouge conference. How-

ever, it became more popular with Takesaki’s paper in 1970 [74]. As it was first presented, this

theory provided pure mathematical tools to better understand von Neumann algebras acting on a

Hilbert space with a cyclic and separating vector. Nevertheless, it soon became clear that it was

also very useful for Physics. The first to realize an application of these techniques were Haag,

Hugenholtz, and Winnik in their description of equilibrium states using the KMS condition

[82]. Later on, Bisognano and Wichmann [83] made a significant discovery linking the modu-

lar group (as described below) with the one-parameter boosts on Minkowski spacetime, giving

origin to a (KMS) thermodynamical equilibrium state. A phenomenon that would be called, in a

later published paper [84], the Unruh effect. The Modular Theory was also very useful for pure
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mathematical results, playing an essential role in the classification of von Neumann algebras

[85].

The Modular Theory can be presented in two ways: the first, through the study of von

Neumann algebras acting on a Hilbert space with a cyclic and separating vector[75, 86, 87]; and

the second, through the introduction of standard subspaces [88–90]. We will give an overview

of the first, and focus on the second, as it will be more useful for the presentation of Modular

Localization.

Let M be a von Neumann algebra acting on a Hilbert space H with a vector Ω that is cyclic

(MΩ ⊂ H is dense in H) and separating (AΩ = 0, A ∈ M =⇒ A = 0). Let us define the

operator S0 as:

S0AΩ
.
= A∗Ω,

where A ∈ M. This operator is clearly anti-linear and due to the cyclicity of Ω, also densely

defined. In addition, by showing that the adjoint of S0 is densely defined, we can conclude that

it is closable. We will denote its closure by S. We can then perform its polar decomposition:

S = J∆1/2 = ∆−1/2J, (6.3)

where ∆ is the unique, positive, self-adjoint operator (called the modular operator) and J is the

unique anti-unitary operator (called the modular conjugation) associated with the pair (M,Ω).

Note that J2 = I and J = J∗. The theorem that follows stands as the fundamental result of

Tomita-Takesaki’s theory.

Theorem 6.18 (Tomita-Takesaki). Let M be a von Neumann algebra with a cyclic and sepa-

rating vector Ω. Then JΩ = Ω = ∆Ω and it holds that:

JMJ = Mc and ∆itM∆−it = M, ∀t ∈ R.

Proof. See Theorem 2.5.14 in [75].

Note that the unitaries ∆it, t ∈ R, induce a one-parameter group of automorphism of M
through the map:

σt : M ∋ A 7→ ∆itA∆−it ∈ M.

This group is referred to as the modular automorphism group associated with the pair (M,Ω).
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If M is abelian, this group is trivial.

We now present a second, analogous formulation of Tomita-Takesaki’s Theorem, this time

in terms of the so-called stardard subspaces.

Definition 6.19. Let H be a complex Hilbert space with inner product ⟨, ⟩ = ⟨, ⟩R + i⟨, ⟩I , and

H ⊂ H a real linear subspace. We define the symplectic complement H ′ of H as the real

Hilbert subspace:

H ′ .= {ξ ∈ H|⟨ξ, η⟩I = 0∀η ∈ H} . (6.4)

Note that the symplectic complement is not an orthocomplementation in the sense of Defini-

tion 5.3 since condition 3 is not necessarily satisfied. In fact, real closed subspaces that satisfy

this condition are called factors. We gather in the following proposition some properties of the

symplectic complement that will be useful later.

Proposition 6.20. Let M be a subset of a complex Hilbert space H and ′ the symplectic com-

plement as above. Then:

1. M ′ is a closed, real subspace of H.

2. If M ⊂ N , then N ′ ⊂M ′.

3. M ′′ is the closed, real subspace of H generated by M .

4. (M + iM)′ =M ′ ∩ iM ′.

5. M ′ = {0} if M is a dense subspace of H.

Proof. See Proposition 1.2.1 in [91].

Definition 6.21. A closed real subspace H is called cyclic if H + iH is dense in H, and sepa-

rating if H ∩ iH = {0}. If it is both cyclic and separating, we call it standard.

Let H ⊂ H be a standard subspace. Let us define an anti-linear operator SH : D(S) → H
as:

SH(ξ + iη)
.
= ξ − iη, ξ, η ∈ H,

where D(SH) = H + iH . Since H is standard, SH is densely defined. It is also clear that

S2
H = ID(SH). Hence, SH is an involution. We will see below that it is also a closed operator.

The following lemma shows that any operator with these characteristics can produce a standard

subspace.
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Lemma 6.22. Let S be a closed, densely defined, anti-linear involution on H. Then H
.
=

ker(1− S) is a standard subspace of H.

Proof. See Lemma 2.2.1 in [89].

Proposition 6.23. The map:

H 7→ SH (6.5)

is a bijection between the set of standard subspaces of H and the set of closed, densely defined,

anti-linear involutions on H, where:

S 7→ ker(1− S)

is the inverse map of (6.5). In addition, the map is order-preserving:

H1 ⊂ H2 ⇐⇒ SH1 ⊂ SH2 ,

and

S∗
H = SH′ .

Proof. See Proposition 2.1.2 in [89].

We see that the operator SH has similar properties to the operator (6.3). Thus, it is worth

analyzing its polar decomposition.

Proposition 6.24. Let

SH = JH∆
1/2
H

be the polar decomposition of SH . Then

1. JH is an anti-unitary involution with

J = J∗ = J−1.

2. JH′ = JH and ∆H′ = ∆−1
H .

Proof. See Proposition 2.1.3 in [89].
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Finally, the following theorem gives the real Hilbert subspace version of the Tomita-Takesaki

theorem.

Theorem 6.25 (Tomita-Takesaki- Real subspace version). Let ∆H and JH be as above. Then,

for all t ∈ R:

∆it
HH = H, JHH = H ′.

Proof. See Theorem 2.1.4 in [89].

One might wonder about the connection between the two approaches to the Tomita-Takesaki

Theory. Let us first show how to go from von Neumann algebras with a cyclic and separating

vector Ω to standard subspaces. Suppose M is a von Neumann algebra acting on the Hilbert

space H. Denote by Msa the subset of M consisting of self-adjoint operators. Then, due to the

assumption that Ω is cyclic and separating, the real vector subspace:

K
.
= MsaΩ = {ψ ∈ H|ψ = AΩ, A ∈ Msa} ⊂ H

is a standard subspace. Furthermore, if ∆ and J are the modular operators associated with the

pair (M,Ω), then ∆ = ∆K and J = JK . In fact, if K + iK ∋ ψ = AΩ + iBΩ, where

A,B ∈ Msa, then:

S(AΩ + iBΩ) = AΩ− iBΩ,

which coincides with SK .

In the other direction, a von Neumann algebra with a cyclic and separating vector may be

obtained from a standard subspace via a technique known as second quantization. We will

follow the notation defined in [91]. We start by defining the Bosonic Fock space over a Hilbert

space H with an inner product ⟨, ⟩, which we denote by eH, and we define as:

eH
.
=

∞⊕
n=0

H⊗Symn,

where H⊗Symn = Sym(H⊗n), and Sym is the orthogonal projection defined as:

Sym(h1 ⊗ ...⊗ hn)
.
=

1

n!

∑
σ∈P (n)

hσ(1) ⊗ ...⊗ hσ(n),
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where P (n) is the permutation group of n elements. The vectors of the form:

eh =
∞⊕
n=0

h⊗n√
n!

form a total set in eH (see Lemma 2.8 in [86]), and are called coherent vectors. The exponential

notation is adequate since the inner product in this space is clearly:

⟨eh, ek⟩ = e⟨h,k⟩.

If A is an operator acting on H, then its second-quantized version, which acts on eH, is defined

as:

eA
.
=

∞⊕
n=0

A⊗n.

In particular, if U is unitary, then eU is also unitary.

An important class of operators acting on eH are the Weyl unitaries. These are defined as:

W (h)e0 = e(−
1
4
∥h∥2)e

i√
2
h
, h ∈ H

W (h)W (k) = e−
i
2
⟨h,k⟩IW (h+ k), h, k ∈ H.

The vector e0 is called the vacuum state, and the second equality above implements the Canon-

ical Commutation Relations in the Weyl form. These unitaries are well-defined on a dense set

of vectors spanned by the coherent vectors and therefore can be extended to unitaries on eH.

Finally, given a closed real subspace H ⊂ H, we can construct an associated von Neumann

algebra R(H) as:

R(H)
.
= {W (h)|h ∈ H}cc . (6.6)

The following theorems give some fundamental results concerning these algebras.

Theorem 6.26. Consider the algebra R(H) as above. Then, the vacuum e0 is cyclic and sep-

arating for this algebra if, and only if, H is standard. In this case, the modular operators
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associated with the pair (R(H), e0) are:

S = eSH

∆ = e∆H

J = eJH .

Proof. See Theorem 2.6 in [86] and references therein.

Theorem 6.27. For closed real subspaces H,K in H, the map H 7→ R(H) has the following

properties:

1. e0 is cyclic for R(H) if, and only if, H + iH is dense in H.

2. e0 is separating for R(H) if, and only if, H ∩ iH = {0}.

3. R(H)c = R(H ′).

4. (R(H) ∪R(K))cc = R(H +K).

5. R(H) ∩R(K) = R(H ∩K), and hence R(H) is a factor (in the von Neumann algebra

sense) if, and only if, H is a factor (in the real subspace sense).

Proof. See Theorem 1.3.2 in [91].

To close this section, we give some applications of this theory to Physics. Historically, the

first application, as already mentioned, was to thermal equilibrium states. Since this topic is not

connected with the main topic of this thesis, we only comment briefly on this result. Defining a

state ω on M as:

ω(A)
.
=

1

∥Ω∥2
⟨Ω, AΩ⟩,

it can be proved that this state is KMS with respect to the modular group (see Theorem 2.5.14

in [75]). This fact has profound consequences for Quantum Statistical Mechanics and Thermal

Field Theory [70, 75, 82].

The starting point of the study of Modular Theory, as we saw, is a von Neumann algebra

with a cyclic and separating state. In QFT, one could wonder when (or if) these conditions are

satisfied. In AQFT, the local algebras are described by von Neumann algebras, as discussed in

Section 6.1. Do we have a state with the necessary properties? The following groundbreaking

theorem answers this question.
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Theorem 6.28 (Reeh-Schlieder). Let R4 ∋ O 7→ M(O) be the net of C∗-algebras describing

a free scalar field (see Subsection 6.1.1), where O is any open set with interior points and such

that the causal complement also has interior points. Let Ω denote the vacuum state (that is, the

state with the least energy). Then, Ω is cyclic and separating for any M(O).

Proof. See [71, 92, 93].

This finding is quite robust and unintuitive. For example, consider that we have a laboratory

contained in a given region O ∈ R4 of spacetime. The theorem says that the action of the local

algebra M(O) on the vacuum can not only create states that are “localized” in the laboratory,

but it can create almost any state (that is, a dense subset), even states that are “localized” in

faraway regions. Of course, the precise definition of localization we are using needs to be

clarified, and we will do it in Chapter 7.

This theorem also allows us to use all the techniques of Modular Theory on QFT. Hence,

a natural question that arises is: what is the modular group in this context? To answer this

question, we need to specialize our investigation to a particular class of regions in spacetime,

namely, the wedges.

Definition 6.29. The right wedge (also known as the right Rindler wedge), denoted by W1, is

defined as the following subset of Minkowski spacetime:

W1
.
= {x ∈ R4|x1 > |x0|}. (6.7)

All other wedges are defined as Poincaré transforms of this wedge. That is, denoting by W the

set of all wedges, we have that:

W =
{
W ⊂ R4|W = gW1, g ∈ P

}
.

These are causally closed regions and hence belong to the logic of spacetime (check Section

5.4). It is possible to assign to each wedge a one-parameter group of transformations, denoted

by ΛW (t), t ∈ R, such that it is covariant with respect to ΛW (t), that is:

ΛW (t)(W ) = W (6.8)

ΛgW (t) = gΛW (t)g−1, g ∈ P↑
+ (6.9)

ΛgW (t) = gΛW (−t)g−1, g ∈ P↓
+. (6.10)

It is also possible to assign to each wedge a time-reversing reflection RW ∈ P+ such that W is
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covariant with respect to RW , that is:

RW (W ) = W⊥ (6.11)

RgW = gRWg
−1, g ∈ P+, (6.12)

where ⊥ is the causal complement defined in Section 5.4 for M = R4, the Minkowski space-

time.

For example, for the right wedge, the one-parameter group can be chosen as the (rescaled)

boosts preserving W1, that is:

R ∋ t 7→ ΛW1(t) =


cosh 2πt − sinh 2πt 0 0

− sinh 2πt cosh 2πt 0 0

0 0 1 0

0 0 0 1

 . (6.13)

The element RW1 is the reflection with respect to the edge of the wedge, that is:

RW1(x0, x1, x2, x3) = (−x0,−x1, x2, x3). (6.14)

For the regions in the set W , we have the following striking result, which shows that the

modular group has a geometric action.

Theorem 6.30 (Bisognano-Wichmann). Let U denote a positive-energy representation of the

Poincaré group with mass m and spin 0, and consider the pair (M(W ),Ω), where M(W ) is

the local von Neumann algebra of a massive, scalar field associated with the wedge W ∈ W ,

and Ω is the vacuum state. Then, the modular group associated with the pair (M(W ),Ω) is

given by:

∆it = U(ΛW (t), 0), t ∈ R.

Proof. See [83, 87].

That is, the modular group implements the boosts under the representation U . Moreover,

according to our previous discussion, Ω is a KMS state (that is, a thermal state) under the

dynamics given by the modular group, a phenomenon nowadays known as the Unruh effect.

The original paper of Bisognano-Wichmann (1975, [83]) predates Unruh’s paper (1976, [84]).

Furthermore, Bisognano and Wichmann’s derivation of this effect is non-perturbative, while

Unruh’s utilizes perturbation techniques.

113



Chapter 6. Quantum Fields and Modular Theory

6.3 Modular Localization

In the last section, we showed that if R(O), O ⊆ R4, is a local von Neumann algebra with a

cyclic and separating vector Ω (Theorem 6.28 ), we can construct a (local) standard subspace

from the vacuum as H(O) = R(O)saΩ. The Modular Localization framework, proposed by

Brunetti, Guido and Longo [1], is a method to reverse this process: we start by constructing

local standard subspaces and then, by second quantization, we obtain a net of von Neumann

algebras satisfying the axioms of AQFT.

The idea, inspired by the Bisognano-Wichmann Theorem (Theorem 6.30), is the following:

the conclusion of this theorem is that the modular group of the von Neumann algebra associated

with a wedge is equal to the representation of the one-parameter group of boosts preserving this

wedge. In the Modular Localization framework, we start with a representation of the Poincaré

group and build (local) standard subspaces with the representation of the boosts preserving a

given wedge. The algebra of observables constructed by second quantization of these stan-

dard subspaces is only dependent on the choice of representation of the Poincaré group and

is, therefore, independent of classical models. Remember that this was not the case when we

constructed the algebra of observables of a bosonic field with the techniques used in Section

6.1.1.

Let P+ = P↑
+ ∪ P↓

+ denote the proper part of the Poincaré group, and P+ ∋ g 7→ U(g) be

a strongly continuous (anti-) unitary representation on the Hilbert space H, meaning that U(g)

is unitary if g ∈ P↑
+, and is antiunitary if g ∈ P↓

+. Consider a wedge W ∈ W as defined in

Definition 6.29, and let ΛW (t), t ∈ R, and RW be the one-parameter group of boosts preserving

W , and its time-reversing reflection, respectively, defined by equations (6.8) and (6.11). Let us

define the following operators associated with W :

∆W
.
= eHW

JW
.
= U(RW )

SW
.
= JW∆

1/2
W ,

where HW is the self-adjoint generator of U(ΛW (t)).

Proposition 6.31. Let ∆W and JW be as above. Then:

1. ∆W is a densely defined, closed, positive non-singular operator on H.

2. JW is an antiunitary operator on H and J2
W = I.

3. JW∆WJ
−1
W = ∆−1

W .
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4. SW is a densely defined, antilinear, closed operator on H with Range(SW ) = D(SW )

and S2
W ⊂ I.

Proof. See Propositions 2.1 and 2.2 in [1].

Thus, the operator SW just defined has all the properties of the operator S defined in the last

section in Tomita-Takesaki’s Theory. Remember that, according to Proposition 6.23, there is a

standard subspace associated with SW , which we denote by H(W ), given by:

H(W ) = ker(1− SW ) = {h ∈ D(SW )|SWh = h}. (6.15)

It follows that D(SW ) = H(W ) + iH(W ) and SW (h + ik) = h − ik, where h, k ∈ H(W ).

Moreover, from Tomita-Takesaki’s Theorem 6.25 in the real subspace version, it is true that:

∆it
WH(W ) = H(W )

JWH(W ) = H(W )′,

where ′ is the symplectic complement (6.4).

Hence, we have a net of local standard subspaces given by the map W ∋ W 7→ H(W ) ⊂ H.

Let us explore some of the properties of this family.

Theorem 6.32. Let U be a (anti-) unitary representation of P+ and W 7→ H(W ) as above.

Then:

1. Wedge duality holds, namely: H(W⊥) = H(W )′.

2. The representation U acts covariantly: U(g)H(W ) = H(gW ), g ∈ P+.

3. The following are equivalent:

(a) The spaces H(W ) are factors, that is: H(W ) ∩H(W )′ = {0}.

(b) The representation U does not contain the trivial representation.

(c) The net is irreducible, namely:
⋂
W∈W H(W ) = {0}.

Proof. See Proposition 2.4 and Theorem 2.5 in [1].

Following the process of second quantization described in the last section (remember equa-

tion (6.6)), we can obtain a net of local von Neumann algebras W ∋ W 7→ H(W ) 7→ R(W ).

Does this net satisfy the axioms of AQFT in Section 6.1 (restricted to wedge regions)? Let us

focus on the first 4 axioms, since wedges do not contain Cauchy surfaces (we will address this
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problem later): the first axiom, Local Algebras, is obviously satisfied; the third, the Causal-

ity axiom, is also satisfied due to wedge duality in Theorem 6.32 and the relation between the

symplectic complement and the commutant of the respective von Neumann algebra given in

Theorem 6.27; the fourth axiom, Poincaré covariance, is also clearly satisfied due to the covari-

ance of the net W → H(W ) shown in Theorem 6.32. It only remains to check the conditions

under which the second axiom, Isotony, is satisfied. As we will see, this axioms holds if, and

only if, U is a positive energy representation. To prove this, we must grasp a better understand-

ing of inclusions of real subspaces and wedges.

The following theorem is a one-particle analog of Borchers’ Theorem for von Neumann

algebras [94] and will serve as a very important technical tool.

Theorem 6.33. Let H ⊂ H be a standard subspace and U(a) = eiaH a one-paramenter group

of unitaries on H satisfying:

∆it
HU(a)∆

−it
H = U(e∓2πta)

JHU(a)JH = U(−a).

Then, the following are equivalent:

1. U(a)H ⊂ H for a ≥ 0.

2. The generator ±H of the representation is positive.

Proof. See [90].

Next, let us look at some geometric properties of inclusions of wedges. Let C denote the

cone in the Lie algebra of P↑
+ consisting of the generators of future-pointing light-like or time-

like translations.

Definition 6.34. Let W0,W ∈ W be any two wedges such that W0 ⊂ W . We say that W0 is

positively included in W if

1. W0 can be obtained by W via a suitable translation exp(a0h), a0 ≥ 0, such that ±h ∈ C,

and where exp denotes the exponential map from the Lie algebra to the Lie group.

2. We have the following relations:

ΛW exp(ah)ΛW (−t) = exp
(
e∓2πtah

)
RW exp(ah)RW = exp(−ah),
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for a, t ∈ R.

Now we have the tools to prove the following fundamental result on inclusions of standard

subspaces in the net W ∋7→ H(W ).

Theorem 6.35. Let U be a (anti-) unitary representation of P+, and let W, W̃ ∈ W be any

two wedges such that W ⊂ W̃ . Then H(W ) ⊂ H(W̃ ) if, and only if, U is a positive energy

representation.

