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Abstract

Motivated by the lack of communication between the mathematical and the theoret-
ical (especially high-energy theory) physics community, we develop the formalism of
causal perturbation theory in a language adapted for high energy physics students pe-
rusing a better knowledge in mathematical physics. We start with a historical review
to explain the necessity of a “new formulation” and proceed to some mathematical
preliminaries. The quantization of the system is done by deformation quantization,
and its relation with the “usual” Fock space quantization is briefly discussed. We
proceed with the classical theory of fields and the classical retarded product. The
classical theory is then used to impose axioms on the quantum retarded product, dis-
cussed in the next chapter. After that, we introduce the famous S- matrix and the
recipe to compute its renormalization (in position space). The very end is devoted
to a topic not present in the literature. We discuss a series of scattering amplitudes
that are widely used in quantum field theory courses but are not explored in the
mathematical physics community.

Keywords: quantum field theory; perturbation theory; causal perturbation theory;
deformation quantization; scattering.



Resumo

Motivados pela falta de comunicação entre a comunidade da física matemática e a
comunidade de físicos teóricos (principalmente de altas energias), desenvolvemos o
formalismo da teoria de perturbação causal em uma linguagem acessível aos estu-
dantes de física de altas energias que desejam obter um conhecimento mais sólido em
física matemática. Começamos discutindo brevemente o desenvolvimento histórico
que levou a formulação da teoria de perturbação causal justificando sua necessidade.
Em seguida, introduzimos alguns preliminares matemáticos. A quantização do sis-
tema é feito usando quantização por deformação e discutimos a relação entre este
método e o “método usual” de quantização no espaço de Fock. Então prosseguimos
para a teoria clássica de campos e a expansão retardadas de campos. Esta discussão é
a base do homólogo quântico, tratado em sequência. Feito isso, discutimos a famosa
matrix S- e a renormalização da mesma (feita no espaço de configurações). A parte
final do trabalho é dedicada a um tema inédito na literatura: estudar diversas ampli-
tudes de espalhamento usadas amplamente em cursos de teoria quântica de campos
mas omitidos dentro da literatura da física matemática.

Palavras-chave: teoria quântica de campos; teoria de perturbação; teoria de per-
turbação causal; quantização por deformação; espalhamento.
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Chapter 1

Introduction

Before presenting the work, there are some questions that deserve to be answered. Every aca-
demic must make it clear:

• What is the work about.

• What are the necessary tools to understand the work.

• What is the relevance of the work.

• Who is the target audience

The goal of this section is to answer, at least partially, the above topics.

With regard to the content of the work, it is basically a different approach to perturba-
tion theory in quantum field theory (QFT). Most of the content here was written based on the
wonderful book by M. Dütsch [24]. More concerning the first question will be explained in the his-
torical introduction. The reader of the present work is expected to have some knowledge of QFT.

The last two topics were the ones that gave a direction to the project and therefore deserve
a better explanation.

The progress in science is not linear, and there is more than one way of thinking and ex-
pressing science, for instance, theoretical physics, mathematics, and mathematical physics. For
this reason, it is not rare to find two different approaches to the same problem that cannot
communicate with each other because the ways of attacking the obstacles that appear are too
different. In mathematical physics, this problem is blatant. For example, the theme of this
thesis (perturbation theory in quantum field theory) is part of a regular course in a graduate
program in physics (sometimes even an undergraduate course). Nevertheless, most of the books
that teach these methods (and consequently the scientists who use these methods in everyday
life) very often have the basis of the theory fixed in “ideas that apparently make sense” (such as
the path integral, whose existence is not trivial [53]) and do not even mention the existence of a
more rigorous approach. When faced with other approaches that “solves problem” by fixing the
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theory on a solid mathematical basis, a common reaction of several members of this community
is of surprise [31] but at the same time aversion to the theme. They say it is “interesting” but
“way too distant” from the “standard approach”. We believe that the problem is basically how
one communicated with the rest of the community.

With this problem in mind, we were faced with a “dilemma”: we could either take the standard
approach in mathematical physics, using definitions, theorems, lemmas and so on or we could
take the “physics” approach and distance ourselves from the rigor of mathematical text hoping
to expand the set of possible readers. To solve the problem, we recall two sentences from Prof.
Jan von Delft [21]:

1. ‘‘The style of theses is different than for papers – your typical target audience are your
fellow diplom- or PhD-students (and Professors from a different field that have no clue
about yours!). They should be able to learn, if they so wish, from your thesis precisely what
you did and how you did it.”

2. “Often, your thesis will be the starting point for the next person joining the group to ’learn
the basics’ and the ’tricks of the trade’. Therefore, somewhat more details than in a paper,
and an attempt at pedagogical presentation, are appropriate.”

With this philosophy in mind, we decided to take the second path. The book from which
most of the present dissertation is based [24] already does that, but we still think it is too
mathematical for a physicist. The way in which we tried to write the thesis is as close as possible
to a standard book in quantum field theory, omitting, when possible, technicalities and focusing
on the calculations and the relations between different approaches. Our biggest fear in doing so
(and honestly, the probability of it concretizing itself is considerable) is to combine the worst of
both worlds: Writing a text that is too technical for a physicist and not rigorous enough for a
mathematician. We hope that this fear is just a delusion from an inexperienced writer and that
the material can be useful for those who are trying to understand how perturbative quantum
field theory is done in this particular way.

10



Chapter 2

Historical review

This section is inspired by the articles [9, 34].

The story of causal perturbation theory began about a century ago. In 1929, Pauli and
Heisenberg introduced a theory of quantum electrodynamics [44] that was very similar to that
used in contemporary physics. In this paper, the quantization is done by using equal-time com-
mutation relations and relevant quantities were computed using a perturbative expansion in the
coupling constant, just as it is usually taught in a standard quantum field theory course. The
problem back then was that the theory was not manifestly Lorentz invariant, since it distinguished
between time and space arguments. This problem could be solved using very sophisticated ar-
guments, but the theory was still unsatisfactory due to another recurrent problem in quantum
field theory: the divergent integrals.

The physics community at the time believed that the problems of infinities and covariance
were deeply connected. Oppenheimer stated from this point of view in 1948 Solvay conference
([34],page4):

“One needs a covariant way to identify these [divergent] term; and for that, not merely the
field equations themselves, but the whole method of approximation and solution must at all stages
preserve covariance.”

To get around the problem, Heisenberg proposed in the first half of the 1940s a completely
new setting [41, 42, 43]. Heisenberg’s approach was to avoid differential time evolution and in-
stead use an operator (S-matrix) that maps asymptotic states at t = −∞ to asymptotic states
at t = ∞. The idea behind the S-matrix program was to impose restrictions directly on the
S−matrix, avoiding, in this way, the need for a quantization procedure in the fields. Heisenberg
imposed unitarity SS∗ = 1 and Lorentz invariance UΛSU

−1
Λ = S for the S matrix, but that was

not enough to compute desired quantities.

During the same period as Heisenberg developed his theory of the S− matrix, Feynman,
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Schwinger, Tomonaga, and Dyson insisted on the theory first introduced by Pauli and Heisen-
berg. The merit of the approach pursued by those authors was to fix the problem of infinities
without changing the theoretical basis presented in the work of Pauli and Heisenberg. Within
these frameworks, the S− matrix proposed by Heisenberg could be derived, and it did not need
to be imposed. This new approach was also not completely satisfactory since it introduces too
much new structure to obtain the desired result.

The new procedure was based on the so-called interaction picture. The idea is to separate
the time evolution into an hamiltonian representing the interacting part HI and a free part H0

(usually thought of as the state of the free particles). In this context, the Schrödinger equation
was replaced by the Schwinger-Tomonaga equation.

i
δψ(σ)

δσ(x)
= HI(x)ψ(σ) (2.1)

where σ is a space-like cauchy surface containing the point x. The expression above is invari-
ant under Lorentz transformations, and the perturbative expansion can be found by integrating
the equation. The integration procedure automatically leads to the time-ordered product. In ad-
dition, the microcausality condition, also known as Einstein-Causality that is, [HI(x),HI(y)] = 0

for space-like points, was imposed to make sense of the integration in the perturbative series. By
doing so, one obtains the famous expression for the S matrix in terms of the Dyson series:

S(HI) =
n∑
i=1

(−i)n

n!

∫ ∞
−∞

dt1...

∫ ∞
−∞

dtnT (HI(t1)...HI(tn))

T (HI(t1)...HI(tn)) =
∑
π∈Sn

HI(tπ(1))...HI(tπ(n))θ(tπ(1) − tπ(2))...θ(tπ(n−1) − tπ(n)) (2.2)

To tackle the infinities appearing in the expressions, the idea was to introduce counter-terms:
a new set of (finite) parameters as mass and coupling constants together with (infinite) terms
that cancel the infinities coming from the integrals. This recipe was incredibly successful in
describing quantum electrodynamics, leading to the Nobel Prize for Feynman, Tomonaga, and
Schwinger in 1965.

In spite of the empirical success, that was not the last word regarding the perturbative theory
of quantum fields. One of the problems was the “dubious mathematical rigor of the renormal-
ization procedure”. The manipulation of infinities just as a usual number and the addition of
another infinity to cancel it to get a finite answer is not very reasonable. Another problem of
the theory was made explicit by R.Haag in 1955 [39]: The interaction picture used to derive the
formula does not exist.

The aforementioned facts brought renewed interest to Heisenberg’s S−matrix program. Dur-
ing the period that Dyson, Feynman, Tomonaga and Schwinger were working in their perturbative
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program, Stückelberg continued the Heisenberg philosophy of S−matrix. He added the causality
axiom and worked to construct a perturbative theory of the S−matrix. The biggest problem in
this approach was how to identify and eliminate acausal terms. Stückelberg published a solution
in 1948 [66]. The solution consisted in contracting field operators to obtain distributions in such
a way that only creation or annihilation operators act separately on the vacuum. Although
Stückelberg’s theory could have replaced Dyson, Feynman, Tomonaga and Schwinger approach,
it remained mostly unknown to the physical community at the time. According to A. Blum [9]
page 17, this can be explained because “From a calculational perspective, his formalism compared
unfavorably to the compact, user-friendly, Feynman rules popularized by Dyson. The conceptual
foundations of this earliest version of causal perturbation theory were also rather murky”.

In order to convince the physics community that his method was the best shot, Stückelberg
explored another type of divergence in the theory of Dyson, Feynman, Tomonaga and Schwinger
[74]. Instead of computing scattering states at t = −∞ and t = ∞, Stückelberg tried to com-
pute finite-time scatterings. He multiplied the interaction hamiltoninan by a function g(t) that
“switches on” the interaction at ti ̸= −∞ and turn it off at tf ̸= ∞. The result he obtained is a
new sort of divergence, called “boundary divergence”. To cure the theory, one needs to consider
only a class of functions that turns the interaction on and off smoothly. Stückelberg claimed
that these “smooth functions” contradicted the equations of motion and, therefore, this approach
should be discarded with his approach being adopted instead. Despite the fact that Stückel-
berg’s argument is right, his work remained unknown to the western community. However it was
appreciated in the Soviet Union by a very famous physicist Nicolay Bogouliubov.

In 1951 Bogoliubov published his first papers on the subject. He did not believe that the
smooth function that switched on the interaction was incompatible with the equations of motion.
He formulated an analog formula for the S− matrix depending on those functions S(g). He ended
up giving up the attempt to unite the formalism using Dyson series with the smooth functions
not because it was impossible to do it but because, diving deeper in the work of Stückelberg,
he understood causality was more fundamental than the equations of motion. The functions
g became more than a switch button and became a structural part of the theory. Using these
functions, Bogouliobov imposed causality directly on the S− matrix, recovering the original idea
of Stückelberg with more clarity and mathematical rigor. Bogouliobv imposed that given two
sets F,G and two smooth functions f, g with f(x) ̸= 0 if and only if x ∈ F and g(x) ̸= 0 if and
only if x ∈ G and all points in G are in the causal future of F . Then, we define the S-matrix of
g(x) as S(g) ≡ S(gHI) and it holds:

S(g1 + g2) = S(g2)S(g1) (2.3)

where the expression of S is given by 2.2. This formulation is the one still used today. The
importance of the formulation above is that using only Lorentz invariance, unitarity, and the
causality condition, one can reconstruct the Dyson series inductively using it (see [9] page 24 for
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details).

Once the problem with causality was solved, the problems with infinity remained to be clar-
ified. In order to fully understand the problem, a new mathematical language needed to be
adopted.

Fortunately for those developing the theory at the time, parallel to the development of causal
perturbation theory, the theory of distributions was also being developed. Roughly speaking,
the problem of infinities can be seen as ambiguities in the coinciding points of Bogouliubov’s
S- matrix construction, as pointed out by Stückelberg in 1951 [73]. That non-uniqueness is due
to the multiplication of singular distributions whose pointwise multiplication is not always well
defined (for example, the multiplication δ(x) · δ(x) is not well defined). The concept of distribu-
tions was so influential in the development of quantum field theory that even non-perturbative
approaches define fields as operator-valued distributions [76]. This feature was already present in
the work of Schwinger-Tomonaga, whose correction was done by subtracting infinite quantities.
Since Bogouliubov imposed causality as an axiom and not a consequence of construction, the
procedure of removing the singularities could be made more carefully. Hence, as mentioned on
[9] page 32: “Renormalization was now a mathematically recast as a problem of determining the
extension of this [time-order] product to the full space of test functions,i.e., to switching functions
which are nonzero at coincident space-time points”.

The problem now was the non-uniqueness of the extension. After all, if one obtains more
than one result for something that can be measured in the laboratory, how can one distinguish
between what is right and what is wrong? The problem was solved by Stückelbert and Peter-
mann in 1953 with the introduction of the renormalization group [58]. They showed that the
ambiguities correspond to different but equivalent definitions of the expansion parameter and
Bogouliubov showed in 1957 that the ambiguities are exactly the ones found in the “usual per-
turbative approach”.

Although the work of Bogouliobov and Stückelbert was much more careful mathematically
speaking than the ones of Feynman, for example, they did not achieve the necessary high stan-
dard of mathematical rigor. It was only in 1973, with the seminal work of Epstein and Glaser
[29], that causal perturbation theory was made mathematically clean.

After the work of Epstein and Glaser, other approaches and new refinements were made with-
out losing the main idea of using causality to inductively derive the expansion of the S- matrix.
One of the approaches, which will be worked out throughout the next chapters, is connecting
algebraic quantum field theory and perturbative causality in what is called perturbative al-
gebraic quantum field theory.

This new approach was developed in the beginning of the XXI century mostly by Romeo
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Brunetti, Chris Fewster, Klaus Fredenhagen, Stefan Hollands, Benard Kay and Reiner Verch
([34]page 19). The idea was to use the existing formalism of quantum field theory in curved
space-times as the starting point to construct perturbative schemes. More than “rediscovering”
known results in the perturbative approach, the results obtained through this new formalism are
often the starting point to (attempt to) construct non-perturbative quantum field theories [15]
as well as perturbative models in curved space-times [13, 65].

We hope that with this small historical introduction we are able to convince the reader that
perturbation theory is not as simple as it looks like, that it took many years for some of the
most famous physicists to develop it and that there still is much work to be done regarding it.
Although we have explained how one can deal with ultraviolet-divergencies, that is, divergences
appearing when the momentum goes to infinity, there are other problems with the perturbative
approach that were not mentioned here, mostly because they do not drive as much attention (yet
they should!). As an example, we would like to mention only two: the first one is the infrared
divergence, related to the adiabatic limit g → 1 (i.e. the interaction is non-longer local). Not
much has been done to solve that problem, but as a counterexample, we cite the work of Duch
[23] and references therein. Another type of infinity that plagued the perturbative expansion
is regarding the convergence of the series as a whole. That problem was already mentioned by
Dyson in 1952 [28]. To the best of our knowledge, there is only one work that shows that the
series is divergent in a very limited scenario [49]. The general result is not known, but it is widely
believed that it diverges. A small discussion on that topic is given in [31]. Fortunately for us,
apparently the series is meaningful until the term of order 1

e , where e is the coupling constant
(for QED, for example, it means that we can compute ≈ 137 terms until the convergence starts
to be a problem, far beyond what is computable in practice).
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Chapter 3

Propagators and conventions

The first section is a quick review of the underling structure of the theory. It is most written
to fix the notation and conventions. We also decided to present the propagators in this section.
The motivation of each of them will be explained briefly and fully deduced in the right context.
For the physics student reading the section and thinking that it contradicts what has been said
in the introduction: That is the only section that has the style of just defining things. The later
chapters are more fluid.

3.1 Minkowski space-time

The physical space on which we will be working during the project, except when explicitly stated
the opposite, is the Minkowski space-time in d− dimensions denoted by M. A vector x ∈ M
is denoted by x := (x0, x⃗). The sign convention is g ≡ η = diag(1,−1,−1, ...,−1). The inner
product in Minkowski space-time is simply written as px ≡ pµx

µ = p0x0 − x⃗ · p⃗. We define the
forward and backward light cones as:

V+ := {x ∈ M|x2 > 0, x0 > 0} V− := {x ∈ M|x2 > 0, x0 < 0}. (3.1)

The sets V ± are the closures of the forward and backward light cones. The thin diagonal
is defined as

∆n := {(x1, ..., xn) ∈ Mn|x1 = x2 = ... = xn}. (3.2)

In the present work, we use natural units:

ℏ = c = 1. (3.3)

However, we introduce a parameter ℏ later in the text. This parameter is not to be understood
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as the Planck constant. Instead, we fix ℏ ∈ {0, 1}. The “quantum world” is obtained when ℏ = 1

and the “classical world” ℏ = 01.

3.2 Formal power series and notations

As usual in perturbative approaches, most of the measured quantities are written as formal power
series in some constant λ. For V a C− vector space and λ ∈ R, we define the set of formal
power series in λ as:

VJλK :=

{
V ≡

∞∑
n=0

λnVn ≡ (Vn)n∈N|Vn ∈ V

}
. (3.4)

In general, in the cases studied in quantum field theory, the convergence of the series is not
under control. A notation that will be widely used later in the text is:

eV⊗ :=1⊕
∞⊕
n=1

V ⊗n

n!

f(eλV⊗ ) :=f0(1) +

∞∑
n=1

λn

n!
fn(Vn), (3.5)

where fn : V⊗n → W a vector space is linear. We write the argument of fn as

fn(v1 ⊗ v2 ⊗ ...⊗ vn) ≡ fn(v1, ..., vn). (3.6)

We postpone the definition for another moment.

3.3 Multi-index notation

We will use a shorthand notation for higher derivatives. For a := (a1, ..., an) ∈ Nn and x :=

(x1, ..., xn) ∈ Rn we define:

|a| := a1 + ...+ an a! := a1!...an! xa := xa11 ...x
an
n ∂ax := ∂a1x1 ...∂

an
xn . (3.7)

In the case of Minkowski spacetime, the notation is analogous a := (aµ1 , ..., a
µ
n) ∈ (Nd)n:

1In the text we usually write ℏ → 0 or ℏ → 1 instead of ℏ = 0, 1. The idea is that we “take the
classical / quantum limit”, but since we have not specified the topology, the limit should be understood
as substituting ℏ = 0, 1
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|a| :=
n∑
j=1

d−1∑
µ=0

aµj a! :=
n∏
j=1

d−1∏
µ=0

aµj ! xa :=
n∏
j=1

d−1∏
µ=0

(xµj )
aµj

∂af(x) :=

 n∏
j=1

d−1∏
µ=0

(∂xµj )
aµj

 f(x). (3.8)

We also use a different notation for the d’Alembertian operator:

∂2 ≡ □ ≡ ∂µ∂
µ = ∂2t − (∇⃗)2. (3.9)

3.4 Distributions

Distributions are probably the first topic that is not properly studied during the bachelor’s de-
gree in physics, but it is widely used. We will follow mostly [2] (in Portuguese). A classical
reference to the subject is [64] and [47]. Although not very common as reference, there is also a
very pedagogical playlist on YouTube by Stanford University [69].

We start with the definition of the set of smooth functions f : Ω ⊆ M → R (that is,
continuous infinity and differentiable functions). The set is denoted by:

C := C∞(M,R) ≡ C∞(Rd,R). (3.10)

The support of a function is defined as the set:

supp(f) := {x ∈ Ω|f(x) ̸= 0}. (3.11)

We denote the set of all smooth functions with compact support by D(Ω). If f ∈ D(Ω), we
say that f is a test function.

As an example of test function f ∈ D′(R), consider:

f(x) :=

exp
(
− 1

(x+5)2
− 1

(x−5)2

)
|x| < 5

0 |x| ≥ 5
(3.12)

.We can plot this function:
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Figure 3.1: Test function: a smooth function with compact support

We say t : D(Ω) → R, t linear is a distribution if t is continuous (the notion of continuity
for linear functionals can be found in the Appendix). The set of all continuous linear functions
from D(Ω) → R is denoted by D′(Ω). The application of t ∈ D′(Ω) to a test function g ∈ D(Ω)

is denoted by:

t(g) ≡ ⟨t, g⟩ ≡ ⟨t(x), g(x)⟩x ≡
∫
Ω
ddnx t(x)g(x). (3.13)

When working with many variables, we use the notation:

dx1...dxn ≡ dXn. (3.14)

When the domain of integration is not written, it is implicit that the integral is over the
entire space. The support of a functional t ∈ D′(Ω) is defined as the smallest closed subset
K ⊆ Ω such that t|D(Ω\K) = 0. The support of t is also defined as supp(t). Usually we “abuse
the notation” and write t(x) = 0 to denote t|D(Ω) = 0.

Remark: The notation of an integral is only symbolic and must not always be understood as
an integration over a certain domain.

3.5 Examples of distributions and propagators

Some distributions that every physics student has used are δ(x) ∈ D′(R) and θ(x) ∈ D(R). They
are defined simply by:
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⟨δ(x), f(x)⟩ ≡
∫
dx δ(x)f(x) = f(0)

⟨θ(x), f(x)⟩ ≡
∫
dx θ(x)f(x) =

∫ ∞
0

dx f(x). (3.15)

Remark: we can write θ(x) as a function:

θ(x) :=

1 x ≥ 0

0 x < 0
(3.16)

.An important theorem states that if t ∈ D′(R) and supp(t) ⊆ {0d} where 0d = (0, 0, ..., 0) is
the null-vector in d dimensions. Then

t(x) =
∑
a

Ca∂
aδd(x). (3.17)

Where δd is the delta distribution in d− dimensions, Ca ∈ C and the sum is finite. [47]
page.46 Theorem 2.3.4

The next examples of distributions are known as propagators due to their physical inter-
pretation. The ones presented here are propagators for the free theory of neutral scalar field ϕ.
We will return to them in the near future for a proper introduction.

The retarded propagator ∆ret(x) ∈ D′(Rd) is defined by:

∆ret(x) :=
1

(2π)d

∫
ddp

e−ipx

p2 −m2 + ip00
(3.18)

where px = pµx
µ and ip00 ≡ limϵ→0+ ip

0ϵ. The retarded product appears naturally when
one tries to find a perturbative solution to an interacting field.

The Jordan-Pauli function or commutation function is defined by:

∆(x) := ∆ret(x)−∆ret(−x) = −i
(2π)d−1

∫
ddp sgn(p0)δ(p2 −m2)e−ipx. (3.19)

This propagator is mostly defined for convenience in practical calculations.

The Wightman two-point function also known as the positive part of i∆ is defined as
the propagator of the scalar field ⟨Ω|ϕ(x)ϕ(y)Ω⟩ (see chapter about the Fock space). After some
work, we can write it as follows:
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∆+(x) :=
1

(2π)d−1

∫
ddp θ(p0)δ(p2 −m2)e−ipx. (3.20)

The Wightman two-point function is important for quantizing the theory.

The last propagator that we define is the Feynman propagator:

∆F (x) := θ(x0)∆+(x) + θ(−x0)∆+(−x) = i

(2π)d

∫
ddp

eipx

p2 −m2 + i0
(3.21)

The Feynman propagator is important in the construction of the so-called S− matrix, prob-
ably the most important object in scattering theory.

We will briefly summarize some properties of the propagators (page 470 [24]). Almost all of
them are classical exercises in the quantum field theory course.