Proof. It follows straightforwardly from Theorem 6.33 and the fact that any inclusion of wedges

is the composition of finitely many positive inclusions.

So far we constructed the method of Modular Localization for special regions of Minkowski

spacetime, namely, the wedges. Can we extend this construction to other types of regions?

Since causally closed, convex regions are given by intersections of wedges (check [95]), for

any region C of this type, we can define:

H(C) .=
⋂
W⊃C

H(W ),

that is, H(C) is the intersection of all wedges containing C. For general causally-closed regions

O, we define:

H(O)
.
=
∨
C⊂O

H(C), (6.16)

that is, H(O) is the real subspace generated (meaning the closed real span) by all H(C) such

that C is contained in O. We will refer to the map O → H(O) as the modular localization

map.

Proposition 6.36. Let U be a (anti-) unitary positive energy representation of P+. Then:

1. Isotony holds for the net O → H(O), where O is any causally-closed region.

2. If O1 ⊂ O⊥
2 , then H(O1) ⊂ H(O2)

′.

3. If O is, in addition, convex, then H(O⊥) = H ′(O) (Haag duality).

Proof. See Corollary 3.5 in [1].

We now have a net of closed real subspaces such that the corresponding net of second quan-

tized algebras satisfies all the axioms of AQFT (except axiom number 5 in Section 6.1). Note,
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however, that the subspaces H(O) defined above for causally-closed regions do not necessarily

satisfy the standard property. As a consequence, the vacuum will not necessarily be cyclic for

the algebra. More precisely:

Theorem 6.37. Let H(O) be a closed, real subspace as above, where O is a causally-closed

region, and let R(O) denote the corresponding von Neumann algebra obtained via second

quantization. Then, the vacuum state in the second quantization is cyclic and separating if, and

only if, H(O) is standard.

Proof. Follows immediately from items 1 and 2 in Theorem 6.27.

The above property of the vacuum is known as the Reeh-Schilider property. This property

is very important in QFT and it has a simple formulation in terms of standard subspaces. If

the representation U in Proposition 6.36 is the irreducible representation of a massive particle

without spin, then the net of local algebras O → R(O) coincides with the algebra derived in

Section 6.1.1. The success of this method of producing local algebras from standard subspaces

led physicists to reformulate the axioms of AQFT in terms of standard subspaces, which are

simpler in nature (see Section 2.3 in [96], for example). Note that Proposition 6.36 is valid

for all positive-energy representations, which includes the infinite spin representation. This is

a surprising result since it was shown in [97] that the construction of Wightman fields for this

representation is not possible. However, it has been shown that the real subspace of a double

cone in this representation is not only non-standard, but it is trivial [98]. This leads to the

localization of infinite spin particles in infinite strings, where the standard property is recovered

[99].

Finally, we point out that the Modular Localization formalism can also be extended to other

spacetimes. The somehow tricky part is to find analogs of wedges in other geometries. For

de Sitter spacetime, this can be done (check Section 5.2 in [1]). For other spacetimes, the

construction is a current topic of research (see [100], for instance).
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Modular Localization and the

Localizability Problem

Leben—das heisst für uns Alles, was wir sind, beständig in Licht und Flamme

verwandeln, auch Alles, was uns trifft, wir können gar nicht anders.
Nietzsche

The Modular Localization formalism, as presented in the last chapter, is a method to pro-

duce a covariant net of closed, real subspaces associated with regions of spacetime and the

corresponding net of von Neumann algebras. Even though it carries the word “localization” in

its name, it has, in principle, no direct connection with the Localizability Problem. The goal of

Part II of this work (and of this chapter) is to show that Modular Localization can be used to

provide a new approach to this problem.

As already discussed, the Newton-Wigner approach is based on orthogonal projections de-

fined on the Borel sets of a spatial section Σt in spacetime, giving rise to a spectral measure, and

a probability measure on the logic L = (B(Σt),∪,∩,c ) for each quantum state. The new ap-

proaches that followed Newton-Wigner also constructed a probability measure on this same

logic, even though with a different mathematical object, namely, Positive-Operator-Valued-

Measures (POVM’s). Our approach is different: we want to construct a probability measure

on the spacetime logic LΣ. Note, however, that the general picture is just the same when we

look from the perspective of the mathematical structure we constructed in Chapter 5: we are

fabricating a probability measure on a logic ( which contains regions of space/spacetime) for

each quantum state. A necessary intermediate step is, of course, to connect the classical fea-

tures of spacetime with the quantum world. As we will show, this can be done with the aid of

Modular Localization, solving all the causality problems in the Newton-Wigner approach. Our

program has the distinguishing feature of allowing localization in spacetime rather than only in
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space for a fixed time, as is done in the approaches using PVM’s and POVM’s. Furthermore,

our method is valid for any positive energy, positive mass representation of the Poincaré group.

Finally, we analyze what are the relations between our method and Newton-Wigner’s approach,

showing that these can be approximated in some specific sense.

7.1 Implementing the Spacetime Logic

As we saw in Section 6.3, the Modular Localization map is a function from spacetime regions

to real closed subspaces of a Hilbert space describing our quantum system. The goal of this

section is to understand which logical structures of the spacetime logic are preserved under this

map. Is it a logic homomorphism in the sense of Definition 5.4? As we will see, this is not

exactly true, but the important properties for our goals are preserved. This idea is inspired by

the fact that the Newton-Wigner Localization map B(R3) ∋ O → E(O) (remember equation

(3.4)) is a homomorphism of the logic L = (B(R3),∪,∩,c ) into the Hilbert space. Let us start

by proving this.

Theorem 7.1. Let A be a σ-algebra on the set Ω, and A ∋ A 7→ E(A) ∈ P(H) a spectral mea-

sure (Definition A.10), where H is a Hilbert space. Then, A→ E(A) is a logic homomorphism

from L .
= (A,∪,∩,c ) to LQM = (P(H),∨,∧,⊥) (remember equation (5.6)). Furthermore,

E(A) ⊂ P(H) is a boolean σ-algebra.

Proof. We want to prove properties 1 to 3 in Definition 5.4 of a lattice homomorphism. It is

obvious that E(∅) = 0 and E(Ω) = I. By additivity of spectral measures, we have for any

A,B ∈ A:

E(A ∪B) = E(A \B) + E(B \ A) + E(A ∩B).

We want to to show that the right-hand side is the least upper bound of {E(A), E(B)} (and

hence equal to E(A) ∨ E(B), according to our discussion in Section 5.1). Suppose that there

is another projection Ẽ ∈ P(H) that is bigger than both E(A)and E(B) but is smaller then

E(A ∪B). This implies:

ẼE(A) = E(A), ẼE(A \B) = E(A \B)

ẼE(B) = E(B), ẼE(B \ A) = E(B \ A)

ẼE(A ∪B) = Ẽ.
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We can then compute:

Ẽ = ẼE(A ∪B) = ẼE(A \B) + ẼE(B \ A) + ẼE(A ∩B)

= E(A \B) + E(B \ A) + E(A ∩B)

= E(A ∪B),

and hence E(A ∪ B) = Ẽ = E(A) ∨ E(B). Proposition A.11 shows that E(A ∩ B) =

E(A)E(B) = E(A) ∧ E(B), and hence property 2 is proved.

To prove property 3, note that for any A ∈ A:

E(Ac ∪ A) = E(Ac) + E(A)

E(Ω) = E(Ac) + E(A)

I = E(Ac) ∨ E(A),

which implies that E(Ac) = E(A)⊥ and property 3 is proved. To prove that it is a logic

homomorphism, we note that E
(⋃

i∈NAi
)
=
∨
i∈NE(Ai) and E

(⋂
i∈NAi

)
=
∧
i∈NE(Ai) for

any countable sequence {Ai}i∈N. Also, given any A,B ∈ A such that A ⊂ B, it is true that

E(Ac ∩ B) = E(A)⊥ ∩ E(B), and hence E(A) is a sublogic of LQM . Finally, it is clear that

for any E(A), E(B), E(C) ∈ E(A) the distributive law 5.3 holds, due to the distributivity of

the elements in A.

Corollary 7.2. The Newton-Wigner map B(R3) ∋ O → PNW (O) is a logic homomorphism

from L = (B(R3),∪,∩,c ) to LQM = (P(H),∨,∧,⊥), and PNW (B(R3)) ⊂ P(H) is a boolean

sub-logic.

As discussed in Chapter 5, the logic of a physical system encodes the nature of the mea-

surements that can be performed on it. The Newton-Wigner formalism is, therefore, encoding

particular measurements performed on spatial sections that know nothing about time, and is

thus not a surprise that problems with the causality structure appear in this approach. If the time

scale in which the measurement is performed is very short, the Newton-Wigner localization can

be seen as a good approximation (check [4]). Nonetheless, in Theoretical Physics we seek to

understand not only approximations of reality but reality itself to the maximum extent our in-

tellectual capacities allow us. It is then desired to have a logic of measurements that takes into

consideration the causal structure of spacetime. As a consequence of the previous corollary, the

most natural approach would be to find a homomorphism from L into H.

Following the example of the Newton-Wigner localization, it is worth investigating if it is
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possible to implement this logic in terms of orthogonal projections, that is, we want to find a

homomorphism P : LM ∋ O 7→ P (O) ∈ P(H) such that µψ(O)
.
= ⟨ψ, P (O)ψ⟩ is, for every

ψ ∈ H, a probability measure on LM (as in Definition 5.9), and such that it represents the

probability of finding the system in O if it is in the state ψ ∈ H. Note that the map O → P (O)

is not a spectral measure since LM is not a σ-algebra: for instance, a double-cone is in this

logic but its set complement is not. Therefore, the No-go Theorems presented in Chapter 4 do

not apply and it is not obvious that this strategy doesn’t work. For our analysis, we will need

the following technical lemma due to Borchers.

Lemma 7.3. Let V (t) = eitH be a strongly continuous, one-parameter group of unitary opera-

tors acting on a Hilbert space whose generator H has a spectrum bounded from below. Let P1

and P2 be two orthogonal projections such that:

1. P1P2 = 0.

2. There is an ϵ > 0 such that for all t with |t| < ϵ:

[P1, V (t)P2V (−t)] = 0.

Then, P1V (t)P2V (−t) = 0 for all t ∈ R.

Proof. Check Theorem 3.1 in [101].

We can now prove the following No-go theorem, which expresses the impossibility of im-

plementing the spacetime logic in terms of orthogonal projections.

Theorem 7.4 (No-Go Theorem). Consider the Minkowski spacetime logic LM , and let E :

LM ∋ O 7→ E(O) ∈ P(H) be a logic homomorphism into the orthogonal projections acting

on the Hilbert space H. Let R4 ∋ v 7→ U(v) be a strongly continuous representation of the

translation group on H, and consider the sublogic LΣ as defined in equation (5.7). Suppose

that the following conditions are satisfied:

1. Translation covariance:

E(O + v) = U(v)E(O)U(−v),

where v ∈ R4.
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2. If v is time-like and future-directed and

U(tv) = eiH(v)t, t ∈ R,

whereH(v) is the generator of the translation in the v direction, then σ(H(v)) is bounded

below.

Then, E(b⊥⊥) = 0 for any bounded b ∈ B(Σ).

Proof. Because E is assumed to be a homomorphism, we have that for any O1, O2 ∈ LM ,

O2 ⊆ O⊥
1 and:

E(O1)E(O2) = E(O2)E(O1) = 0, (7.1)

since E(O2)H ⊂ E(O⊥
1 )H = (E(O1)H)⊥. Let us choose a bounded b1 ∈ B(Σ). Define

b2
.
= b1 + w for some w ∈ R3 (spatial translation) such that b1 and b2 are disjoint. From

equation (7.1), we have that
[
E(b⊥⊥

1 ), E(b⊥⊥
2 )
]
=
[
E(b⊥⊥

1 ), E(b⊥⊥
1 + w)

]
= 0. Let w1 ∈ R4

be a future-directed, time-like vector. Then, for a small enough ϵ > 0, and for any t such that

|t| < ϵ, it follows from the translation covariance condition that:

[
E(b⊥⊥

1 ), U(tw1)E(b
⊥⊥
1 + w)U(−tw1)

]
=
[
E(b⊥⊥

1 ), E(b⊥⊥
1 + w + tw1)

]
= 0.

The Figure 7.1 shows the setup for an example in 1+1 dimensions.

Figure 7.1: Relation between the regions b⊥⊥
1 and b⊥⊥

2 .

We can now apply Lemma 7.3 and conclude that:

E(b⊥⊥
1 )U(tw1)E(b

⊥⊥
2 )U(−tw1) = E(b⊥⊥

1 )E(b⊥⊥
1 + w + tw1) = 0 (7.2)
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for all t ∈ R.

Consider now a future-directed, time-like vector w2 and a big enough t2 ∈ R such that

b⊥⊥
1 + t2w2 is inside the causal future of b⊥⊥

2 and, in addition, for small enough ϵ > 0, b⊥⊥
1 +

(t + t2)w2 is still inside the causal future of b⊥⊥
2 for all t ∈ R such that |t| < ϵ. In particular,

there exists a time-like vector z ∈ R4 and s ∈ R such that b⊥⊥
1 + t2w2 = b⊥⊥

2 + sz. See Figure

7.2.

Figure 7.2: Translations of regions b⊥⊥
1 and b⊥⊥

2 .

Therefore:

E(b⊥⊥
1 )E(b⊥⊥

1 + t2w2) = E(b⊥⊥
1 )E(b⊥⊥

1 + w + sz) = 0, (7.3)

where we used equation (7.2) (with t = s and w1 = z in this case). Besides, for each t with
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|t| < ϵ, there exists a time-like vector ẑ ∈ R4 and ŝ ∈ R such that:

E(b⊥⊥
1 )E(b⊥⊥

1 + (t2 + t)w2) = E(b⊥⊥
1 )E(b⊥⊥

1 + w + ŝẑ) = 0,

that is:

[
E(b⊥⊥

1 ), U(tw2)E(b
⊥⊥
1 + t2w2)U(−tw2)

]
= 0 (7.4)

for all |t| < ϵ. Hence, we can use equations (7.3) and (7.4) to apply Lemma 7.3 once more and

conclude that:

E(b⊥⊥
1 )U(tw2)E(b

⊥⊥
1 + t2w2)U(−tw2) = E(b⊥⊥

1 )E(b⊥⊥
1 + (t2 + t)w2) = 0

for all t ∈ R. Finally, choose t = −t2 and we have that

E(b⊥⊥
1 ) = 0

for all b1 ∈ B(Σ).

Therefore, it is clear that it is impossible to implement the logic LM in terms of orthogonal

projections, even if it is not a spectral measure, meaning that there is no position operator

attached to it (it would have, however, a position observable in the sense of Definition 5.6).

We see from the above theorem that it is not at all obvious how to incorporate the space-

time logic into the Hilbert space structure. It is at this point that Modular Localization plays

its role. We will show that the map (6.16) defining modular localization preserves the nec-

essary logic structure, for our purposes, of the sublogic LΣ. Before that, we need to study

the lattice of closed, real subspaces in a complex Hilbert space H. This lattice has a pseudo-

orthocomplementation, namely, the symplectic complement. Remember that it is not exactly an

orthocomplementation because condition 3 in Definition 5.3 is not always satisfied.

Definition 7.5. Let H be a complex Hilbert space with inner product ⟨, ⟩, and C(H)R be the

set of all closed, real subspaces of H. We define the (pseudo-)orthocomplemented lattice of

closed, real subspaces as the quadruple L(H)R
.
= (C(H)R,∨R,∧R, ′) where:

H1 ∨R H2
.
= H1 +H2

H1 ∧R H2
.
= H1 ∩H2

H ′
1
.
= {ξ ∈ H|⟨ξ, η⟩I = 0∀η ∈ H1} ,
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for H1, H2 ∈ C(H)R, and where the overline denotes the closure with respect to the topology

induced by ⟨, ⟩R, the real part of the inner product ⟨, ⟩ = ⟨, ⟩R + i⟨, ⟩I .

That the above operations are indeed well-defined can be seen from Proposition 6.20. Sim-

ilarly to what we did with the logic LQM in (5.6), we can rewrite the lattice L(H)R in terms of

real projections: considering (H, ⟨, ⟩R) as a real Hilbert space, all the closed, real subspaces are

in one-to-one correspondence with orthogonal projections (with respect to ⟨, ⟩R). Note, how-

ever, that these projections are not necessarily linear operators in the complex Hilbert space H.

Hence, we can equivalently write:

L(H)R = (P(H)R,∨R,∧R, ′), (7.5)

where P(H)R denotes the set of real linear projections in H. We will interchangeably use the

notation L(H)R to refer to both the lattice of closed real subspaces and the lattice of correspond-

ing real linear projections, depending on the convenience.

Proposition 7.6. Let U be an (anti-) unitary positive energy representation of P+. Let R4 ⊇
O 7→ H(O) denote the modular localization map (6.16). Then:

1. The map LΣ ∋ b⊥⊥ 7→ H(b⊥⊥) ∈ L(H)R, b ∈ B(Σ), preserves joins:

H(b⊥⊥
1 ∨M b⊥⊥

2 ) = H(b⊥⊥
1 ) ∨R H(b⊥⊥

2 ),

if:

(a) b⊥⊥
1 ∩ b⊥⊥

2 = ∅.

(b) b⊥⊥
1 ⊆ b⊥⊥

2 .

2. The map LΣ ∋ b⊥⊥ 7→ H(b⊥⊥) ∈ L(H)R, b ∈ B(Σ), preserves meets:

H(b⊥⊥
1 ∧M b⊥⊥

2 ) = H(b⊥⊥
1 ) ∧R H(b⊥⊥

2 ),

if:

(a) b⊥⊥
1 and b⊥⊥

2 are convex, disjoint, and U doesn’t contain the trivial representation.

In this case:

H(b⊥⊥
1 ∧M b⊥⊥

2 ) = H(b⊥⊥
1 ) ∧R H(b⊥⊥

2 ) = {0}.
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(b) b⊥⊥
1 ⊆ b⊥⊥

2 . In this case:

H(b⊥⊥
1 ∧M b⊥⊥

2 ) = H(b⊥⊥
1 ) = H(b⊥⊥

1 ) ∨R H(b⊥⊥
2 ).

3. Haag duality (in other words, preservation of the orthocomplementation) holds:

H(b⊥⊥)′ = H(b⊥⊥⊥), b ∈ B(Σ),

if b⊥⊥ is convex.

Proof. 1. Let b1 and b2 be disjoint. Then b⊥⊥
1 ∨M b⊥⊥

2 = b⊥⊥
1 ∪ b⊥⊥

2 . Remember that the

modular localization map is given by:

H(O)
.
=
∨
C⊂O

H(C), (7.6)

and hence:

H(b⊥⊥
1 ∨M b⊥⊥

2 ) =
∨

C⊂b⊥⊥
1 ∪b⊥⊥

2

H(C),

where the join is taken over all convex regions C that are contained in b⊥⊥
1 ∪b⊥⊥

2 . Because

b⊥⊥
1 and b⊥⊥

2 are disjoint, the convex region C is either in b⊥⊥
1 or b⊥⊥

2 , and we can write:

H(b⊥⊥
1 ∨M b⊥⊥

2 ) =
∨

C⊂b⊥⊥
1 ∪b⊥⊥

2

H(C)

=

 ∨
C1⊂b⊥⊥

1

H(C1)

∨
R

 ∨
C2⊂b⊥⊥

2

H(C2)


= H(b⊥⊥

1 ) ∨R H(b⊥⊥
2 ),

where C1 and C2 are the convex sets contained in in b⊥⊥
1 and b⊥⊥

2 , respectively. If b⊥⊥
1 ⊆

b⊥⊥
2 the joint is also preserved as a consequence of the isotony of the net, as shown in

Proposition 6.36. The claim follows immediately.

2. Let us now prove the preservation of the meet. If b⊥⊥
1 and b⊥⊥

2 are convex and disjoint,

then there exists a wedge W that contains b⊥⊥
1 ⊂ W and such that b⊥⊥

2 ⊂ W⊥. If U does

not contain the trivial representation, the claim follows from item 3 in Theorem 6.32. If

b⊥⊥
1 ⊆ b⊥⊥

2 , the claim follows again from the isotony of the net.
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3. Follows directly from item 3 in Proposition 6.36.

Hence, we see that the modular localization map partially implements the logic LΣ into

the space of real closed subspaces for any positive energy representation. Note that in this

proposition we do not provide an if, and only if condition: it is not clear if the joins and meets

are preserved when the regions in LΣ are neither disjoint nor such that one is a subset of the

other. If we consider the big logic LM , this is certainly not the case. A simple counter-example

is to take single points (which are causally closed), as in the figure below. It is clear that

H(p1 ∨ p2) ̸= {0}, but H(p1) ∨R H(p2) = {0} ∨R {0} = {0}. This is not the case if the two

points belong to the same Cauchy surface, which is another evidence that the logic LΣ is much

easier to handle.

Figure 7.3: Join of single points.

To close this section, we point out that the logic LΣ can also be partially implemented in

von Neumann algebras through second quantization. Let us define the logic of von Neumann

algebras.

Definition 7.7. Let H be a complex Hilbert space, B(H) the set of bounded operators acting

on it, and A(H) the set of all von Neumann algebras in B(H). We define the (pseudo-) ortho-

complemented lattice of von Neuman algebras as the quadruple LvN
.
= (A(H),∨vN ,∧vN , c),

where c is the commutant defined in equation (6.2) and:

A1 ∨vN A2
.
= (A1 ∪ A2)

cc

A1 ∧vN A2
.
= A1 ∩ A2.
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Similar to what we had in the real subspace case, the commutant is not a true orthocomple-

mentation because condition 3 in Definition 5.3 is not necessarily satisfied for every element (it

holds only for factors).

Proposition 7.8. Consider the second quantization map H ⊃ H 7→ R(H) ∈ A(H) defined in

equation (6.6). Then:

1. The map LΣ ∋ b⊥⊥ 7→ R(H(b⊥⊥)), b ∈ B(Σ), preserves joins:

R(H(b⊥⊥
1 ∨M b⊥⊥

2 )) = R(H(b⊥⊥
1 )) ∨vN R(H(b⊥⊥

2 )),

if:

(a) b⊥⊥
1 ∩ b⊥⊥

2 = ∅.

(b) b⊥⊥
1 ⊆ b⊥⊥

2 .

2. The map LΣ ∋ b⊥⊥ 7→ R(H(b⊥⊥)), b ∈ B(Σ), preserves meets:

R(H(b⊥⊥
1 ∧M b⊥⊥

2 )) = R(H(b⊥⊥
1 )) ∧vN R(H(b⊥⊥

2 )),

if:

(a) b⊥⊥
1 and b⊥⊥

2 are convex, disjoint, and U doesn’t contain the trivial representation.

In this case:

R(H(b⊥⊥
1 ∧M b⊥⊥

2 )) = R(H(b⊥⊥
1 )) ∧vN R(H(b⊥⊥

2 )) = {0}.

(b) b⊥⊥
1 ⊆ b⊥⊥

2 . In this case:

R(H(b⊥⊥
1 ∧M b⊥⊥

2 )) = R(H(b⊥⊥
1 )) = R(H(b⊥⊥

1 )) ∧vN R(H(b⊥⊥
2 )).

3. Haag duality holds:

R(H(b⊥⊥)′) = R(H(b⊥⊥))c, b ∈ B(Σ),

if b⊥⊥ is convex.

Proof. The claims follow directly from Proposition 7.6 and Theorem 6.27.
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7.2 The (quasi-) Probability Measure

So far, we have found a way to partially implement the logic LΣ into the Hilbert space structure

describing a relativistic quantum system. This brought us halfway to our goal: we want to

attribute probability distributions to each state in H and to each region of spacetime in LΣ

such that we can interpret it as the probability of detection of the system in the corresponding

region. This function describing the probability distribution cannot be the traditional probability

measure defined on a σ-algebra because LΣ is not a σ-algebra. Fortunately, we have already

studied a method to extend this definition to logics (Definition 5.9). Our goal in this section is

to find a probability measure on the logic LΣ with the above-mentioned interpretation.

As usual, let us seek inspiration in the Newton-Wigner formalism. As shown in Corollary

7.2, the Newton-Wigner map B(Σ) ∋ O 7→ PNW (O) ∈ P(H) implements the logic B(Σ) in

terms of orthogonal projections. Then, a probability measure (in the traditional and in the logic

sense) is defined as:

µNWψ (O)
.
= ⟨ψ, PNW (O)ψ⟩,

for each ψ ∈ H, ∥ψ∥ = 1. Following this path, it would be natural to attempt to define a

probability measure on LΣ as:

νψ(b
⊥⊥)

.
= ⟨ψ,E(b⊥⊥)ψ⟩,

where E(b⊥⊥) is the real linear projection into the real closed Hilbert space H(b⊥⊥). However,

this strategy doesn’t work simply due to the fact that E(b⊥⊥) is not necessarily a positive op-

erator which implies that this function is not necessarily positive. Nonetheless, this problem

can easily be solved if we take the expectation value with respect to the real part of the inner

product, that is:

µψ(b
⊥⊥)

.
= ⟨ψ,E(b⊥⊥)ψ⟩R. (7.7)

In this case, this function is positive, and conditions 1 and 2 in Definition 5.9 are satisfied. It

only remains to check condition 3, namely, that if b⊥⊥ =
∨
M b⊥⊥

i where all bi’s are pairwise

disjoint, then µψ(b⊥⊥) =
∑

i µ(b
⊥⊥
i ). However, this is true if, and only if,

E(b⊥⊥) =
∑
n

E(b⊥⊥
n ),
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which can not be true unless the real subspaces H(b⊥⊥
n ) are pairwise orthogonal (for every

such b⊥⊥) with respect to the real inner product ⟨, ⟩R. These subspaces are already orthogonal

with respect to the imaginary part of the inner product and being real orthogonal would imply

they are orthogonal with respect to the full inner product ⟨, ⟩, which is not true in general.

Furthermore, we saw in our No-go Theorem 7.4 that it is not a good idea to try to implement

the spacetime logic in terms of orthogonal projections.

Therefore, our attempt to use (7.7) as a probability measure seems to be doomed to failure.

Nevertheless, let us persist with this function for the time being. The pertinent question to

consider is: How nearly orthogonal are they to each other? This is an intricate question and

we will dedicate the rest of this subsection to answer it. One possible strategy to answer it is

to obtain bounds on the inner products between elements in real subspaces corresponding to

disjoint elements in LΣ. Equivalently, we look at operator norm bounds on the product of real

linear projections.

Theorem 7.9. Let U be a (anti-) unitary positive energy, positive mass (where the smallest mass

is m > 0) representation of P+. Let b⊥⊥
1 , b⊥⊥

2 ∈ LΣ, b1 ∩ b2 = ∅, be such that the distance

δ between b1 and b2 is bigger than zero. Consider the corresponding real linear projections

E(b⊥⊥
1 ) and E(b⊥⊥

2 ). Then,

∥∥E(b⊥⊥
1 )E(b⊥⊥

2 )
∥∥ ≤ e−mδ. (7.8)

Proof. The proof of this theorem follows closely the strategy and techniques used in [102]

where the clustering property for massive quantum field theories was proved. Let H denote the

Hilbert space where U is acting, and let us define the functions:

h(t)
.
= ⟨E(b⊥⊥

1 )ψ, eitHE(b⊥⊥
2 )ϕ⟩

l(t)
.
= ⟨E(b⊥⊥

2 )ϕ, e−itHE(b⊥⊥
1 )ψ⟩,

where t ∈ R, ψ, ϕ ∈ H are arbitrary elements, and H denotes the self-adjoint generator of time

translation coming from U . The spectrum of H has a mass gap due to the choice of U . Notice

that the functions h and l are analytic on the upper and lower half-planes, respectively. Due to

the existence of a positive distance δ between b1 and b2, there exists some τ > 0 such that we

can translate H(b⊥⊥
2 ) in such a way that it remains in the symplectic complement of H(b⊥⊥

1 ),

that is:

eitHH(b⊥⊥
2 ) ⊂ H(b⊥⊥

1 )′, (7.9)
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for every |t| < τ . This is illustrated in the figure below for an example in 1 + 1 dimensions.

Figure 7.4: Distance δ and the symplectic complement of b⊥⊥
1 .

Notice that, for t in the real line, we have:

h(t) = l(t), ∀t ∈ R.

In addition, for every |t| < τ , the imaginary part of h and l are zero because of equation (7.9),

which means that:

h(t) = l(t), for |t| < τ.

It follows that we can apply the Edge of the Wedge Theorem to guarantee that there is an

analytic function k on the twofold cut plane Gτ = {t ∈ C|Im t ̸= 0 or |Re t| < τ} such that:

k(t) =


⟨E(b⊥⊥

1 )ψ, eitHE(b⊥⊥
2 )ϕ⟩, Im t > 0

⟨E(b⊥⊥
2 )ϕ, e−itHE(b⊥⊥

1 )ψ⟩, Im t < 0

h(t) = l(t), Im t = 0 and |Re t| < τ.

Consider the unit disc D = {y ∈ C||y| < 1}. Then, the map

D ∋ y 7→ 2yτ

1 + y2
∈ Gτ
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defines a conformal mapping between D and Gτ . Hence, the function

g(y)
.
= k

(
2yτ

1 + y2

)

is analytic on the unit disc. Our goal is to find an upper bound for |⟨E(b⊥⊥
1 )ψ,E(b⊥⊥

2 )ϕ⟩| =
|k(0)|. For that, we use Jensen’s formula (check Chapter 6 in [103]), which gives for r < 1:

log |g(0)| = 1

2π

∫ 2π

0

dν log |g(reiν)|+
∑
a

log
|a|
r
,

where the sum on the right-hand side is over all zeros a of g with |a| < r. Hence, since this

term is non-positive, we have the bound:

|g(0)| ≤ exp

{
1

2π

∫ 2π

0

dν log |g(reiν)|
}
. (7.10)

Defining λ .
= 2r/(1− r2), we write the formula:

Im
{

2reiν

1 + r2e2iν

}
=

λ sin(ν)

1 + λ2 cos2(ν)
.

Next, we want to find a bound for the function |g(reiν)|. Note that the relevant part of the

argument is the imaginary part, as can be seen from the definition of the function k. Using the

formula for the imaginary part and the assumption that the spectrum of H is bounded below by

m, we can straightforwardly compute from the definition of k that:

|g(reiν)| ≤ exp

{
−mτλ| sin(ν)|
1 + λ2 cos2(ν)

}
×


∥∥E(b⊥⊥

1 )ψ
∥∥∥∥E(b⊥⊥

2 )ϕ
∥∥, 0 ≤ ν ≤ π∥∥E(b⊥⊥

2 )ϕ
∥∥∥∥E(b⊥⊥

1 )ψ
∥∥, π ≤ ν ≤ 2π.

Substituting this equation in equation (7.10), and defining

c(r)
.
= (1/2π)

∫ 2π

0

dν| sin(ν)|λ/(1 + λ2 cos2(ν)),

we obtain:

|g(0)| = |⟨E(b⊥⊥
1 )ψ,E(b⊥⊥

2 )ϕ⟩|

≤ e−mτc(r)
∥∥E(b⊥⊥

1 )ψ
∥∥∥∥E(b⊥⊥

2 )ϕ
∥∥,
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where the integration was carried by substituting u = λ cos(ν), obtaining

c(r) = (2/π) arctan
(
2r/(1− r2)

)
.

Since this relation is valid for any r < 1, we take the limit limr→1 c(r) = 1 to obtain:

|g(0)| ≤ e−mτ
∥∥E(b⊥⊥

1 )ψ
∥∥∥∥E(b⊥⊥

2 )ϕ
∥∥.

Furthermore, since the elements E(b⊥⊥
1 )ψ and E(b⊥⊥

2 )ϕ are in the symplectic complement of

each other, it is true that:

|⟨E(b⊥⊥
1 )ψ,E(b⊥⊥

2 )ϕ⟩| = |⟨E(b⊥⊥
1 )ψ,E(b⊥⊥

2 )ϕ⟩R|.

The last step is to obtain a bound on the operator norm
∥∥E(b⊥⊥

1 )E(b⊥⊥
2 )
∥∥. This can be

computed straightforwardly:

∥∥E(b⊥⊥
1 )E(b⊥⊥

2 )
∥∥ = sup

∥ξ∥=1

∥∥E(b⊥⊥
1 )E(b⊥⊥

2 )ξ
∥∥

= sup
∥ξ∥=1

|⟨E(b⊥⊥
1 )E(b⊥⊥

2 )ξ, E(b⊥⊥
1 )E(b⊥⊥

2 )ξ⟩R|

= sup
∥ξ∥=1

|⟨E(b⊥⊥
2 )ξ, E(b⊥⊥

1 )E(b⊥⊥
2 )ξ⟩R|

= sup
∥ξ∥=1

|⟨E(b⊥⊥
2 )ϕ,E(b⊥⊥

1 )ϕ⟩R| (ϕ
.
= E(b⊥⊥

2 )ξ)

≤ sup
∥ξ∥=1

e−mτ
∥∥E(b⊥⊥

1 )ϕ
∥∥∥∥E(b⊥⊥

2 )ϕ
∥∥

= sup
∥ξ∥=1

e−mτ
∥∥E(b⊥⊥

1 )E(b⊥⊥
2 )ξ

∥∥∥∥E(b⊥⊥
2 )ξ

∥∥
≤ e−mτ .

Therefore, we see that real subspaces associated with disjoint elements in LΣ which are sep-

arated by a positive distance become very close to being orthogonal when the distance between

them is “big enough”. At this point, one might ask: what distance is “big enough” to consider

these spaces as “very close” to being orthogonal? This is a question related to the scale of

our system. Massless systems might have one further symmetry beyond the Poincaré group

transformations: they also have scale invariance, that is, they are invariant under dilations. In

this case, our question about the distance being big enough would be pointless. However, mas-
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sive systems do have a fixed scale which is determined by its Compton wavelength, given by

λcompton = 1/m. We see this fact playing a role since the bigger the mass, the faster the decay.

See Section 7.4 below for more discussion on this point.

Let us go back to the main question in this section, namely, we want to understand the

additivity property for orthogonal (with respect to the symplectic complement) real projections.

In other words, if E(b⊥⊥
1 ) and E(b⊥⊥

2 ) are as in the above theorem, what is the relation between

E(b⊥⊥
1 )

∨
RE(b

⊥⊥
2 ) and E(b⊥⊥

1 ) + E(b⊥⊥
2 )? The following lemma answers this question.

Lemma 7.10. Let U be a (anti-) unitary positive energy, positive mass (where the smallest mass

is m > 0) representation of P+. Let b⊥⊥
1 , ..., b⊥⊥

N ∈ LΣ, bi ∩ bj = ∅ for i ̸= j, be such that the

distance δi,j between bi and bj is bigger than zero. Let δ .
= min{δi,j|i, j ∈ {1, ..., N}, i ̸= j}.

Then: ∥∥∥∥∥
N∨
i=1

E(b⊥⊥
i )−

N∑
i=1

E(b⊥⊥
i )

∥∥∥∥∥ ≤ N(N − 1)e−mδ. (7.11)

Proof. Let H denote the Hilbert space where U acts. Let ψ ∈ H be an arbitrary element with

∥ψ∥ = 1. For simplicity of notation, let us denote H .
= H(b⊥⊥

1 ) + ...+H(b⊥⊥
N ). Define:

ξ
.
=

(
N∨
i=1

E(b⊥⊥
i )

)
ψ ∈ H.

Since every element in H is the limit of elements in the sum of the Hilbert spaces, we can write:

ξ = lim
k→∞

(ϕ1
k + ...+ ϕNk ),

where ϕik ∈ H(b⊥⊥
i ) for every k ∈ N. Note that:(

N∨
i=1

E(b⊥⊥
i )

)
E(b⊥⊥

i ) = E(b⊥⊥
i ) = E(b⊥⊥

i )

(
N∨
i=1

E(b⊥⊥
i )

)
(7.12)

for every 1 ≤ i ≤ N , since every H(b⊥⊥
i ) is a subspace of H . Next, we want to find an upper

bound for the quantity:

Q
.
=

∥∥∥∥∥
(

N∨
i=1

E(b⊥⊥
i )−

N∑
i=1

E(b⊥⊥
i )

)
ψ

∥∥∥∥∥.
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Hence, using equations (7.8) and (7.12), we can calculate:

Q =

∥∥∥∥∥
((

I−
N∑
i=1

E(b⊥⊥
i )

)
N∨
i=1

E(b⊥⊥
i )

)
ψ

∥∥∥∥∥
=

∥∥∥∥∥
(
I−

N∑
i=1

E(b⊥⊥
i )

)
ξ

∥∥∥∥∥
= lim

k→∞

∥∥∥∥∥
(
I−

N∑
i=1

E(b⊥⊥
i )

)
(ϕ1

k + ...+ ϕNk )

∥∥∥∥∥
= lim

k→∞

∥∥(E(b⊥⊥
1 )ϕ2

k + ...+ E(b⊥⊥
1 )ϕNk

)
+ ...+

(
E(b⊥⊥

N )ϕ1
k + ...+ E(b⊥⊥

N )ϕN−1
k

)∥∥
= lim

k→∞
∥
(
E(b⊥⊥

1 )E(b⊥⊥
2 )ϕ2

k + · · ·+ E(b⊥⊥
1 )E(b⊥⊥

N )ϕNk
)
+ · · ·+(

E(b⊥⊥
N )E(b⊥⊥

1 )ϕ1
k + · · ·+ E(b⊥⊥

N )E(b⊥⊥
N−1)ϕ

N−1
k

)
∥

≤
N∑
i ̸=1

∥∥E(b⊥⊥
1 )E(b⊥⊥

i )
∥∥+ N∑

i ̸=2

∥∥E(b⊥⊥
2 )E(b⊥⊥

i )
∥∥+ ...+

N∑
i ̸=N

∥∥E(b⊥⊥
N )E(b⊥⊥

i )
∥∥

≤
N∑
i ̸=1

e−mδ1,i + ...+
N∑
i ̸=N

e−mδN,i

≤ N(N − 1)e−mδ,

where the symbol
∑N

i ̸=j denotes the sum over all i ∈ {1, .., N} except j. The operator norm

follows straightforwardly, and the lemma is proved.

Corollary 7.11. Let U and the regions b⊥⊥
i ∈ LΣ, i ∈ {1, .., N}, be as in the above Lemma,

and let ω : B(H) → C be a state (in the sense of Definition 6.10) on B(H). Then:

∣∣∣ω( N∨
i=1

E(b⊥⊥
i )

)
−

N∑
i=1

ω(E(b⊥⊥
i ))

∣∣∣ ≤ N(N − 1)e−mδ.

Proof. The bound is obtained by direct computation:

∣∣∣ω( N∨
i=1

E(b⊥⊥
i )−

N∑
i=1

E(b⊥⊥
i )

)∣∣∣ ≤ ∥ω∥

∥∥∥∥∥
N∨
i=1

E(b⊥⊥
i )−

N∑
i=1

ω(E(b⊥⊥
i )

∥∥∥∥∥
≤ N(N − 1)e−mδ

Therefore, we see that even though the additivity property does not hold exactly, it holds

approximately in the sense of the above lemma. Finally, we are able to define an approximate

probability measure for a general state on B(H).
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Definition 7.12. Let U be a (anti-) unitary positive energy, positive mass representation of P+.

Then, for each state ω : B(H) → C, we associate a quasi-probability measure on LΣ given

by:

µω(b
⊥⊥)

.
= ω(E(b⊥⊥))R,

where b⊥⊥ ∈ LΣ and ω( · )R denotes the real part of the state.

The reason we call it a quasi-probability measure is because the additivity property is not

exactly satisfied. Nonetheless, the exponential decay allows us to see that for large separation of

the disjoint regions, the above function behaves as a probability measure with finite additivity.