I)

(∂2 +m2)∆ret(x) = −δ(x) supp(∆ret) ⊆ V
+

II)

∆(x) = −∆(−x) (∂2 +m2)∆+(x) = 0

supp(∆+) = (V
+ ∪ V −) ∆(x)θ(x0) = ∆ret(x)

III)

−i(∆+(x)−∆+(−x)) = ∆(x) = ∆ret(x)−∆ret(−x)

(∂2 +m2)∆+(x) = 0

IV)

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x) = i∆ret(x) + ∆+(x)

∆F (x) = ∆F (−x)

V)

(∂2 +m2)∆F (x) = −iδ(x)
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VI)

ρd−2∆+
m
ρ
(ρx) = ∆+

m(x), ρ > 0.

In the last relation, the subscript m from ∆+
m indicates the mass of the field.

3.6 Technical remarks

An important feature to emphasize is that even if distributions are worked as if they were a usual
function, they are not. Hence, we point out some technical details that are going to be used. For
a shallow but didactical introduction to the theme, we recommend [69].

3.6.1 Derivative of distributions

The spirit of the derivative of a distribution is to imagine that the inner product with a test
function is indeed an integral and not just notation. If that were the case, we could calculate
the derivative of a distribution t ∈ D′(R) acting on g ∈ D(R) using integration by parts:

∫
dx (

d

dx
t(x))g(x) “ = ” t(x)g(x)

∣∣∣∣∞
−∞

−
∫
dx t(x)(

d

dx
g(x))

= −
∫
dx t(x)(

d

dx
g(x)). (3.22)

In the last step, we have used that g is compactly supported and therefore limx→±∞ g(x) = 0.

Unfortunately, the integral above is just a notation. Luckily, we define the derivative of a
distribution to do exactly what is mentioned above:

⟨t′, g⟩ ≡ ⟨ d
dx
t, g⟩ := −⟨t, d

dx
g⟩. (3.23)

A classical example is the derivative of θ(x):

⟨θ′(x), g(x)⟩ = −⟨θ(x), g′(x)⟩ = −
∫ ∞
0

dx g′(x)

= −(g(∞)− g(0)) = g(0) = ⟨δ, g⟩ (3.24)

and the derivative of δ(x):

⟨δ′, g⟩ = −⟨δ, g′⟩ = −g′(0) ⇒ δ′(x) ≡ −δ(x) d
dx
. (3.25)

More generally, we define the derivative of a distribution as:
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⟨∂at, g⟩ := (−1)|a|⟨t, ∂ag⟩. (3.26)

3.6.2 Fourier transform

We define the Fourier transformation of a distribution u ∈ D′(Mn), F(u)(k) ≡ ũ(k) analogously
to the derivative:

⟨F(u)(k), f(k)⟩k = ⟨u(x),F(f)(x)⟩ (3.27)

where

F(f)(x) =
1

(2π)
dn
2

∫
ddnk eikxf(k). (3.28)

Remark: Actually, the Fourier transformation is defined for a slightly “bigger” space, J (Mn),
the space of “rapidly decaying functions” or “Schwartz functions” see the Appendix and [2]

Remark 2: The relation (3.27) is just a fancy way of writing:

⟨F(u)(k), f(k)⟩k =
∫
ddnk

(∫
ddnx

(2π)
dn
2

eikxu(x)

)
f(k)

=

∫
ddnxu(x)

(∫
ddnk

(2π)
dn
2

eikxf(k)

)
= ⟨u(x),F(f)(x)⟩. (3.29)

As an example, we can calculate the Fourier transformation of the delta function in R ( [69]
Lectures 13 and 14):

⟨F(δ)(k), f(k)⟩k = ⟨δ(x),F(f)(x)⟩ =
∫

dk

(2π)
1
2

eik0f(k) = ⟨ 1√
2π
, f⟩. (3.30)

Hence:

F(δ)(k) =
1√
2π
. (3.31)

We also introduce the inverse Fourier transformation:

F−1(f)(k) :=
∫

ddnx

(2π)dn/2
e−ikxf(x) = f̃(−k). (3.32)

23



The proof of F−1F = FF−1 = 1 can be found in [2] Theorem 39.3 (The inverse Fourier
Transform) (In Portuguese).

With the definition of the inverse Fourier transform, we can obtain a very important result:

⟨F−1(1), f⟩ = ⟨1,F−1(f)⟩ =
√
2π⟨ 1√

2π
,F−1(f)⟩

=
√
2π⟨F(δ),F−1(f)⟩ =

√
2π⟨F−1(F(δ)), f⟩ =

√
2π⟨δ, f⟩

⇒
∫
dx

1√
2π
e−ikx =

∫
dx

1√
2π
eikx =

√
2πδ(k) ⇒

∫
dx eikx = 2πδ(k). (3.33)

The above result will be used a lot to compute scattering amplitudes.

3.6.3 Multiplication of distributions: The wave-front set

To introduce the problem, we try naively to calculate δ(x)θ(x) applied to g(x) ∈ D(R) (this
argument was constructed by prof. João Barata in a private conversation). To do it, we consider
the relation θ′(x) = δ(x) discussed above and θ2(x) = θ(x) (3.16). Hence, using the “product
rule”(Leibniz rule) for derivatives, we can write:

⟨ d
dx
θ2(x), g(x)⟩ = 2⟨δ(x)θ(x), g(x)⟩ !

= ⟨ d
dx
θ(x), g(x)⟩ = ⟨δ, g⟩

⇒ ⟨δ(x)θ(x), g(x)⟩ = 1

2
⟨δ, g⟩ = 1

2
g(0). (3.34)

So far so good. The problem is that we can repeat the same calculation by changing θ2(x)
to θn(x), n > 2 and the result would be:

⟨δ(x)θ(x), g(x)⟩ = 1

n
⟨δ, g⟩ = 1

n
g(0). (3.35)

That is absurd. What we learned from this example is that one has to be careful when mul-
tiplying distributions. To guide us in the search for a general rule for multiplying distributions,
we have to introduce the so-called Wave-front set. We will follow mostly [11] and[2]. A complete
exposition about the subject can be found in [47], Chapters 7 and 8.

Before attacking the problem, let us construct some intuition about the subject. If we want
to multiply u, v ∈ D′(R)) at a point x we want to mimic the point-wise distribution, that is, we
are not interested in what happens away from x and for that reason we multiply u, v by f ∈ D(R)
so that f((x − ϵ, x + ϵ)) = 1. Since the multiplication of Fourier transformation is given by its
convolution, if

∣∣∣(f̃u · f̃v
)
(k)
∣∣∣ = ∣∣∣∣∫ dq f̃u(q)f̃v(q − k)

∣∣∣∣ <∞ (3.36)
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exists, then we can compute uv(x) using the inverse Fourier transformation. In order for
the integral above to converge, we need that in the directions of growth of u(q), v(q − k) decays
faster in the same direction. If we want to impose derivatives, we need a stronger condition:

∣∣∣∣∫ dq f̃u(q)f̃v(q − k)

∣∣∣∣ < Cn
1 + |k|n

∀n ∈ N. (3.37)

That means we need to find constants Cn such that the product decays faster than any poly-
nomial in k. The reason for this statement is that a derivative is equivalent to a multiplication by
k. Hence, if we want the product to be well defined, we need that for every direction of growth
qnu(q) v(q − k) decays faster in the same direction for all n. To better visualize the discussion,
let us give an example with distributions given by smooth functions:

Let u ∈ D′(Rd) be a smooth function with compact support, that is, u ∈ D(Ω ⊆ Rd). In this
case, we can prove that

∀N ∈ N : |ũ(k)| < Cn(|1 + |k|)−N . (3.38)

And the reverse is also true! If ũ(k) < Cn(1 + |k|)−N , then u test function(Paley-Wiener-
Schwartz Theorem, page 181 [47]). The formal proof of it is very technical, but we can give
a “hand-waving argument” that shows why it must be the case. For simplicity we will restrict
ourselves to R but the generalization to Rd is immediate.

Take u ∈ D(R) with supp(u) = [a, a+ L], L > 0 and supx∈[a,a+L](u) = uM . Then:

|ũ(k)| = |
∫ a+L

a

dx√
2π
eikxu(x)| ≤

∫ a+L

a

dx√
2π

|eikxu(x)|

≤
∫ a+L

a

dx√
2π
uM =

uML√
2π

. (3.39)

Now we integrate by parts:

|ũ(k)| =

∣∣∣∣∣ 1√
2π

eikx

ik
u(x)

∣∣∣∣a+L
a

−
∫

dx√
2π

eikx

ik
u′(x)

∣∣∣∣∣
≤ 1

k

∫
dx√
2π

|eikxu′(x)| ≤
u′ML√
2πk

. (3.40)

In the first inequality we have used u(a) = u(a+ L) = 0 and supx∈[a,a+L] u
′(x) ≡ u′M . Note

that since |ũ(k)| ≤ uML√
2π

, we can write the above equation as:
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|ũ(k)| ≤ C1

1 + |k|
(3.41)

where C1 = max{u
′
ML√
2π
, uML√

2π
}. Repeating the procedure, we can derive:

|ũ(k)| < Cn
1

(1 + |k|)n
. (3.42)

□

Hence, as expected, we can multiply a distribution u by a smooth function g and it will once
again be a distribution because g decays faster than any polynomial. More than that, that new
distribution is given by:

⟨gu, f⟩ =
∫
dx (g(x)u(x)) f(x) =

∫
dxu(x)(g(x)f(x))

= ⟨u, gf⟩ ⇒ ⟨gu, f⟩ := ⟨u, gf⟩. (3.43)

The objective of the rest of the section is to characterize when two distributions obey the
decay property mentioned. We call the set of points where u ∈ D′(Rd) can be seen as a smooth
function with compact support regular support, denoted by reg supp(u). The complement of
this set is called the singular support and is denoted by sing supp(u). For example, in one
dimension:

sing supp(δ(x)) = {0} reg supp(δ(x)) = R \ {0}. (3.44)

The first case where the multiplication of the distributions u, v ∈ D′(Rd) is well defined is
when sing supp(u)∩ sing supp(v) = ∅. To prove this assertion, let u, v ∈ D′(Rd), sing supp(u) =

Ω ⊂ Rd. Since sing supp(u) ∩ sing supp(v) = ∅, Ω ⊆ reg supp(v), that is, v|Ω can be seen as
a compactly supported smooth function. Hence, the multiplication of distributions in Ω is well
defined and is given by:

⟨uv, f⟩ = ⟨u, vf⟩. (3.45)

The product above also respects the Leibniz rule (for simplicity we assume ∂a = ∂x1 , higher
derivatives require more complicated combinatorial but does not give deeper insights):
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⟨∂x1(uv), f⟩ = −⟨uv, ∂x1f⟩ = −⟨u, v∂x1f⟩ = −⟨u, ∂x1(vf)⟩+ ⟨u, (∂x1v)f⟩

= ⟨∂x1u, vf⟩+ ⟨u∂x1v, f⟩ = ⟨(∂x1u)v, f⟩+ ⟨u(∂x1v), f⟩. (3.46)

The final step to prove that the multiplication is well defined is to extend the domain from
Ω to Rd. That is simple since

Rd = sing supp(u) ∪ sing supp(v) ∪ (reg supp(u) ∩ reg supp(v)). (3.47)

In each of these domains, the new distribution is well defined.

The complication appears when sing supp(u) ∩ sing supp(v) ̸= ∅. In this case, we want to
mimic the behavior of a smooth function regarding its Fourier transformation. Unfortunately,
there is no direct path to follow as in the other cases. However, we can present the answer
(Theorem 8.2.10 p.267 [47]) and to those seeking a deeper understanding, we recommend Chapter
8 from [47].

We define the wave-front set of a distribution u as ([24] page 474):

WF(u) := {(x, k) ∈ Rd × Rd \ {0}|x ∈ sing supp(u),

ũf does not decay rapidly in direction k∀f ̸= 0}. (3.48)

Rapidly decaying is synonym that it decays faster than any polynomial (just like test func-
tions).

Given u, v ∈ D′(Rd) with:

(x, 0) /∈ WF(u)⊕WF(v)

:= {(x, k1 + k2)|(x, k1) ∈ WF(u) (x, k2) ∈ WF(v)} (3.49)

The uv exists and follows the Leibniz rule. The above theorem is called the “Hörmander cri-
terion” in the literature. The proof of this important theorem can be found in (Theorem 8.2.10
page.267 [47]). We also recommend [11] and [24] pages 473-477.

The theorem requires a rich structure to be proven, but can be easily applied. An important
remark: It may happen that two distributions do not fulfill the criterion but the product exists
and follows the Leibniz rule, but it is not usual. There are also other possible definitions for the
product of distributions [7], but they are not generally used in this context. Next, we calculate
some examples to show the power of the criterion just mentioned.
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3.6.4 Examples

Let us start with some simple examples of the distributions in R. We mostly follow [11].

δ(x− a):

The singular support of δ(x − a) is simply {a}. To calculate the directions in which δ decays
rapidly, we consider the following:

f̃ δ(k) =

∫
dx√
2π
eikxδ(x− a)f(x) =

1√
2π
f(a)eika. (3.50)

Note that f̃ δ is periodic in k, hence it does not decay fast in any direction. Therefore:

WF(δ(x− a)) = {(a, k)|k ∈ R \ {0}}. (3.51)

θ(x− a):

We repeat the procedure:

f̃ θ(k) =

∫
dx√
2π
eikxθ(x− a)f(x) =

∫ ∞
a

dx√
2π
eikxf(x). (3.52)

We claim that this function behaves as 1
k for k → ∞. To prove it, we take a test function

with f(a) = 1 and integrate by parts twice:

∫ ∞
a

dx√
2π

f(x)eikx =
f(a)√
2πik

eika −
∫ ∞
a

dx√
2π

f ′(x)
eikx

ik

=
f(a)√
2πik

eika − f ′(a)
eika

−
√
2πk2

+

∫ ∞
a

dx√
2π

f ′′(x)
eikx

ik2
√
2π
. (3.53)

Let supx∈supp(f) f ′(x) = f ′M and supx∈supp(f) f
′′(x) = f ′′M . From the above equation, we read:

|f̃ θ(k)− eika

ik
| ≤

f ′′M + f ′M
k2

. (3.54)

In order for this equation to be satisfied for large k,

f̃ θ(k) ∼ eika

ik
+O(k−2). (3.55)

And this completes the proof. Hence:
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WF(θ(x− a)) = {(a, k)|k ∈ R \ {0}}. (3.56)

1
x−i0 :

This one is a little more tricky than the others. We start by calculating the following relation
for f, g ∈ S(R):

F(fg)(k) =

∫
dx√
2π
f(x)g(x)eikx

=

∫
dx√
2π

(∫
dk′√
2π
f̃(k′)e−ik

′x

)(∫
dk′′√
2π
g̃(k′′)e−ik

′′x

)
eikx

=

(∫
dk′√
2π
f̃(k′)

)(∫
dk′′√
2π
g̃(k′′)

)∫
dx√
2π
ei(k−k

′−k′′)x

=

(∫
dk′√
2π
f̃(k′)e

)(∫
dk′′√
2π
g̃(k′′)

)
δ(k − k′ − k′′)

=

∫
dk′

2π
f̃(k′)g̃(k − k′). (3.57)

That is, the Fourier transformation of a product of functions is the convolution of the func-
tions (one can find a “less physical” deduction of this formula in [2] page 2156). the same formula
holds for distributions.

Now, we calculate the Fourier transformation of 1
x−i0 :

∫
dx√
2π

eikx

x− i0
= lim

ϵ→0+

∫
dx√
2π

eikx

x− iϵ
. (3.58)

The integrant above has a pole in x = iϵ. We will use this fact to calculate the integral using
the residue theorem. We have to divide our analyses into two cases. First, consider k > 0. The
contour we have to take is the following:
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Figure 3.2: The contour for k > 0. The blue dot represent the residue.

Then the integral is simply

∫
dx√
2π

eikx

x− iϵ
=

2πi√
2π
eikϵ. (3.59)

If k < 0, then the contour is:

Figure 3.3: The contour for k < 0.The blue dot represent the residue.

and the integral is simply
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−
∫

dx√
2π

eikx

x− iϵ
= 0. (3.60)

Hence, in the limit ϵ→ 0, we can write:

1̃

x− i0
=

√
2πiθ(k). (3.61)

Using the results discussed above:

˜
f

1

x− i0
(k) =

∫
dk′

2π

(√
2πiθ(k − k′)

)
f̃(k′) = i

∫ k

−∞

dk′√
2π
f̃(k′). (3.62)

To complete the proof, we use the fact that f is compactly supported, therefore:

∀n ∈ N |f̃(k)| < Cn
(1 + |k|)n

(3.63)

where Cn ∈ R. If k < 0 the integral decays faster than any polynomial, since

|i
∫ k

−∞

dk′√
2π
f̃(k′)| < Cn√

2π

∫ k

−∞
dk′

1

(1− k′)n

=
Cn

(n− 1)
√
2π

1

(1− k′)n−1

∣∣∣∣k
−∞

=
C̃n−1

(1 + |k|)n−1
. (3.64)

On the other hand, if k ≥ 0, the argument does not hold since:

∫ k

−∞
dk′

1

(1 + |k′|)n
=

∫ 0

−∞
dk′

1

(1− k′)n
+

∫ k

0
dk′

1

(1 + k′)n

=
1

n− 1

1

(1− k′)n−1

∣∣∣∣0
−∞

+
1

n− 1

−1

(1 + k′)n−1

∣∣∣∣k
0

=
2

n− 1
− 1

(n− 1)(1 + k)n−1
. (3.65)

From the above analyses, we conclude

WF(
1

x− i0
) = {(0, k)|k < 0}. (3.66)
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δ(x)δ(y)

As a last example, we consider some distributions defined in D′(R2). There is no big deal, but
this example is instructive because the notation may be tricky, so it is good to explicit the
difference. Consider δ(x), δ(y) ∈ D′(R2) given by:

⟨δ(x), f(x, y)⟩ = f(0, y) ⟨δ(y), f(x, y)⟩ = f(x, 0). (3.67)

Then, the product δ(x)δ(y) exists and respects the Leibniz rule. To prove it, we can use the
Hörmander criterion. To do it, consider:

WF(δ(x)) = {(0, y; k, 0)|y ∈ R, k ∈ R \ {0}}

WF(δ(y)) = {(x, 0; 0, q)|x ∈ R, q ∈ R \ {0}}

⇒WF(δ(x))⊕WF(δ(y)) = {(0, 0, k, q)|k, q ̸= 0}. (3.68)

Since we do not have a vector of the form (x, y, 0, 0) ∈ WF(δ(x)) ⊕WF(δ(y)), the product
δ(x)δ(y) exists. In that special case, it is easy to see that:

⟨δ(x)δ(y), f(x, y)⟩ = f(0, 0)

WF(δ(x)δ(y)) = {(0, 0, k, q)|k, q ̸= 0}. (3.69)

The example above is very simple, but the action of the product of two distributions u, v ∈
D′(Rd) in f ∈ D(Rd) is, in general, not that simple. The wave front set of the product is also
not always WF(u)⊕WF(v). Nevertheless, we can give general statements on the wave front set
of the product of distributions as long as they respect the Hörmander criterion:

WF(uv) ⊆ (WF(u) ∪WF(s) ∪ (WF(u)⊕WF(v))) . (3.70)

The proof of the statement can be found at [11], page11 and references therein.

Using the Hörmander criterion, we conclude that

•
(

1
x−iϵ

)n
follows the criterion, thus is well define and follows the Leibniz rule.

• δ2(x), δ(x)θ(x) does not follow the criterion and does not exist.

• δ(x− a)θ(x− b) respects the criterion as long as b ̸= a.

• θ2(x) does not respect the criterion, but it exists. The Leibniz rule does not apply for it.
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3.6.5 List of Wave-front sets

For the distributions with which we will work (the so-called “propagators”), it is not easy to find
the wave front set. For being a very technical calculation, we present the wave-front set of the
propagators and where one can find the proof of it.

Wightman two point function

WF(∆+(x)) = {(x, k)|x2 = 0, k2 = 0, x = λk, k0 > 0, λ ∈ Rd}. (3.71)

The “square” in the above definition is to be understood as the product in Minkowski space-
time x2 = xµx

µ, k2 = kµk
µ. The proof can be found on [63] page 106 (Theorem IX.48).

Retarded product

WF(∆ret(x)) =
(
{0} × (Rd \ {0})

)
∪ {(x, k)|x2 = 0, k2 = 0, x = λk, λ > 0}. (3.72)

The proof can be found on [24] page 477.

Feynman Propagator

WF(∆F (x)) =
(
{0} × (Rd \ {0})

)
∪ {(x, k)|x2 = 0, k2 = 0, x0 > 0, k0 ̸= 0x = λk, λ ∈ Rd}. (3.73)

The proof can be found on [24] page 477 or on [11] page 22, preposition 26.

Jordan-Pauli function

WF(∆(x)) = {(x, k)|x2 = 0, k2 = 0, k0 ̸= 0x = λk, λ ∈ Rd}. (3.74)

The proof can be found on [24] page 30.
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Chapter 4

Fock space: Just the basics

4.1 Introduction

To motivate the discussion of causal perturbative quantum field theory, we take a step back and
discuss the Fock space. The discussion is also fruitful for fixing notation. For now, we work only
with the scalar field, since it is the simplest choice. Once the concepts are clear, we introduce
fermionic fields and gauge fields.

4.2 The bosonic Fock space

The quantum mechanics of a fixed (and finite) number of particles is defined in a Hilbert space. In
quantum field theory, particles can be created or annihilated; therefore, the structure of Hilbert
space by itself is not enough. For that reason the concept of Fock space was first introduced in
the early 30’s [32]. Since the introduction here is very superficial,for mathematical details, we
recommend [4]. We will follow a mixture of [33, 67, 35].

We start our discussion with [24] in Appendix A5.

Given M∗ the momentum space belonging to the Minkowski space M equipped with the mass
shell and a Lorentz invariante measurement:

H+
m := {p = (p0, p⃗) ∈ M∗|p2 = m2, p0 > 0},m > 0

dd−1p⃗

2
√
(p⃗)2 +m2

≡ dd−1p⃗

2ωp⃗
≡ dµp. (4.1)

The Hilbert space of one particle system is defined as:

H := {ϕ : H+
m → C| ∥ϕ∥H <∞}, ∥ψ∥2H := ℏ

∫
dµp|ψ(p⃗)|2. (4.2)

34



The wave function ψ(p⃗) is related to the wave function ψ(x⃗) by Fourier transformation:

ψ(x⃗) =
1

(2π)
d−1
2

∫
dp⃗ eip⃗x⃗ψ(p⃗). (4.3)

The bosonic Fock space F can be defined as a direct sum of the bosonic Hilbert spaces of n
identical particles with mass m:

F :=

∞⊕
n=0

SH⊗n

H0 := C (4.4)

Here S means symmetrization:

Sψ1 ⊗ ψ2 ⊗ ...⊗ ψn =
∑
π∈Sn

1

n!
ψπ(1) ⊗ ...⊗ ψπ(n). (4.5)

We also introduce the vectors Φn ∈ F corresponding to a system with n particles:

Φn :=
√
n!Sψ1 ⊗ ψ2 ⊗ ...⊗ ψn. (4.6)

Remark:The factor
√
n! is to obtain the right normalization since ∥Sψ1 ⊗ ... ⊗ ψn∥2 = 1

n! .
We could have defined S preserving the norm, but we would lose S2 = S.