See Section 7.4 for more discussion and physical interpretation. Observe that since the trivial

representation of P+ is not included in our results above, we cannot attribute a quasi-probability

measure to the vacuum state.

7.3 An Example: Irreducible massive representations in 1 +

1D

Note that, up to this point, all of our results are valid for general positive energy, positive mass,

(anti-) unitary representations of the proper Poincaré group, for any spacetime dimension. In

this section, we restrict our attention to the 1 + 1 dimensional Minkowski spacetime and we

choose a (anti-) unitary, irreducible, massive representation U . The goal is to show explicit cal-

culations that will agree with our general treatment done in the last section. In particular, as we

will show, the almost orthogonality of real subspaces associated with disjoint spacetime regions

will manifest itself in the decay properties of the Laplace-Beltrami operators. Finally, we do a

comparison of our quasi-probability measure with the Newton-Wigner probability measures.

We start by choosing a positive energy, irreducible representation of P↑
+. Remember that in

Example 2.48 we discussed how to obtain all the irreducible representations by the induction

method. We choose the following positive mass, m > 0, representation, often referred to as the

rapidity representation:

(T (a)ψ)(θ) = eim(a0 cosh θ−a1 sinh θ)ψ(θ), a = (a0, a1) ∈ R2,

(∆itψ)(θ) = ψ(θ − 2πt), t ∈ R,

where T (a) is implementing the translations, ∆it the (rescaled) boosts and ψ ∈ H = L2(R, dθ).
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To extend this representation to the proper Poincaré group, we define the following operators:

(Zψ)(θ)
.
= ψ(−θ),

(Jψ)(θ)
.
= ψ(θ),

(Γψ)(θ)
.
= (ZJψ)(θ) = ψ(−θ).

Note that:

ZT (a0, a1)Z = T (a0,−a1),

ΓT (a0, a1)Γ = T (−a0, a1),

which means that Z and Γ implement spatial reflection (parity) P , and time reflection T , re-

spectively. Any element in P↓
+ can be written as PΛT . It is easy to check that Z∆itΓ is an

anti-unitary operator and thus we have a positive energy (anti-) unitary representation of P+

given by:

U(g) =

 T (a)∆it, if g = (a,Λ) ∈ P↑
+,

T (a)Z∆itΓ, if g = (a,PΛT ) ∈ P↓
+.

We can change variables and write this representation in momentum space. We refer to the

representation in this space as the momentum representation. To go from the rapidity to the

momentum representation, we simply perform a unitary map M : L2(R, dθ) −→ L2(R, dp/ω)

given by:

(Mψ)(p) = ψ
(
arcsinh

p

m

)
, ψ ∈ L2(R, dθ), (7.13)

and

(M−1ϕ)(θ) = ϕ(m sinh θ), ϕ ∈ L2(R, dp/ω).
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We then have:

(T (a)ψ)(p) = ei(ωa0+pa1)ψ(p), a = (a0, a1) ∈ R2,

(∆itψ)(p) = ψ(cosh(2πt)p− sinh(2πt)ω), t ∈ R

(Zψ)(p) = ψ(−p)

(Jψ)(p) = ψ(p).

We will use the representation in both of these variables depending on the convenience.

Having chosen a representation, the next step is to understand the construction of the mod-

ular localization map H : LΣ → L(H)R, where we are fixing a given Cauchy surface Σ = Σt

(which in this case is just R for all t ∈ R). As we saw, this map is first constructed for wedges,

which is then extended to the other elements in the logic LΣ. Let W1 ∈ W be the right wedge

with base in Σ, that is, W1 = R⊥⊥
+ . The real closed subspace H(W1) is constructed as in equa-

tion (6.15), that is, we want to understand which are the states ψ ∈ D(SW1) ⊂ L2(R, dθ) such

that SW1ψ = JW1∆
1/2
W1

= ψ. Note that, for ψ ∈ D(∆
1/2
W1

):

(∆
1/2
W1
ψ)(θ) = (∆

i(−i/2)
W1

ψ)(θ)

= ψ(θ + iπ),

which means that these states must be analytic on the strip Sπ. Likewise, the action of the

Tomita operator is:

(SW1ψ)(θ) = ψ(θ + iπ), ψ ∈ D(SW1).

Hence, we are looking for analytical functions on the strip such that its boundary values (on R)

lie in L2(R, dθ). This property resembles the definition of the Hardy space of the strip, namely:

H2(Sπ)
.
=

{
ψ : Sπ → C analytic

∣∣∣ sup
0<λ<π

∫
R
|ψ(θ + iλ)|2dθ <∞

}
.

We will consider this Hardy space as the subspace of all functions in L2(R, dθ) which are

boundary values of functions in H2(Sπ). In fact, we have that:

Lemma 7.13. In the rapidity representation:

H(W1) = {ψ ∈ H2(Sπ)|ψ(θ + iπ) = ψ(θ) almost-everywhere}.
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Proof. See Lemma 4.1 in [104].

This construction extends to arbitrary wedges by remembering that all wedges can be ob-

tained by the action of the proper Poincaré group on W1, and the subspaces H(W ), W ∈ W ,

can likewise be obtained by the action of the representation U on H(W1). To extend to all

elements in LΣ we use equation (6.16).

The next thing we want to do is to characterize the real subspaces H(I⊥⊥) where I =

[a, b], a, b ∈ [−∞,∞], is any interval in R. For convenience, we change to the momentum

representation in the Hilbert space H = L2(R, dp/ω). For any ψ ∈ H, there is a unique pair

(ψ+, ψ−) related to the Cauchy data formulation of the solutions of the Klein-Gordon equation

that determines it. We can write ψ in terms of these functions as:

ψ = ψ+ + iωψ−, ψ+
.
=

1

2
(1 + Γ)ψ, ψ−

.
=

1

2iω
(1− Γ)ψ. (7.14)

Theorem 7.14. Let I = [a, b], a, b ∈ [−∞,∞], be any interval in R. Considering the elements

ψ ∈ H = L2(R, dp/ω) as tempered distributions, let us define the real subspaces:

K(I⊥⊥)
.
= {ψ ∈ H| supp ψ̌± ⊂ I}

L(I⊥⊥)
.
= {ψ ∈ H|ψ̌± ∈ C∞

c,R(I)},

where ˇ denotes the inverse of the time-independent Fourier transform. Then H(I⊥⊥) =

K(I⊥⊥) and L(I⊥⊥) ⊂ H(I⊥⊥) is a cyclic subspace of H(I⊥⊥).

Proof. Check Lemma A.5 and A.8 in [104].

Our next goal is to understand “how much orthogonal” two real subspaces are if they are

determined by disjoint intervals. The crucial step in this step, as will soon become clear, is to

understand the decay properties of the modified Laplace-Beltrami operators. In the Minkowski

spacetime M = R× R, the Klein-Gordon equation can be written in the form:

(∂2t + A)ψ = 0,

whereA .
= (−∆+m2),m > 0, is the modified Laplace-Beltrami operator, understood as acting

on L2(R, dx), the space of square-integrable functions on the Cauchy surface. It is defined as

acting on the dense domain C∞
c (R). For any α ∈ R and f ∈ C∞

c (R), the vector Aαf is in the

domain of all powers of A, so it is a smooth function (see Corollary 6.4.9 in [105]) and, when

α ≤ 0, Aα is bounded. We have the following decay properties for this operator:
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Proposition 7.15. Let α ∈ R and let f, g ∈ C∞(R), where f is bounded and g has compact

support, and the supports of f and g are separated by a distance δ > 0. Then fAαg (seen as a

multiplication operator) is a well-defined operator on L2(R) and it has the bound:

∥fAαg∥ < C(α)∥f∥∞∥g∥∞
1

m3/2δα+1

(
1 +

|α(α + 1)|
2mδ

)
e−mδ, (7.15)

for some C(α) > 0 depending only on α.

Proof. See Proposition 4.3 in [106].

The following theorem presents an analogous result to Theorem 7.9, but obtained with tech-

niques based on the decay properties of the Laplace-Beltrami operators just described.

Theorem 7.16. Consider the massive momentum representation of P+ in the Hilbert space

H = L2(R, dp/ω). Let I, J be any two intervals in R such that I ∩ J = ∅, and the distance

between I and J is δ > 0. Then, for any ψ ∈ H(I⊥⊥) and any ϕ ∈ H(J⊥⊥), we have that:

|⟨ψ, ϕ⟩| < e−mδ

m3/2δ1/2

[
C(−1/2)

∥∥ψ̌+

∥∥
L2(R,dx)

∥∥ϕ̌+

∥∥
L2(R,dx) (7.16)

+ C(1)
1

δ3/2
∥∥ψ̌−

∥∥
L2(R,dx)

∥∥ϕ̌−
∥∥
L2(R,dx)

]
, (7.17)

where C( · ) is the constant appearing in 7.15.

Proof. We use equation (7.14) to write:

ψ = ψ+ + iωψ−, ϕ = ϕ+ + iωϕ−.

Then:

|⟨ψ, ϕ⟩| = |⟨ψ+, ϕ+⟩+ ⟨iωψ−, ϕ+⟩+ ⟨ψ+, iωϕ−⟩+ ⟨iωψ−, iωϕ−⟩|

≤ |⟨ψ+, ϕ+⟩|+ |⟨iωψ−, ϕ+⟩|+ |⟨ψ+, iωϕ−⟩|+ |⟨iωψ−, iωϕ−⟩|.

We now compute bounds for each of the above terms:

• For the first term we have:

|⟨ψ+, ϕ+⟩| =
∣∣∣ ∫

R
ψ+ϕ+

dp

ω

∣∣∣ = |⟨ψ+, ω
−1ϕ+⟩L2(R,dp)| = |⟨ψ̌+, A

−1/2ϕ̌+⟩L2(R,dx)|,

where in the last step we performed the inverse Fourier transform from L2(R, dp) to

L2(R, dx). From Theorem 7.14, we know that supp(ψ̌+) ⊆ I and supp(ϕ̌+) ⊆ J .
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Let χψ̌+
and χϕ̌+ denote the characteristic functions of the supports of ψ̌+ and ϕ̌+, re-

spectively. Furthermore, let us denote by χ∞
ψ̌+

and χ∞
ϕ̌+

the smoothed versions of these

functions. Then:

|⟨ψ̌+, A
−1/2ϕ̌+⟩L2(R,dx)| = |⟨ψ̌+χ

∞
ψ̌+
, A−1/2χ∞

ϕ̌+
ϕ̌+⟩L2(R,dx)|

= |⟨ψ̌+, χ
∞
ψ̌+
A−1/2χ∞

ϕ̌+
ϕ̌+⟩L2(R,dx)|

≤
∥∥ψ̌+

∥∥
L2(R,dx)

∥∥ϕ̌+

∥∥
L2(R,dx)

∥∥∥χ∞
ψ̌+
A−1/2χ∞

ϕ̌+

∥∥∥
< C(−1/2)

∥∥ψ̌+

∥∥
L2(R,dx)

∥∥ϕ̌+

∥∥
L2(R,dx)

e−mδ

m3/2δ1/2

(
1 +

1

8mδ

)
,

where in the last step we applied Proposition 7.15 with α = −1/2.

• The second and third terms are equal to zero. Let us show for the second term:

|⟨iωψ−, ϕ+⟩| =
∣∣∣ ∫

R
ωψ−ϕ+

dp

ω

∣∣∣ = |⟨ψ−, ϕ+⟩L2(R,dp)| = |⟨ψ̌−, ϕ̌+⟩L2(R,dx)| = 0

due to the disjointness of the support of the functions in the last equation. An analogous

computation shows that the third term is also equal to zero.

• The fourth term can be computed following the exact same steps as used in the first term.

The only difference is that the power of A is 1 instead of −1/2. The result is:

|⟨iωψ−, iωϕ−⟩| < C(1)
∥∥ψ̌−

∥∥
L2(R,dx)

∥∥ϕ̌−
∥∥
L2(R,dx)

e−mδ

m3/2δ2

(
1 +

1

mδ

)
.

Putting the first and fourth terms together, we write:

|⟨ψ, ϕ⟩| < e−mδ

m3/2δ1/2

[
C(−1/2)

∥∥ψ̌+

∥∥
L2(R,dx)

∥∥ϕ̌+

∥∥
L2(R,dx)

+ C(1)
1

δ3/2
∥∥ψ̌−

∥∥
L2(R,dx)

∥∥ϕ̌−
∥∥
L2(R,dx)

]
.

Therefore, we see that the spaces H(I⊥⊥) and H(J⊥⊥) are nearly orthogonal for disjoint

intervals I and J . Furthermore, they become exponentially more orthogonal when the distance

between the intervals increases and/or the mass increases. Let us compare this result with the

general results in the last section:

• The exponential decay with a mass-dependent rate appears as a direct consequence of the

decay properties of the Laplace-Beltrami operator.
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• This estimate, however, has a disadvantage compared to the previous one: the distance

also appears in the denominator, making the estimate less accurate at shorter distances.

Hence, we see that the results of this section, obtained with very different techniques, are

in accordance with our abstract treatment in the last section. Furthermore, the abstract calcula-

tions give better estimates and more well-behaved bounds at smaller distances and are valid not

only for irreducible representations but for arbitrary massive ones. These include Fock space

representations and particles with arbitrary spin.

7.3.1 Comparison with Newton-Wigner

In this section, we want to compare our new approach to the Localizability Problem with the

Newton-Wigner formalism. As we will see, the approaches are very different, but they converge

in a certain sense (see below). A natural first question that arises is: if a state ψ is modular

localized in b⊥⊥ ∈ LΣ (meaning ψ ∈ H(b⊥⊥)), is it Newton-Wigner localized in b? Or, at

least, is it close to being localized in this region? The following two propositions answer these

questions. Remember that the Newton-Wigner unitary map W : L2(R, dp/ω) → L2(R, dx) is

given by:

(Wψ)(x) = F−1(ψ/ω1/2)(x), ψ ∈ L2(R, dp/ω).

Proposition 7.17. Letψ ∈ H(I⊥⊥), where I is a finite, closed interval. LetW : L2(R, dp/ω) →
L2(R, dx) be the Newton-Wigner unitary map, and denote by δx the distance between x ∈ R

and I . Then, for x /∈ I:

|(Wψ)(x)| < 23/4
√
π

Γ(1/4)

|I|e−mδx

m1/4δ
1/2
x

(∥∥ψ̌+

∥∥
∞ +

∥∥ψ̌−
∥∥
∞

)
. (7.18)

Proof. Consider ψ = ψ+ + iωψ− as in equation (7.14). Then, we have that:

(Wψ) = F−1

(
ψ+

ω1/2
+ i

ωψ−

ω1/2

)
= F−1(ω−1/2) ∗ F−1(ψ+) + iF−1(ω1/2) ∗ F−1(ψ−)

= f(x) + ig(x),

where we defined f(x) .= F−1(ω−1/2) ∗ F−1(ψ+) and g(x) .= F−1(ω1/2) ∗ F−1(ψ−). We will

look for bounds on |f(x)| and |g(x)| for x /∈ I . Interpreting the Fourier transform in terms of

distributions, we can express the inverse Fourier transform of the powers of ω as (check [107]
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and [108]):

Kν(x) =

√
πxν

2νΓ(ν + 1/2)

∫ ∞

1

e−xt(t2 − 1)ν−1/2dt, ν > −1/2,

whereKν is the modified Bessel function of the second kind. These functions respect the bound

(see 8.4.5 in [109]):

Kν(x) ≤
√

π

2x
e−x

(
1 +

|4ν2 − 1|
8x

)
.

Hence, we calculate:

|f(x)| =
∣∣∣23/4m1/4

Γ(1/4)

∫
R

K1/4(m|x− τ |)ψ̌+(τ)

m|x− τ |1/4
dτ
∣∣∣

≤ 23/4m1/4

Γ(1/4)

∥∥ψ̌+

∥∥
∞

∫
I

K1/4(m|x− τ |)
m|x− τ |1/4

dτ.

≤ 21/4
√
π

Γ(1/4)

∥∥ψ̌+

∥∥
∞|I| e−mδx

m1/4δ
1/2
x

.

Doing an analogous calculation for g(x), we find that:

|g(x)| ≤ 23/4
√
π

|Γ(−1/4)|
∥∥ψ̌−

∥∥
∞|I| e−mδx

m1/4δ
1/2
x

.

Gathering the two estimates, we obtain the result.

Therefore, we see that a modular localized state is at least approximately Newton-Wigner

localized since it has an exponential decay outside the localization region. However, can a mod-

ular localized state be exactly Newton-Wigner localized? This question is partially answered in

our next proposition.

Proposition 7.18. Let b1, b2 ∈ B(R), where b1 is compact, and b2 is any Borel subset contained

in R+. Denote by PNW (b1)H, H = L2(R, dθ), the subspace of Newton-Wigner localized states

in b1. Then:

PNW (b1)H ∩H(b⊥⊥
2 ) = {0}.

Proof. As we saw in Lemma 7.13, for a state to be in H(b⊥⊥
2 ) it must be analytic in the strip Sπ

(since it is a subspace of H(W1)). Consider a Newton-Wigner localized state ψ ∈ PNW (b1)H.

This state is in the image of Z−1L2(b1, dx), where Z .
= W ◦M , and where M was defined in

equation (7.13). Hence there is a function f ∈ L2(b1, dx) such that ψ = Z−1f . But then we
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have:

(Z−1f)(θ) =
(√

m cosh(θ)
)
(Ff)(m sinh(θ)).

The function (Ff)(m sinh(θ)) is analytic on the whole complex plane, but the function
√
m cosh(θ)

has branch points that we need to examine carefully. The function cosh(θ) has zeros in θ =

iπ
2
+iπn, for n ∈ Z. Hence, we have a branch point inside the strip, namely, θ = iπ

2
. This forces

the choice of a branch cut inside the strip, for example, a half line on the complex axis starting

at iπ/2, which we will denote as liπ/2. The theorem is still not proved, since (Ff)(m sinh(θ))

could vanish for every point in liπ/2.

To conclude, we use the Identity Theorem for analytic functions that state the following.

Given functions Q(θ) and R(θ) which are analytic in a domain D ⊆ C, if Q = R on some

subset S ⊆ D, where S has an accumulation point inD, thenQ = R onD. In our case, Q(θ) =

(Ff)(m sinh(θ)), R(θ) = 0, D = C, S = liπ/2, and every point in liπ/2 is an accumulation

point in C . It follows from the Identity Theorem that if (Ff)(m sinh(θ)) vanishes on every

point in liπ/2, then it vanishes everywhere, and the proposition is proved since we showed that

every non-zero function (Z−1f)(θ) can not be analytic in Sπ.

The above proposition shows that Newton-Wigner localized states are essentially different

from Modular localized states. This implies that the functions W (H(b⊥⊥)) ⊂ L2(R, dx), b ⊆
R+, cannot have compact support. This is a direct consequence of the anti-locality property of

the Laplace-Beltrami operator [110]. As an application of Proposition 7.17, we can compute

how similar the Newton-Wigner probability distribution is to our quasi-probability measure µψ.

Proposition 7.19. Let I = [α, β] ⊂ R be a finite, closed interval, and let ϵ > 0. Then, for any

ψ ∈ H(I⊥⊥), ∥ψ∥ = 1, we have that:

|µψ(I⊥⊥)− µNWψ (Iϵ)| <
[
23/4

√
π|I|

Γ(1/4)m3/4

(∥∥ψ̌+

∥∥
∞ +

∥∥ψ̌−
∥∥
∞

)]2
× e−2mϵ

ϵ
,

where Iϵ
.
= [α− ϵ, β + ϵ].

Proof. For ψ ∈ H(I⊥⊥), define f(x) .= (Wψ)(x) ∈ L2(R, dx). Then:

|µψ(I⊥⊥)− µNWψ (Iϵ)| = |1− ⟨PNW (Iϵ)ψ, PNW (Iϵ)ψ⟩| (7.19)

= |1− ⟨f, χIϵf⟩L2(R,dx)|. (7.20)
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Since ∥ψ∥ = 1, we have that:

1 = ⟨f, f⟩L2(R,dx) =

∫ α−ϵ

−∞
|f(x)|2dx+

∫ β+ϵ

α−ϵ
|f(x)|2dx+

∫ ∞

β+ϵ

|f(x)|2dx.

For our estimate, the integral in the middle is the relevant one. Without loss of generality, we

take α− ϵ and β + ϵ to be positive, with β > α. Using equation (7.18), we write:

∫ β+ϵ

α−ϵ
|f(x)|2dx = 1−

∫ α−ϵ

−∞
|f(x)|2dx−

∫ ∞

β+ϵ

|f(x)|2dx

≥ 1−
[
23/4

√
π|I|

Γ(1/4)m1/4

(∥∥ψ̌+

∥∥
∞ +

∥∥ψ̌−
∥∥
∞

)]2
×
(∫ α−ϵ

−∞

e−2m(α−x)

α− x
dx+

∫ ∞

β+ϵ

e−2m(x−β)

x− β
dx

)
≥ 1−

[
23/4

√
π|I|

Γ(1/4)m1/4

(∥∥ψ̌+

∥∥
∞ +

∥∥ψ̌−
∥∥
∞

)]2
× 1

ϵ

(∫ α−ϵ

−∞
e−2m(α−x) +

∫ ∞

β+ϵ

e−2m(x−β)
)

= 1−
[
23/4

√
π|I|

Γ(1/4)m3/4

(∥∥ψ̌+

∥∥
∞ +

∥∥ψ̌−
∥∥
∞

)]2
× e−2mϵ

ϵ
,

where we did the estimate
∫ α−ϵ
−∞

e−2m(α−x)

α−x dx ≤ 1
ϵ

∫ α−ϵ
−∞ e−2m(α−x)dx, and similarly for the second

integral. Substituting back into equation (7.19), we have the desired result.

Our interpretation of the above result is the following. According to Proposition 7.17, the

function (Wψ) has an exponential decay outside I . Hence, the Newton-Wigner probability

also decays outside the interval. However, the bound given in the mentioned proposition gets

worse when we approach the boundary of the interval, where we have a 1/δ1/2 divergence.

Nonetheless, since the function (Wψ) belongs to L2(R, dx), it cannot grow too fast near this

boundary. We choose to evaluate the Newton-Wigner probability measure on the expanded

interval Iϵ to ignore this divergence of the estimate. Again, the question of how big this ϵ must

be such that the probability measures µψ(I⊥⊥) and µNWψ (Iϵ) are “sufficiently” close is related

with the Compton wavelength. This can be seen from the mass dependence of the exponential

decay. For instance, if we are doing a position measure in the region I of the system in the

state ψ ∈ H(I⊥⊥), and the Compton wavelength is much smaller than the precision of our

apparatus, then these two probability measures will give very close results. We discuss more

about the scale of the system in the next section.
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7.4 Modular Localization as an Approach to the Localizabil-

ity Problem

In this section, we want to summarize our new approach to the Localizability Problem of rela-

tivistic systems and give a physical interpretation of our results. The core idea is the following:

• We assume that the set of all experimentally verifiable propositions about a quantum

system has the mathematical structure of a logic. To each individual (experimental) ob-

servable in the sense of Definition 1.1, there is an associated sublogic, encoding the way

the measuring instruments can be used. A very important example was given in Section

5.3, where the “big” logic of a quantum system is chosen to be P(H). Given a logic, we

can define a notion of states (Definition 5.8), observables (Definition 5.6), and probability

measures (Definition 5.9).

• Position observables have the advantage of being more intuitive, as the results of ex-

periments are necessarily directly related to regions of space/spacetime. For the Newton-

Wigner approach, the relevant regions are spatial regions for a fixed time, and the relevant

logic is L = (B(Σ),∪,∩,c ). For our approach, the relevant logic is the spacetime logic

LΣ = {D ∈ LM |D = b⊥⊥, where b ∈ B(Σ)}.

• The next step is to make contact with the quantum. We want to associate each algebraic

state (Definition 6.10) with a probability measure on the relevant logic. For the Newton-

Wigner approach, this is done by finding a system of imprimitivity, and the measure is

given by the expectation values on the orthogonal projections. For our approach, the

contact with the quantum is given by the modular map in equation (6.16), and the (quasi-)

probability measure is given in Definition 7.12. All of our results are valid for general

positive energy, positive mass, (anti-) unitary representations of P+.

Our approach has one distinguished feature when compared to Newton-Wigner: we do not

have an exact probability measure, since the additivity property is not entirely satisfied. Let us

try to gain some intuition on the importance of this property.

Suppose a particle is produced (by a decay process, for instance) in the spacetime point A,

as in Figure 7.5. It propagates in the forward light cone until it reaches the Cauchy surface

Σt at time t where we are performing the position measurement. Let b⊥⊥
i , i ∈ {1, 2, 3, 4},

be the regions of spacetime corresponding to each measurement apparatus, as shown in the

figure. Let S ⊂ Σt denote the intersection of the forward light cone with the Cauchy surface.

The importance of the additivity property is the following: if we cover S completely with
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Figure 7.5: Particle produced in A and particle detectors in Σt.

disjoint measurement apparatuses (a finite number of them in a real scenario), the sum of the

probabilities of detection in each individual apparatus should sum up to 1. The fact that our

quasi-probability measure is not exactly additive implies that this will not be the case. However,

the scale of the system plays an important role here. Let us analyze this more carefully.

The approximate additivity property, as given in Lemma 7.10, depends crucially on the

exponential decay e−mδ, where m is the mass and δ > 0 the distance between two regions. Let

us include the fundamental constants such that the argument of the exponential is dimensionless.

In this case, the decay is given by:

e−
mδc
ℏ ≃ e−mδ×1042 ,

where c = 299.792.458m/s is the speed of light, and ℏ = 6, 62607015 × 10−34m2kg/s is the

(reduced) Planck’s constant. As an example, let me = 9, 109 × 10−31kg be the mass of the

electron. The decay is then of the order of e−δ×1011 . Note, however, that the decay rate gets

worse when we increase the number N of measuring apparatuses since there is an N2 factor in

equation (7.11). The volume of each region b⊥⊥
i representing a measurement, and the distance

between them, is directly related to the precision of the measurement. Hence, for the non-

additivity of the quasi-probability measurement to be visible in experiments, both the number

of apparatuses and their precision must be extremely large. Furthermore, given that the mass of

the electron is very small, the decay is significantly faster for heavier particles.

This picture and our mathematical analysis so far suggest that we can associate a theoretical
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observable with these position measurements, and that cannot be the traditional self-adjoint

operator since there is no spectral measure involved. Remember that in the language of logics,

an observable (Definition 5.6) is a map x : B(R) ∋ b 7→ x(b) ∈ L, where L is the logic of

measurements of the quantum system. Let us, for this discussion, restrict our attention to the

1 + 1 dimensional Minkowski spacetime, for the sake of simplicity. In this case, when it comes

to position observables, the set b corresponds to a possible value that a position measurement

can give (this is also the case for the Newton-Wigner approach, where the set b belongs to

the spectrum of the Newton-Wigner operator and is interpreted as a possible outcome of an

experiment). We can think of this observable, both in the Newton-Wigner and in the Modular

Localization approach, as taking values in two possible logics: a “purely classical” and a “purely

quantum” one. Let us compare both of these approaches.

In the Newton-Wigner case, the classical logic is the logic of the background (spatial) space,

namely, L = (B(R),∪,∩,c ). Then, the classical position observable is the map:

xNWc : B(R) ∋ b 7→ b ∈ L.

The quantum logic is P(H), and the quantum position observable is the map:

xNWq : B(R) ∋ b 7→ PNW (b) ∈ P(H).

It is easy to check that conditions 1-3 in Definition 5.6 are satisfied. For the Modular Localiza-

tion case, the classical logic is LΣ, with the classical position observable:

xML
c : B(R) ∋ b 7→ b⊥⊥ ∈ LΣ,

while the quantum “logic” is P(H)R (this is actually only a pseudo-orthocomplemented lattice,

as discussed in Definition 7.5)), with quantum position observable:

xML
q : B(R) ∋ b 7→ E(b⊥⊥) ∈ P(H)R. (7.21)

Conditions 1 and 2 in the definition of an observable are straightforward, while condition 3 is a

consequence of Proposition 7.6. Note that, even though µω is only an approximate probability

measure on LΣ, xML
q is an exact observable. Furthermore, it is easy to see from the definition

of the spectrum of a logic-theoretic observable (Definition 5.7), that we have:

σ(xNWq ) = σ(xML
q ) = R,
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which is exactly the spectrum that we expect of a position observable.

There is another dichotomy between Newton-Wigner and Modular Localization which is

worth comparing. These two localization schemes seem to provide approximate quantities but

in very different ways: on one side, the Newton-Wigner localization scheme gives an exact

probability measure, but it allows a non-local spread of the probability of detection, even though

the probability of detection outside the future light-cone of a compact region is extremely low,

as demonstrated in [4]. Hence, Newton-Wigner gives an exact probability measure but is only

approximately compatible with relativity. On the other side, the quasi-probability measure we

constructed is never an exact measure (although it is one to a very high degree of precision),

meaning we cannot give a full statistical treatment to this observable, but it is fully compatible

with relativity. It is a curious fact that the inclusion of the causal structure of spacetime has the

effect of “messing up” with the statistics of position measurements.

To conclude, let us go back to where we started in the Introduction 1, when we defined the

Localizability Problem. Our proposed map TRQT for position measurements is:

Exp(IRQT ) ∋
(
[α], [Q]pos, w

[Q]pos

[α]

) TRQT7−−−→
(
ω, xML

q , µω
)
∈ The(IRQT ).

Some comments are in order. The precise formulation of the theoretical component The(IRQT )

is still, of course, an under-development topic of research. It was not our goal to provide a TRQT
that maps every triple on the experimental component to every triple in the theoretical compo-

nent. Instead, we focused on a specific experimental measurement, namely, position measure-

ments, and provided a map for that in the theoretical part. An intriguing point is that the input

structure is purely classical: we start with Minkowski spacetime, whose set of isometries has a

group structure, namely, the Poincaré group; we select a (anti-) unitary massive representation

U of P+ on a Hilbert space H; this (quantum) Hilbert space gives rise to algebraic states ω on

B(H), the (pseudo-) orthocomplemented lattice P(H)R, the (quasi-) probability measure µω,

and the quantum observable of position xML
q . In summary: the spacetime structure seems to

contain information on both the classical and quantum worlds. However, the same cannot be

expected for spacetimes with fewer symmetries if we want to include interactions, or if we aim

to investigate observables other than the position observable.
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Conclusions

We shall not cease from exploration and the end of all our exploring will be to

arrive where we started and know the place for the first time.
T. S. Elliot

The Localizability Problem is a fascinating challenge for theoretical Physics. It refers to the

foundations of relativistic quantum systems models, and it shows how the introduction of the

causal structure in quantum theory has the potential to change our perspectives. This adaptation

led to the creation of Quantum Field Theory, which is nowadays considered to be the most

fundamental theory in Physics. Nonetheless, it is somehow surprising that the Localizability

Problem is still open. In this thesis, we attacked this problem on two fronts. Let us summarize

our achievements.

In Part I, our primary goal was to formulate Newton-Wigner localization in the broadest

context possible. We did it for homogeneous globally hyperbolic spacetimes, a framework

where the group of isometries is “big enough” (it acts transitively) such that we can apply the

techniques of induced representations and its connections with systems of imprimitivity, the

main mathematical object in Newton-Wigner’s formulation of localizability. Similar to what is

done in flat spacetime, all the construction is based on group theory and group representation

theory. Our second objective was to classify which representations of the spacetime isometry

group GST are localizable. We show (Theorem 4.6) that our method allows us to classify

all induced representations of GST that are induced from an arbitrary closed subgroup Z ⊂
GST . When Z = KS and KS is normal, we showed that all representations induced from it

are localizable. Furthermore, if GST has the form of a regular semi-direct product, then all

representations are classifiable through our method. In this classification, the stabilizer group

KS has a decisive role, analogous to the role played by SO(3) in flat spacetime. In addition, we

analyzed some applications and direct consequences of our abstract results. In Section 4.1, we
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made a first investigation to understand which states in the representation space follow causal

geodesics (in the sense that expectation values of the Newton-Wigner operators define a curve

on M ), inspired by the fact that in Minkowski spacetime all states have this property. In Section

4.2, we gave decompositions of L2(Σt, νt) that are induced from the local position operator

Mi,α, namely: a decomposition into invariant subspaces with cyclic vector, and a decomposition

into a direct integral. Finally, in Section 4.3, we analyzed the effects on the Newton-Wigner

operator of a Gaussian perturbation on the Euclidean metric.

In Part II, our goal was to propose a new approach to the Localizability Problem, inspired

by the fact that position measurements must follow logical rules. We did it by implementing

the spacetime logic on the quantum Hilbert space by using techniques from Modular Local-

ization. As a result, we constructed a position observable (in the context of logics), and a

quasi-probability measure. In contrast to almost all attempted solutions to the Localizability

Problem, our approach includes regions of spacetime, rather then just space, and is valid for

all unitary positive mass representations of P+. All the causality problems in Newton-Wigner

localization are solved. In addition, in Section 7.3 we did an explicit construction in 1+1 di-

mensional Minkowski spacetime, and a comparison with Newton-Wigner, showing some close

connections with our new approach.

Although we do not claim to have provided a definite solution to the Localizability Problem,

we hope to have offered a new look on the issue by deepening our understanding of Newton-

Wigner localization and presenting a novel approach based on the logic of spacetime regions.

We hope that, at the end of our exploration, we have arrived back where we started, yet now see

the Localizability Problem with a new perspective.
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Appendix A

Functional Analysis Basics

In this Appendix, we define the basic mathematical concepts and explore the most important

results, for our purposes, in the areas of Functional Analysis and Spectral Theory which plays an

important role in this thesis. The first two subsections are dedicated to the most basic definitions

in classifying linear operators acting on Hilbert spaces and analyzing their spectrum. We will

skip most of the demonstrations in these sections since they can be found in standard textbooks

such as [111–114]. Next, we explore the important connection between self-adjoint operators

and spectral measures, given by the spectral theorem. Finally, we investigate and obtain results

about a particular type of linear operator which will be the prototype of our generalized position

operators: the multiplication operators.

A.1 Classification of Linear Operators on Hilbert Spaces

Let H be a separable Hilbert space, and L (H) denote the set of linear operators acting on this

space. In this section, we will arrange these linear operators into several classes, which will be

relevant in the future when we study operators which possess physical interpretation.

Our first classification is with respect to the “length” of these operators. We can endow

L(H) with the operator norm

∥T∥op = supψ ̸=0

∥Tψ∥
∥ψ∥

, ψ ∈ D(T ) ⊆ H, (A.1)

where T ∈ L(H), D(T ) ⊆ H is its domain, and ∥.∥ denotes the norm of H. We will eventually

drop the subscript “op” when the context is clear enough. It follows that the set of linear oper-

ators is complete in the topology induced by this norm, and the pair (L(H), ∥.∥op) is a Banach

space. We say that a linear operator is bounded if ∥T∥op < ∞, and unbounded otherwise. We
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will denote the subset of bounded operators by B(H). These are the linear maps that are con-

tinuous in the norm topology of H. There are fundamental differences between these two kinds

of operators. For example, if T is a bounded operator and S is unbounded, both with a common

dense domain D0, then we can always find an extension of T to the whole Hilbert space (that

is, we can find another bounded operator T̃ with domain D(T̃ ) = H which agrees with T on

D0 ), while this is not true for S in general (see, for example, the Hellinger-Toeplitz theorem in

the above cited literature). Hence, it is an unavoidable difficulty when dealing with unbounded

operators to be always careful with the domain of the operator.

Next, let us define a norm in the product space H×H as

∥(ψ, ϕ)∥H×H = ∥ψ∥+ ∥ϕ∥,

where ψ, ϕ ∈ H. This norm inspires the following classification of operators in L(H).

Definition A.1. Let T : D(T ) ⊆ H −→ H be a linear operator.

1. We define the graph of T as the set

G(T ) = {(ψ, Tψ)|ψ ∈ D(T )} ⊆ H ×H.

2. T is closed if G(T ) = G(T ) in the norm ∥.∥H×H.

That is, T is closed if, and only if, every Cauchy sequence (ψn, Tψn) in G(T ) converges in

G(T ), which is equivalent to say that: if ψn −→ ψ and Tψn −→ ϕ, with ψn ∈ D(T ), then this

implies that ψ ∈ D(T ) and Tψ = ϕ. If T is injective and we define D(T−1) = Ran(T ), then

T is closed if, and only if, T−1 is also closed. From the definition, we see that every bounded

operator with a closed domain is closed: if (ψn, Tψn) is a Cauchy sequence with ψn −→ ψ

and Tψn −→ ϕ, then ψ ∈ D(T ) (because the domain is closed) and ϕ = Tψ (because T is

continuous). The converse relation is given by the following famous theorem.

Theorem A.2. (Closed Graph Theorem) Let H1 and H2 be two Hilbert spaces and T : D(T ) ⊆
H1 −→ H2 a closed operator. Then, T is bounded if, and only if, D(T ) = D(T ).

Our next classification of linear operators is among the most relevant for Physics since, as

we will see, they have many properties which advocate for them being a good prototype for

physical quantities.

Definition A.3. Let T : D(T ) ⊆ H −→ H be a linear operator with a dense domain. We define
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the adjoint of T , T ∗ : D(T ∗) ⊆ H −→ H, asD(T ∗) = {ϕ ∈ H|∃η ∈ H such that for each ψ ∈ D(T ) we have ⟨ϕ, Tψ⟩ = ⟨η, ψ⟩}

T ∗ϕ = η

That is, for all ψ ∈ D(T ) and all ϕ ∈ D(T ∗), we have that ⟨ϕ, Tψ⟩ = ⟨T ∗ϕ, ψ⟩.

Note that if T is bounded, then Riesz’s Theorem guarantees that D(T ∗) = H: for any

functional of the form ⟨ϕ, T.⟩ : H −→ C there is an unique vector η ∈ H such that the desired

relation is satisfied. In the above definition, we demanded that the operator is densely defined

in order that the element η, when it exists, is unique. Indeed, consider a vector ϕ ∈ H e let

η, η′ ∈ H be such that

⟨ϕ, Tψ⟩ = ⟨η, ψ⟩ and ⟨ϕ, Tψ⟩ = ⟨η′, ψ⟩,

where ψ ∈ D(T ). Then

⟨η − η′, ψ⟩ = 0 ⇒ η = η′ if D(T ) = H.

It can be shown (see the above literature for proof) that the adjoint of any densely defined

operator is closed. However, note that the double adjoint T ∗∗ does not necessarily exist because

D(T ∗) might not be dense. There is an interesting relation between the property of an operator

being closed and the existence of its double adjoint.

Theorem A.4. Let T : D(T ) ⊆ H −→ H be a linear operator with a dense domain, and let T ∗

be its adjoint. Then, D(T ∗) is dense in H if, and only if, T is closable, that is, if it admits at

least one extension which is a closed operator.

Proof. See [114].

We are now able to define the important concept of self-adjoint operators.

Definition A.5. A densely defined linear operator T : D(T ) ⊆ H −→ H is self-adjoint if

D(T ) = D(T ∗) and Tψ = T ∗ψ,

for all ψ ∈ D(T ) = D(T ∗). That is, T is self-adjoint if T = T ∗.

It is an obvious consequence of this definition that every self-adjoint operator is closed. We
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will denote the set of all self-adjoint operators by B(H)R. In the following sections, most of

our efforts will be to study the properties of this class of operators.

A.2 Spectrum of Linear Operators

One of the axioms of quantum mechanics is that the set of real numbers representing the re-

sults of experiments probing a quantum system coincides with the spectrum of the operator

representing the quantum observable. Hence, it is of fundamental importance to understand the

spectrum of operators acting on Hilbert spaces. This section is dedicated to investigating the

basic definitions and results of this analysis. Let us begin with the following definition.