The inner product of Φ,Ψ ∈ F (in momentum space) is defined by:

⟨Φ,Ψ⟩ :=
∑
n

⟨Φn,Ψn⟩Hn . (4.7)

Where ⟨⟩Hn is the inner product in the subspace of n- relativistic particles given by:

⟨Φ,Ψ⟩Hn := ℏn
∫
dd−1p⃗1
2ωp⃗1

...
dd−1p⃗n
2ωp⃗n

Φn(p1, .., pn)Ψn(p⃗1, ..., p⃗n). (4.8)

With ωp⃗ :=
√
p2 +m2. Just as an example, let us compute ⟨Φ =

√
2S(ϕ1 ⊗ ϕ2)|Ψ =

√
2Sψ1 ⊗ ψ2⟩:
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〈
ϕ1 ⊗ ϕ2 + ϕ2 ⊗ ϕ1√

2

∣∣∣∣ψ1 ⊗ ψ2 + ψ2 ⊗ ψ1√
2

〉
=
1

2

(
⟨ϕ1|ψ1⟩H1⟨ϕ2|ψ2⟩H1 + ⟨ϕ1|ψ2⟩H1⟨ϕ2|ψ1⟩H1

+⟨ϕ2|ψ1⟩H1⟨ϕ1|ψ2⟩H1 + ⟨ϕ2|ψ2⟩H1⟨ϕ2|ψ2⟩H1

)
. (4.9)

We introduce the “creation operator” (in momentum space) a∗(ψf ) : H⊗n → H⊗n+1 that
act in ψ1 ⊗ ...ψn by creating a particle with wave function ψf :

a∗(ψf )ψ1 ⊗ ...ψn :=
√
n+ 1(ψf ⊗ ψ1 ⊗ ...ψn) ∈ H⊗n+1

a∗(ψf )ψ0 = ψf (4.10)

where ψ0 ∈ C ≡ H0. The factor
√
n+ 1 can be deduced imposing normalization on the state

a∗(ψf )ψ1 ⊗ ...ψn. We can deduce the adjoint operator a(ψf ) using:

⟨ψ1 ⊗ ...ψn−1|a(ψf )χ1 ⊗ ...χn⟩ = ⟨a∗(ψf )ψ1 ⊗ ...ψn−1|χ1 ⊗ ...χn⟩

=
√
n⟨ψf ⊗ ψ1 ⊗ ...ψn−1|χ1 ⊗ ...χn⟩ =

√
n⟨ψf |χ1⟩⟨ψ1 ⊗ ...ψn|χ2 ⊗ ...χn⟩. (4.11)

Comparing the results, we conclude:

a(ψf )χ1 ⊗ ...⊗ χn =
√
n⟨ψf |χ1⟩χ2 ⊗ ...⊗ χn ∈ H⊗n−1. (4.12)

A special case is a(ψf )ψ0, ψ0 ∈ C:

a(ψf )ψ0 := 0. (4.13)

Note that the definitions above imply:

[a(ψg), a
∗(ψf )]ψ1 ⊗ ...⊗ ψn := (a(ψg)a

∗(ψf )− a∗(ψf )a(ψg))ψ1 ⊗ ...⊗ ψn

=
√
n+ 1a(ψg)ψf ⊗ ψ1 ⊗ ...ψn −

√
n⟨ψg|ψ1⟩a∗(ψf )ψ2 ⊗ ...⊗ ψn

= (n+ 1)⟨ψg|ψf ⟩ψ1 ⊗ ...⊗ ψn − n⟨ψg|ψ1⟩ψf ⊗ ψ2...⊗ ψn. (4.14)

The operator a(ψf ) is called the annihilator operator. It has this name because, when
acting on a state of n− particles, it returns a state with n− 1 particles. Note, however, that this
is not the operator acting in the Fock space since the Fock space is constituted by symmetric
products. We can extend the definition to the Fock space by first symmetrizing ψ1 ⊗ ...ψn so
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that it becomes an element of the Fock space, applying a(ψf ) or a∗(ψf ) and then symmetrizing
the result once again. In mathematical terms:

a∗F(ψf ) := Sa∗(ψf )S (4.15)

aF(ψf ) := Sa(ψf )S. (4.16)

Although the formula above is well defined, there is some redundancy in it. For example, in
the definition of a∗F(ψf ) we consider all the permutations of ψ1 ⊗ ....⊗ ψn, add ψf⊗ to the first
entry, and then consider all the permutations once again. We can simply add ψf to the first
entry and then take the permutations. Hence, we conclude:

a∗F(ψf ) = Sa∗(ψf ). (4.17)

Regarding the operator aF(ψf ), we could do a similar analysis as in [33] or we can simply
take the adjoint:

aF(ψf ) = (a∗F(ψf ))
∗ = a(ψf )S. (4.18)

These operators are well defined in the Fock space of bosons. A similar construction can be
made for the fermionic Fock space [33]. A special case to look at is the action of aF(ψf ) in the
vacuum defined as:

Ω := (1, 0, ...). (4.19)

We expect aFΩ = 0. That is indeed the case since ∀n:

⟨ΩaF(ψf )|Φn⟩ = ⟨Ω|a∗F(ψf )Φn⟩ = ⟨1|0⟩H0 + λf ⟨0|S(f ⊗ Φn)⟩H⊗n+1 = 0. (4.20)

Using the properties above, we can calculate the commutators (we omit the symbol for the
tensor product in the following calculation):

[aF(ψg), a
∗
F(ψf )]ψ1...ψn =

(
aF(ψg)a

∗
F(ψf )− a∗F(ψf )aF(ψg)

)
ψ1...ψn

= (a(ψg)SSa∗(ψf )−Sa∗(ψf )a(ψg)S)ψ1...ψn (4.21)

To make reading easier, we perform the calculation separately. In the first term, we use
S2 = S.
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a(ψg)Sa
∗(ψf )ψ1...ψn = a(ψg)S

√
n+ 1ψfψ1...ψn

=

√
n+ 1

(n+ 1)!
a(ψg)

∑
π∈Sn+1

ψπ(f)ψπ(1)...ψπ(n)

=
n+ 1

(n+ 1)!
⟨ψg|ψf ⟩

∑
π∈Sn

ψπ(1)...ψπ(n)

+
n+ 1

(n+ 1)!

∑
π∈Sn+1,i ̸=f

⟨ψg|ψπ(i)⟩ψπ(f)...ψ̂π(i)..ψπ(n). (4.22)

Where ψ̂π(i) means that the term is not part of the tensor product. In the above equation,
we divided the sum in two terms, one proportional to ⟨ψg|ψf ⟩ and the other excluding exactly
that product. The reason for doing it will become clear once we have calculated the next term.

Sa∗(ψf )a(ψg)Sψ1...ψm =
1

n!
Sa∗(ψf )a(ψg)

∑
π∈Sn

ψπ(1)...ψπ(n)

=

√
n

n!
Sa∗(ψf )

∑
π∈Sn

⟨ψg|ψπ(1)⟩ψπ(2)...ψπ(n)

=
n

n!
S
∑
π∈Sn

⟨ψg|ψπ(1)⟩ψfψπ(2)...ψπ(n)

=
n(n− 1)!

n!n!

∑
π∈Sn+1,i ̸=f

⟨ψg|ψπ(i)⟩ψπ(f)...ψ̂π(i)..ψπ(n). (4.23)

The last factorial term is far from obvious and deserves a better explanation. For that,
consider a fix term π(1) from the combination π ∈ Sn. We want to calculate
S
∑

π∈Sn−1⟨ψg|ψπ(1)⟩ψf ...ψπ(n). Note that since it is a finite sum and ψπ(1) is fixed, we can write:

S
∑

π∈Sn−1

⟨ψg|ψπ(1)⟩ψf ...ψπ(n)

= ⟨ψg|ψπ(1)⟩
∑

π∈Sn−1

Sψf ...ψπ(n)

=
(n− 1)!

n!
⟨ψg|ψπ(1)⟩

∑
π∈Sn

ψπ(f)...ψπ(n). (4.24)

A quick explanation of the combinatorial factor: The n! term in the denominator is due to
the definition of S. The (n − 1)! in the numerator is because S acts on (n − 1)! terms in the
sum over π ∈ Sn−1 and the action of S is the same in all those terms.

Combining the results above, we conclude:
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[aF(ψg), a
∗
F(ψf )]ψ1...ψn

=
n+ 1

(n+ 1)!
⟨ψg|ψf ⟩

∑
π∈Sn

ψπ(1)...ψπ(n) +
n+ 1

(n+ 1)!

∑
π∈Sn+1,i ̸=f

⟨ψg|ψπ(i)⟩ψπ(f)...ψ̂π(i)..ψπ(n)

− n(n− 1)!

n!n!

∑
π∈Sn+1,i ̸=f

⟨ψg|ψπ(i)⟩ψπ(f)...ψ̂π(i)..ψπ(n)

=
n+ 1

(n+ 1)!
⟨ψg|ψf ⟩

∑
π∈Sn

ψπ(1)...ψπ(n) = ⟨ψg|ψf ⟩
∑
π∈Sn

1

n!
ψπ(1)...ψπ(n) = ⟨ψg|ψf ⟩Sψ1...ψn. (4.25)

Hence:

[aF(ψg), a
∗
F(ψf )] = ⟨ψg|ψf ⟩. (4.26)

Using similar arguments, we can also prove:

[a∗F(ψf ), a
∗
F(ψg)] = [aF(ψf ), aF(ψg)] = 0. (4.27)

In order to define a field, we “decompose” a∗F(ψ) and aF(ψ) in terms of operator-valued
functionals that express the linear map ψ → a∗F(ψ) as follows:

a∗(ψ) =

∫
dp⃗

2ωp
a∗(p⃗)ψ(p⃗). (4.28)

Using (4.26), one can show that:

[a∗(p⃗), a(q⃗)] = 2ℏωpδ(p⃗− q⃗). (4.29)

Last but not least, we introduce the time using the Schrödinger equation:

iℏ
d

dt
ψ = Hψ ⇒ ψ(t) = e−iHtψ. (4.30)

These functions are used as arguments for the creation and annihilation operators:

a∗F(ψ(−t)) =
∫

dp⃗

2ωp
ψ̂(−t, p⃗)a∗(p⃗) =

∫
dp⃗

2ωp
ψ(p⃗)eiωpta∗(p⃗)

=
1

(2π)
d−1
2

∫
dx⃗

∫
dp⃗

2ωp
ψ(x⃗)eiωpt−ip⃗x⃗a∗(p⃗). (4.31)

Remark about notation: Based on the equation above, one usually defines
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a∗(t, p⃗) := a∗(p⃗)eiωpt

a∗(x) ≡ a∗(t, x⃗) :=
1

(2π)
d−1
2

∫
dp⃗

2ωp
eipxa∗(p⃗)

∣∣∣∣
p0=ωp

. (4.32)

Such that

ψ(t, x⃗) =

∫
dx⃗ a∗(t, x⃗)ψ(x⃗). (4.33)

From the above definition, we also deduce easily

[a(t, x⃗), a∗(t′, y⃗)] =
1

(2π)d−1

∫
dp⃗dq⃗

4ωpωq
e−ipx+iqy[a(p⃗), a∗(q⃗)]

∣∣∣∣
p0=ωp,q0=ωq

=
1

(2π)d−1

∫
dp⃗

4ωpωq
e−ipx+iqy2ωpℏδ(p⃗− q⃗) = ℏ∆+(x− y). (4.34)

4.2.1 Normal ordering

The last step we need to introduce is what is called normal ordering or Wick product. First,
we define the field as:

ϕop(x) := a(x) + a∗(x) =
1

(2π)
d−1
2

∫
dp⃗

2ωp
a∗(p⃗)eipx + a(p⃗)e−ipx

∣∣∣∣
p0=ωp

. (4.35)

The sup-script “op” is to distinguish the field as an operator (valued-distribution) and the field
as a distribution (will be introduced later). For now on, we use the notation x = (t, x⃗) ≡ (x0, x⃗)

and px ≡ pµx
µ.

The normal ordering is basically “ordering the creation and annihilation operators such that
the annihilation operators are on the left and the creation operators are on the right”. A formal
definition can be written as [24]:

: ϕop(x1)...ϕ
op(xn) ::=

∑
J⊂{1,...,n}

∏
j∈J

a∗(xj)
∏
k∈Jc

a(xk). (4.36)

The formula above is well defined, but it is pedagogical to calculate some examples:
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: a∗(x)a∗(y) := a∗(x)a∗(y)

: a(x)a(y) := a(x)a(y)

: a(x)a∗(y) := a∗(x)a(y)

: a∗(x)a(y)a∗(w)a∗(z) := a∗(x)a∗(w)a(y)a(z). (4.37)

We also define the product of normal ordering product following common sense:

: (: ϕop(x1)...ϕ
op(xn) :)(: ϕ

op(y1)...ϕ
op(ym) :) ::=: ϕop(x1)...ϕ

op(xn)ϕ
op(x1)...ϕ

op(xn) : . (4.38)

The main reason to introduce the normal ordering is to avoid pathological product of fields
such as:

⟨Ω|(ϕop(x))2Ω⟩ = ⟨Ω|(a∗(x)a∗(x) + a(x)a(x) + a∗(x)a(x) + a∗(x)a(x))Ω⟩

= ⟨Ω|a∗(x)a(x)Ω⟩ = ⟨Ω|[a∗(x)a(x)]Ω⟩ = ℏ∆+(0) = ∞. (4.39)

In the above equation, we used a∗aΩ = 0. On the other hand, using the last line of (4.37):

⟨Ω| : (ϕop(x))2 : Ω⟩ = 0. (4.40)

Thus, the expectation values of the physical quantities are described by the normal ordering
of those quantities and not the usual product.
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Chapter 5

Classical fields

5.1 Introduction

Now we turn our attention to the formalism we will use for the rest of the work. The idea
is that the fields in the Fock space are operators that when computed in some state return a
distribution. We want to construct our formalism independent of the state, so we introduce the
field as a functional: an object that receives a function as an argument and returns a number
(in general a complex number, for the real scalar field a real number). The main difference from
this formalism to the usual one (just discussed above) is that the field is not an operator and
does not respect any kind of “field equation” in general. The goal is to make the construction
precise and self-consistent. We will follow the first chapter of [24].

5.2 Basic structure

For our proposes we define the fields as functionals acting on the configuration space with image
on R or C. The configuration space, unless explicitly stated otherwise, is the set of smooth
functions on Minkowski space-time in d dimensions, i.e., C∞(M) ≡ C. A scalar field is defined
as

ϕ(x) :

C → R

h 7→ h(x)
(5.1)

.We can then build the derivative of fields in the same way:

∂aϕ(x) :

C → R

h 7→ ∂ah(x)
(5.2)

.Where a is an abbreviation for a multi-index. We denote the set of polynomials formed
by ∂aϕ by P.
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5.2.1 The space of fields F

We define the space of fields as the set of all functions F ≡ F (ϕ) of the following form:

F = f0 +

N∑
n=1

∫
dx1 · · · dxn fn(x1, · · · , xn)ϕ(x1) · · ·ϕ(xn) (5.3)

where N <∞ and fn(x1, · · · , xn) is a C-valued distribution (i.e.,
fn ∈ D′(Md,C)) that is

(i) symmetric in its arguments: fn(xπ(1), · · · , xπ(n)) = fn(x1, · · · , xn) for all permutations
π ∈ Sn

(ii) whose wave front set satisfies the following property:

WF (fn) ⊆
{
(x1, · · · , xn, k1, · · · , kn)|(k1, · · · , kn) /∈ V

×n
+ ∪ V ×n−

}
.

Where V+,− is the forward/backyard light cone.

Figure 5.1: The red arrows indicate the allowed directions of singularity propagation

The set V ± is simply the closure of V±. The first property is imposed by simplicity and
the second one is a (very important) technicality needed to construct a consistent theory. We
will not explore many of these technicalities, but we strongly recommend the discussion of [24].
A crucial remark is that since fn has compact support, we do not have to impose any decay
properties on h ∈ C.

43



5.2.2 The set of local fields

We define the set of local fields as a subset of the set of fields formed by a linear combination
of fields of the form (5.3). More explicitly:

Floc :=

{
K∑
i=1

∫
dxAi(x)gi(x)

∣∣∣∣Ai ∈ P, gi ∈ D(M),K <∞

}
. (5.4)

Most of the development done in perturbative quantum field theory is done in the set of local
fields.

5.2.3 Derivative of functionals

The next tool we introduce is the (functional) derivative denoted by δ
δϕ(x) . Given a field F ∈ F ,

F = f0 +
N∑
n=1

∫
dx1 · · · dxn fn(x1, · · · , xn)ϕ(x1) · · ·ϕ(xn),

then its derivative with respect to the field ϕ is given by:

δkF

δϕ(y1) · · · δϕ(yk)

:=
N∑
n=k

n!

(n− k)!

∫
dx1 · · · dxn−kϕ(x1) · · ·ϕ(xn−k)fn(y1, · · · , yk, x1, · · · , xn−k) (5.5)

Although not very illustrative at first, the formula is quite simple in practice. All you have
to do is make the substitution

∫
dx f(x)

δϕ(x)

δϕ(y)
=

∫
dx f(x)δ(x− y) = f(y). (5.6)

If we have more than one field:

δ

δϕ(y)

∫
dx1dx2 f(x1, x2)ϕ(x1)ϕ(x2)

=

∫
dx1dx2 f(x1, x2)

(
δϕ(x1)

δϕ(y)
ϕ(x2) + ϕ(x1)

δϕ(x2)

δϕ(y)

)
=

∫
dx1 f(x1, y)ϕ(x1) +

∫
dx2 f(y, x2)ϕ(x2) = 2

∫
dxf(x, y)ϕ(x). (5.7)

In the last step, we used the symmetry of f . Using the properties above, we can also write:
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∫
dx g(x)

δF

δϕ(x)
(h) =

d

dϵ

∣∣∣∣
ϵ=0

F (h+ ϵg). (5.8)

We could check the formula above explicitly, but it is more instructive to calculate an
example since it generalizes trivially. Let us take as an example the field discussed above
F =

∫
dx1dx2 f(x1, x2)ϕ(x1)ϕ(x2). On the right-hand side of (5.8) we have:

∫
dx g(x)

δF

δϕ(x)
(h) =

∫
dxg(x)

(
2

∫
dy f(x, y)ϕ(y)

)
(h)

=

∫
dxdy 2g(x)h(y)f(x, y). (5.9)

On the other hand,

d

dϵ
F (h+ ϵg) =

∫
dx1dx2f(x1, x2)

d

dϵ

∣∣∣∣
ϵ=0

(h(x1) + ϵg(x1))(h(x2) + ϵg(x2))

=

∫
dx1dx2(g(x1)h(x2) + g(x2)h(x1))f(x1, x2) =

∫
dx1dx2 2h(x1)g(x2)f(x1, x2) (5.10)

and these prove the assertion. Using these properties, we can also prove the Leibniz rule:

δ(F ·G)
δϕ(x)

=
δF

δϕ(x)
·G+ F · δG

δϕ(x)
∀F,G ∈ F . (5.11)

That is a direct consequence of the properties of the derivative:

d

dϵ
(F ·G)(h+ ϵg) =

d

dϵ
(F (h+ ϵg)G(h+ ϵh))

=
dF (h+ ϵg)

dϵ
G(h+ ϵ) + F (h+ gϵ)

dG(h+ ϵg)

dϵ

=

∫
dx g(x)

(
δF

δϕ(x)
(h)G(h) + F (h)

δG

δϕ(x)
(h)

)
. (5.12)

If F is not only a function of the field but of ∂aϕ, then we can compute the derivative of F
using integration by parts:

F =

∫
dx f(x)∂aϕ(x) = (−1)|a|

∫
dx (∂af(x))ϕ(x) ⇒ δF

δϕ(y)
= (−1)|a|∂af(y). (5.13)

A detail that we will not explore in this work but write just for completeness, we define the
support of a functional using its derivative:
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suppF := supp
δF

δϕ(·)
≡
⋃
h∈C

supp
δF

δϕ(·)
(h). (5.14)

5.2.4 Classical product

From the above discussion, one can easily check that both F and Floc form a vector space.
Since we do not introduce a proper topology in these spaces, convergence is understood in the
pointwise sense: For F, Fn ∈ F , we say Fn → F if and only if

lim
n→∞

Fn(h) = F (h), ∀h ∈ C. (5.15)

The product of fields is also understood as a pointwise product:

F ·G ≡ FG : h 7→ F (h)G(h). (5.16)

We also introduce a conjugation F 7→ F ∗:

F ∗ :=
∑
n

⟨fn, ϕ⊗n⟩ ≡
∑
n

∫
dx1 · · · dxn ϕ(x1) · · ·ϕ(xn)fn(x1, · · · , xn). (5.17)

where f denotes the complex conjugation of f . And the parity transformation:

α(F ) :=
∑
n

∫
dx1...dxnα(ϕ(x1))...α(ϕ(xn))fn(x1, ..., xn)

α(ϕ(x1)) := −ϕ(x1). (5.18)

Technical note

To prove that the classical product is well defined, that is, · : F ×F → F , we need to prove that
the defining conditions (5.2.1) are satisfied. The symmetry is immediate from the definition. For
F =

∫
dXn f(x1, ..., xn)ϕ(x1)...ϕ(xn) and G =

∫
dYm g(y1, ..., ym)ϕ(y1)...ϕ(ym):

FG(h) =

∫
dXndYmf(x1, ..., xn)g(y1, ...ym)h(x1)...h(xn)h(y1)...h(ym). (5.19)

The wave front set condition is also immediate. To simplify the notation, suppose that
F =

∫
dx f(x)ϕ(x) and G =

∫
dy g(y)ϕ(y). The generalization to fields with higher powers is

immediate:
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WF(f(x)⊗ g(y))

= {(x, y, kx, ky)|x ∈ sing supp(f), y ∈ sing supp(g), k2x < 0, k2y < 0}. (5.20)

(Note that we have a tensor product of distributions, i.e. f ⊗ g ∈ D′(M2). That is different
for the product of fg ∈ D′(M). The same argument holds for f(x1, ..., xn)

5.2.5 Classical theory

Now that the technical structure has been introduced, we can start discussing physics. We start
with the field equation for the free field:

S0 :=

∫
dx

1

2

(
∂µϕ∂

µϕ−m2ϕ2
)
≡
∫
dxL0(x). (5.21)

Note that S0 /∈ F . Even though it seems counterintuitive at first, that is not a problem since
we normally work with the derivative of the free action

δS0
δϕ(x)

= −
(
∂2 +m2

)
ϕ(x)

Remark: we denote ∂µ∂µ ≡ ∂2 ≡ □.

5.2.6 Generalized lagrangian

We define the generalized Lagrangian as the interacting part of the action but, differently from
the free action, the interacting lagrangian is local. This means, it is defined through

L : D(M) → Floc. (5.22)

with the properties:

suppL(f) ⊆ supp f, ∀f ∈ D(M), L(0) = 0

L(f + g + h) = L(f + g)− L(g) + L(g + h) if supp(f) ∩ supp(h) = ∅. (5.23)

Note that the property above basically states that we can factorize the Lagrangian if its
arguments do not overlap. The idea becomes clear if we set g(x) = 0:

L(f + h) = L(f) + L(h). (5.24)

We can give an explicit example. Consider L(ϕ) =
∫
dx g(x)ϕn(x),then:
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L(f + h) =

∫
supp(f)

g(x)(f(x) + h(x))n +

∫
supp(h)

g(x)(f(x) + h(x))n

=

∫
supp(f)

g(x)(f(x))n +

∫
supp(h)

g(x)(h(x))n = L(f) + L(h). (5.25)

The interacting Lagrangian is local, therefore we do not have problems with convergence in
the IR1, since for large distances, all elements of D(M) are 0.

We are also able to define equivalence relations between different Lagrangians. L1 =
∫
dx f(x)L1(x)

and L2 =
∫
dx f(x)L2(x) are called equivalent if and only if

suppx

(
δL1

δϕ(x)
(f)− δL2

δϕ(x)
(f)

)
≡ supp(L1(f)− L2(f)) ⊆

d−1⋃
µ=0

supp ∂µf, ∀f

⇐⇒ L1 − L2 = c+ ∂µA
µ. (5.26)

The free action of a real scalar field is then the equivalence class of a generalized Lagrangian
L0(f) :=

1
2

∫
dxL0(x)f(x). Last but not least, we define the action of the interaction S ∈ Lloc:

S =

∫
dxLint(x); Lint(x) = −κg(x)Lint(x); (5.27)

The field equation is:

δ(S + S0)

δϕ(x)
= 0; (5.28)

If S depends only on ϕ and ∂µϕ, we recover the Euler-Lagrange equation:

∂(L+ L0)

∂ϕ
= ∂µ

∂(L+ L0)

∂(∂µϕ)
; (5.29)

The space of smooth functions that solve the equation above is denoted by:

CS+S0 :=

{
h ∈ C

∣∣∣∣δ(S0 + S)

δϕ(x)
(h) = 0 ∀x ∈ M

}
. (5.30)

The fields that solve the equation of motion are denoted by FS := F |CS0+S
and are called the

“on-shell fields”. Fields that are not restricted to this domain are called off-shell fields.
1Convergence in the infrared is to be understood as convergence for large space-time arguments.
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5.2.7 Poison algebra of the free theory

The main question of this section can be expressed as follows: we want to construct the poi-
son algebra of the classical theory without mentioning the Hamiltonian and use the fact that
our interaction is limited to a specific spacetime region. Such a construction has already been
developed by Pierls in the early fifth’s in [56]. The poison bracket of F,G ∈ F is simply given
by:

{F,G} :=

∫
dxdy

δF

δϕ(x)
(∆ret(x− y)−∆ret(y − x))

δG

δϕ(y)

≡
∫
dxdy

δF

δϕ(x)
∆(x− y)

δG

δϕ(y)
, ∆(x− y) = ∆ret(x− y)−∆ret(y − x). (5.31)

∆(x) is called the commutator function.