Definition A.6. Let H be a Hilbert space and T : D(T ) ⊆ H −→ H be a linear operator.

1. λ ∈ C is a regular point of T if the operator (λI − T )−1 is bounded and defined in all

H. The set of all complex numbers of this kind is called the resolvent set, and denoted

as ρ(T ).

2. If λ ∈ ρ(T ), we define the resolvent operator as Rλ(T ) = (λI− T )−1 ∈ B(H).

3. The spectrum of T , σ(T ), is the complement of the resolvent set, that is

σ(T ) = C \ ρ(T ).

Let λ ∈ ρ(T ). This implies that Rλ(T ) is bounded and defined in the dense domain

Ran(λI − T ), and that λI − T is bijective in D(T ). It follows that λI − T is also closed

(see discussion after definition A.1). Since T = −((λI− T )− λI), and the sum of a closed op-

erator with a bounded operator is closed (in the intersection of the domains), then we conclude

that T is closed. In other words, the existence of a regular point for any operator implies that

this operator is closed. Hence, the non-closed operators have a trivial spectrum, namely, the

whole complex plane, and, for this reason, we will only be interested in closed operators. For

this class, we could alternatively write the resolvent set as

ρ(T ) = {λ ∈ C|λI− T : D(T ) −→ H is bijective}.

Since this condition implies that D(Rλ(T )) = H, the closed graph theorem (see theorem A.2)

guarantees that Rλ(T ) is bounded. Furthermore, the spectrum of any operator is always closed

and, if the operator is bounded, it is also bounded (and hence compact) and non-empty (see the

above-cited literature for proof of these statements).
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The spectrum of any closed operator can be divided into the following subsets:

• Point spectrum:

σp(T ) = {λ ∈ C|λI− T is not injective} .

• Continuous spectrum:

σc(T ) = {λ ∈ C|λI− T is injective,Ran(λI− T ) is dense but not closed} .

• Residual spectrum:

σr(T ) = {λ ∈ C|λI− T is injective, but Ran(λI− T ) is not dense} .

These sets are clearly disjoint, and they enclose all the possibilities of a complex number failing

to be in the resolvent set. Hence, σ(T ) = σp(T )∪σc(T )∪σr(T ). Self-adjoint operators have the

interesting property that their spectrum is necessarily real and the residual component is empty.

This motivates the use of these operators as modeling physical observables of quantum systems.

Furthermore, transformations on quantum systems with physical meaning (such as symmetry

transformations) are often implemented as linear maps acting on these self-adjoint operators.

Hence, an interesting question in this context is to ask what are the linear maps which preserve

the spectrum (including its individual components). First, note that we can define the following

equivalence relation in B(H): A ∼ B if, and only if, σ(A) = σ(B), for A,B ∈ B(H).

Hence, any bijective map which maps each equivalence class into itself is spectrum preserving.

However, these maps do not have a clean, closed form, and can be quite difficult to deal with

(see [115]). Nonetheless, we are still able to work with fairly general maps, as shown in the

following proposition (see [116] for proof).

Proposition A.7. Let A and B be two similar linear operators acting on H (recall that two

operators are similar if there is an invertible operator P such that P−1AP = B). Then,

σ(A) = σ(B). In addition, the components of the spectrum are also preserved.

Suppose that T is a self-adjoint operator modeling a physical observable of a quantum sys-

tem. Then, ⟨ψ, Tψ⟩ is a real number representing the expected value of the reading of this

observable if repeated experiments are performed with the quantum system in the normalized

state ψ ∈ H. Therefore, it is interesting to understand the mathematical structure of the set of

these expected values when we vary over all possible normalized states.
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Definition A.8. Let T be a bounded operator acting on H. We define the numerical range of

T as the set

N(T ) = {⟨ψ, Tψ⟩|ψ ∈ H, ∥ψ∥ = 1} .

The numerical range is closely connected with the spectrum, but it also might present quite

different properties. For example, the numerical range is not always a closed set. In addition,

while the spectrum is invariant under general similarity maps, the same is not true for the nu-

merical range. However, both these sets are invariant under unitary similarity. A further contrast

is that there are only a few general characteristics of the numerical range. One of these is the

famous Toeplitz-Hausdorff theorem, which asserts that N(T ) is always a convex subset of the

complex plane (see [117]). The connection with the spectrum is illustrated by the following

property: for any bounded operator T , σ(T ) ⊆ N(T ) (see [116]). Yet, these sets can still be

very different. For example, the spectrum of the matrix

M =

 0 0

1 0

 (A.2)

is σ(M) = {0}, while the numerical range is N(M) = {z ∈ C||z| ≤ 1/2}.

Since the spectrum is contained in the numerical range, and this last is a convex set, the

convex hull of the first must be contained in the numerical range. Furthermore, the convex

hull of the spectrum must be contained in the closure of the numerical range of all operators

which are similar to the one in question. In fact, a very elegant result, known as the Hildebrandt

theorem, asserts that the convex hull of the spectrum is precisely the intersection of the closure

of the numerical ranges of all similar operators. We will be mainly interested in self-adjoint

operators and, fortunately, the numerical range of these operators is much more treatable, as a

particular consequence of the following result (see [116] for a proof).

Lemma A.9. Let T be a bounded, normal operator (that is, TT ∗ = T ∗T ). Then, N(T ) =

co(σ(T )), where “co” denotes the convex hull.

A.3 The many faces of the Spectral Theorem

In this section, we review the remarkable topic of the Spectral Theorem for self-adjoint op-

erators. The importance of this subject can hardly be overestimated, finding uncountable ap-

plications in both mathematics and physics. In particular, this theorem lies at the core of the
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mathematical formulation of quantum mechanics, and it plays an important role in the defini-

tion of the position operators. The spectral theorem has many faces, in the sense that it can be

formulated in different, but equivalent, versions. Despite the equivalence of these versions, it

will be interesting, and rewarding, to “see” each face of this theorem. Let us begin with some

basic definitions and results. This section follows [57] and [58] closely. Some proofs are our

own.

A.3.1 Spectral Measures and Spectral Integrals

Definition A.10. Let H be a Hilbert space, Ω a set, and A a σ-algebra on Ω. A spectral measure

on A is a map E from A to the set of orthogonal projections of H such that

1. E(Ω) = I,

2. For any sequence of pairwise disjoint sets (An)n∈N, whose union is also in A, we have

that

E(∪n∈NAn) = s-limk−→∞

k∑
n=1

E(An),

where in the right hand side the limit is taken in the strong topology.

We can extract some properties of the spectral measures straightforwardly. Suppose that

(An)n∈N is a sequence of disjoint sets, as in the second item above, but with An = 0 for every

n ≥ k + 1, for some k ∈ N. Then, it follows from the definition that

E(A1 ∪ ... ∪ Ak) = E(A1) + ...+ E(Ak). (A.3)

The left-hand side is also a projection, which means that E(A1 ∪ ...∪Ak)2 = E(A1 ∪ ...∪Ak).
In particular, if An = ∅ for all n, then E(∅) = 0.

Proposition A.11. Let E be a spectral measure as above. Then, for any A1, A2 ∈ A, we have

E(A1)E(A2) = E(A1 ∩ A2).

In particular, for disjoint sets, E(A1)E(A2) = 0.

Proof. Let A1, A2 ∈ A be disjoint sets. Then, by the equation (A.3), E(A1) + E(A2) is also a

projection. We will prove that if a vector ψ ∈ H belongs to the image of E(A1) (resp. E(A2)),
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then it necessarily belongs to the kernel of E(A2) (resp. E(A1)). Suppose that ψ ∈ Im(E(A1))

is a non-zero vector and ψ /∈ Ker(E(A2)). Define ϕ = E(A2)ψ. Then

ψ + ϕ = (E(A1) + E(A2))ψ

= (E(A1) + E(A2))
2ψ

= (E(A1) + E(A2))(ψ + ϕ)

= ψ + E(A1)ϕ+ 2ϕ.

That is, we conclude that E(A1)ϕ = −ϕ. But this implies that E(A1)
2ϕ = ϕ ̸= E(A1)ϕ, which

is a contradiction to our hypotheses that E(A1) is a projection. Hence, there can be no non-zero

element which is in the image of E(A1) and is not in the kernel of E(A2). Exchanging A1 by

A2 in this proof, we have a similar argument, which allows us to conclude that E(A1)E(A2) =

E(A2)E(A1) = 0.

Next, define B0 = A1 ∩ A2, B1 = A1 \ B0, and B2 = A2 \B0. Since these are all pairwise

disjoint sets, the product of their respective projections will be zero. Then, since A1 = B1 ∪B0

and A2 = B2 ∪B0, it follows from equation (A.3) that

E(A1)E(A2) = (E(B1) + E(B0)) (E(B2) + E(B0))

= E(B0)
2

= E(A1 ∩ A2).

Let us give an explicit example of a spectral measure.

Example A.12. Let (Ω,A, µ) be a measure space, and L2(Ω, µ) the space of square-integrable,

measurable, complex-valued functions defined on Ω. Consider the following map: to everyA ∈
A, we associate the operator E(A) which acts as a multiplication operator by the characteristic

function of A, that is,

(E(A)f) (s) = χA(s)f(s), (A.4)

where f ∈ L2(Ω, µ). Since χ2
A = χA = χA, it follows that E(A) is an orthogonal projection.

Let (An)n∈N be a sequence of disjoint sets of A such that A = ∪n∈NAn. Define the vector

fk =
∑k

n=1 χAnf , where f ∈ L2(Ω, µ). Note that the sequence {fk}k∈N converges pointwise
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to χAf . Furthermore, we have

|fk| = |
k∑

n=1

χAnf | ≤ |χAf |,

which means that fk is dominated by |χAf | (which is an element of L2(Ω, µ). Therefore, we

can apply the Lebesgue Dominated Convergence Theorem to conclude that

limk−→∞∥χAf − fk∥ = 0,

that is,

χAf = limk−→∞

k∑
n=1

χAnf,

and hence E(A) =
∑∞

n=1E(An).

There is a direct relation between spectral measures and scalar measures defined on the same

σ-algebra. This is the content of the following lemma.

Lemma A.13. A map E from a σ-algebra into the set of orthogonal projections on H is a

spectral measure if, and only if,E(Ω) = I and for each ψ ∈ H, the functionEψ(.) = ⟨ψ,E(.)ψ⟩
is a measure.

Proof. Let us begin by proving that if E is a spectral measure, then Eψ(.) is a measure. It

is clear that Eψ(∅) = ⟨ψ,E(∅)ψ⟩ = 0. It is also straightforward to see that, if (An)n∈N is a

collection of disjoint sets in the σ-algebra, then

Eψ(∪n∈NAn) = ⟨ψ,E(∪n∈NAn)ψ⟩

= ⟨ψ,
∞∑
n=1

E(An)ψ⟩

=
∞∑
n=1

⟨ψ,E(An)ψ⟩

=
∞∑
n=1

Eψ(An).

Let us now check that ifE(Ω) = I andEψ(.) = ⟨ψ,E(.)ψ⟩ is a measure, thenE is a spectral

measure. We only need to proof the second item in the definition of the spectral measure. Define

A = ∪n∈NAn, where the An’s are pairwise disjoint and such that A ∈ A. Since Eψ(.) is a
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measure, then it is countably additive and

⟨ψ,E(A)ψ⟩ = Eψ(A)

=
∞∑
n=1

Eψ(An)

=
∞∑
n=1

⟨ψ,E(An)ψ⟩

=

〈
ψ,

∞∑
n=1

E(An)ψ

〉
.

The strong limit of the sum in the last line exists and is an orthogonal projector since this is a

sum of pairwise orthogonal projections (see [80] for a proof of this statement). This relations is

valid for any ψ ∈ H, then E(A) =
∑∞

n=1E(An) and E is a spectral measure.

One interesting question in this context is the following: if we have a pair, or a finite col-

lection, of spectral measures, all defined in the same Hilbert space, can we construct a single

spectral measure from these? The following result answers this question when the spectral mea-

sures pairwise commute, and are of fundamental importance in the definition of Newton-Wigner

localizability.

Theorem A.14. For j = 1, ..., k, let Ωj be a locally compact Hausdorff space with a countable

base of open sets. For each of these spaces, let Ej be a spectral measure defined on the Borel

σ-algebra B(Ωj). Suppose that these spectral measures all act on the same Hilbert space H,

and pairwise commute, that is, for any A ∈ B(Ωj) and B ∈ B(Ωl), we have Ej(A)El(B) =

El(B)Ej(A). Then, there exists a unique spectral measure, E, which we call the product

spectral measure (or the joint spectral measure), defined on the product Borel σ-algebra B(Ω),
where Ω = Ω1 × ...× Ωk, such that

E(A1 × ...× Ak) = E1(A1)...Ek(Ak),

where Aj ∈ B(Ωj) and j = 1, ..., k.

Proof. See [57].

Our next goal is to define the so-called spectral integrals. These are operator-valued in-

tegrals of measurable functions defined with respect to a spectral measure. We will give a

precise definition of spectral integrals of bounded (in the supremum norm), measurable func-

tions. We do this by first defining the spectral integrals of simple functions, and latter extending
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to bounded functions. Finally, we will comment on the generalization to spectral integrals of

unbounded functions.

Let B be the space of all bounded, measurable (with respect to a σ-algebra A) functions

from Ω to C. We can equip this space with the supremum norm

∥f∥s = sup {|f(s)| : s ∈ Ω} ,

such that (B, ∥.∥s) is a Banach space. Define Bs to be the subspace of simple functions in B,

that is, functions which have only a finite number of values. These can be written as

f =
N∑
r=1

crχAr , (A.5)

where each cr is a complex number and the Ar’s are pairwise disjoint sets of the σ-algebra.

Definition A.15. Let E be a spectral measure defined on A, and f ∈ Bs be a simple function

expressed by the sum (A.5). Then, we define the spectral integral of f with respect to the

spectral measure E as the operator

I(f) =
N∑
r=1

crE(Ar). (A.6)

A possible source of ambiguity in this definition is that, in general, simple functions have

different (but equivalent) “representations”, that is, the expression of f in terms of the sum in

(A.5) is in general not unique. Let us prove that the operator I(f) is independent of representa-

tion. Suppose that f can also be written as

f =
M∑
j=1

djχBj
,

where we are assuming that each dj is a complex number, the Bj’s are pairwise disjoint sets

of A, and the sets {Ar}, r = 1, ..., N , and {Bj}, j = 1, ...,M , are partitions of a set M ∈ A,

that is, M = ∪Nr=1Ar = ∪Mj=1Bj . Suppose there is some r′ ≤ N and some j′ ≤ M such that

Ar′ ∩Bj′ ̸= ∅. Then, for s ∈ Ar′ ∩Bj′ , we must have that

f(s) = cr′ = dj′ .
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It follows that

E(Ar) = E
(
Ar ∩

(
∪Mj=1Bj

))
= E

(
∪Mj=1Ar ∩Bj

)
=

M∑
j=1

E(Ar ∩Bj),

where in the first equality we used the fact that the Ar’s and Bj’s are partitions of M . It is now

straightforward to check that

N∑
r=1

crE(Ar) =
N∑
r=1

M∑
j=1

crE(Ar ∩Bj)

=
N∑
r=1

M∑
j=1

djE(Ar ∩Bj)

=
M∑
j=1

djE
(
∪Nr=1Ar ∩Bj

)
=

M∑
j=1

djE(Bj).

That is, the resulting operator is independent of the representation of f . The next step is to

extend this definition of spectral integral to bounded functions. Before we do this, we need the

following technical result.

Lemma A.16. If f ∈ Bs, then ∥I(f)∥ ≤ ∥f∥s.

Proof. Let f be a simple function expressed by the sum in (A.5). By definition, the Ar’s are

pairwise disjoint and, according to our Proposition A.11, E(Ar)H and E(Al)H are orthogonal
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for r ̸= l. Then, for any ψ ∈ H

∥I(f)ψ∥2 =

∥∥∥∥∥
N∑
r

crE(Ar)ψ

∥∥∥∥∥
2

=
N∑
r

|cr|2∥E(Ar)ψ∥2

≤
N∑
r

∥f∥2s∥E(Ar)ψ∥
2

= ∥f∥2s

∥∥∥∥∥
N∑
r

E(Ar)ψ

∥∥∥∥∥
2

≤ ∥f∥2s∥ψ∥
2.

This result implies the desired inequality of the operator norm of I(f).

We are now able to extend our construction to bounded functions. The subspace Bs is dense

in (B, ∥.∥s), such that for every element f ∈ B there is a sequence (fn)n∈N of simple functions

converging to f in the supremum norm. This sequence is necessarily a Cauchy sequence and,

by our last result, (I(fn))n∈N is a Cauchy sequence in the Banach space of bounded operators

with respect to the operator norm. This space is complete, which means that there exists an

operator, which we denote by I(f), which is the limit of this sequence. This operator is the

spectral integral of f with respect to the spectral measure E. Let us prove some properties of

these integrals.

Proposition A.17. Let f, g ∈ B(Ω,A), ψ, ϕ ∈ H, and α, β ∈ C. Then:

1. I(αf + βg) = αI(f) + βI(g), I(f) = I(f)∗, and I(fg) = I(f)I(g).

2. ⟨ψ, I(f)ϕ⟩ =
∫
Ω
f(s)d⟨ψ,E(s)ϕ⟩.

3. ∥I(f)ψ∥2 =
∫
Ω
|f(s)|2d⟨ψ,E(s)ψ⟩.

4. ∥I(f)∥ ≤ ∥f∥s.

Proof. Let us start by showing that the map B(Ω,A) ∋ f −→ I(f) ∈ B(H) is continuous:

let ϵ > 0. We will show that for every ϵ there is a δ > 0 for which ∥f − g∥s < δ implies

∥I(f)− I(g)∥ < ϵ. Let f, g be the limits of the sequences of simple functions (fn)n∈N and

166



Appendix A. Functional Analysis Basics

(gn)n∈N, respectively. Then

∥I(f)− I(g)∥ = ∥limn−→∞(I(fn)− I(gn))∥

= limn−→∞∥I(fn − gn)∥

≤ limn−→∞∥fn − gn∥s
= ∥f − g∥s,

where we used the continuity of the norm and the obvious fact that the map is linear for simple

functions. Hence, ∥f − g∥s < δ ≡ ϵ implies that ∥I(f)− I(g)∥ < ϵ and the map is continuous.

Since the above map is continuous, it is sufficient to prove the properties for simple func-

tions. In the following, we consider simple functions of the form (A.5).

1. The linearity property is obvious from the definition. The adjoint can also be straightfor-

wardly computed

I(f)∗ =

(
N∑
r

crE(Ar)

)∗

=
N∑
r

(crE(Ar))
∗

=
N∑
r

crE(Ar)

= I(f).

Define g =
∑

s bsχNs , where the Ns’s are pairwise disjoint. Let us prove that I(fg) =

I(f)I(g). We have that fg =
∑

r,s crbsχAr∩Ns . Then

I(fg) =
∑
r,s

crbsE(Ar ∩Ns)

=
∑
r,s

crbsE(Ar)E(Ns)

= I(f)I(g),

where we used Proposition A.11.
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2. Computing directly the inner product we have that

⟨ψ, I(f)ϕ⟩ =
N∑
r

cr⟨ψ,E(Ar)ϕ⟩.

This sum becomes an integral when f is a measurable function with the complex measure

Eψ,ϕ(A) = ⟨ψ,E(A)ϕ⟩, for A ∈ A.

3. This property follows from item 2 and the fact that ∥I(f)ψ∥2 = ⟨I(f)ψ, I(f)ψ⟩.

4. This property is a direct application of Lemma A.16 and the continuity of B(Ω,A) ∋
f −→ I(f) ∈ B(H).

We have constructed, up to now, the spectral integral of bounded, complex-valued, measur-

able functions. However, this machinery can be generalized to a wider class of functions. Let

E be a spectral measure. Then, we can define the spectral integral, with respect to this spectral

measure, of measurable, complex-valued functions which are E-finite almost-everywhere, that

is, possibly unbounded functions such that E({s ∈ Ω|f(s) = ∞}) = 0 (the zero operator).