We can find a motivation for this definition in chapter 2 from [14]. The idea is simple: we
start with an action S restricted to [t1, t2] ×K, K compact, and ϕ ∈ CS . Then, we consider a
new action given by S + λG and suppose that there is a function rλG that maps solutions of S
to solutions of S + λG such that the solutions coincide for t < t1, before the interaction takes
place. Similarly,we suppose the existence of another function aλF that maps solutions of S to
solutions of S + λF that coincide for t > t2, after the interaction happened. We now calculate
how F (ϕ) behaves when we change ϕ by rλG(ϕ) and how G(ϕ) changes when we change ϕ by
aλF (ϕ) in the first order of λ:

DGF (ϕ) :=
d

dλ

∣∣∣∣
λ=0

F (rλG(ϕ))

D

FG(ϕ) :=
d

dλ

∣∣∣∣
λ=0

G(aλF (ϕ)). (5.32)

Then the Pierls bracket is simply the difference of the terms:

{F,G} := DGF (ϕ)−

D

FG(ϕ). (5.33)

Physically, we are comparing small deviations for the trajectory for a particle that comes
from t = −∞ and passes through a region in which there is an interaction S + λG with the
trajectories of a particle that comes from t = ∞ and passes through a region with interaction
S + λF . Hopefully, the concept will become clearer when we introduce the retarded expansion
of fields.

Another possible explanation is that we are following the process in reverse: we already
know the answer in the quantum case and are trying to recover the classical structure from it.
Although not entirely sufficient, this can serve as a motivation for defining the Poisson bracket
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in this way. Now that we have defined it, we need to prove its properties to justify the name.
The properties are[24]:

i) The pointwise product of distributions in (5.31) exists due to the wave front set properties
of F and G.Moreover, {F,G} again satisfies the wave front condition, hence {F,G} ∈ F .

ii) {F,G} is bilinear in F and G.

iii) {F,G} = −{G,F}.

iv) {F,GH} = {F,G}H + {F,H}G.

v) {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.

The properties ii, iii, iv immediately follow from the definition. To prove i, we need a gen-
eralization of the Hörmander criterion for bi-distributions. The proof of this assertion will be
omitted. The item v can be proved simply by applying the definition and using ∆(−x) = −∆(x).
The computation can be found at chapter 1 from [24].

Remark: Although not obvious at first sight, the Pierls bracket is a generalization of the usual
Poisson bracket of the classical theory. To prove the statement, we calculate {ϕ(y), ∂tϕ(x) ≡
∂x0ϕ(x)}.

{ϕ(y), ∂tϕ(x)} =

∫
dx′dy′

δϕ(y)

δϕ(y′)
∆(y′ − x′)

δ∂tϕ(x)

δϕ(x′)

=

∫
dx′dy′ δ(y − y′)∆(y′ − x′)∂tδ(x− x′)

= −∂x0∆(y − x) = ∂x0∆(x− y). (5.34)

In the above equation we have used: ∆(−z) = −∆(z). Now we use:

∆(x− y) =
−i

(2π)d−1

∫
dp sgn(p0)δ(p2 −m2)e−ip(x−y)

⇒ ∂x0∆(x− y) =
1

(2π)d−1

∫
dp p0 sgn(p0)δ(p

2 −m2)e−ip(x−y) (5.35)

Net we perform the integration on p0. To do it, note that:

p0 sgn(p0) = |p0| δ(p2 −m2) = δ((p0)2 − ω2
p) =

δ(p0 − ωp)

2ωp
+
δ(p0 + ωp)

2ωp
. (5.36)

Thus,
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∫
dp p0 sgn(p0)δ(p

2 −m2)e−ipx

=

∫
dp⃗

2ωp

(
|ωp|e−i(x

0−y0)ωp+i(x⃗−y⃗)p⃗ + | − ωp|ei(x
0−y0)ωp+i(x⃗−y⃗)p⃗

)
=

∫
dp⃗ eip⃗(x⃗−y⃗) cos(ωp(x

0 − y0)). (5.37)

Hence, we obtained:

{ϕ(y), ∂tϕ(x)}
∣∣∣∣
y0=x0

=
1

(2π)d−1

∫
dp⃗ eip⃗(x⃗−y⃗) = δd−1(x⃗− y⃗). (5.38)

The formula above normally is the starting point to quantize the theory. Here we will keep
the tradition alive and quantize the theory in the next chapter.
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Chapter 6

Quantization

6.1 Introduction

The passage from the classical theory to the quantum theory is done by means of a quantization
procedure. The most popular ones in the physics literature are probably the canonical quanti-
zation and the path integral quantization. The last one is polemical in the area of mathematical
physics since it is not always a well-defined object (see, for example, [53] for a discussion on the
subject).

Nevertheless, the canonical quantization is also not the best option for our formalism. The
“problem” of canonical quantization is the promotion of fields to operators (there are other more
technical problems that can be pointed out, but are not of relevance here, see, for example,
[37]). In our formalism, the Fock space is constructed only in a later stage and therefore such a
promotion is also not desired. We want the fields to remain fields! The solution of our problem
is quantizing the theory using what is called “deformation quantization”. This scheme has its
roots in the work of von Neumann [54], but was developed formally only at the end of 1970s [6].
For a pedagogical review, we suggest [45, 40]. For (now not so) recent advances [22, 38, 78].

6.2 Deformation quantization

Just as the Pierls bracket is somehow a “generalization” of the usual Poisson bracket, the for-
malism used to quantized the theory is somehow a generalization of the usual commutators. It
consists of expanding the usual commutators (for example [q, p] = iℏ) in a power series in ℏ. To
do it, we introduce a “star product” ⋆ℏ : F × F → FJℏK that satisfies the following conditions:

a) bilinar in its arguments

b) associative
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c) F ⋆ℏ G→ F ·G as ℏ → 0

d) F⋆ℏG−G⋆ℏF
iℏ ≡ [F,G]⋆ℏ

iℏ → {F,G} as ℏ → 0

In the context presented here, the discussion is still abstract, but it can be naturally in-
troduced in non-relativistic quantum mechanics. To do it, we strongly recommend [45, 40].
The main advantage of the deformation quantization method is that one can have complicated
classical structures and still be able to perform the quantization (which is particularly useful
in curved space times). Since we are working in Minkowski space-time with polynomial fields,
we have some freedom to choose the star product as a series in ℏ with more restrictive axioms.
Without further ado, we define the star product ⋆ℏ : F × F → F of two fields F,G ∈ F by:

F ⋆ℏ G :=

∞∑
n=0

ℏn

n!

∫
dx1 · · · dxndy1 · · · dyn

× δnF

δϕ(x1) · · · δϕ(xn)

n∏
l=1

Hm(xl − yl)
δnG

δϕ(y1) · · · δϕ(yn)
. (6.1)

The star product has to obey:

a) Bi-linearity in its arguments

b) Associativity

c) F ⋆ℏ G→ F ·G as ℏ → 0

d) 1
iℏ [F,G]⋆ :=

1
iℏ (F ⋆ℏ G−G ⋆ℏ F ) → {F,G} for ℏ → 0

e) (∂2 +m2)Hm(x− y) = 0 ⇐⇒ (∂2x +m2)(ϕ(x) ⋆ℏ ϕ(y))0 = 0 for ϕ(x) ∈ FCS ′

f) Lorentz invariance: Hm(Λz) = Hm(z)∀Λ ∈ L↑+

g) All powers of H l
m(y − x) must exist

h) Hm(x) = H(−x) which is equivalent to (F ⋆ℏ G)
∗ = G∗ ⋆ℏ F

∗

Remark: The series above does not have infinitely many terms, since the fields in which we
are working are polynomial. For non-polynomial fields one has to be more careful about the
series, but it is still possible to define a suitable star-product.

6.2.1 Wightman two-point function

As discussed in the articles on quantization deformation in quantum mechanics, we have several
distributions Hm that satisfy the axioms listed above. In the treatment of perturbative quantum
field theory in Minkowski spacetime, we will use the Wightman two-point function:
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Hm(z) ≡ ∆+
m(z) :=

1

(2π)d−1

∫
ddp θ(p0)δ(p2 −m2)e−ipz

=
1

(2π)d−1

∫
dd−1p⃗

e−iωpz0−ip⃗z⃗

2ωp
, ωp :=

√
(p⃗)2 +m2. (6.2)

Note that

∆+
m(z)−∆+

m(−z) ≡ i∆m(z) = i(∆ret(z)−∆ret(−z)) (6.3)

We will remove ℏ from ⋆ℏ to make the notation more transparent. The proof that the star
product as defined above exists and fulfills all the desired properties can be found in Chapter 2
of [24]. We restrict ourselves to some comments. First of all, we will explain why one chooses the
Wightman two point function instead of the commutator function of the classical product whose
choice would be more intuitive. Let us consider fields of the form F =

∫
dx g(x)ϕ2(x), n ≥ 2 and

naively try to calculate F (x) ⋆ F (y) using the commutator function instead of the Wightman
two-point function:

F (x) ⋆ F (y) =

∫
dxdy g(x)g(y)ϕ2(x)ϕ2(y) + 4ℏ

∫
dxdy g(x)g(y)ϕ(x)∆(x− y)ϕ(y)

+
4ℏ2

2

∫
dxdy g(x)g(y) (∆(x− y))2 . (6.4)

Note that we naturally have powers of ∆(x− y). An important question to be asked at this
stage is whether the product is well defined. This question can be answered by studying the
wave front set of the commutator function mentioned in the beginning of the dissertation:

WF(∆) = {(x, k)|x2 = k2 = 0, x = λk for some λ ∈ R, k0 ̸= 0}. (6.5)

The Hörmander criterion for the multiplication of distributions states that for t, s ∈ D′(Rd),
the multiplication st of distributions exists if the set

WF(t)⊕ WF(s) := {(x, k1 + k2)|(x, k1) ∈ WF(t), (x, k2) ∈ WF(s)}. (6.6)

does not contain an element of the form (x, 0). Hence, the product ∆(x)·∆(x) does not follow
the criterion and therefore is a bad choice for the propagator (as we have seen, the product does
not actually exist). Hence, if we use the commutator in place of the Wightman functions, we
would exclude fields of the form F =

∫
dx g(x)ϕn(x), n ≥ 2. To solve this problem, we consider

only the “positive frequencies” of the commutator function (the Wightman function).The wave
front set of this new distribution is:
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WF(∆+) = {(x, k)|x2 = k2 = 0, x = λk for some λ ∈ R, k0 > 0}. (6.7)

Hence, products of the form (∆+(x))n exists. If we restrict the space of fields and consider
only fields of the form F (ϕ) =

∫
dXnf(x1, ..., xn)ϕ(x1)...ϕ(xn), both definitions of the star prod-

uct work. More than that, they are, in fact, equivalent(more details can be found in [14] chapter
2 and references therein).

Note that the usual condition for canonical quantization is recovered in our formalism. Just
as in the classical case, consider F = ϕ(y) and G = ∂tϕ(x). We can calculate [F,G]⋆ given by:

[F,G]⋆ = ϕ(y) ⋆ ∂x0ϕ(x)− ∂x0ϕ(x) ⋆ ϕ(y). (6.8)

Using

ϕ(y) ⋆ ∂x0ϕ(x) = ϕ(y)∂x0ϕ(x) + ℏ
∫
dx′dy′

δϕ(y)

δϕ(y′)
∆+(y′ − x′)

δ∂x0ϕ(x)

δϕ(x′)

= ϕ(y)∂x0ϕ(x) + ℏ
∫
dx′dy′ δ(y − y′)∆+(y′ − x′)∂x0δ(x− x′)

= ϕ(y)∂x0ϕ(x)− ℏ∂x0∆+(y − x) (6.9)

and

∂x0ϕ(x) ⋆ ϕ(y) = ∂x0ϕ(x)ϕ(y) + ℏ
∫
dx′dy′

δ∂x0ϕ(x)

δϕ(x′)
∆+(x′ − y′)

δϕ(y)

δϕ(y′)

= ∂x0ϕ(x)ϕ(y) + ℏ
∫
dx′dy′ ∂x0δ(x− x′)∆+(x′ − y′)δ(y − y′)

= ∂x0ϕ(x)ϕ(y)− ℏ∂x0∆+(x− y) (6.10)

we obtain:

[F,G]⋆ = ℏ∂x0(∆+(x− y)−∆+(y − x)) = iℏ∂x0∆(x− y). (6.11)

In the above equation, we have used the III from (3.5). Hence:

[ϕ(y), ∂tϕ(x)]

∣∣∣∣
x0=y0

= iℏδd−1(y⃗ − x⃗). (6.12)

The usual canonical commutation relation.
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Remark:there are other quantization schemes that lead to interesting physics. We emphasize
the quantization done for treating thermal states [50] and the quantization procedure to work
with quantum field theory with curved background and/or external potential. [51, 12].

6.3 States

A good introduction to the formalism behind the idea of states we use here, called GNS construc-
tion, can be found (in Portuguese) at [5] (Representação de Álgebras C∗). The text presented
here was extracted (almost literally) from Chapter 2.5 [24].

Let us introduce some notation: We denote the space of fields that are polynomials in ℏ by
Fℏ, more precisely:

Fℏ :=

{
S∑
s=0

Fsℏs|Fs ∈ F , S <∞

}
. (6.13)

A state ω on the algebra A ≡ Aℏ := (Fℏ, ⋆) is a map:

ω :

A → C

F 7→ ω(F ) ≡ ω(F )ℏ
(6.14)

ω itself my be a polynomial in ℏ, i.e., ω =
∑N

n ωnℏN for some N <∞ and which:

• Linear: ω(F + αG) = ω(F ) + αω(G), ∀F,G ∈ A, α ∈ C,

• Real: ω(F ∗)ℏ = ω(F )ℏ, ∀F ∈ A, ∀ℏ > 0,

• Positive: ω(F ∗ ⋆ F )ℏ ≥ 0, ∀F ∈ A, ∀ℏ > 0,

• Normalized: ω(1) = 1, where 1 ∈ Fℏ is the functional 1(h) = 1∀h ∈ C

Note that

a) If F ∗ = F , ω(F ) ∈ R,

b) Linearity implies ω(F ) ≡ ω (
∑

r Frℏr) =
∑

r,s ωs(Fr)ℏr+s. and the sum is finite!

We can now define a vacuum state ω0 and a coherent state. Given F = f0 +
∑

n≥1⟨fn, ϕ⊗n⟩,
we define the vacuum state as:

ω0(F ) := f0. (6.15)

The natural next step is to justify the name “states” relating the concepts presented here to
the ones usually studied in quantum field theory in Fock space.

56



6.4 Bijection of on-shell quantized fields and normal

order products

The goal of this section is to connect the star quantization of the fields and the Fock space
representation of it. Before stating the general result, let us give an example of what we mean
by it. Consider the following products:

ϕ(x) ⋆ ϕ(y) = ϕ(x)ϕ(y) + ℏ∆+(x− y). (6.16)

and

: ϕop(x)ϕop(y) :=: (a∗(x) + a(x))(a∗(y) + a(y)) :

= a∗(x)a∗(y) + a∗(x)a(y) + a(x)a(y) + a∗(y)a(x). (6.17)

Using

[a∗(x), a(y)] = ℏ∆+(x− y) ⇒ a(y)a∗(x) = a∗(x)a(y) + ℏ∆+(x− y). (6.18)

We can write:

: ϕop(x)ϕop(y) := ϕop(x)ϕop(y) + ℏ∆+(x− y). (6.19)

Hence, at least in the simpler case, the operator formalism and the quantization using star
product are very similar. As one could already expect, it is not coincidence. The case we have
just presented is a special case from a more general theorem page 65 [24]:

Let ϕm(x) be the free, real scalar field (for a given mass m) on the Fock space F and let
F (m)
0,h := Fℏ|CS0

. Then the map

Φ: F (m)
0,h −→ Φ(F (m)

0,h ) ⊂ {linear operators on F}

is given by

F0 =
N∑
n=0

∫
dx1 . . . dxn ϕ0(x1) . . . ϕ0(xn)fn(x1, . . . , xn) (6.20)

Φ(F0) =
N∑
n=0

∫
dx1 . . . dxn : ϕop(x1) . . . ϕ

op(xn) : fn(x1, . . . , xn) (6.21)
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is an algebra isomorphism

F0 ⋆ G0 7−→ Φ(F0 ⋆ G0) = Φ(F0)Φ(G0) (6.22)

for the star product on the left and the operator product on the right, which respects the
∗-operation:

⟨ψ1,Φ(F
∗
0 )ψ2⟩F = ⟨Φ(F0)ψ1, ψ2⟩F, ∀F0 ∈ F (m)

0,h (6.23)

and for all ψ1, ψ2 in the domain of Φ(F0) or Φ(F ∗0 ), respectively. The same map Φ also gives
an algebra isomorphism

F0 ·G0 7−→ Φ(F0 ·G0) =: Φ(F0)Φ(G0) : . (6.24)

We are not going to write a formal proof; rather we will simply indicate how one can prove it.

We want to show that given F =
∫
dXl f̃(x1, ..., xl)ϕ(x1)...ϕ(xk) and

G =
∫
dYk g̃(y1, ..yk)ϕ(y1)....ϕ(yk), the bijection holds. The strategy is to write the star product

and compare with the expression of normal ordering. The star product is given by:

F ⋆ G =

min{l,k}∑
n=0

ℏn

n!

∫
dUndVn

δnF

δϕ(u1)...δϕ(un)

n∏
j=1

∆+(uj − vj)
δnG

δϕ(v1)...δϕ(vn)
. (6.25)

On the other hand, normal ordering can also be written as an exponential map via Wick’s
theorem [24] pg490:

: eiϕ
op(f) : = eiϕ

op(f)e
ℏ
2
∆+(f,f). (6.26)

Where:

: eiϕ
op(f) : := 1 +

∞∑
n=1

∫
dXn f(x1)...f(xn) : ϕ

op(x1)...ϕ
op(xn) :

∆+(f, g) :=

∫
dxdyf(x)∆+(x− y)g(y). (6.27)

From which we deduce

: eiϕ
op(f) :: eiϕ

op(g) : =: eiϕ
op(f+g) : e−ℏ∆

+(f,g). (6.28)
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Now we compute δl+k

δf(x1)...δf(xk)δg(y1)...δg(yl)

∣∣∣∣
f=g=0

from the expression above leading to:

:ϕop(x1)...ϕ
op(xk) : : ϕ

op(y1)...ϕ
op(yl) :

=

min{l,k}∑
n=0

ℏn

n!

∫
dUndVn :

(
: ϕop(x1)...ϕ

op(xn) :

δϕop(u1)...δϕop(un)

: ϕop(y1)...ϕ
op(yn) :

δϕop(v1)...δϕop(vn)

)
:
n∏
j=1

∆+(ul − vl). (6.29)

Since the multiplication by test functions f̃(x1, ..., xl) and g̃(y1, ..., yk) do not change the
results above, we conclude:

: F :: G :=

min{l,k}∑
n=0

ℏn

n!

∫
dUndVn : : δnF :

δϕop(u1)...δϕop(un)

n∏
j=1

∆+(ul − vl)
: δnG :

δϕop(v1)...δϕop(vn)

 : . (6.30)

The above formula is essentially the same as the star product. Since the classical product
ϕ(x)ϕ(y) agrees with : ϕop(x)ϕop(y) : we have indeed a bijection. Probably the best way to
understand the bijection is by using examples.

6.5 Some examples

6.5.1 Vacuum state

In the definition of star product we have defined the vacuum state as
ω0(f +

∑N
n=0

∫
dXnf(x1, ..., xn)ϕ(x1)...ϕ(xn)) = f . The definition agrees with the vacuum of

Fock space since:

⟨Ω|f +

N∑
n=0

∫
dXnf(x1, ..., xn) : ϕ

op(x1)...ϕ
op(xn) : Ω⟩ = f. (6.31)

6.5.2 Scattering of free theory

To motivate the discussion, consider the following problem: we have a particle described by
ψ(t, p⃗) and another described by ϕ(t′, q⃗). We want to study the amplitude of one given one, so
we can measure the other. For the free theory, it is simply given by ⟨ψ(t, x⃗), ϕ(t′, y⃗)⟩. In the
formalism of Fock space, we can translate it by writing:
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ψ(t, p⃗) = a∗F(ψ(−t, p⃗))Ω =

∫
dp⃗

2ωp
eiωptψ(p⃗)a∗(p⃗)Ω

ϕ(t′, q⃗) = a∗F(ψ(−t′, q⃗))Ω =

∫
dq⃗

2ωq
eiωqt′ϕ(q⃗)a∗(q⃗)Ω. (6.32)

Hence:

⟨ψ(t, x⃗), ϕ(t′, y⃗)⟩ =
∫

dp⃗dq⃗

4ωpωq
e−iωpt+iωqt′ψ(p⃗)ϕ(q⃗)⟨Ωa∗(p)|a∗(q)Ω⟩. (6.33)

The object in which we will be most interested while the studding scattering process is
the term T (p, q) := ⟨Ωa∗(p)|a∗(q)Ω⟩. For example, considering a process of 2 incoming and n

outgoing particles, the relation of the amplitude with the cross section is given by:

dσ =
(2π)2

4
√
(pq)2 −m4

δ

p+ q −
m∑
j=1

pj

 |T (p1, ..., pm; p, q)|2 dµp1 ...dµpn . (6.34)

for a deduction of the formula we [35] pg 76 or [16].

Hence, most of the energy devoted to this project is to show how to compute those amplitudes,
the famous “Feynman rules” and show it is as easy as to compute using other methods usually
thought in QFT courses.

We will construct the S− matrix in a latter chapter, for now we consider the simplest possible
problem: The “scattering” of 2 and 4 particles in the free theory. In the absence of interactions,
the matrix S− is trivial, i.e. S = 1.

2-particle “scattering” in free theory The amplitude of 1 incoming particle and 1 out-
going particle is given by:

⟨Ωa∗(p)|a∗(q)Ω⟩ (6.35)

First, let us calculate the amplitude using the formalism of the Fock space. To calculate it,
we first “take a∗F(p) to the other side”:

⟨Ωa∗(p)|a∗(q)Ω⟩ = ⟨Ω|a(p)a∗(q)Ω⟩. (6.36)

And use the commutation relation of a(p)a∗(q) to write
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a(p)a∗(q) = a∗(q)a(p) + [a(p), a∗(q)] = a∗(q)a(p) + 2ℏωpδ(p⃗− q⃗). (6.37)

Hence:

⟨Ωa∗(p)|a∗(q)Ω⟩ = ⟨Ω|a∗(q)a(p)Ω⟩︸ ︷︷ ︸
=0

+2ℏωpδ(p⃗− q⃗). (6.38)

To compare to our formalism we need to write a∗(p)Ω as a function of the fields in the
configuration space. To do it, let us compute ϕop(y)Ω

ϕop(x)Ω =
1

(2π)
d−1
2

∫
dp⃗

2ωp
(eipxa∗(p⃗) + e−ipxa(p⃗))Ω =

1

(2π)
d−1
2

∫
dp⃗

2ωp
eipxa∗(p⃗)Ω. (6.39)

Now all we have to do is invert the above equation to get a∗(p⃗)Ω. To do it, we do the inverse
Fourier transform:

1

(2π)
d−1
2

∫
dx⃗ eik⃗·x⃗ϕop(x)Ω =

1

(2π)d−1

∫
dx⃗dp⃗

2ωp
eiωpx0ei(k⃗−p⃗)·x⃗a∗(p⃗)Ω

=

∫
dp⃗

2ωp
eiωpx0δ(k⃗ − p⃗)a∗(p⃗)Ω =

eiωkx
0

2ωk
a∗(k⃗)Ω. (6.40)

Hence:

a∗(p⃗)Ω =
2ωp

eiωkx0

∫
dx⃗

(2π)
d−1
2

eip⃗x⃗ϕop(x)Ω ≡ 2ωp

(2π)
d−1
2

∫
dx⃗ e−ipxϕop(x)Ω

∣∣∣∣
p0=ωp

. (6.41)

Remark: even though the notation above suggested that the expression is dependent of time,
it actually is not. Essentially, what we are computing is the emission operator[67] page 77. in
the configuration space. The expression for the emission operator is:

ϕ(+)(x0, x⃗) =
1

(2π)
d−1
2

∫
dp⃗

2ωp
eiωpx0−ip⃗·x⃗a∗(p⃗). (6.42)

Note that the exponential containing x0 cancels. Nevertheless, it is worth it to keep the
exponential explicitly in the expressions. As we will see later, they act by canceling time factors
coming from the propagators.

Last but not least, we compute:
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T2 = ⟨Ωa∗(p⃗)|a∗(q⃗)Ω⟩ =〈
Ω

(
2ωp

(2π)
d−1
2

∫
dx⃗ e−ipx : ϕop(x) :

∣∣∣∣
p0=ωp

)∣∣∣∣ 2ωp

(2π)
d−1
2

∫
dy⃗ e−iqy : ϕop(x) : Ω

∣∣∣∣
q0=ωq

〉

=
4ωpωq
(2π)d−1

∫
dx⃗dy⃗ ⟨Ω|eipx−iqy : ϕop(x⃗) :: ϕop(y⃗) : Ω⟩. (6.43)

The translation to our formalism reads:

T (p, q) =
4ωpωq
(2π)d−1

∫
dx⃗dy⃗ ω0(ϕ(x) ⋆ ϕ(y))e

ipx−iqy
∣∣∣∣
p0=ωp,q0=ωq

. (6.44)

We can easily compute the star product:

ϕ(x) ⋆ ϕ(y) = ϕ(x)ϕ(y) + ℏ∆+(x− y) ⇒ ω0(ϕ(x) ⋆ ϕ(y))

= ℏ∆+(x− y) =
ℏ

(2π)d−1

∫
dµke

−ik(x−y)
∣∣∣∣
k0=ωk

. (6.45)

Now we need to work out the multiple integrals in the formula above. The strategy is to first
integrate in the x⃗ and y⃗ then k⃗:

4ωpωq
(2π)d−1

∫
dx⃗dy⃗ e−ipx+iqyω0(ϕ(x) ⋆ ϕ(y))

=
4ωpωqℏ

(2π)2(d−1)

∫
µkdx⃗dy⃗ e

ipx−iqye−ik(x−y)
∣∣∣∣
k0=ωk

=
2ωpωq
ωk

ℏ
(2π)2(d−1)

e−iωk(x
0−y0)+iωpx0−iωqy0

∫
dk⃗dx⃗dy⃗ e−i(p⃗−k⃗)x⃗ei(q⃗−k⃗)y⃗

=
2ωpωq
ωk

ℏ
(2π)2(d−1)

e−iωk(x
0−y0)+iωpx0−iωqy0

∫
dk⃗(2π)2(d−1)δ(p⃗− k⃗)δ(k⃗ − q⃗)

= 2ωpℏδ(p⃗− q⃗). (6.46)

In the above equation, we have used the fact that after the integration ωk = ωp = ωq =√
p⃗2 +m2. We can interpret the result above using Feynman diagrams:

Figure 6.1: The diagram represents a incoming free particle with momentum p and out-
going particle with momentum q. Since they do not interact, p = q

4 particle “scattering” in the free theory The only allowed process involving the
scattering of 4 particles in the free theory is 2 incoming particles and 2 outgoing particles. In
the formalism of Fock space, the amplitude is given by:
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T = ⟨Ωa∗(p1)a∗(p2)|a∗(p3)a∗(p4)Ω⟩. (6.47)

To calculate the above amplitude, we use a slightly different approach. Instead of working
with the Wick theorem, we commute the annihilation and creation operators. Explicitly:

a(p1) (a(p2)a
∗(p3)) a

∗(p4) = a(p1) (2ℏωp2δ(p⃗2 − p⃗3) + a∗(p3)a(p2)) a
∗(p4)

= 2ℏωp2δ(p⃗2 − p⃗3)a(p1)a
∗(p4) + a(p1)a

∗(p3) (2ℏωp2δ(p⃗2 − p⃗4) + a∗(p4)a(p1))

= 2ℏωp2δ(p⃗2 − p⃗3)(2ℏωp1δ(p⃗1 − p⃗4) + a∗(p4)a(p1))

+ (2ℏωp1δ(p⃗1 − p⃗3) + a∗(p3)a(p1)) (2ℏωp2δ(p⃗2 − p⃗4) + a∗(p4)a(p1)) . (6.48)

Applying the above operator in vacuum and using aΩ = 0 we obtain the following.

T = 4ℏ2ωp1ωp2δ(p⃗1 − p⃗3)δ(p⃗2 − p⃗4) + 4ℏ2ωp1ωp2δ(p⃗1 − p⃗4)δ(p⃗2 − p⃗3). (6.49)

To translate to our formalism,we repeat the same procedure of inverting the Fourier trans-
form: Thus:

T =

(
4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dX⃗4 e

i(p1x1+p2x2−p3x3−p4x4)

× ⟨Ω : ϕ(x1)ϕ(x2) : | : ϕ(x3)ϕ(x4) : Ω⟩

=

(
4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dX⃗4 e

i(p1x1+p2x2−p3x3−p4x4)ω0(ϕ(x1)ϕ(x2) ⋆ ϕ(x3)ϕ(x4)). (6.50)

Using the result:

ϕ(x1)ϕ(x2) ⋆ ϕ(x3)ϕ(x4) = ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

+ ℏ
∫
dY2

δϕ(x1)ϕ(x2)

δϕ(y1)
∆+(y1 − y2)

δϕ(x3)ϕ(x4)

δϕ(y2)

+
ℏ2

2

∫
dY4

δ2ϕ(x1)ϕ(x2)

δϕ(y1)δϕ(y2)
∆+(y1 − y3)∆

+(y2 − y4)
δ2ϕ(x3)ϕ(x4)

δϕ(y3)δϕ(y4)
. (6.51)

The only term that is important to us is the one involving the second derivative (the other
terms are proportional to the fields and, when computed in the vacuum, do not contribute):

∫
dY4

δ2ϕ(x1)ϕ(x2)

δϕ(y1)δϕ(y2)
∆+(y1 − y3)∆

+(y2 − y4)
δ2ϕ(x3)ϕ(x4)

δϕ(y3)δϕ(y4)

= 2(∆+(x1 − x3)∆
+(x2 − x4) + ∆+(x1 − x4)∆

+(x2 − x3)). (6.52)
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Hence:

ω0(ϕ(x1)ϕ(x2) ⋆ ϕ(x3)ϕ(x4))

= ℏ2(∆+(x1 − x3)∆
+(x2 − x4) + ∆+(x1 − x4)∆

+(x2 − x3)). (6.53)

Finally, we can compute the amplitude:

T =

(
4∏
i=1

2ωpi

(2π)
d−1
2

)
ℏ2

×
{∫

dX⃗4

(
∆+(x1 − x3)e

i(p1x1−p3x3)
)(

∆+(x2 − x4)e
i(p2x2−p4x4)

)
+

∫
dX⃗4

(
∆+(x1 − x4)e

i(p1x1−p4x4)
)(

∆+(x2 − x3)e
i(p2x2−p3x3)

)}
. (6.54)

The integrals above are analogous to the ones in the first example:

∫
dx⃗1dx⃗4∆

+(x1 − x4)e
i(p1x1−p4x4) =

(2π)d−1

2ωp1
δ(p⃗1 − p⃗4). (6.55)

Thus:

T = ℏ2
(

4∏
i=1

2ωpi

(2π)
d−1
2

)
(2π)2(d−1)

4ωp1ωp2
(δ(p⃗1 − p⃗3)δ(p⃗2 − p⃗4) + δ(p⃗1 − p⃗4)δ(p⃗2 − p⃗3))

= 4ℏ2ωp3ωp4(δ(p⃗1 − p⃗3)δ(p⃗2 − p⃗4) + 4ωp3ωp4δ(p⃗1 − p⃗4)δ(p⃗2 − p⃗3))

= ⟨p1|p3⟩⟨p2|p4⟩+ ⟨p1|p4⟩⟨p2|p3⟩. (6.56)

In the above equation, we used ⟨p|q⟩ = 2ℏδ(p⃗− q⃗).
The corresponding Feynman diagrams are:

Figure 6.2: The diagrams represents free particles propagating. The “jump” in the second
one is to make clear they do not interact.

The examples above show that both formalisms are compatible, at least in the free case.

From the examples above, we can already read some general features of the amplitude, even
in the interacting case. The general formula for a scattering amplitude is given by
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⟨Ωa∗(p1)...a∗(pn)|Sa∗(q1)...a∗(qm)Ω⟩. (6.57)

To translate ⟨Ω : ϕop(x1)...ϕ
op(xn) : |S : ϕop(y1)...ϕ

op(ym) : Ω⟩ into the formula T (p1, ..., pn, q1, ..., qm),
we need to repeat the inverse Fourier transformation. Hence, every incoming particle contributes
to the amplitude with:

2ωpi

(2π)
d−1
2

∫
dx⃗ie

ipixi

∣∣∣∣
p0i=ωpi

. (6.58)

The outgoing particle contribute to the amplitude with:

2ωqi

(2π)
d−1
2

∫
dy⃗ie

−iqiyi
∣∣∣∣
q0i =ωqi

. (6.59)
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Chapter 7

Classical retarded product

7.1 Introduction

The main limitation of quantum field theory is that it is hard to exactly solve the theory and
one has to use perturbation theory to extract results. The goal of the next section is to motivate
the solution of a classical interacting field theory as a series in the coupling constant. The result
obtained using this method will be the starting point for the quantum case, where the “intuition”
used in the classical case is no longer valid and must be replaced by axioms. Most of the text is
based on chapter 1 from [24]

7.2 Retarded fields

The philosophy of perturbation theory is to write the interacting quantities as a function of the
non interacting ones. To do it, the first step is to construct a map rS0+S,S : C → C that has the
following property: If h is a solution of the free field, i.e., h ∈ CS0 , then rS0+S,S(h) is a solution
of the interacting field, i.e., rS0+S,S(h) ∈ CS+S0 . This family of maps is called the retarded wave
operator and they obey:

(i) rS0+S,S0(h)(x) = h(x) for x “sufficiently early”, that is, before x “arrives” in support of the
interaction.

(ii) δ(S0+S)
δϕ(x) ◦ rS0+S,S0 = δS0

δϕ(x)

Explicitly, an h ∈ C is mapped by rS0+S,S0 to f(x), where f(x) solves the equation:

−(∂2 +m2)f(x) +
δS

δϕ(x)
(f)︸ ︷︷ ︸

δS0+S
δϕ(x)

= −(∂2 +m2)︸ ︷︷ ︸
δS0
δϕ(x)

h(x). (7.1)

Note that if x /∈ supp(S), we recover the equation:
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−(∂2 +m2)h(x) = −(∂2 +m2)f(x). (7.2)

which agrees with h(x) for x “sufficiently early”. The existence and uniqueness of r is discussed
in [24] and references therein. In our work, it is not necessary to discuss the existence and
uniqueness in the general case since we are able to construct such a map as a formal power
series. We call a retarded field F ret

S the field defined by:

F ret
S := F ◦ rS0+S,S0 : C → C. (7.3)

7.3 An explicit formula for the classical retarded prod-

uct

The goal of this section is to expand F ret
S into a series in the coupling constant λ.A very important

remark: The power series is to be understood as a formal power series, we can not guarantee the
convergence of these series. We denote:

dn

dλn

∣∣∣∣
λ=0

F ret
λS̃

=: R(S̃⊗n, F ) ≡ Rn,1(S̃
⊗n, F ). (7.4)

Using these notation, F ret
S is understood as a formal power series:

F ret
S ≃

∞∑
n=0

λn

n!
R(S̃⊗n, F ) =

∞∑
n=0

1

n!
R(S⊗n, F ) ≡ R(eS⊗, F ). (7.5)

where

eS⊗ := 1⊕
∞⊕
n=1

S⊗n

n!
≡ (1, S,

1

2!
S ⊗ S, · · · )

S := λS̃. (7.6)

7.4 Some examples

Before “giving the answer”, it is a good idea to construct an intuition about these series. To do
it, we examine three examples. The goal is to solve the retarded interacting field equation

δ(S + S0)

δϕ(x)
◦ rS0+S,S0 =

δS0
δϕ(x)

(7.7)
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for a) S = −λ
∫
dxg(x)ϕ(x), b)S = −λ

∫
dxg(x)ϕ(x)2 and c) S = −λ

∫
dxg(x)ϕ(x)k+1. First,

we define the retarded field ϕret(x) := ϕ◦rS0+S,S0 . Now let us find what equation this field obeys.
Using

δS0
δϕ(x)

=
δ

δϕ(x)

∫
dy

1

2
(∂µϕ(y)∂µϕ(y)−m2ϕ2(y)) = −(∂2 +m2)ϕ(x) (7.8)

we get

δ(S + S0)

δϕ(x)
◦ rS0+S,S0 =

δS0
δϕ(x)

◦ rS0+S,S0 +
δS

δϕ(x)
◦ rS0+S,S0

= −(∂2 +m2)ϕ(x) ◦ rS0+S,S0 +
δS

δϕ(x)
◦ rS0+S,S0

!
=

δS0
δϕ(x)

= −(∂2 +m2)ϕ(x). (7.9)

Hence, we obtain the equation of motion for retarded fields:

(∂2 +m2)ϕret(x) = (∂2 +m2)ϕ(x) +

(
δS

δϕ(x)

)ret

. (7.10)

Example a)

Now we can calculate the first example. For S = −λ
∫
dxg(x)ϕ(x), we get:

δS

δϕ(x)
=

δ

δϕ(x)
− λ

∫
dy g(y)ϕ(y) = −λg(x). (7.11)

Hence, the retarded field equation is simply:

(∂2 +m2)ϕret(x) = (∂2 +m2)ϕ(x)− λg(x). (7.12)

The idea to solve this equation is basically to multiply both sides by “(∂2 + m2)−1” and
obtain:

ϕret(x) = ϕ(x)− λ(∂2 +m2)−1g(x). (7.13)

Of course now we have to show that such an inverse exists, and, more than that, we need
to show that ϕret(x) = ϕ(x) for “x” sufficiently early. The way to do it is via the retarded
propagator. We define the retarded propagator ∆ret

m ∈ D′(Rd) as:
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(∂2 +m2)∆ret
m = −δ(x), satisfying supp(∆ret

m ) ⊆ x+ V +. (7.14)

It is easy to check (and also a classical exercise of quantum field theory) that for the scalar
field:

∆ret
m (x) =

1

(2π)d

∫
ddp

e−ipx

p2 −m2 + ip00
. (7.15)

A short remark about this specific propagator: It is a possible choice of the inverse “(∂2 +
m2)−1”. It is chosen such that the solution of the field equation is a free field in the distant past.
We could also change ip00 → −ip00 and it would also be an inverse “(∂2 +m2)−1” but with the
free field as a solution in the distant future. There are other possible combinations that solve
the problem. We have chosen that specific one because that is how quantum field theory was
developed [8]. In this scenario, the incoming field is known and we want to connect the outgoing
field with experimentally observable quantities. For this proposal, an inverse that respects the
form of the incoming field is very useful.

Returning to the solution of interacting field equation, we claim that the solution to our
problem is simply

ϕret(x) = ϕ(x) + λ

∫
dy∆ret

m (x− y)g(y). (7.16)

To show that it fulfills the field equation is quite simple, one just has to apply (∂2 +m2) on
both sides of the equation. To prove that ϕret(x) = ϕ(x) for “x” sufficiently early, we need to
consider two cases. If x and y are space-like, then ∆ret

m (x − y) = 0 because supp(∆ret
m ) ⊆ V +.

If x and y are not space-like, we are interested in the case where x < supp g(y). The notation
a < b means that a is in the causal past of b. In that specific case, supp g ∩ supp(∆ret

m ) = ∅ and
therefore the integral is zero. One can visualize it better with a drawing. For simplicity, let us
consider the integral over the space time as an integral over an axis:

Figure 7.1: The red regions represents supp∆ret(x− y) and the blue one supp g(y). They
do not intercept.

Hence, it is the desired solution. In this context, we want to emphasize what happens when
x > supp g(y). If ϕ(x) solves the field equation, then:
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(∂2 +m2)ϕret(x) = (∂2 +m2)ϕ(x)− λg(x)
!
= 0. (7.17)

Hence, the retarded field is also a free field, but with different “initial conditions”. Diagram-
matically, our procedure can be sketched as follows:

Figure 7.2: The line denotes a propagating free field and the gray dot the region in space
time where g ̸= 0

We can construct a physical picture of it: the interaction is restricted to a finite region of
space-time; therefore, for times in the distant past, the interaction was not felt yet and for times
in the distant future, the interaction has already been turned off.

Example b)

The first example was useful for introducing some of the concepts, but it was so simple that the
expansion ended at the first order of the coupling constant. The second example aims to clarify
the philosophy behind the expansion in the coupling constant, but it is also “exactly solvable” in
the sense that we can find a simple closed formula for all orders in perturbation theory.

Once again, we start by calculating δS
δϕ(x) :

δ

δϕ(x)
− λ

∫
dy g(y)ϕ2(y) = −2λg(x)ϕ(x) ⇒

(
δS

δϕ(x)

)ret

= −2λg(x)ϕret(x). (7.18)

Plugging the above result into the retarded field equation (7.10):

ϕret(x) = ϕ(x)− 2λ(∂2 +m2)−1g(x)ϕret(x)

ϕret(x) = ϕ(x)− 2λ

∫
dy∆ret

m (x− y)g(y)ϕret(y). (7.19)

To pass from the first line to the second we used the same arguments as explained in the
previous example. We will try to solve the integral equation following the usual strategy of
perturbation theory. We start with the Ansatz:
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ϕret(x) = R0,1

(
S̃0, ϕ(x)

)
− λR1,1

(
S̃, ϕ(x)

)
+

(−λ)2

2
R2,1

(
S̃⊗2, ϕ(x)

)
+ ...

≡
∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x)

)
. (7.20)

Once again we stress that the expansion above must be understood as a formal power series
whose convergence cannot be always guaranteed. Substituting into the equation, we get:

∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x)

)
= ϕ(x)− 2λ

∫
dy∆ret

m (x− y)g(y)

∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x)

)
. (7.21)

Now, all we have to do is compare order by order in the coupling constant λ. Finally, we
obtain:

R0,1

(
S̃0, ϕ(x)

)
= ϕ(x) (7.22)

R1,1

(
S̃, ϕ(x)

)
= 2

∫
dx1∆

ret
m (x− x1)g(x1)

=ϕ(x1)︷ ︸︸ ︷
R0,1

(
S̃0, ϕ(x)

)
(7.23)

R2,1

(
S̃⊗2, ϕ(x)

)
= 2 · 2

∫
dx1∆

ret
m (x− x1)g(x1)R1,1

(
S̃, ϕ(x1)

)
= 2 · 22

∫
dx1dx2∆

ret
m (x− x1)∆

ret
m (x1 − x2)g(x1)g(x2)ϕ(x2) (7.24)

...

Rn,1

(
S̃⊗n+1, ϕ(x)

)
= n · 2

∫
dx1∆

ret
m (x− x1)g(x1)Rn−1,1

(
S̃n−1, ϕ(x1)

)
≡ 2nn

∫
dXn g(x1)...g(xn)∆

ret(x− x1)∆
ret(x1 − x2)...∆

ret(xn−1 − xn)ϕ(xn). (7.25)

Where we define dXn := dx1...dxn ≡
∏n
k=1 dxk. There is an important feature on the above

equation. Since supp(∆ret
m ) ⊆ V +, we have a causal ordering on the integral, i.e., x0 ≥ x01 ≥

x02 ≥ .... ≥ x0n. Pictorially, we can imagine the series above as a sequence of interactions:
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Figure 7.3: We can imagine the series as every interaction happening in a small space
time region. The time goes from past (bottom) to future (top).

Example c)

The last example cannot be exactly solved as the other two, but it illustrates the usual difficulty
when working with perturbation theory and it is also a good “prelude” to the most general
solution. As usual, we start with δS

δϕ(x) :

δ

δϕ(x)
− λ

∫
dy g(y)ϕk+1(y) = −(k + 1)λg(x)ϕk(x)

⇒
(

δS

δϕ(x)

)ret

= −(k + 1)λg(x)(ϕret(x))k. (7.26)

Plugging the above result into the retarded field equation (7.10):

ϕret(x) = ϕ(x)− (k + 1)λ(∂2 +m2)−1g(x)(ϕret(x))k

ϕret(x) = ϕ(x)− (k + 1)λ

∫
dy∆ret

m (x− y)g(y)(ϕret(y))k. (7.27)

We start with the Ansatz:

ϕret(x) = R0,1

(
S̃0, ϕ(x)

)
− λR1,1

(
S̃, ϕ(x)

)
+

(−λ)2

2
R2,1

(
S̃⊗2, ϕ(x)

)
+ ...

≡
∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x)

)
. (7.28)

Substituting the Ansatz into the field equation we obtain:
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∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x)

)

= ϕ(x)− (k + 1)λ

∫
dx1∆

ret(x− x1)

[ ∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x1)

)]k
. (7.29)

Unlike the examples that were worked on previously, in these cases, we have a combinatorial
factor to compute in each order of perturbation theory. We can calculate ϕret(x) to third order
just to illustrate the problem.

λ0 order:

The first case is trivial:

R0,1(S̃
0, ϕ(x)) = ϕ(x). (7.30)

λ1 order:

The first non-trivial term is also not hard to calculate. Since

[ ∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x1)

)]k
= R0,1(S̃, ϕ(x))

k(x1) +O(λ). (7.31)

The first term is simple:

R1,1(S̃
1, ϕ(x)) = (k + 1)

∫
dx1∆

ret(x− x1)R0,1(S̃, ϕ(x))
k(x1)

= (k + 1)

∫
dx1∆

ret(x− x1)ϕ
k(x1). (7.32)

λ2 order:

This term is already a bit tricky. We have to expand (ϕret)k accounting for all terms of the
order λ2. The other terms can be neglected for the calculation:

73



[ ∞∑
n=0

(−(k + 1)λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x1)

)]k
λ
= [R0,1(x1)− λR1,1(x1)]

k =

k∑
j=1

(
k

j

)
Rk−j0,1 (x1) [−λR1,1(x1)]

j

λ
= −kλR1,1(x1)R

k−1
0,1 (x1). (7.33)

In the above equation, we have used the notation Rn,1(x1) ≡ Rn,1(S̃
⊗n, ϕ(x1)) and the sym-

bol λ
n

= to mean that we are neglecting all terms that are not of order λn.

Hence:

R2,1(S̃
⊗2, ϕ(x)) = 2k(k + 1)

∫
dx1∆

ret(x− x1)g(x1)R1,1(x1)R
k−1
0,1 (x1). (7.34)

λ3 order:

That term is truly more complicated than the last ones to be computed but the way to do it
is the same. We expand (ϕret(x1))

k up to second order in λ:

[ ∞∑
n=0

(−λ)n

n!
Rn,1

(
S̃⊗n, ϕ(x1)

)]k
λ2
=

[
R0,1(x1)− λR1,1(x1) +

λ2

2
R2,1(x1)

]k
=

k∑
j=0

(
k

j

)[
λ2

2
R2,1(x1)

]k−j
[R0,1(x1)− λR1,1(x1)]

j

=
k∑
j=0

(
k

j

)[
λ2

2
R2,1(x1)

]k−j j∑
l=0

(
j

l

)
Rl0,1(x1) [−λR1,1(x1)]

j−l

λ2
= k

λ2

2
R2,1(x1)R

k−1
0,1 (x1) +

k(k − 1)

2
Rk−20,1 (x1) [−λR1,1(x1)]

2 . (7.35)

Finally:

R3,1(x) = −3!(k + 1)

∫
dx1∆

ret(x− x1)g(x1)

×
(
k

2
R2,1(x1)R

k−1
0,1 (x1) +

k(k − 1)

2
Rk−20,1 (x1)R

2
1,1(x1)

)
. (7.36)
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Although this example is not very elucidating, it already shines a light on patterns that
will lead us to the final form of the “R products”. That is, every term Rn,1 has exactly n

retarded products and a causal ordering. We will use it to construct the “close formula” for
Rn,1(F1 ⊗ F2.... ⊗ Fn−1, G) in the next sections, as well as some of its features. Later we will
use those silly examples,as the main building block to construct the quantum version of the
expansion. In the latter case, the philosophy described here must be imposed as axioms to the
construction of the quantum retarded product. We will return to these questions in a further
chapter.