Let us denote this set of functions by S(Ω,A, E), and note that B(Ω,A) ⊂ S(Ω,A, E). This

construction, however, is much more involved, since the resulting operators will be possibly

unbounded. For this reason, we will not give the details of this definition and we will limit

ourselves to comment on some general results. The interested reader is referred to [57] for

a complete description. In the following proposition, we resume the main properties of these

spectral integrals.

Proposition A.18. Let f, g ∈ S(Ω,A, E), ψ ∈ D(I(f)), ϕ ∈ D(I(g)), and α, β ∈ C. Then

1. I(f) = I(f)∗ and I(αf + βg) = αI(f) + βI(g), where the overline denotes the closure

of the operator.

2. ⟨I(f)ψ, I(g)ϕ⟩ =
∫
Ω
f(s)g(s)d⟨ψ,E(s)ϕ⟩.

3. Define the space L∞(Ω, E) of measurable functions on Ω that are bounded E-almost-

everywhere, that is, they are bounded everywhere except on subsets of Ω for which the

spectral measure associates the zero operator. Then, I(f) is bounded if, and only if,

f ∈ L∞(Ω, E).
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4. The spectrum of I(f) is the essential range of f , that is,

σ(I(f)) = {λ ∈ C|E ({s ∈ Ω : |f(s)− λ| < ϵ}) ̸= 0 for all ϵ > 0} .

Proof. See [57] for a proof.

A.3.2 The Spectral Theorem for Self-Adjoint Operators

The spectral theorem for self-adjoint operators is among the most important results in Func-

tional Analysis, and it lies at the bottom of the mathematical formulation of quantum mechanics.

Our aim in this section is to present the different versions of this theorem, namely, the Spectral

Theorem in the spectral measure form; in the multiplication operator form and in the direct

integral form. For each version, we need to treat separately bounded and unbounded operators,

since the statement and the proof of the theorem is different in each case. We will follow [58]

closely in this section.

In the last section, we have shown how to construct linear operators acting on a Hilbert

space when a spectral measure is defined in some σ-algebra. The first version of the Spectral

Theorem that we present says that if the σ-algebra in question is the Borel σ-algebra of the real

line, then there is a one-to-one correspondence between these spectral measures and self-adjoint

operators.

Theorem A.19. (Spectral Theorem for bounded self-adjoint operators- spectral measure form).

Let A be a bounded, self-adjoint operator acting on a Hilbert space H. Let I = [a, b] be a

compact interval on R such that σ(A) ⊆ I. Then, there exists a unique spectral measure E on

the Borel σ-algebra B(I) such that

A = I(λ) ≡
∫
I
λdE(λ),

where I(λ) denotes the spectral integral of the (bounded, real-valued) function f(λ) = λ with

respect to the spectral measure E.

Proof. See, for example, [57, 58, 114].

The idea of the proof is the following. If p(λ) is a polynomial, we can define p(A) in

an obvious way and, by the density of the polynomials in (C(I), ∥.∥s), this definition can be

extended to continuous, complex-valued functions in I. Hence, if f ∈ (C(I), ∥.∥s), the func-

tional ⟨., f(A).⟩ : H −→ C given by ⟨ψ, f(A)ψ⟩ is a continuous, positive linear functional
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and, by the Riesz-Markov Theorem, there exists an unique measure µψ,A on B(I) such that

⟨ψ, f(A)ψ⟩ =
∫
I f(λ)dµψ,A. The next step is then to show that, for each M ∈ B(I), there

exists an operator E(M) such that µψ,A(M) = ⟨ψ,E(M)ψ⟩. This operator turns out to be an

orthogonal projection and the collection of all these projections form a spectral measure E on

B(I) such that, with respect to this spectral measure, I(λ) = A. Furthermore, this spectral

measure is unique.

If A is an unbounded operator, then its spectrum is not necessarily a bounded subset of R

and we can not follow the same construction as above to associate a spectral measure to an

unbounded, self-adjoint operator. Nonetheless, we can counter this obstacle in the following

way. The map t −→ zt = t(1 + t2)−1/2 is an homeomorphism from R on the interval (−1, 1).

Inspired by this fact, we can define the operator

ZA = AC
1/2
A ,

where CA = (I + A∗A)−1. It can be shown that ZA is a bounded, self-adjoint operator with

σ(ZA) ⊆ [−1, 1] (see [57]). Hence, by our Theorem A.19, there exists an unique spectral mea-

sure F on [−1, 1] such that, with respect to F , ZA = I(z), where z ∈ [−1, 1]. On this interval,

define the function ϕ(z) = z(1− z2)−1/2. This is a measurable, finite almost-everywhere func-

tion with respect to F . It can also be shown that, with respect to F , we have that I(ϕ) = A.

Finally, we can associate to each M ∈ B(R) an operator given by

E(M) = F (ϕ−1(M)).

It turns out that this set of operators form a spectral measure in B(R) such that, with respect to

E, I(λ) = A, where λ ∈ R. Furthermore, E is the unique spectral measure with this property.

In summary, we have the following theorem.

Theorem A.20. (Spectral Theorem for unbounded self-adjoint operators- spectral measure

form). Let A be an unbounded, self-adjoint operator acting on a Hilbert space H. Then,

there exists a unique spectral measure E on the Borel σ-algebra B(R) such that

A = I(λ) ≡
∫
R
λdE(λ),

where I(λ) denotes the spectral integral of the (unbounded, real-valued) function f(λ) = λ

with respect to the spectral measure E.

Proof. See, for example, [57, 58].
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Our next goal is to present the multiplication operator form of the Spectral Theorem. But

first, let us try to develop the intuition behind this theorem. Consider a separable Hilbert space

H, and let {ej}j∈N be an orthonormal basis on this space. A linear operator A acting on H
is called a diagonal operator (with respect to this basis) if Aej = αjej , where αj ∈ C for

every j. Note that ⟨ej, Aej⟩ = αj , which implies that A∗ej = αj and that A is normal. On the

other hand, a normal operator whose eigenvectors span H is also a diagonal operator. Hence,

this is a basis-independent manner of defining diagonal operators. It can be shown that if the

sequence {αj}j∈N is bounded, then A is a bounded operator (see [116]). Since the ej’s form an

orthonormal basis in H, the operatorA can be seen as a map from l2 into itself: let ψ =
∑

j ξjej

be some vector in H. Then, Aψ ≡ ϕ =
∑

j(αjξj)ej and A maps the sequence (ξj)j∈N in the

sequence (αjξj)j∈N in l2.

It turns out that these diagonal operators are special cases of a more general construction.

Let (Ω,A, µ) be a measure space, φ : Ω −→ C a bounded measurable function, and consider

the Hilbert space L2(Ω, µ). We define the multiplication operator with respect to φ as the

operator

(Mφf)(s) = φ(s)f(s),

where f ∈ L2(Ω, µ). See section A.4 for properties of multiplication operators. Note that

if Ω is the set of natural numbers and µ is the counting measure, then L2(Ω, µ) = l2 and

the multiplication operators reduce to our diagonal operators. Therefore, the multiplication

operators are a generalized version of the diagonal operators. Our next form of the Spectral

Theorem asserts that every self-adjoint operator can be written in the form of a multiplication

operator in a suitable Hilbert space.

Theorem A.21. (Spectral Theorem for bounded self-adjoint operators- multiplication operator

form). Let A ∈ B(H) be a self-adjoint operator acting on a Hilbert space H. Then, there exists

a σ-finite measure space (Ω, µ), a bounded, measurable, real-valued function h on Ω, and a

unitary map U : H −→ L2(Ω, µ) such that

[
UAU−1ψ

]
(λ) = h(λ)ψ(λ),

for all ψ ∈ L2(Ω, µ).

Proof. See, for example, [58, 111].

As we will see in the next section, a multiplication operator is bounded if, and only if, its
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associated function is in L∞(Ω, µ). Then, if the operator is unbounded, there can be no bounded

function such that the above unitary equivalence holds. Despite this fact, the statement of the

Spectral Theorem for unbounded operators is almost the same, except that we must be careful

with the domain of the operator.

Theorem A.22. (Spectral Theorem for unbounded self-adjoint operators- multiplication oper-

ator form). Let A be a self-adjoint operator acting on a Hilbert space H. Then, there exists a

σ-finite measure space (Ω, µ), a measurable, real-valued function h on Ω, and a unitary map

U : H −→ L2(Ω, µ) such that

U(Dom(A)) =
{
ψ ∈ L2(Ω, µ)|hψ ∈ L2(Ω, µ)

}
,

and such that

[
UAU−1ψ

]
(λ) = h(λ)ψ(λ),

for all ψ ∈ U(Dom(A)).

Proof. See, for example, [58, 111].

In our above definition of a diagonal operator, the coefficients αj are all eigenvalues of

the diagonal operator. Hence, these operators can be seen as multiplication operators by the

function f(λ) = λ, where λ ∈ σp(A), the point spectrum of A. It is natural to ask if it is

possible to refine further the multiplication operator form of the Spectral Theorem such that

the function defining the multiplication operator is just f(λ) = λ, for λ in the spectrum of the

operator. The answer is yes, and this is the content of our last version of the Spectral Theorem.

However, before we state this theorem, we need to define the direct integral of Hilbert spaces.

Let (Ω,A, µ) be a σ-finte measure space. Suppose that for each λ ∈ Ω we associate a

separable Hilbert space Hλ with inner product ⟨, ⟩λ. We will define the direct integral of the

Hλ’s with respect to the measure µ, which will be also a separable Hilbert space. The elements

of the direct integral will be called sections, s(λ), and they will be functions from Ω with values

in the union of the Hλ’s, such that, for each λ, we have

s(λ) ∈ Hλ.

The next step is to define the inner product and the norm in the resulting direct integral. Be-

fore we do this, we need some notion of measurability. We define a simultaneous orthonormal

basis for the family of Hilbert spaces Hλ’s as a collection of sections {ej(.)}∞j=1 where, for each
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λ, we have that {ej(λ)}∞j=1 is an orthonormal basis for Hλ, in the sense that ⟨ej(λ), ek(λ)⟩ = 0

for j ̸= k, the norm of each ej is either 0 or 1, and the closure of the span varying over all j’s

is equal to Hλ. If the function λ −→ dimHλ is a measurable function into [0,∞], then we can

choose an orthonormal basis such that ⟨ej(λ), ek(λ)⟩ is measurable for all j and k. Then, we

say that a section s is measurable if the function

λ −→ ⟨ej(λ), s(λ)⟩λ

is a complex-valued measurable function for each j. Such a choice of simultaneous orthonormal

basis is called a measurability structure on the collection of Hilbert spaces Hλ. We are now

ready to define the direct integral of this collection.

Definition A.23. Let (Ω,A, µ) be a σ-finite measure space;{Hλ}, for λ ∈ Ω, a collection of

separable Hilbert spaces for which λ −→ dimHλ is measurable; and {ej(.)}∞j=1 a measurability

structure. Then, we define the direct integral of the Hλ’s with respect to µ, which we denote

by ∫ ⊕

Ω

Hλdµ(λ),

as the space of equivalence classes of almost-everywhere-equal measurable sections for which

∥s∥2 ≡
∫
Ω

⟨s(λ), s(λ)⟩λdµ(λ) <∞.

The inner product of two sections s1 and s2 is defined as

⟨s1, s2⟩ ≡
∫
Ω

⟨s1(λ), s2(λ)⟩λdµ(λ).

Example A.24. Let (Ω,A, µ) be a σ-finite measure space, and suppose that to each λ ∈ Ω we

associate the Hilbert space C. Then, each Hλ is finite-dimensional and a measurability structure

can be easily defined. The resulting direct integral is clearly∫ ⊕

Ω

Hλdµ(λ) = L2(Ω, µ).

With these definitions at hand, we can now formulate the last version of the Spectral Theo-

rem.

Theorem A.25. (Spectral Theorem for bounded self-adjoint operators- direct integral form).

Let A ∈ B(H) be a self-adjoint operator. Then, there exists a σ-finite measure µ on σ(A), a
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direct integral ∫ ⊕

Ω

Hλdµ(λ),

and a unitary map U : H −→
∫ ⊕
Ω
Hλdµ(λ) such that

[UAU−1s](λ) = λs(λ), λ ∈ σ(A),

for all sections in the direct integral.

Proof. See, for example, [58, 118].

Hence, this theorem guarantees that for each bounded, self-adjoint operator there exists a

unitarily equivalent Hilbert space such that this operator acts as multiplication by the elements

of the spectrum. For this reason, this theorem is often considered as the most refined version

of the Spectral Theorem for a single operator. Then, except from a unitary map, the operator A

acts as λI on each Hλ, and these are often considered as “generalized eigenspaces” of A. These

are not necessarily real eigenspaces since the spaces Hλ are not, in general, subspaces of the

direct integral. However, if λ0 ∈ σ(A) is an eigenvalue and Hλ0 ⊂ H its eigenspace, we can

embed it isometrically into the direct integral by defining the section

s(λ) =


1√
c
ψ, if λ = λ0

0, if λ ̸= λ0,

for each ψ ∈ Hλ0 , and where c ≡ µ({λ0}) (which will be nonzero, necessarily). In this case,

Hλ0 is a true eigensubspace of the direct integral.

The statement of this version of the Spectral Theorem for unbounded, self-adjoint operators

is almost the same, with the difference that we must be careful with the domains of the operators.

Theorem A.26. (Spectral Theorem for unbounded self-adjoint operators- direct integral form).

Let A be a self-adjoint operator on H. Then, there exists a σ-finite measure µ on σ(A), a direct

integral ∫ ⊕

Ω

Hλdµ(λ),
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and a unitary map U : H −→
∫ ⊕
Ω
Hλdµ(λ) such that

U(Dom(A)) =

{
s ∈

∫ ⊕

Ω

Hλdµ(λ)
∣∣∣ ∫

σ(A)

∥λs(λ)∥2λdµ(λ) <∞
}
,

and such that

[UAU−1s](λ) = λs(λ), λ ∈ σ(A),

for all sections in U(Dom(A)).

Proof. See, for example, [58, 118].

A.4 Multiplication Operators

The Spectral Theorem in the multiplication operator form presented above shows that the class

of multiplication operators is highly relevant in Functional Analysis since any self-adjoint op-

erator can be put in this form for a suitable Hilbert space. In addition, the position operators

belongs to this class. Therefore, we dedicate this section to rigorously defining these operators

and exploring some of their most basic and general properties.

Let (Ω,A, µ) be a σ-finite measure space and ϕ : Ω −→ C ∪ {∞} be a µ-a.e finite, mea-

surable function. From this measure space, we construct the function space L2(Ω, µ). The

multiplication operator Mϕ, acting on this function space, is defined as

(Mϕg)(s) ≡ ϕ(s)g(s), s ∈ Ω (A.7)

D(Mϕ) =

{
g(s) ∈ L2(Ω, µ)

∣∣∣ ∫
Ω

|ϕ(s)|2|g(s)|2dµ(s) <∞
}
. (A.8)

The following result characterizes several important properties of these operators.

Lemma A.27. The above defined multiplication operator has the following properties:

1. The adjoint of Mϕ is given by (Mϕ)
∗ = Mϕ. In particular, the multiplication operator is

self-adjoint if, and only if, ϕ is a real function.

2. The operator Mϕ is bounded if, and only if, ϕ ∈ L∞(Ω, µ).

3. The spectrum of the multiplication operator is given by

σ(Mϕ) = sp(ϕ), (A.9)
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where sp(ϕ) denotes the essential range of ϕ. In particular, the spectrum will equal the

closure of the image of ϕ when the pre-images of any open set in the range of ϕ has

non-zero measure.

4. Let ϕ be a real function. The spectral measure defined on σ(Mϕ), which is uniquely

associated with Mϕ by Theorem A.19 or A.20, is given by

(PMϕ
(B)g)(s) = χϕ−1(B)(s)g(s), (A.10)

where g ∈ L2(Ω, µ) and B ∈ B(σ(Mϕ)).

Proof. See [57] and [119].

Before we finish this chapter with mathematical preliminaries, let us prove the following

result, which characterizes all the bounded multiplication operators acting on a general space

L2(Ω, µ) in terms of a unique spectral measure.

Proposition A.28. Let (Ω,A, µ) be a σ-finite measure space and define the Hilbert space H =

L2(Ω, µ). Let E be the spectral measure defined in (A.4), which acts as

(E(A)ψ)(s) = χA(s)ψ(s),

for A ∈ A and ψ ∈ H. Let B(Ω,A) denote the space of all bounded, measurable, complex-

valued functions on Ω. Define the following subsets of B(H)

I ≡ {I(f)|f ∈ B(Ω,A)}

M ≡ {Mf |f ∈ B(Ω,A)},

where I(.) denotes the spectral integral with respect to the spectral measure E. Then, there

exists a one-to-one correspondence between I and M given by

I(f) =Mf .

Proof. For any f ∈ B(Ω,A) we have that

⟨ψ, I(f)ψ⟩ =
∫
Ω

f(s)d⟨ψ,E(s)ψ⟩,
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and

⟨ψ,Mfψ⟩ =
∫
Ω

f(s)|ψ(s)|2dµ(s),

where in the first equation we used proposition A.17. Note that

νψ(A) ≡
∫
A

|ψ(s)|2dµ(s)

defines a measure on A. By the other hand, we have

Eψ(A) = ⟨ψ,E(A)ψ⟩ =
∫
Ω

χA(s)|ψ(s)|2dµ(s).

That is, νψ(A) = Eψ(A) for every A ∈ A. Hence, it follows that

⟨ψ,Mfψ⟩ =
∫
Ω

f(s)dνψ(s)

=

∫
Ω

f(s)d⟨ψ,E(s)ψ⟩

= ⟨ψ, I(f)ψ⟩,

and therefore

⟨ψ, (Mf − I(f)ψ)⟩ = 0, ∀ψ ∈ H.

Since this last relation is valid for every ψ ∈ H, then I(f) =Mf .

177



Bibliography

1. Brunetti, R., Guido, D. & Longo, R. Modular Localization and Wigner Particles. Reviews
in Mathematical Physics 14, 759–785. ISSN: 0129-055X, 1793-6659 (July 2002).

2. Wigner, E. P. Remarks on the Mind-Body Question. Indiana University Press (ed Good,
I. J.) (1961).

3. Araki, H. Mathematical theory of quantum fields (Oxford University Press, London, Eng-
land, Jan. 2000).

4. Ruijsenaars, S. N. M. On Newton-Wigner localization and superluminal propagation
speeds. Ann. Phys. (N. Y.) 137, 33–43 (Nov. 1981).

5. Newton, T. D. & Wigner, E. P. Localized States for Elementary Systems. en. Reviews of
Modern Physics 21, 400–406. ISSN: 0034-6861. https://link.aps.org/doi/
10.1103/RevModPhys.21.400 (2021) (July 1949).

6. Halvorson, H. Dissertation: Locality, localization, and the particle concept: Topics in
the foundations of quantum field theory (University of Pittsburgh, 2001).

7. Colosi, D. & Rovelli, C. What is a particle? Class. Quantum Gravity 26, 025002 (Jan.
2009).

8. Fraser, D. The fate of ‘particles’ in quantum field theories with interactions. Stud. Hist.
Philos. Sci. B Stud. Hist. Philos. Modern Phys. 39, 841–859 (Nov. 2008).

9. Knight, J. M. Strict Localization in Quantum Field Theory. Journal of Mathematical
Physics 2, 459–471 (July 1961).

10. Licht, A. L. Strict Localization. en. Journal of Mathematical Physics 4, 1443–1447 (Nov.
1963).

11. Schlieder, S. Some Remarks about the Localization of States in a Quantum Field Theory.
Communications in Mathematical Physics 1, 265–280 (1965).

12. Haag, R. & Swieca, J. A. When does a Quantum Field Theory describe particles? Com-
munications in Mathematical Physics 1, 308–320 (1965).

13. Enss, V. Characterization of particles by means of local observables. Communications in
Mathematical Physics 45, 35–52 (1975).