7.5 The “close” formula for the retarded product

Using the structure above, we can explicitly construct a retarded product with the desired
properties. Those properties will be imposed as axioms. These axioms will also be imposed for
the quantum case together with some properties that can be deduced in the classical expansion
but are not immediate in the quantum one. The axioms for the classical retarded product
Rn,1(F1 ⊗ F2...⊗ Fn;F ) ≡ Rn,1(F1, ..., Fn;F ) are:

• Symmetry in the first n arguments

• linearity

• factorization property, that is, R(e⊗S ;AB) = R(e⊗S ;A)R(e⊗S ;B)

• off-shell field equation: (∂2x+m2)R(eS⊗, ϕ(x)) = (∂2+m2)ϕ(x)+R(eS⊗,
δS
δϕ(x)), withR(eS⊗;A(x)) =

A(x) for sufficiently early x

The construction of the retarded product can be done as follows. Let S ∈ Floc and define
the operator:

RS ≡ R := −
∫
dy

δS

δϕ(x)
∆ret
m (y − x)

δ

δϕ(y)
. (7.37)

For all F ∈ F , the pointwise product of distributions appearing in R(x)F exists and∫
dxR(x)F lies again in F . For F ∈ Floc, the retarded product R(S⊗n, F ) is obtained by

the formula:

Rn,1(S
⊗n;F ) = n!

∫
x01≤···≤x0n

dx1 · · · dxnR(x1) · · ·R(xn)F. (7.38)

The proof that the above retarded product solves the field equation is unique and coincide
with the starting field in a sufficiently distant past can be found in [24] page 36 and [26]. Linearity
and factorization properties can be shown by using the definition of a functional derivative. With
respect to symmetry, the result is obvious when the first arguments n are equal. In case we have
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Rn,1(F1, ..., Fn;F ) with at least one Fi ̸= Fj , we can derive a specific formula for these products.
These formulas can be interpreted as “proto-”Feynman diagrams. The formula is as follows.

Rn,1(F1 ⊗ · · · ⊗ Fn;F ) =

∫
x01≤···≤x0n

dx1 · · · dxn
∑
π∈Sn

RFπ1
(x1) · · ·RFπn

(xn)F. (7.39)

To prove it, first we have to show that if given V,W vector spaces, f(v1⊗ ...⊗vn) : V×n → W
symmetric and linear, then f can be written as

f(v1 ⊗ ...⊗ vn) =
1

n!

∂n

∂λ1...∂λn

∣∣∣∣
λ1=...=λn=0

f((
n∑
k=1

λkvk)
⊗n). (7.40)

Where λ1, λ2, ..., λn ∈ R.The proof is written in the Appendix.

Returning to the original problem, since symmetry is imposed as an axiom, we can use the
formula above and (7.38) to write:

Rn,1(F1, ..., Fn;F ) =
∂n

∂λ1...∂λn

∣∣∣∣
λ1=...=λn=0

n!

∫
x01≤...≤x0n

dXnRFλ
(x1)...RFλ

(xn)F

=

∫
x01≤···≤x0n

dXn

∑
π∈Sn

RFπ1
(x1) · · ·RFπn

(xn)F. (7.41)

where Fλ =
∑n

k=1 λkFk. The above result has a diagrammatical interpretation. To make the
construction clearer, consider an example: We want to calculate RF1(x1)RF2(x2)F :

RF1(x1)RF2(x2)F

=

∫
dY2

(
δF1

δϕ(x1)
∆ret(y1 − x1)

δ

δϕ(y1)

)
δF2

δϕ(x2)
∆ret(y2 − x2)

δF

δϕ(y2)

=

∫
dY2

δF1

δϕ(x1)
∆ret(y1 − x1)

δ2F2

δϕ(y1)δϕ(x2)
∆ret(y2 − x2)

δF

δϕ(y2)

+
δF1

δϕ(x1)
∆ret(y1 − x1)

δF2

δϕ(x2)
∆ret(y2 − x2)

δ2F

δϕ(y1)δϕ(y2)
. (7.42)

Diagrammatically, we can represent the result above as:

F

F2

F1

F

F1 F2

+

The first diagram represents the second line of (7.42) and the second diagram represents the
third line of (7.42). The rule to construct the Feynman diagram and read it is to imagine the
time direction flowing from the bottom to the top. The points represent the field. The inner
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lines represent the propagators ∆ret. If a field F is connected to a field G and F is above G,
the correspondent expression is δF

δϕ(y)∆
ret(y − x) δG

δϕ(x2)
. On the other hand, if G is above F , the

correspondent expression is given by δF
δϕ(y)∆

ret(x− y) δG
δϕ(x2)

.

There are some rules that can be made explicitly to facilitate construction. Consider
RF1(x1)RF2(x2)...RFn(xn)F .To build the diagrams we have to consider every connected diagram
with n vertices and n inner line. The easiest way to construct such a diagram is by induction.
PActing with RF1(x1) on RF2(x2)...RFn(xn)F is equivalent to connecting every point in the
diagrams to F1. F1 must remain in the bottom of the connected point. Let us calculate explicitly
the example discussed previously once again to make the idea clear. Since we have explicitly
calculated RF1RF2F we can check our “rules” for order n = 2 and construct the diagrams for
order n = 3 (we will not write the whole expression). For n = 1, RF3(x3)F is given simply by
−
∫
dy3

δF3
δ(x3)

∆ret(y3 − x3)
δF

δϕ(y3)
. Diagrammatically:

Following the rule, RF2(x2)RF3(x3)F basically connects the points in the previously diagram
to F2 while keeping F2 below the connected point:

Last but not least, we can compute RF1(x1)RF2(x2)RF3(x3)F :

We end the discussion in this section using the diagrams above to recover the result obtained
in example c) in third order in perturbation expansion, namely, we will use the diagrams above
to compute R3,1

(
(
∫
dx g(x)ϕk+1)⊗3, ϕ(x)

)
.

Since δ2ϕ
δϕ(x)δϕ(y) = 0, all the diagrams with more than 2 lines connecting F to the other points

are zero. Hence, only the last two diagrams contribute. The first one reads:

77



Figure 7.4: let us call the contribution to the first diagram FD just to name it.

FD =

∫
x01≤x02≤x03

dX3

∫
dY3

{
δF1

δϕ(x1)
∆ret(y1 − x1)

δ3F2

δϕ(y1)δϕ(y2)δϕ(x3)
∆ret(y2 − x2)

δF3

δϕ(x2)
∆ret(y3 − x3)

δF (x)

δϕ(y3)

}
. (7.43)

Using

δF (x)

δϕ(y3)
=

δϕ(x)

δϕ(y3)
= δ(x− y3) (7.44)

δFi(x)

δϕ(a)
=

δ

ϕ(a)

∫
dx g(x)ϕk+1(x) = (k + 1)g(a)ϕk(a) (7.45)

δ2Fi(x)

δϕ(b)δϕ(a)
= (k + 1)kg(a)ϕk−1(a)δ(a− b) (7.46)

δ3Fi(x)

δϕ(c)δϕ(b)δϕ(a)
= (k + 1)k(k − 1)g(a)ϕk−2(a)δ(a− b)δ(a− c). (7.47)

We get

FD =

∫
x01≤x02≤x03

dX3

∫
dY3

{
(
(k + 1)g(x1)ϕ

k(x1)
)
∆ret(y1 − x1)

×
(
(k + 1)k(k − 1)g(x3)ϕ

k−2(x3)δ(y1 − x3)δ(y2 − x3)
)

×∆ret(y2 − x2)
(
g(x2)ϕ

k(x2)
)
∆ret(y3 − x3)δ(x− y3)

}
. (7.48)

Integrating in dY3 we obtain:

FD =

∫
x01≤x02≤x03

dX3

{
g(x3)∆

ret(x− x3)
(
(k + 1)g(x1)ϕ

k(x1)∆
ret(x3 − x1)

)
(
(k + 1)g(x2)ϕ

k(x2)∆
ret(x3 − x2)

)(
(k + 1)k(k − 1)ϕk−2(x3)∆

ret(x3 − x1)
)}

≡ 3!(k + 1)

∫
dx3∆

ret(x− x3)g(x3)
k(k − 1)

2
Rk−20,1 (x1)R

2
1,1(x1). (7.49)

That is exactly the expression obtained in (7.36)!
the second diagram is
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Figure 7.5: let us call the contribution to the first diagram SD just to name it.

The translation reads:

SD =

∫
x01≤x02≤x03

dX3

∫
dY3

{
δF1

δϕ(x1)
∆ret(y1 − x1)

δ2F3

δϕ(y1)δϕ(x2)
∆ret(y2 − x2)

δ2F2

δϕ(y2)δϕ(x3)
∆ret(y3 − x3)

δF

δϕ(y3)

}
. (7.50)

Substituting the derivatives:

SD =

∫
x01≤x02≤x03

dX3

∫
dY3

{
(k + 1)g(x1)ϕ

k(x1)∆
ret(y1 − x1)(k + 1)kg(x2)ϕ

k−1(x2)δ(x2 − y1)

×∆ret(y2 − x2)(k + 1)kg(x3)ϕ
k−1(x3)δ(y2 − x3)∆

ret(y3 − x3)δ(y3 − x)

}
. (7.51)

Integrating in y:

SD =

∫
x01≤x02≤x03

dX3

{
(
(k + 1)g(x1)ϕ

k(x1)
)
∆ret(x2 − x1)

(
(k + 1)kg(x2)ϕ

k−1(x2)
)
∆ret(x3 − x2)(

(k + 1)kg(x3)ϕ
k−1(x3)

)
∆ret(x− x3)

}
≡ −3!(k + 1)

∫
dx3∆

ret(x− x3)g(x3)
k

2
R2,1(x1)R

k−1
0,1 (x1). (7.52)

Hence, to construct the product Rn,1(F1, ..., Fn;F ) we have to construct the diagrams as
mentioned above considering all the possible permutations of Fn.

7.6 Properties of the classical retarded product

This section is based on Section 1.10 of [24].

1. Causality: If (suppF + V−) ∩ suppH = ∅, then: R(eS+λH0 , F ) = R(eS0 , F ).

2. Field independence: The property above is basically the “Leibniz rule”:
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δR(eS⊗, F )

δϕ(z)
= R

(
eS⊗ ⊗ δS

δϕ
, F

)
+R

(
eS⊗,

δF

δϕ

)
. (7.53)

3. The GLZ relation: So called after Glaser, Lehmann and Zimmermann[36].

Let F,H, S ∈ Floc. Then the Poisson bracket of two interacting fields satisfies the relation
[26]:

{
R(eS⊗, F ), R(e

S
⊗, H)

}
=

d

dλ

∣∣∣∣
λ=0

(
R(eS+λF⊗ , H)−R(eS+λH⊗ , F )

)
= R(eS⊗ ⊗ F,H)−R(eS⊗ ⊗H,F ). (7.54)

4. Retarded product in terms of Poisson brackets The classical retarded product can be
directly written in terms of the classical Poisson bracket of the theory:

Rn,1(S
⊗n, F ) = n!

∫
dXndy g(x1)...g(xn)f(y)θ(y

0 − x0n)

θ(x0n − x0n−1)....θ(x
0
2 − x01){L(x1), {L(x2), ...{L(xn), P (y)}...}}. (7.55)

This formula will be useful when constructing the quantum version of the retarded product.
The proof of the statements above can be found in Section 1.10 of [24].

5. Parity and ∗ transformations

From the general expression of retarded product it is easy to show ([24] page 42) that:

(
R(eS⊗, F )

)∗
= R(eS

∗
⊗ , F

∗)

α(R(eS⊗, F )) = R(eα(S), α(F )). (7.56)
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Chapter 8

Quantum retarded product

8.1 Introduction

Once the quantization procedure and the classical theory are done, we can move further to the
real goal of this work, the construction of the retarded (quantum) product and the scattering
matrix S. Although most courses in quantum field theory focus on the scattering matrix, there
are some that use the retarded expansion instead [10, 79, 71]. The construction is done via axioms
based on the classical theory. Those axioms are, only for simplicity, divided into two groups. The
first, called the “basic axioms” allows us to construct the retarded product using induction on the
coupling constant in a restricted domain. The second group, called “renormalization conditions”,
expands the domain of construction done using the basic axioms and incorporates the quantum
nature of the theory. The construction will be done as follows: first the retarded product in a
narrower domain is constructed using only the first group of axioms; then the second group will
be introduced.

8.2 Construction part 1: Basic axioms

As one could expect, the first feature we have to adapt to pass from the classical word to the
quantum one is the classical product. By these we mean that given A,B ∈ F :

Aret(x) ·Bret(x) ̸= (AB)ret(x). (8.1)

Hence, the inductive construction presented in the preceding chapter does not hold anymore.
To recover the retarded product

ϕret : C → C

ϕret(x) ≡ R(e
λ S̃

ℏ
⊗ ;ϕ(x)) (8.2)
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of a given interaction S
ℏ := λS̃

ℏ with coupling constant λ we introduce four axioms.

8.2.1 Linearity

We impose the retarded product is linear in its arguments. This axiom allows us to write:

R(e
λ S̃

ℏ
⊗ , ϕ(x)) =

∞∑
n=0

λn

ℏnn!
Rn,1(S̃

⊗n;ϕ(x))

Rn,1 : F⊗(n+1)
loc → F is linear. (8.3)

Just as the classical retarded product. We emphasize: The sum above is to be understood as
a formal power series, the convergence of it is not under control. Note that R is a formal power
series both in λ and in ℏ. We denote the space of such a formal power series as F [[λ, ℏ]]. For
fields containing derivatives A1, ..., An, A ∈ P, Ai =

∑
ai
∂aiBai , we define:

Rn,1(A1(x1), ..., An(xn);A(x))

:=
∑

a1,...,an,a

∂a1x1 ...∂
an
xn∂

a
xRn,1(Ba1(x1), ..., Ban(xn);Ba(x)). (8.4)

The above definition implies the “Action ward identity”:

∂xlRn,1(...A(xl)...) = Rn,1(...∂xlA(xl)...). (8.5)

8.2.2 Symmetry and initial condition

Just as in the classical case, we impose Rn,1 to be symmetric in the first n arguments:

Rn,1(Fπ(1) ⊗ ...⊗ Fπ(n), F ) = Rn,1(F1 ⊗ ...⊗ Fn, F ), π ∈ Sn. (8.6)

The condition above allows us to write a similar formula (7.41):

Rn,1(F1, ..., Fn;F ) =
ℏn

∂λ1...∂λn

∣∣∣∣
λi=0∀i

R(eFλ
⊗ , F ) (8.7)

where Fλ :=
∑n

k=1 λkFk. Another axiom we impose is the initial condition:

R0,1(F ) = F. (8.8)

82



8.2.3 Causality

Last but not least, we want that only events that occur in the causal past of F can interfere with
its dynamics. This feature can be mathematically stated as:

suppRn,1(A(x1)⊗ ...⊗A(xn);F (x))

⊆
{
(x1, ..., xn, x) ∈ Mn+1|xj ∈ (x+ V −)∀j = 1, ..., n

}
. (8.9)

The condition above can be equivalently formulated as follows:

R(e
(S+H)/ℏ
⊗ ;F ) = R(e

S/ℏ
⊗ ;F ) if (suppF + V −) ∩ suppH = ∅. (8.10)

The proof of equivalence can be found in [24] page 77.

8.2.4 GLZ relation

In classical field theory, we can prove the GLZ relation, but in the quantum case one has to im-
pose it. The reason for imposing it as an axiom is because it is a fundamental tool to construct
the retarded product. The GLZ relation is the last of the basic axioms.

The GLZ relation provides a split of the commutator [A(x), B(y)]⋆ into advanced ((x− y) ∈
V −) and retarded ((x− y) ∈ V +)part. It reads:

1

iℏ

[
R(eS/ℏ;F ), R(eS/ℏ;H)

]
⋆
= R(eS/ℏ ⊗ F/ℏ;H)−R(eS/ℏ ⊗H/ℏ;F ). (8.11)

Or equivalently

Rn−1,1(G1 ⊗ ...⊗Gn−2 ⊗ F ;H)−Rn−1,1(G1 ⊗ ...⊗Gn−2 ⊗H;F )

= ℏJn−2,2(G1 ⊗ ...⊗Gn−2;F ⊗H). (8.12)

Where:

Jn−2,2(G1 ⊗ ...⊗Gn−2, F ⊗H)

:=
1

iℏ
∑

I⊆{1,...,n−2}

[
R|I|,1(GI , F ), R|Ic|,1(G

c
I , H)

]
⋆ℏ
. (8.13)

The proof is given in [24] page 78.
Some properties that can be shown using this formula are the Jacobi identity and support

condition [24] page 82:
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Jn−2,2(F1, ..., Fn−3, Fn−2(xn−2);F (y), G(z)) + cyclic(H,F,G) = 0 (8.14)

supp Jn−2,2(F1, ..., Fn−3, Fn−2(xn−2);F (y), G(z))

⊂
{
(x1, ..., xn−2, y, z)

∣∣∣∣{x1, ..., xn−2, y} ⊂ (z + V −) or {x1, ..., xn−2, z} ⊂ (y + V −)

}
. (8.15)

8.3 Construction part 1: Algorithm to construct the

retarded product

We will follow [24], more specifically Sections 3.1 and 3.2. Unlike it, here we will try to give a
more intuitive picture of how to construct Rn,1 using induction, emphasizing some details that
are present but not explicitly written in [24]. For that reason, although the construction is es-
sentially the same, the final result might look a bit different. The strategy is as follows: We first
show how to construct the retarded product, and then we show that our construction respects
the basic axioms. Later, when we introduce the second package of axioms, the renormalization
conditions, we return to the construction and show that it is also coherent with it.

The example we must keep in mind is to calculate Rn,1(S̃⊗n, ϕ(x)) with S̃ =
∫
dx g(x)L(x) ∈

Floc. Using the linearity of Rn,1, we can write this product as:

Rn,1(S̃
⊗n, ϕ(x)) =

∫
dXn g(x1)...g(xn)Rn,1(L(x1)⊗, ...,⊗L(xn), ϕ(x)). (8.16)

Hence, if we manage to calculate Rn,1(G1(x1), ..., Gn(xn), F (xn+1)) where
G1(x1), ..., Gn(xn), F (xn+1) ∈ P, we solve the problem. That is going to be the goal of this
section.

Let G1(x1), ..., Gn(xn), F (xn+1) ∈ P. The construction is done by induction in n. For n = 0,
the axiom of the initial condition imposes R0,1(F ) = F . The case n = 1 is obtained using the
GLZ-relation:

R1,1(G1(x1), F (x2))−R1,1(F (x2), G1(x1)) = ℏJ0,2(G1(x1)⊗ F (x2))

= −i [R0,1(G1(x1)), R0,1(F (x2))]⋆ℏ = −i [G1(x1), F (x2)]⋆ℏ . (8.17)

For now on we drop the subindex ⋆ℏ in the commutator. The problem in the above formula
is that we have to subtract R1,1(F (x2), G1(x1)) from the term we want R1,1(G1(x1), F (x2)). We
can bypass the problem by restricting the domain of x1, x2 ∈ M2. We have to analyze three cases.

x1,x2 space-like separated:
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In this particular scenario, the causality axiom and the properties of the commutator guar-
antee that

R1,1(G(1x1), F (x2)) = R1,1(F (x2), G1(x1)) = [G1(x1), F (x2)] = 0. (8.18)

x1 /∈ (x2 +V−):

In this case again, due to the causality axiom:

R1,1(G1(x1), F (x2)) = 0. (8.19)

x2 /∈ (x1 +V+):

That is the only case we are really interested in. Due to causality:

R1,1(F (x2), G1(x1)) = 0 ⇒ R1,1(G1(x1), F (x2)) = −i [G1(x1), F (x2)] . (8.20)

Note that the union of the domains cited above is equal to M2 \ {x1 = x2}. Hence, we were
able to construct R1,1(G1(x1), F (x2)) in this domain:

R1,1(G1(x1), F (x2)) =

−i [G1(x1), F (x2)] if x2 /∈ (x1 + V
+
) and x1 ̸= x2

0 (x1 − x2)
2 < 0 or x2 ∈ (x1 + V −)

.Using the fact that the commutator is zero for space-like points, we can summarize the result
above as:

R1,1(G1(x1), F (x2)) = −i [G1(x1), F (x2)] θ(x
0
2 − x01). (8.21)

Remark: Note that the product above is well defined as a product of distributions, since it
respects the Hörmander criterion. To see it, we write ∆(x) = −i(∆+(x) − ∆+(−x)) and use
WF(θ(x0)) = {(0, (k0, 0⃗)), k0 ̸= 0} and WF(∆+(x)) = {(0, (|p⃗|, p⃗)}. Hence, (|p⃗|, p⃗) + (k0, 0) ̸= 0.

We will explicitly construct the case n = 2.

We start the construction with some definitions to split the domain as in the previous case.
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M0 :=
{
(x1, x2, x3) ∈ M3|∃j ∈ {1, 2} : xj /∈ (x3 + V −)

}
M1 :=

{
(x1, x2, x3) ∈ M3|x1 /∈ (x3 + V +)

}
M2 :=

{
(x1, x2, x3) ∈ M3|x2 /∈ (x3 + V +)

}
. (8.22)

First, we check that {M0,M1,M2} is an open cover (that is, a cover by open sets) of M3\∆3

(recall: ∆3 : {x1 = x2 = x3}).

2⋃
k=0

Mk = M3 \∆3.. (8.23)

The relation
⋃
kMk ⊆ M3 \ ∆3 is obvious. To prove ’⊇”, let x = (x1, x2, x3) /∈ ∆3. Then

there exists j ∈ {1, 2, 3} with xj ̸= x3. If xj /∈ (x3+V−), we have xj ∈ M0; and if xj /∈ (x3+V+),
we have xj ∈ Mj .

In the next step, we restrict ourselves to M0 in that case, due to the causality axiom:

R2,1(G1(x1), G2(x2);F (x3)) = 0. (8.24)

If (x1, x2, x3) ∈ M1, then either x1 and x3 are space-like or x1 ∈ (x3 + V −).Using causality:
R2,1(G(x2), F (x3);G(x1)) = 0. Now we use the GLZ-relation:

R2,1(G1(x1), G2(x2);F (x3))−R2,1(G2(x2), F (x3);G1(x1))︸ ︷︷ ︸
=0

= ℏJ1,2(G(x2);G(x1), F (x3))

= −i [R1,1(G2(x2);G1(x1)), R0,1(F (x3))]− i[R0,1(G1(x1)), R1,1(G2(x2);F (x3))]. (8.25)

We can take the expression for R1,1(G(x2);G(x1)), R1,1(G(x2);F (x3)) from the first example:

R1,1(G2(x2);G1(x1)) = −i [G2(x2), G1(x1)] θ(x
0
1 − x02)

R1,1(G2(x2);F (x3)) = −i [G2(x2), F (x3)] θ(x
0
3 − x02). (8.26)

As explained above, the restriction ofR2,1 to M1 can be translated to x1 ∈ (x3+V −), x1 ̸= x3.
It is also true that the commutator vanishes when the points are space-like. Hence, we can write
the final expression as:
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R2,1(G1(x1), G2(x2);F (x3))

= (−i)2θ(x03 − x01)

(
[[G2(x2), G1(x1)] , F (x3)]θ(x

0
1 − x02)

+ [G1(x1), [G2(x2), F (x3)]]θ(x
0
3 − x02)

)
. (8.27)

Last but not least, in M2, we just have to change 2 ↔ 1 in the formula above:

R2,1(G1(x1), G2(x2);F (x3))

= (−i)2θ(x03 − x02)

(
[[G1(x1), G2(x2)] , F (x3)]θ(x

0
2 − x01) + [G2(x2), [G1(x1), F (x3)]]θ(x

0
3 − x01)

)
.

(8.28)

This last formula seems complicated, but we can write it in a cleaner way if we impose some
causal order in x1, x2. If x01 < x02, R2,1 in M1 can be written as:

R2,1(G1(x1), G2(x2);F (x3)) = (−i)2[G1(x1), [G2(x2), F (x3)]]θ(x
0
3 − x02)θ(x

0
2 − x01). (8.29)

For completeness, we check that the results agree in M2 ∩ M1. To do it, just change
θ(x03 − x01) → θ(x02 − x01) as in the equation above:

R2,1(G1(x1), G2(x2);F (x3)) =

(−i)2
(
[[G1(x1), G2(x2)] , F (x3)] + [G2(x2), [G1(x1), F (x3)]]

)
θ(x03 − x02)θ(x

0
2 − x01)

= (−i)2[G1(x1), [G2(x2), F (x3)]]θ(x
0
3 − x02)θ(x

0
2 − x01). (8.30)

In the equation above, we have used the Jacobi identity:

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (8.31)

On the other hand, if x02 < x01, R2,1 in M2 can be written as:

R2,1(G1(x1), G2(x2);F (x3)) = (−i)2[G2(x2), [G1(x1), F (x3)]]θ(x
0
3 − x01)θ(x

0
1 − x02). (8.32)

Using the Jacobi identity, one can check that the result agrees in M1. Therefore, if x1 ̸=
x2 ̸= x3, we can summarize the result as:
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R2,1(G1(x1), G2(x2);F (x3))

= (−i)2
∑
π∈S2

θ(x03 − x0π1)θ(x
0
π1 − x0π2)[Gπ2(xπ2), [Gπ1(xπ1), F (x3)]]. (8.33)

The above result is exactly the classical one:

Rn,1(S
⊗n, F ) = n!

∫
dXndy g(x1)...g(xn)f(y)θ(y

0 − x0n)

θ(x0n − x0n−1)....θ(x
0
2 − x01){L(x1), {L(x2), ...{L(xn), P (y)}...}}. (8.34)

with the change {., .} → (−i)[., .]. As one can expect, that is not a mere coincidence. The
above result will be imposed as a renormalization condition later.

8.3.1 General construction

The construction of Rn−1,1(G1(x1), ..., Gn(xn−1);F (xn)) is a generalization of the construction
shown above. As stated above, the construction is done by induction. Suppose that we have
constructed Rk,1(G1(x1), ..., Gk(xk);F (xk+1)) for all k ∈ {1, ..., n−2} satisfying the basic axioms
outside the diagonal ∆k := (x, ...x), k-times. We consider the following sets:

M0 :=
{
(x1, . . . , xn) | ∃j ∈ {1, . . . , n− 1} with xj /∈ (xn + V−)

}
,

Mk :=
{
(x1, . . . , xn) | xk /∈ (xn + V+)

}
, for k = 1, . . . , n− 1.. (8.35)

Just as in the previous, we check that {M0,M1, . . . ,Mn−1} is an open cover (i.e. a cover
by open sets) of Mn \∆n, that is:

n−1⋃
k=0

Mk = Mn \∆n.. (8.36)

The relation
⋃
kMk ⊆ Mn \∆n is obvious. To prove ’⊇”, let x = (x1, . . . , xn) /∈ ∆n. Then

there exists j ∈ {1, . . . , n − 1} with xj ̸= xn. If xj /∈ (xn + V−) we have x ∈ M0; and if
xj /∈ (xn + V+) we have x ∈ Mj .

We impose Rn−1,1(G1(x1), ..., Gn(xn−1);F (xn)) = 0 on M0 due to causality.

Using the GLZ relation, we can construct Rn−1,1(G1(x1), ..., Gn(xn−1);F (xn)) in every subset
Mk:
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Rn−1,1(G1(x1), . . . , Gn−1(xn−1);F (xn))−Rn−1,1(G1(x1), . . . , F (xn);Gk(xk))︸ ︷︷ ︸
=0

= ℏJn−2,2(G1(x1), . . . , Ĝk(xk), . . . , Gn−1(xn−1);Gk(xk), F (xn))

= −i
∑

I⊆{1,...,n−2}

[
R|I|,1(GI ;Gk), R|Ic|,1(GIc , F )

]
, (x1, ..., xn) ∈ Mk. (8.37)

where GI := ⊗l∈IGl and Ic := {1, ..., n− 2} \ I. Remark: I \ I = {0}. Note that Rn−1,1 was
constructed using only Rk,1, k ∈ {1, ..., n − 2} which are known by hypotheses. If we can show
that the object above is well defined, then, by construction, it is unique. To show that it is well
defined we have to show that the formula above coincides in Mk ∩Mj ,∀j, k ∈ {0, ..., n−1}.page
109 [24].

(x1, ..., xn) ∈ M0 ∩Mk,k ̸= 0:

Due to causality, we have:

Rn−1,1(G1(x1), . . . , Gn−1(xn−1);F (xn)) = Rn−1,1(G1(x1), . . . F )(xn);Gk(xk)) = 0. (8.38)

Thus, we need to prove that:

Jn−2,2(G1(x1), ..., Gn−2(xn−2);Gk(xk), F (xn)) = 0. (8.39)

It can be easily done using the support condition (8.15). A necessary condition for Jn−2,2 ̸= 0

is xk ∈ (xn + V −) or xn ∈ (xk + V −). If xk ∈ (xn + V −), then by definition (x1, ..., xn) /∈ M0.
On the other hand, if xn ∈ (xk + V −),then xk ∈ (xn + V +) ⇒ (x1, ..., xn) /∈ Mk. Hence, if

(x1, ..., xn) ∈ M0 ∩Mk ⇒ Jn−2,2(G1(x1), ..., Gn−2(xn−2);Gk(xk), F (xn)) = 0. (8.40)

(x1, ..., xn) ∈ Mj ∩Mk, j ̸= k ̸= 0:

In this case, we have:

Rn−1,1(G1(x1), ..., Gn−1(xn−1);F (xn))

= ℏJn−2,2(G1(x1), ..., Gk(xk);Gj(xj), F (xn))

!
= ℏJn−2,2(G1(x1), ..., Gj(xj);Gk(xk), F (xn)). (8.41)

Hence, we need to show that both “J ’s” are the same. We can do it using the Jacobi(8.15)
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identity and (x1, ..., xn) /∈ M0 (this case was already discussed above). To simplify the notation,
we will abbreviate Gl(xl) ≡ xl in the argument of the function.

The Jacobi identity reads:

Jn−2,2(..., xk;xj , xn) + Jn−2,2(...., xj ;xn, xk) + Jn−2,2(..., xn;xj , xk))︸ ︷︷ ︸
=0, (x1,...,xn)/∈M0

!
= 0

⇒Jn−2,2(..., xk;xj , xn) = −Jn−2,2(...., xj ;xn, xk) = Jn−2,2(...., xj ;xk, xn). (8.42)

In the last equation, we have used the skew symmetry of Jn−2,2 with respect to the last two
arguments.

The above results confirm that the product exists and is unique per construction.

We claim that the construction above satisfies all basic axioms. Causality is imposed when
restricting the domain to M0, and is therefore satisfied. The initial condition is also imposed
on the construction of Rk,1 and is therefore satisfied. Symmetry can be proven using a similar
argument that is used to show the existence. If (x1, ..., xn) ∈ M0, then Rn−1,1(x1, ..., xn−1;xn) =
0 for every permutation in the first n arguments. If (x1, ..., xn) ∈ Mk and (x1, ..., xn) /∈ M0.,
then using the GLZ equation:

Rn−1,1(x1, ..., xn−1, xk;xn) = ℏJn−2,2(x1, ...;xk, xn). (8.43)

The permutation of x1, ..., xn−1 except for xk is immediate from the definition of
Jn−2,2(x1, ..., ;xk, xn). The only tricky part is what happens if we change xj ↔ xk. If (x1, ..., xn) ∈
Mj , the calculation was done in the last section, and the change is allowed. If (x1, ..., xn) /∈ Mj ,
then xj ∈ (xn + V +) and Rn−1,1(x1, ..., xn−1;xn) = 0 outside the thin diagonal to every permu-
tation. The GLZ relation outside the thin diagonal holds by construction. Further commentaries
on the GLZ relation can be found at [24] page 110.

8.4 Why we need more?

One could ask the following question “since we have constructed the retarded product using this
set of axioms, why do we need the second group? Why can not I just assume the formula and
perform the calculation?”. That is a very good question, whose answer is also very subtle. To
motivate the answer, we consider the distribution t = 1

∥x∥2 ∈ J ′(R3 \ {0}). When integrated
with a test or a Schwarz function:
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⟨t, g⟩ =
∫
R\{0}

d3x
g(x)

∥x∥2
= lim

ϵ→0

∫ 2π

0
dφ

∫ 1

−1
d cos θ

∫ ∞
ϵ

dr
r2g(x⃗)

r2
<∞. (8.44)

In the above equation, we could extend t ∈ J ′(R3 \ {0}) → J ′(R3) using the same formula,
and the product is still well defined.

On the other hand, the distribution 1
∥x∥4 is a legitimate distribution in J ′(R3 \ {0}), can be

seen as the “square” of 1
∥x∥2 and if we simply “expand the domain”:

⟨t2, g⟩ =
∫
R\{0}

d3x
g(x)

∥x∥4
= lim

ϵ→0

∫ 2π

0
dφ

∫ 1

−1
d cos θ

∫ ∞
ϵ

dr
r2g(x⃗)

r4
→ ∞. (8.45)

Hence, we need a better way to calculate the distribution passing through the singularity.
This problem is not new; it is actually well known (see the appendix).

Similar problems arise in the star-product of fields. We will explicitly work out an example
further in the text.

Technical remark: It is easy to prove that 1
r4

is a well-defined distribution. To do it, note
that 1

r4
is proportional to ∂2

∂r2
1
r2

and that the derivatives of a distribution are well defined as a
distribution.

8.5 Construction part 2: Renormalization conditions

The second group of axioms is called “Renormalization conditions”. They control the behavior of
Rn,1 on the diagonal. The name “Renormalization conditions” is due to the singular behavior of
those distributions on the thin diagonal. In QFT jargon, expanding the retarded product to the
thin diagonal is equivalent to “subtracting infinity” in such a way that the final result remains
physically relevant (see [9] for a historical review). We again appeal to our classical intuition
when imposing the axioms. Essentially, the “quantum part” of the theory is manifested in the
procedure of regularizing the theory.

As explained in the beginning of the section “ Construction part 1: Basic Axioms”, the con-
struction is first going to be explicitly done in the lowest orders, and then we give the general
recipe and show the construction respecting the desired set of axioms (basic axioms + renormal-
ization conditions).

The renormalization conditions are:

Field independence

This axiom is inherited from classical theory and is simply:

91



δ

δϕ(x)
Rn−1,n(F1 ⊗ ...⊗ Fn) =

n∑
l=1

Rn−1,n(F1 ⊗ ...⊗ δFl
δϕ(x)

⊗ ...⊗ Fn). (8.46)

A consequence of the axiom is that we can relate the retarded expansion of local fields with
the derivatives of the field and its derivatives. More specifically, for

F = f0 +
N∑
n=0

∫
dXn fn(x1, ..., xn)ϕ(x1)...ϕ(xn). (8.47)

It is true that

fn(x1, ..., xn) = n!ω0(
δnF

δϕ(x1)...δϕ(xn)
). (8.48)

Hence:

Rn−1,1(F1 ⊗ · · · ⊗ Fn)

=
N∑
l=0

1

l!

∫
dx1 · · · dxl ω0

(
δlRn−1,1(F1 ⊗ · · · ⊗ Fn)

δφ(x1) · · · δφ(xl)

)
φ(x1) · · ·φ(xl)

=
∑
l1,...,ln

1

l1! · · · ln!

∫
dx11 · · · dx1l1 · · · dxn1 · · · dxnln

× ω0

(
Rn−1,1

(
δl1F1

δφ(x11) · · · δφ(x1l1)
⊗ · · · ⊗ δlnFn

δφ(xn1) · · · δφ(xnln)

))
× φ(x11) · · ·φ(x1l1) · · ·φ(xn1) · · ·φ(xnln).

Poicaré-covariance, ∗-structure and Field parity

These axioms are rather simple. ∗-structure is simply:

Rn−1,1(F1 ⊗ ...⊗ Fn)
∗ = Rn−1,1(F

∗
1 ⊗ ...⊗ F ∗n). (8.49)

Field parity:

α ◦Rn−1,n = Rn−1,n ◦ α⊗n. (8.50)

Poicaré covariance:

βΛ,aRn−1,1(F1 ⊗ ...⊗ Fn) = Rn−1,1(βΛ,aF1 ⊗ ...⊗ βΛ,aFn), (Λ, a) ∈ P↑+. (8.51)
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This implies that the expansions depend only on the relative coordinates.

Off-shell field equation

One of the most important axioms is that we still want our expansion to solve the field equation:

ϕret(x) = ϕ(x)−
∫
dy∆ret(x− y)(

δS

δϕ(y)
)ret. (8.52)

The equivalent equation for the retarded product can be derived by substitution:

Rn,1(F1 ⊗ ...⊗ Fn, ϕ(x))

= −ℏ
∫
dy∆ret

m (x− y)

n∑
l=1

Rn−1,1(F1 ⊗ ...⊗ F̂l ⊗ ...⊗ Fn,
δF

δϕ(y)
). (8.53)

Scaling and mass expansion

This axiom cannot be so easily introduced as the previous ones. To properly introduce it and its
motivation, we need some definitions.

(Almost) homogeneous scaling: We say that a distribution in D′(Rk) or in D′(Rk \ {0})
scales almost homogeneously with degree D and power N ∈ N if and only if:

(Ek +D)N+1t(z1, ..., zn) = 0

⇐⇒ (ρ∂ρ)
N+1(ρDt(ρz1, ..., ρzn)) =

∂N+1

∂(ln(ρ))N+1
ρDt(ρz1, ..., ρzn)) = 0

and

(Ek +D)N t(z1, ..., zn) ̸= 0. (8.54)

where Ek =
∑k

r=1 zr
∂
∂zr

=
∑k

r=1
∂

∂ ln(zr)
. When N = 0, we say that the distribution scales

homogeneously with degree D.

The mass dimension of ∂aϕ ∈ P is defined by:

dim(∂aϕ) :=
d− 2

2
+ |a|, a ∈ Nd. (8.55)

In practice, one uses the usual rule to determine the mass dimension: Each term in the
Lagrangian (in d dimensions) must have dimensions d and dimm = 1.

The final definition before the last axiom is:
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Scaling and Mass expansion (Sm-Expansion) page 98 [24]:

A distribution f (m) ∈ D′(Rk) or f (m) ∈ D′(Rk \ {0}), depending on m ≥ 0, fulfills the
Sm-expansion with degree D ∈ R if and only if, for all l, L ∈ N, there exist distributions
u
(m)
l , t

(m)
L+1 ∈ D′(Rk \ {0}) such that

f (m)(X) =
L∑
l=0

mlu
(m)
l (X) + τ

(m)
L+1(X) ∀L ∈ N, m > 0, . (8.56)

where X := (x1, . . . , xk), and the following properties hold true:

(a) The leading term u0 ≡ u
(m)
0 is independent of m and it agrees with f (m=0). u0 = f (m=0).

(b) For l ≥ 1 the m-dependence of u(m)
l (X) is a polynomial in ln m

M , where M > 0 is a fixed
mass scale. Explicitly, there exist m-independent distributions ul,p ∈ D′(Rk \ {0}) such
that

u
(m)
l (X) =

Pl∑
p=0

lnp
(m
M

)
ul,p(X), Pl <∞, ∀m > 0.. (8.57)

(Of course, the distributions ul,p may depend on M .)

(c) u
(m)
l (X) scales almost homogeneously in X with degree D − l and, hence, this holds also

for all ul,p, p = 0, 1, . . . , Pl.

(d) τ
(m)
L+1(X) is almost homogeneous with degree D under the scaling (X,m) 7→ (ρX,m/ρ).

(e) τ
(m)
L+1 is smooth in m for m > 0 and

lim
m→0

(m
M

)−(L+1)+ϵ
τ
(m)
L+1 = 0 ∀ϵ > 0. (8.58)

All properties are meant in the weak sense; e.g., property (e) holds for ⟨t(m)
L+1, h⟩ for all

h ∈ D(Rk \ {0}).
Finally, the last axiom states that for monomials A1, ..., An ∈ P that do not depend on m,

the numerical distribution:

r
(m)
n−1,1(A1(x1), ...;An(xn)) := ω0(R

(m)
n−1,1(A1(x1)⊗ ...⊗An(xn))). (8.59)

Fulfill the Sm-expansion with degree D :=
∑n

l=1 dim(Al). One could use a weaker version of
this axiom and impose that r(m) fulfills the axioms with sd(r(m)) ≤ D.

Strong Sm-expansion axiom

There is another axiom that can be imposed on the retarded product called ” a stronger version
of the Sm expansion”. It states that in each inductive step,when expanding the distribution from

94



D′(Rk\{0}) to D′(Rk), one needs to map the zeros of u0, ulp to the zeros of the new distributions.

Renormalization has to be done in each order of ℏ

This condition requires rn,1(A1(x1), ...;An+1(xn+1)) ∼ ℏ
∑n+1

j=1 |Aj |/2 for |Aj | ∼ ℏ0 ∀j (we use the
notation 0 ∼ ℏr ∀r).

Using this axiom we guarantee that 0 ∈ D′(Rn \∆n) is extended to 0 ∈ D′(Rn) (the distri-
bution “0” is trivially extended and we do not sum any terms, since it would mean that we are
computing renormalization of something that is not of the same order in ℏ) and that the limit
ℏ → 01 is equal to the classical retarded product. The proof of this statement uses the T− prod-
uct that will be constructed later. It can be found at [25]. The proof that the retarded product
constructed outside the thin diagonal satisfies the renormalization condition can be found in [24]
Chapter 3.2.

8.6 Extension of distributions

The construction process shown in the previous section solves the problem to the entire Minkowski
space-time except for a point. The next step is to close that hole. There are more than one way
to do it. For example, we could define a distribution Rn,1(x1, ..., xn;x) following the aforemen-
tioned construction outside the thin diagonal and Rn,1 = 0 if x1 = x2 = ... = x. Although it
defines a distribution in the entire space, it is very artificial and it certainly does not have the
properties we would expect for the retarded product (for example, the field equation). Hence,
when constructing the retarded product in the points not included in the construction above,
we have to impose some rules to guarantee that they will be “well behaved” as a distribution[70]
page 57. To do it, we introduce the scaling degree of a distribution t: sd(t) ∈ R. This
number basically controls the divergency of the singularity of a distribution. For t ∈ D′(Rk) or
D′(Rk \ {0}). It is defined as:

sd(t) := inf{r ∈ R| lim
ρ→0

ρrt(ρx) = 0}

inf ∅ := −∞, inf R := 0. (8.60)

The expansion needs to be done in such a way that the scaling degree is the same for the
unrenormalized distribution and the extended distribution. One can prove that

sd(∆+(x)) = d− 2. (8.61)

Since:
1remember: we do not have any kind of topology, thus the limit is simply plugging ℏ = 0
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∆+(ρx) =

∫
ddp

(2π)d−1
θ(p0)δ(p

2 −m2)e−ipρx

ρp ≡ u⇒
∫

ddu

ρd(2π)d−1
θ(
u0
ρ
)δ(

u2

ρ2
−m2︸ ︷︷ ︸

1
ρ2

(u2−(ρm)2)

)e−ipρx = ρd−2∆+
ρm(x). (8.62)

And similarly

sd(∆ret(x)) = sd(∆(x)) = sd(∆+(x)) = d− 2. (8.63)

One can also prove that

sd(t · u) = sd(t) + sd(u). (8.64)

hence

sd
(
(∆+(x))n

)
= n(d− 2). (8.65)

The properties mentioned above will be important because given a distribution t0 ∈ D′(Rk \
{0}) with sd(t), then:

• if sd(r) < k the extension t of t0 exist, preserve the scaling degree, i.e, sd(t) = sd(t0) and
is given by the same formula as t0

• if k < sd(r) <∞ there are more than one possible extension t of t0 preserving the scaling
degree but they are connected to each other by:

t = t0 +
∑

|a|<sd(t)−k

Ca∂
aδ(x), Ca ∈ R. (8.66)

i.e, they only differ by local terms. [24] page 117

The (informal) idea behind the formula above is that we only need to worry about distribu-
tions that are bad behaved in the origin, i.e., can not be treated as a function near the origin.

An important remark: This is only informal in the sense that we can define the distributions
passing through a singularity [2]. The “divergence” only indicates the cases where we have some
“liberty” to sum counter-terms. We will return to this example once the necessary tools are
developed to extend a distribution.
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Figure 8.1: v(x) with α = 1 and β = 2. Available at [2] pg2143.

8.7 Existence and uniqueness of extension

In (8.6) we stated that there are extensions of a distribution t0 ∈ D′(Rk \ {0}) → D′(Rk) that
preserve the scaling degree. In this section, we will prove they indeed exist and show that they
also preserve the other axioms. To do it, we use the W-expansion. Let us start with the easiest
case first:

8.7.1 t0 ∈ D′(Rk \ {0}) and sd(t0) < k:

To prove that there is an extension t that satisfies sd(t) = sd(t0) and t(x) = t0(x)∀ ∈ Rk \ {0}
we will adapt the prove given in [12]. To do it, we need a preliminary result: The space of
distributions sequentially is complete, that is, given tn(x) ∈ D′(Rk) a sequence of distributions
such that |⟨tn−tm, g⟩| → 0 for sufficiently big n,m ∈ N for all g ∈ D(Rk) then there is t ∈ D′(Rk)
such that tn → t. The proof of this statement can be found in [47] Chapter 2. Once that has
been said, consider the smooth functions v(x) given by:

v(x) :=


0 ∥x∥ ≥ 2

0 ≤ g(x) ≤ 1 1 ≤ ∥x∥ ≤ 2

1 ∥x∥ ≤ 1

(8.67)

and χ(x) = 1− v(x) given by

χ(x) =


0, ∥x∥ < 1

0 ≤ χ(x) ≤ 1 1 ≤ ∥x∥ ≤ 2

1 ∥x∥ ≥ 2

(8.68)

.For k = 1 we can drawn such a function:
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Figure 8.2: χ(x) Available at [24] pg. 117

For n > 0, n ∈ N, define χn(x) := χ(nx). Note that if h ∈ D(Rk), then χnh ∈ D
(
Rk \ {0}

)
∀n >

0. Hence, ⟨t0, χnh⟩ exists. Due to the definition of χ, we have limn→0 χn(x) = 1. Hence, if can
prove that a distribution t defined by

t(x) = lim
n→∞

χn(x)t
0(x) (8.69)

is well defined, t is an extension of t0. To prove that the limit above exists, we prove it is a
Cauchy sequence. Let n > m ∈ N, vn(x) := v(nx) and g ∈ D(Rk), then:

⟨χn(x)t0(x), g(x)⟩ − ⟨χm(x)t0(x), g(x)⟩

= ⟨(1− vn(x))t
0(x), g(x)⟩ − ⟨(1− vm(x))t

0(x), g(x)⟩

= ⟨vm(x)t0(x), g(x)⟩ − ⟨vn(x)t0(x), g(x)⟩

= m−k⟨v(x)t0(m−1x), g(m−1x)⟩ − n−k⟨v(x)t0(n−1x), g(n−1x)⟩. (8.70)

In the last line, we have made a change in variables: nx = u ⇒ dx = n−kdu. We kept
the variable x for simplicity. We claim that the expression above gets arbitrary small for n,m
sufficiently big. To prove it note that defining ϵ := n−1 we have:

n−k⟨v(x)t0(n−kx), g(n−dx)⟩ = ⟨ϵ−kt0(ϵx), v(x)g(ϵx)⟩ → 0. (8.71)

Since n → ∞ ⇐⇒ ϵ → 0, sd(t0) < k and t0 is acting in a smooth function 2. Hence,
χn(x)t

0(x) is a Cauchy sequence and converges to t ∈ D′(Rd), which is an expansion of t0.

To prove that it is unique, let t1 and t2 be extensions of t0 with the same scaling degree.
Then

supp(t1 − t2) ⊆ {0},

so that
t1 − t2 =

∑
a

Ca∂
aδ(k)

2v(x)g(ϵx) is smooth because v and g are smooth and supp(v(x)g(ϵx)) ⊆ supp(v(x)) = B2(0)
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for some coefficients Ca. However, since

sd(t1 − t2) ≤ max{sd(t1), sd(t2)} = sd(t0) < k,

while
sd(∂aδ(k)) = k + |a|,

we see that Ca = 0 for all a.