14. Doplicher, S., Haag, R. & Roberts, J. E. Fields, observables and gauge transformations
I. Communications in Mathematical Physics 13, 1–23 (1969).

15. Doplicher, S., Haag, R. & Roberts, J. E. Fields, observables and gauge transformations
II. Communications in Mathematical Physics 15, 173–200 (1969).

16. Doplicher, S., Haag, R. & Roberts, J. E. Local observables and particle statistics I. Com-
munications in Mathematical Physics 23, 199–230 (1971).

178

https://link.aps.org/doi/10.1103/RevModPhys.21.400
https://link.aps.org/doi/10.1103/RevModPhys.21.400


Bibliography

17. Doplicher, S., Haag, R. & Roberts, J. E. Local observables and particle statistics II. Com-
munications in Mathematical Physics 35, 49–85 (1974).

18. Wightman, A. S. On the Localizability of Quantum Mechanical Systems. Reviews of
Modern Physics 34, 845–872. ISSN: 0034-6861 (Oct. 1962).

19. Fleming, G. N. Nonlocal properties of stable particles. Phys. Rev. 139, B963–B968 (Aug.
1965).

20. Hegerfeldt, G. C. Remark on causality and particle localization. Phys. Rev. D Part. Fields
10, 3320–3321 (Nov. 1974).

21. Malament, D. B. In defense of dogma: Why there cannot be a relativistic quantum me-
chanics of (localizable) particles 1–10 (Springer Netherlands, Dordrecht, 1996).

22. Hegerfeldt, G. C. Violation of causality in relativistic quantum theory? Phys. Rev. Lett.
54, 2395–2398 (June 1985).

23. Halvorson, H. & Clifton, R. in Ontological Aspects of Quantum Field Theory 181–213
(WORLD SCIENTIFIC, Nov. 2002).

24. Jauch, J. M. & Piron, C. Generalized localizability. Helvetica Physica Acta (1967).

25. Jauch, J. M. Foundations of quantum mechanics (Addison-Wesley Educational, Boston,
MA, Dec. 1968).

26. Angelopoulos, E., Bayen, F. & Flato, M. On the localizability of massless particles. Phys.
Scr. 9, 173–183 (Mar. 1974).

27. Kraus, K. in The Uncertainty Principle and Foundations of Quantum Mechanics 293
(John Wiley Sons Ltd, 1977).

28. Castrigiano, D. P. L. Causal localizations of the massive scalar boson. Lett. Math. Phys.
114 (Dec. 2023).

29. Castrigiano, D. P. L. Dirac and Weyl Fermions – the Only Causal Systems. ArXiv. arXiv:
1711.06556 [math-ph] (Nov. 2017).

30. Castrigiano, D. P. L. & Leiseifer, A. D. Causal localizations in relativistic quantum me-
chanics. J. Math. Phys. 56, 072301 (July 2015).

31. Beck, C. Local quantum measurement and relativity 1st ed. (Springer Nature, Cham,
Switzerland, Aug. 2021).

32. Moretti, V. On the relativistic spatial localization for massive real scalar Klein–Gordon
quantum particles. Lett. Math. Phys. 113 (June 2023).

33. De Rosa, C. & Moretti, V. Quantum particle localization observables on Cauchy surfaces
of Minkowski spacetime and their causal properties. Lett. Math. Phys. 114 (May 2024).

34. Busch, P. Unsharp localization and causality in relativistic quantum theory. J. Phys. A
Math. Gen. 32, 6535–6546 (Sept. 1999).

35. Schroer, B. The ongoing impact of modular localization on particle theory. SIGMA Sym-
metry Integrability Geom. Methods Appl. (Aug. 2014).

36. Wigner, E. On unitary representations of the inhomogeneous Lorentz group. Ann. Math.
40, 149 (Jan. 1939).

37. Mackey, G. W. Induced representations of locally compact groups I. Ann. Math. 55, 101
(Jan. 1952).

179

https://arxiv.org/abs/1711.06556


Bibliography

38. Mackey, G. W. Imprimitivity for Representations of Locally Compact Groups I. Proceed-
ings of the National Academy of Sciences of the United States of America 35, 537–545.
ISSN: 00278424, 10916490. http://www.jstor.org/stable/88329 (2024)
(1949).

39. Mackey, G. W. Theory of unitary group representations (University of Chicago Press,
Chicago, IL, Oct. 1976).

40. Hilgert, J. & Neeb, K.-H. Structure and Geometry of Lie Groups 2012th ed. (Springer,
New York, NY, Nov. 2011).

41. Raczka, R. & Barut, A. O. Theory of group representations and applications 2nd ed.
(World Scientific Publishing, Singapore, Singapore, Jan. 1986).

42. Woit, P. Quantum Theory, Groups and Representations 1st ed. (Springer International
Publishing, Cham, Switzerland, Nov. 2017).

43. Munkres, J. R. Topology en (PEARSON, 2015).

44. Helgason, S. Differential geometry and Symmetric Spaces (American Mathematical So-
ciety, Providence, RI, Apr. 2024).

45. Folland, G. B. Sept. 2015.

46. Straumann, N. in Springer Handbook of Spacetime 265–278 (Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014).

47. Brunetti, R. & Fredenhagen, K. Time of occurrence observable in quantum mechanics.
Phys. Rev. A 66 (Oct. 2002).

48. Pereira, V. C. & Barata, J. C. A. Time of ocurrence observables: expanding to other
symmetries. arXiv. eprint: arXiv:2310.20074 (quant-ph) (Oct. 2023).

49. Bernal, A. N. & Sánchez, M. On Smooth Cauchy Hypersurfaces and Geroch’s Splitting
Theorem. Communications in Mathematical Physics 243, 461–470. ISSN: 0010-3616
(Dec. 2003).

50. Besse, A. L. Einstein Manifolds (Springer, Berlin, Germany, Dec. 2007).

51. Thompson, A. C. On Certain Contraction Mappings in a Partially Ordered Vector Space.
Proceedings of the American Mathematical Society 14. ISSN: 0002-9939 (June 1963).

52. Fongi, G. & Maestripieri, A. Congruence of selfadjoint operators. Positivity 13, 759–770.
ISSN: 1385-1292, 1572-9281 (Nov. 2009).

53. Fongi, G. & Maestripieri, A. Differential structure of the Thompson components of self-
adjoint operators. Proceedings of the American Mathematical Society 136, 613–622.
ISSN: 0002-9939 (Nov. 2007).

54. Corach, G., Maestripieri, A. & Stojanoff, D. Orbits of Positive Operators from a Differ-
entiable Viewpoint. Positivity 8, 31–48. ISSN: 1385-1292 (Mar. 2004).

55. Williams, R. W. Accuracy of bubble location in a bubble chamber. Rev. Sci. Instrum. 32,
1378–1380 (Dec. 1961).

56. Yokomizo, N. & Barata, J. C. A. Multiple classical limits in relativistic and nonrelativistic
quantum mechanics. en. Journal of Mathematical Physics 50, 123512 (2009).

57. Schmüdgen, K. Unbounded Self-adjoint Operators on Hilbert Space ISBN: 978-94-007-
4752-4 978-94-007-4753-1 (Springer Netherlands, Dordrecht, 2012).

180

http://www.jstor.org/stable/88329
arXiv:2310.20074


Bibliography

58. Hall, B. C. Quantum Theory for Mathematicians ISBN: 978-1-4614-7115-8 978-1-4614-
7116-5 (Springer New York, New York, NY, 2013).

59. Tausk, D. Tensor Products of L2 Spaces 2019. https://www.ime.usp.br/
~tausk/texts/TensorL2.pdf.

60. Varadarajan, V. S. Geometry of quantum theory 2nd ed. (Springer, New York, NY, Dec.
2006).

61. Beltrametti, E. G. & Cassinelli, G. The encyclopedia of mathematics and its applica-
tions the logic of quantum mechanics: Series number 15: Volume 15 (ed Rota, G.-C.)
(Cambridge University Press, Cambridge, England, June 2013).

62. Cori, R. & Lascar, D. Mathematical logic: Part 1 (Oxford University Press, London,
England, Aug. 2000).

63. Birkhoff, G. & Neumann, J. V. The logic of quantum mechanics. Ann. Math. 37, 823
(Oct. 1936).

64. Busch, P. Quantum states and generalized observables: a simple proof of Gleason’s the-
orem. Phys. Rev. Lett. 91, 120403 (Sept. 2003).

65. Redei, M. Quantum logic in algebraic approach (Springer, Dordrecht, Netherlands, Dec.
2010).

66. Cegłla, W. & Jadczyk, A. Z. Logics generated by causality structures. covariant repre-
sentations of the Galilean logic. Rep. Math. Phys. 9, 377–385 (June 1976).

67. Zeeman, E. C. Causality implies the Lorentz group. J. Math. Phys. 5, 490–493 (Apr.
1964).

68. Casini, H. The logic of causally closed spacetime subsets. Class. Quantum Gravity 19,
6389–6404 (Dec. 2002).

69. Cegła, W., Jancewicz, B. & Florek, J. Orthomodular lattice in Lorentzian globally hyper-
bolic space-time. Rep. Math. Phys. 79, 187–195 (Apr. 2017).

70. Haag, R. & Kastler, D. An Algebraic Approach to Quantum Field Theory. Journal of
Mathematical Physics 5, 848–861 (1964).

71. Fewster, C. J. & Rejzner, K. Algebraic Quantum Field Theory – an introduction. arXiv:1904.04051
[hep-th, physics:math-ph] (2019).

72. Advances in Algebraic Quantum Field Theory (eds Brunetti, R., Dappiaggi, C., Freden-
hagen, K. & Yngvason, J.) ISBN: 978-3-319-21352-1 978-3-319-21353-8 (Springer In-
ternational Publishing, 2015).

73. Quantum field theory on curved spacetimes 2009th ed. (eds Bar, C. & Fredenhagen, K.)
(Springer, Berlin, Germany, Sept. 2009).

74. Takesaki, M. Tomita’s Theory of Modular Hilbert Algebras and its Applications 1970th ed.
(Springer, Berlin, Germany, Jan. 1970).

75. Bratteli, O. & Robinson, D. W. Operator algebras and quantum statistical mechanics 1
(Springer, Berlin, Germany, Oct. 2010).

76. Rudin, W. Functional Analysis 2nd ed. (McGraw Hill Higher Education, Maidenhead,
England, Oct. 1990).

77. Barata, J. C. A., Brum, M., Chabu, V. & Correa da Silva, R. Pure and mixed states. Braz.
J. Phys. 51, 244–262 (Apr. 2021).

181

https://www.ime.usp.br/~tausk/texts/TensorL2.pdf
https://www.ime.usp.br/~tausk/texts/TensorL2.pdf


Bibliography

78. Doplicher, S., Haag, R. & Roberts, J. E. Fields, observables and gauge transformations
I. Commun. Math. Phys. 13, 1–23 (Mar. 1969).

79. Doplicher, S., Haag, R. & Roberts, J. E. Fields, observables and gauge transformations
II. Commun. Math. Phys. 15, 173–200 (Sept. 1969).

80. Moretti, V. Spectral Theory and Quantum Mechanics ISBN: 978-88-470-2834-0 978-88-
470-2835-7 (Springer Milan, Milano, 2013).

81. Bär, C., Ginoux, N. & Pfäffle, F. Wave equations on Lorentzian manifolds and quantiza-
tion ISBN: 978-3-03719-037-1 (European Mathematical Society, 2007).

82. Haag, R., Hugenholtz, N. M. & Winnink, M. On the equilibrium states in quantum sta-
tistical mechanics. Commun. Math. Phys. 5, 215–236 (June 1967).

83. Bisognano, J. J. & Wichmann, E. H. On the duality condition for a Hermitian scalar field.
J. Math. Phys. 16, 985–1007 (Apr. 1975).

84. Unruh, W. G. Origin of the particles in black-hole evaporation. Phys. Rev. D Part. Fields
15, 365–369 (Jan. 1977).

85. Connes, A. Almost periodic states and factors of type III1. J. Funct. Anal. 16, 415–445
(Aug. 1974).

86. Guido, D. Modular theory for the von Neumann algebras of local quantum physics Prov-
idence, Rhode Island, 2011.

87. Borchers, H. J. On revolutionizing quantum field theory with Tomita’s modular theory.
J. Math. Phys. 41, 3604–3673 (June 2000).

88. Longo, R. Modular structure of the Weyl algebra. Commun. Math. Phys. 392, 145–183
(Mar. 2022).

89. Longo, R. Lecture on Conformal Nets. Lecture Notes. https://www.mat.uniroma2.
it/longo/Lecture-Notes_files/LN-Part1.pdf (2008).

90. Longo, R. Real Hilbert spaces, SL(2,R), and CFT. Lecture Notes. https://www.
mat.uniroma2.it/longo/Slides_files/Toronto%28Slides%29.pdf
(2008).

91. Leyland, P., Roberts, J. & Testard, D. DUALITY FOR QUANTUM FREE FIELDS.
Lecture Notes (July 1978).

92. Reeh, H. & Schlieder, S. Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern.
de. Il Nuovo Cimento 22, 1051–1068 (Dec. 1961).

93. Sanders, K. On the reeh-schlieder property in curved spacetime. Commun. Math. Phys.
288, 271–285 (May 2009).

94. Florig, M. On Borchers’ Theorem. Lett. Math. Phys. 46, 289–293 (1998).

95. Thomas III, L. J. & Wichmann, E. H. On the causal structure of Minkowski spacetime.
J. Math. Phys. 38, 5044–5086 (Oct. 1997).

96. Morinelli, V. The bisognano–Wichmann property on nets of standard subspaces, some
sufficient conditions. Ann. Henri Poincare 19, 937–958 (Mar. 2018).

97. Yngvason, J. Zero-mass infinite spin representations of the Poincaré group and quantum
field theory. Commun. Math. Phys. 18, 195–203 (Sept. 1970).

98. Longo, R., Morinelli, V. & Rehren, K.-H. Where Infinite Spin Particles are Localizable.
Commun. Math. Phys. 345, 587–614 (July 2016).

182

https://www.mat.uniroma2.it/longo/Lecture-Notes_files/LN-Part1.pdf
https://www.mat.uniroma2.it/longo/Lecture-Notes_files/LN-Part1.pdf
https://www.mat.uniroma2.it/longo/Slides_files/Toronto%28Slides%29.pdf
https://www.mat.uniroma2.it/longo/Slides_files/Toronto%28Slides%29.pdf


Bibliography

99. Mund, J., Schroer, B. & Yngvason, J. String-localized quantum fields from Wigner rep-
resentations. Phys. Lett. B 596, 156–162 (Aug. 2004).

100. Morinelli, V. & Neeb, K.-H. Covariant homogeneous nets of standard subspaces. Com-
mun. Math. Phys. 386, 305–358 (Aug. 2021).

101. Borchers, H. J. A remark on a theorem ofB. Misra. Commun. Math. Phys. 4, 315–323
(Oct. 1967).

102. Fredenhagen, K. A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463
(Sept. 1985).

103. Nevanlinna, R. Analytic functions (eds Eckmann, B. & Waerden, B. L.) (Springer, Berlin,
Germany, Jan. 1970).

104. Lechner, G. & Longo, R. Localization in nets of standard spaces. Commun. Math. Phys.
336, 27–61 (May 2015).

105. Hormander, L. Lectures on nonlinear hyperbolic differential equations 1997th ed. (Springer,
Berlin, Germany, July 1997).

106. Lechner, G. & Sanders, K. Modular nuclearity: A generally covariant perspective. Ax-
ioms 5, 5 (Jan. 2016).

107. Inc., W. R. Mathematica, Version 14.0 Champaign, IL, 2024. https://functions.
wolfram.com/Bessel-TypeFunctions/BesselK/.

108. Derezinski, J. Bessel equation. Lecture Notes. https://www.fuw.edu.pl/
~derezins/bessel.pdf (2024).

109. Table of integrals, series, and products 8th ed. (ed Zwillinger, D.) (Academic Press, San
Diego, CA, Sept. 2014).

110. Murata, M. Anti-locality of certain functions of the Laplace operator. J. Math. Soc. Japan
25, 556–564 (Oct. 1973).

111. Reed, M. & Simon, B. Methods of Modern Mathematical Physics (Academic Press,
1980).

112. Kreyszig, E. Introductory Functional Analysis with Applications 1st ed. ISBN: 978-0-
471-50731-6 (Wiley, 1989).

113. Rudin, W. Functional analysis 2nd ed. ISBN: 978-0-07-054236-5 (McGraw-Hill, New
York, 1991).

114. Barata, J. C. A. Notas para um Curso de Física-Matemática http://denebola.
if.usp.br/~jbarata/Notas_de_aula/capitulos.html ().

115. Šemrl, P. Order and Spectrum Preserving Maps on Positive Operators. Canadian Journal
of Mathematics 69, 1422–1435. ISSN: 0008-414X, 1496-4279 (Dec. 2017).

116. Halmos, P. R. A Hilbert space problem book 2nd ed., rev. and enl. ed. Graduate texts in
mathematics 19. ISBN: 978-0-387-90685-0 (Springer-Verlag, New York, 1982).

117. Shapiro, J. Notes on the Numerical Range 2003. https://users.math.msu.
edu/users/shapiro/pubvit/downloads/numrangenotes/numrange_
notes.pdf.

118. Kadison, R. V. & Ringrose, J. R. Fundamentals of the Theory of Operator Algebras ISBN:
978-1-4612-7834-4 978-1-4612-3212-4 (Birkhäuser Boston, Boston, MA, 1991).

183

https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
https://www.fuw.edu.pl/~derezins/bessel.pdf
https://www.fuw.edu.pl/~derezins/bessel.pdf
http://denebola.if.usp.br/~jbarata/Notas_de_aula/capitulos.html
http://denebola.if.usp.br/~jbarata/Notas_de_aula/capitulos.html
https://users.math.msu.edu/users/shapiro/pubvit/downloads/numrangenotes/numrange_notes.pdf
https://users.math.msu.edu/users/shapiro/pubvit/downloads/numrangenotes/numrange_notes.pdf
https://users.math.msu.edu/users/shapiro/pubvit/downloads/numrangenotes/numrange_notes.pdf


Bibliography

119. Nemesh, N. Multiplication operators on $L_p$ spaces and homological triviality of re-
spective category of modules. arXiv:1309.4974 [math]. arXiv: 1309.4974 (Sept. 2013).

184


	List of Figures
	Contents
	Introduction
	I Newton-Wigner Localization on Homogeneous Globally-Hyperbolic Spacetimes
	Induced Representations and Systems of Imprimitivity
	Topological Groups and Homogeneous spaces
	Invariant and Quasi-invariant measures
	Representation Theory basics
	Induced Representations
	The carrier Space
	Fundamental Theorems of Induced Representations

	Systems of Imprimitivity
	Induced Representations of Regular Semi-direct Products
	Formulation for left-action

	Newton-Wigner Localization on Minkowski Spacetime
	Problems with Newton-Wigner and No-go Theorems

	Newton-Wigner Localization on Homogeneous Globally Hyperbolic Spacetimes
	States following geodesics
	Decompositions of L2(t,t) induced by Mi,
	Newton-Wigner operator on perturbed Minkowski spacetime


	II Modular Localization and the Localizability Problem
	Logics and Measurements
	Basic Concepts
	The Logic of Classical Mechanics
	The Logic of Quantum Mechanics
	The Logic of Spacetime

	Quantum Fields and Modular Theory
	Algebraic Quantum Field Theory
	The Free Scalar Field

	The Modular Theory of Tomita-Takesaki
	Modular Localization

	Modular Localization and the Localizability Problem
	Implementing the Spacetime Logic
	The (quasi-) Probability Measure
	An Example: Irreducible massive representations in 1+1D
	Comparison with Newton-Wigner

	Modular Localization as an Approach to the Localizability Problem

	Conclusions
	Appendices
	Functional Analysis Basics
	Classification of Linear Operators on Hilbert Spaces
	Spectrum of Linear Operators
	The many faces of the Spectral Theorem
	Spectral Measures and Spectral Integrals
	The Spectral Theorem for Self-Adjoint Operators

	Multiplication Operators

	Bibliography