8.7.2 t0 ∈ D′(Rk \ {0}) and sd(t0) ≥ k:

In this case, let ω = sd(t0)− k ∈ R+, ⌊ω⌋ the integer part of ω and the set

Dω ≡ Dω(Rk) :=
{
h ∈ D(Rk)|∂ah(0) = 0 for a ≤ ⌊ω⌋

}
. (8.72)

Note that D(Rk \ {0}) ⊂ Dω (if h(0) = 0, then, by definition, supp(h) = Rk \ {0} and
h ∈ D′ω). We claim that every t0 ∈ D′(Rk \ {0}) has a unique extension tω ∈ D′ω. To prove it,
first note that if h ∈ Dω one can write ([1] chapter 38.2 and [2] chapter 39.2):

h(x) =
∑

a=⌊ω⌋+1

xaga(x), ga(x) ∈ D(Rk). (8.73)

Using this decomposition, we define:

⟨tω, h⟩ :=
∑

|a|=⌊ω⌋+1

⟨xat0, ga⟩. (8.74)

The extension of xat0,is guaranteed by the first part, since

sd(xat0) ≤ sd(t0)− (⌊ω⌋+ 1) < k.. (8.75)

Therefore, if we are able to construct a projector W : D(Rk) → Dω, it defines an extension
tW (W-expansion) by:

⟨tW , h⟩ := ⟨tω,Wh⟩. (8.76)

If h ∈ D(Rk \ {0}), then Wh = h since D(Rk \ {0}) ⊂ Dω. Thus:

⟨tW , h⟩ := ⟨tω,Wh⟩ = ⟨t0, h⟩. (8.77)

hence, it is indeed an extension. To prove that sd(tW ) = sd(t0) we refer to [12]. The W
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projections are, in general, not unique. The most general projection that one can construct is
given by:

Wh(x) := h(x)−
∑
|a|≤⌊ω⌋

∂ah(0)ωa(x). (8.78)

with ω ∈ D(Rk), ∂bωa(0) = δba and b < ⌊ω⌋.

As an example of historical importance, we can construct the “central solution” [29]:

Wh(x) := h(x)−
∑
|a|≤⌊ω⌋

xa

a!
∂ah(0). (8.79)

Remark: If t0 does not decay fast enough at infinity, we have to change the projection above
by

Wh(x) := h(x)−
∑
|a|≤⌊ω⌋

xa

a!
ω(x)∂ah(0). (8.80)

with ω ∈ D(Rk),ω(0) = 1 and ∂aω(0) = 0. The above projector was used in the original
paper by Henri Epstein and Vladimir Glaser [29]. Further examples of w’s can be found in [60]
and references therein.

Once the function ω is fixed, ⟨t0,Wh⟩ is uniquely determined. But we still have some freedom
to “sum” the terms we subtracted, namely:

∑
|a|≤ω Ca∂ah(0), Ca ∈ C. Those are the famous

“counter terms” of quantum field theories. The constants Ca need to be fixed using physical data
or some symmetry (see Chapter 4 [24]).

The great part of this formalism is that we can prove that all extensions of t0 (especially
those respecting the axioms) are W projections. The proof can be found on [24] page.122. The
price of using these methods is that the scaling power N (8.54) may be lost but, in the worst-case
scenario, it increases to N +1. An important remark we are not going to explore in this work is
that to maintain a symmetry, we have to impose further constrains to the projection, and that
is not always possible. When such a case occurs, we obtain the famous anomalies of quantum
field theory. For more details, we refer again to Chapter 4 [24].

8.7.3 Example

To motivate the discussion, we use a similar example of (8.44) adapted to physics (this example
was extracted from [24] page 122). Consider the electric potential in 3 dimensions with a point
charge at the origin:
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∇2Φ(x) = −ρ(x)
ϵ0

= −4πqδ(x). (8.81)

The solution is well known:

Φ(x) =
q

∥x∥
. (8.82)

We could a priori say that this distribution exists only in D′(R3 \{0}).But, since sd(Φ(x)) =

1 < 3, we can compute the extension using the same formula as above. The intuition is that this
distribution exists because given g(x) ∈ D(x):

⟨Φ, g⟩ =
∫
d3x

q

∥x∥
g(x) ∼

∫ ∞
0

dr r2
q

r
g(x) <∞. (8.83)

Hence, the formula is sufficiently “well behaved”. On the other hand, the energy density is
given by:

U =
1

4π2
∥E⃗∥2 = 1

4π2
q2

∥x∥4
. (8.84)

Again, the formula above is defined only in D′(R3 \ {0}). But differently from last time
sd(U) = 4 > 3. Hence, we have more than one possibility to extend this distribution and still
maintain the scaling degree. Note that differently from the electric potential:

⟨U, g⟩ = 1

4π2

∫
d3x

q2

∥x∥4
g(x) ∼

∫ ∞
0

r2

r4
g(x) ∼ lim

r→0

1

r
→ ∞. (8.85)

Let us calculate an example using the central solution for the distribution (8.84).In this case,
ω = sd(U)− 3 = 1.The ω subspace is given by:

Dω = {h ∈ D(Rk)|∂ah(0) = 0, a = 1, 2, 3}. (8.86)

And the W− projection reads:

Wh(x) = h(x)−
3∑

k=1

ωk(x)∂
kh(0)− ω0(x)h(0). (8.87)

The central solution:
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h(x)− ω(x)(h(0)− ∇⃗ · h⃗(0)). (8.88)

The UW is now given by:

⟨U,Wh⟩ =
∫
d3x

q

4π∥x⃗∥4
(
h(x)− ω(x)(h(0)− ∇⃗ · h⃗(0))

)
. (8.89)

And the most general extension we can do is:

⟨U, h⟩ = ⟨UW , h⟩+ C0h(0) + C⃗k · ∇⃗h(0), C⃗k = (cx, cy, cz) ∈ R3. (8.90)

The self-energy is calculated for h(x) = 1. The simplest choice we can make to perform this
calculation is ω(x) = 1. Using these parameters, we conclude

⟨U, 1⟩ = C0
!
= mc2. (8.91)

The self-energy of the particle.

From the example above, we learned how to extend distributions avoiding divergences and
the “extra term” we include in the most general expansion must be fixed by its physical meaning.
This procedure is analogous to “subtracting infinity” from the usual QFT. Unfortunately, the W
expansion is not very good for practical computations. In the future, we will use other methods
of regularization that are easier to manipulate.

8.8 Inductive construction of the retarded product in

the entire space

Now we have all the tools to construct the retarded product in the entire space. The goal is
to inductively construct Rn,1 in such a way that all the basic and renormalization axioms are
fulfilled. Off-the-diagonal, the work is done. If we find an extension to the thin diagonal that
preserves the scaling degree, we finish the construction of Rn,1. The “formal” way of doing
it is very technical and goes in the opposite direction to what the thesis is intended to. The
construction can be found in Chapter 3.2.4, page 130 [24]. Instead of repeating the steps of the
book, we present a different approach. We take examples, show how to solve them, and show
how the recipe generalizes. To solve the extension problem, we will use what is called “differential
renormalization”. This method is the easiest to be implemented in the configuration space. We
postpone the topic because we will face similar problems in the construction of T− product,
studied mainly in the context of scattering theory. Since the way to solve the problem is the
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same, we present it and use it to solve both the T− and R− products. The solution can be
interpreted as Feynman diagrams. For the R− product, this representation is not very useful.
On the other hand, for the T− product is very useful to compute amplitudes.
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Chapter 9

T-product

9.1 Introduction

Once the construction of the R−product is complete, we can focus on the construction of the
time-order product, also known as the T− product. The construction itself is very similar, and
the R− and T− products are closely related to each other through the S matrix. Here we will
not explain the importance of the T product and the S matrix to scattering theory since, pre-
sumably, those reading this work are initiated in quantum field theory. If for some reason the
reader has not previously studied the subject, we can refer to a series of books and notes:The
first two are closely related to these dissertation [24] and [67] chapter 3.3. The notes of Klaus
Fredenhangen on QFT are always a good place to learn basic concepts [35]. Last but not least,
the last two references are the “standard ones” in QFT [68, 75].

Once that has been said, we will axiomatically construct the T− product, just as we have done
with the R−product. The axioms are divided into the “basic axioms” and the “renormalization
conditions”. The axioms are partially copied without edition from [24];

9.1.1 Basic axioms:

(I)Linearity, (II) Symmetry in the arguments, (III) Initial condition T1(F ) = F and (IV) causal-
ity:

Tn(A1(x1), ..., An(xn))

=Tk(Aπ(1)(xπ(1)), ...., Aπ(k)(xπ(k))) ⋆ Tn−k(Aπ(k+1)(xπ(k+1)), ..., Aπ(n)(xπ(n))) (9.1)

whenever {xπ(1), ..., xπ(k)} ∩ ({xπ(k), ..., xπ(n)}+ V −) = ∅.

Probably, the most important formula for practical computation is that the unrenormalized
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time order product on M̌ := {(x1, ..., xn) ∈ Mn|xl ̸= xj∀1 ≤ l < j ≤ n} 1 is given by:

Tn(A1(x1)⊗ ....⊗An(xn)) = A1(x1) ⋆∆F ... ⋆∆F An(xn). (9.2)

Where ∆F is the Feynman propagator:

∆F (x) = ∆+(x)θ(x0) + ∆+(−x)θ(−x0) (9.3)

and ⋆F ≡ ⋆∆F indicates that we have changed the Wightman two-point function by the
Feynman propagator in the formula of the star product.

9.1.2 Renormalization conditions:

These additional axioms for the T -product read:

(v) Field independence:
δTn/δφ = 0,

or more explicitly,

δTn(F
⊗n)

δφ(x)
= nTn

(
δF

δφ(x)
⊗ F⊗(n−1)

)
. (v)

Similarly to the R-product, this axiom is equivalent to the requirement that Tn satisfies
the causal Wick expansion.

(vi) ∗-structure and field parity: Field parity is the condition

α ◦ Tn = Tn ◦ α⊗n. (vi)

The formulation of the ∗-structure condition is more complicated. As discussed in the
historical introduction, one of the most important features of the S-matrix is that it
is unitary, i.e, S∗ = S−1. We can prove that for every S ∈ VJλK of the form S =

1+
∑∞

n=1 anλ
n, exist S−1 ∈ VJλK. The construction is done term by term in λ. 2. Hence,

the existence of S−1 is guaranteed. The ∗- axiom is chosen in such a way S∗ = S−1. For
the unrenormalized Tn(A1(x1), ..., An(xn)) ∈ D(M̌n) we can find a explicitly formula [24]
page 175:

(Tn(A1(x1), ..., An(xn)))
∗ = Tn(A

∗
1(x1), ..., A

∗
n(xn)). (9.4)

1the restriction of the domain is just a fancy way to write xj ̸= xk∀j, k ∈ {1, ..., n}
2For example,in first order in λ S−1 = 1− anλ because (1− anλ)(1 + anλ) = 1 +O(λ2)
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Where T is the “antichronological T− product” (the expansion of S−1(F ) := T (e
− iF

ℏ
⊗ ).

More details can be found in [24] chapter 3.3.

(vii) Poincaré covariance:

βΛ,a ◦ Tn = Tn ◦ β⊗nΛ,a ∀(Λ, a) ∈ P+
↑ .

(viii) Off-shell field equation:

Tn(φ(g)⊗ F1 ⊗ · · · ⊗ Fn−1) = φ(g)Tn−1(F1 ⊗ · · · ⊗ Fn−1)

+
i

ℏ

∫
dx dy g(x)∆F (x− y)

δ

δφ(y)
Tn−1(F1 ⊗ · · · ⊗ Fn−1). (viii)

where g ∈ D(M).

(ix) Sm-expansion: For all monomials A1, . . . , An ∈ P, the distributions

t(m)(A1, . . . , An)(x1 − xn, . . . , xn−1 − xn) := ω0

(
T (m)(A1(x1)⊗ · · · ⊗An(xn))

)
. (ix)

fulfill the Sm-expansion with degree D =
∑n

j=1 dimAj .

• Scaling degree: Similarly to the R-product, the Scaling degree axiom,

sd t(A1, . . . , An)(x1 − xn, . . . , xn−1 − xn) ≤
n∑
j=1

dimAj ∀A1, . . . , An ∈ Phom.

(Scaling Axiom)

is a less restrictive substitute for the Sm-expansion axiom.

(x) ℏ-dependence:

t(A1, . . . , An) ∼ ℏ
∑n

j=1 dimAj−n|Aj |/2. (x)

for all monomials A1, . . . , An which fulfill Aj ∼ h0 ∀j where |Aj | is the order of the field.

The scattering matrix is given by:

S(F ) := 1 +
∞∑
n=1

in

n!ℏn
Tn
(
F⊗n

)
≡ T (e

iF
ℏ
⊗ ). (9.5)

9.2 Construction of T product

We will inductively construct the T− product. Just as in the case of the retarded product, the
basic axioms are enough to construct the T product everywhere except in the thin diagonal ∆n.
The renormalization conditions extend the distribution to all points in Minkowski space-time.
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In this context we will first show (9.2), then following the steps of Epstein Glaser[29] show how
to construct inductively T in M \∆n. The extension is completely analogous to the extension of
the R− product, and therefore we will not repeat it here.

9.2.1 Proof of Tn(A1(x1)⊗ ....⊗ An(xn)) = A1(x1) ⋆∆F ... ⋆∆F An(xn)

Given a T− product Tn : F⊗nloc → F that meets the basic axioms and (x1, ..., xn) ∈ Mn, xi ̸=
xj∀i, j. We will prove the statement using induction on n. n = 1 is trivial. For pedagogical
reasons, we will first show the case n = 2, the generalization is immediate.

Since x1 ̸= x2, we can divide our analyses into three cases, I) x01 < x02, II) x02 < x01 and III)
x01 = x02 ⇒ (x1 − x2)

2 < 0. In the first case, we can use causality to write:

T2(A1(x1), A2(x2)) = T1(A1(x1)) ⋆ T1(A2(x2)) = A1(x1) ⋆ A2(x2). (9.6)

The second case is exactly the same with the changed index (1 ↔ 2):

T2(A1(x1), A2(x2)) = T1(A2(x2)) ⋆ T1(A1(x1)) = A2(x2) ⋆ A1(x1). (9.7)

In the third case, the two formulas above agree since for space-like distant points ∆+(x1 −
x2) = ∆+(x2 − x1). Explicitly:

A1(x1) ⋆ A2(x2) =
∞∑
l=0

ℏl

l!
Dl(A1(x1))(∆

+(x1 − x2))
lDl(A2(x2))

=
∞∑
l=0

ℏl

l!
Dl(A1(x1))(∆

+(x2 − x1))
lDl(A2(x2))

=
∞∑
l=0

ℏl

l!
Dl(A2(x2))(∆

+(x2 − x1))
lDl(A1(x1)) = A2(x2) ⋆ A1(x1). (9.8)

where

Dl(A1(x1)) :=

∫
dYl

δlA1(x1)

δϕ(y1)...δϕ(yl)
. (9.9)

We can summarize the tree cases using the Feynman propagator defined as:

∆F (x) := θ(x0)∆+(x) + θ(−x0)∆+(−x). (9.10)

Thus, in case I) ∆F (x1 − x2) = ∆+(x2 − x1), in case II)∆F (x1 − x2) = ∆+(x1 − x2), and in
case III), ∆F (x1−x2) = ∆+(x1−x2) = ∆+(x2−x1). Hence, changing the propagator ∆+ ↔ ∆F
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in (9.7) contemplates all possible scenarios:

T2(A1(x1), A2(x2)) = A1(x1) ⋆F A2(x2). (9.11)

Note that the product above is also symmetric since ∆F is.

To finish the proof, assume that Tn−1(A1(x1), ..., An−1(xn−1)) = A1(x1) ⋆F ... ⋆F An−1(xn−1)

for (x1, ..., xn−1) ∈ Mn−1 with xi ̸= xj ∀i, j. We want to show that a similar formula holds
for Tn(A1(x1), ..., An(xn)), (x1, ..., xn) ∈ Mn with xi ̸= xj ∀i, j. Let us consider without loss of
generality3 that x01 ≤ x0j ∀j ∈ {2, ..., n}.

Since x1 ∩ {x2, ..., xn}+ V − = ∅, we use causality to write:

Tn(A1(x1), ..., An(xn)) = A1(x1) ⋆ Tn−1(A2(x2), ..., An(xn))

= A1(x1) ⋆F Tn−1(A2(x2), ..., An(xn)). (9.12)

Using the induction hypothesis, we obtain:

Tn(A1(x1), ..., An(xn)) = A1(x1) ⋆F ... ⋆F An(xn). (9.13)

Since the product above is symmetric and linear in each entry, it satisfies the basic axioms
and the proof is complete.

The formula above is very useful for practical calculations (we will use it later) since it en-
ables us to calculate very quickly the lowest order of the unrenormalized T -product. Usually,
the same formula defines the T - product not only in M̌n but also in Mn \∆n. Unfortunately, the
construction of the T−product needs more than a formula in M̌, we need to construct it, just
as the construction of the R-product, in the entire space except in the thin diagonal. One can
construct it using the “splitting property” [67, 29, 61]. Another construction using partitions of
unity is given in [12] and [55]. Here we only indicate how one can construct it using induction,
but do not go through all the details of the calculation. For those, we refer to the references
cited above.

The formula worked on in this section has a nice interpretation in terms of Feynman diagrams.
To construct such diagrams, every point represents a field Ai and a line connecting Ai and Aj ,
a Feynman propagator. For example, consider A2(x) ⋆F A

2(y) = A2(x)A2(y) + 4ℏA(x)∆F (x −
y)A(y) + 2ℏ2∆2

F (x− y). Diagrammatically, we can represent it by:

3If it is not the case, let us say x0k ≤ x0j∀j ∈ {1, ..., n}j ̸= k, just relabel the indices with xk ≡ x1.
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Figure 9.1: The external lines represent powers of fields and internal lines powers of
Feynman propagator

9.2.2 Construction of the unrenormalized T− product on Mn \∆n

We divide the space into the following sets:

CI :={(x1, ..., xn) ∈ Mn|xi /∈ (xj + V −)∀i ∈ I, j ∈ IC}

with I ⊂ {1, ..., n}, I ̸= {1, ..., n}, I ̸= ∅. (9.14)

Note that any set of points (x1, ..., xn) in Mn \∆n is within at least one of the above sets.
Hence:

⋃
I

CI = Mn \∆n. (9.15)

And, for a given subset I causality implies:

T 0
n(A1(x1), ..., An(xn))

=T|I|(Ai1(xi1), ..., Ai|I|(xi|I|)) ⋆ T|I|c(Ai1(xi1), ..., Ai|I|c (xi|I|c )). (9.16)

The final step is to show that the formula above is the same when CI ∩CJ ̸= ∅. To simplify
the notation, we divide the proof into three cases. First, we consider ∅ ̸= I ⊂ J and enumerate
the indices such that I = {1, .., i}, J = {1, ..., i, i+1, ..., j} = I∪(Ic ∩ J) (which is always possible
due to the symmetry of T ). Hence: Ic = {i+1, ..., j, .., n} = J \ (I ∪ Jc) and Jc = {j +1, ..., n}.
Using the formula described above:

Tn(x1, ..., xn) = T|I|(x1, ..., xi) ⋆ T|I|c(xi+1, ..., xn)

=T|I|(x1, ..., xi) ⋆ T|J\I|(xi+1, ..., xj) ⋆ T|J |c(xj+1, .., xn). (9.17)

In the last equation, we have used causality and (x1, ..., xn) ∈ CJ . On the other hand:

T|J |(x1, ..., xj) ⋆ T|Jc|(xj+1, ..., xn)

=T|I|(x1, ..., xi) ⋆ T|Ic∩J |(xi+1, ..., xj) ⋆ T|Jc|(xj+1, ..., xn). (9.18)

In the last equation, we have used causality and (x1, ..., xn) ∈ CI .
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The second case is I = {1, ..., i}, J = {i + 1, ..., j} and J ∩ I = ∅. Again, we organize the
indices in a convenient form for simplicity. In that case Ic = J ∪ (Ic∩Jc) and Jc = I ∪ (Jc∩ Ic).
Hence, using causality, we can write:

TI(x1, .., xi) ⋆ T|Ic|(xi+1, ..., xn) = T|I|(x1, ..., xi) ⋆ T|J |(xi+1, ..., xj) ⋆ T|(I∪J)c|(xj+1, ..., xn).

(9.19)

On the other hand:

T|J |(xi+1, ..., xj) ⋆ T|Jc|(x1, ..., xi, xj+1, ..., xn)

=T|J |(xi+1, ..., xj) ⋆ T|I|(x1, ..., xi) ⋆ T|(J∪I)c|(xj+1, .., xn). (9.20)

Last but not least, note that CI ∩ CJ = ∅ implies (xi − xj)
2 < 0∀i ∈ I, j ∈ J (basically the

intersection means that xi is not in the past cone of xj and xj is not in the past cone of xi, i.e.,
xi is not in the future cone of xj). Thus,

T|I|(x1, ..., xi) ⋆ T|J |(xi+1, ..., xj) = T|J |(xi+1, ..., xj) ⋆ T|I|(x1, ..., xi). (9.21)

The last scenario is the mixture of the two above, when I ∩ J ̸= ∅ but I ⊈ J . In this
case, we define I = {1, ..., k, ..., i} and J = {k, ..., i, ..., j}. Using the notation {x1, .., xn} /∈
{y1, ..., ym}+ V − as synonym for xi /∈ (yj + V −)∀i ∈ {1, ..., n} j ∈ {1, ...,m} we can prove that

i I ∩ J = {k, ..., i}.

ii {x1, ..., xk−1} and {xi+1, ..., xj} are space-like.4

iii {xk, ...xi} /∈ {xi+1, ..., xn}+ V −.

iv {xk, ..., xi} /∈ {x1, ..., xk−1, xj+1, ..., xn}+ V −

The justification to the sentences above are:

i Trivial by the enumeration

ii It is consequence of the previously case, where CI ∩ CJ = ∅.

iii We use (xk, ..., xi) ∈ CI and (xk+1, ..., xn) are in the complement.

iv We use (xk, ..., xi) ∈ CJ and (x1, ..., xk−1, xj+1, ..., xn) are in the complement.

4Here we have a similar notation: (x− y)2 < 0∀x ∈ {x1, ..., xk−1} and y ∈ {xi+1, ..., xj}
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Now we just have to write the T− product both in CI and in CJ . In CI :

Tn(x1, ..., xn) = T|I|(x1, ..., xk, ..., xi) ⋆ T|IC |(xi+1, ..., xn)

=T|I∩J |(xk, ..., xi) ⋆ T|I\J |(x1, ..., xk) ⋆ T|IC |(xi+1, ..., xj , ..., xn)

=T|I∩J |(xk, ..., xi) ⋆ T|I\J |(x1, ..., xk) ⋆ T|J∩IC |(xi+1, ..., xj) ⋆ T|IC\J |(xj+1, ..., xn). (9.22)

On the other hand, in CJ :

Tn(x1, ..., xn) = T|J |(xk, ...xj) ⋆ T|JC |(x1, ..., xk−1, xj+1, ..., xn)

=T|J∩I|(xk, ..., xi) ⋆ T|J\I|(xi+1, ..., xj) ⋆ T|JC |(x1, ..., xk−1, xj+1, ..., xn)

=T|J∩I|(xk, ..., xi) ⋆ T|J\I|(xi+1, ..., xj) ⋆ T|I∩JC |(x1, ..., xk) ⋆ T|JC\I|(xj+1, ..., xn). (9.23)

Since

T|I\J |(x1, ..., xk) ⋆ T|J∩IC |(xi+1, ..., xj) = T|J\I|(xi+1, ..., xj) ⋆ T|I∩JC |(x1, ..., xk). (9.24)

Both expression are the same.

The proof that the aforementioned construction of the T product satisfies the axioms can
be found in [24] Chapter 3.3. We also recommend the original work of Epstein Glaser [29] and
the discussion related to causal perturbation theory in [67]. The method used in these last two
references is different, since they do not work with star products, but the construction follows
the same philosophy of dividing the domain.

This construction is different from the construction cited in the beginning of the section.
Naturally, one could ask if the construction of the T− product on Mn \ ∆n is unique? The
answer is yes and the proof can be found with minor adaptations at [47], Theorem 2.4 page 42.
Once again, we have to extend the domain to the thin diagonal. We will do it now with some
examples.

9.3 Example 1: R- product considering Lint = −κ
∫
dx g(x)ϕ(x)

up to order 2

In the classical case, the example was the simplest one. In the quantum case, it will be as well.
We start with the definition of retarded field:

ϕret(x) ≡ R(e
S/ℏ
⊗ , ϕ(x)) = R0,1(ϕ(x)) +R1,1(S/ℏ, ϕ(x)) +R2,1(

S ⊗ S

2ℏ2
, ϕ(x)) + .... (9.25)
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The axiom of initial condition gives us:

R0,1(x) = ϕ(x). (9.26)

In Section (8.3), we found a formula for R1,1(x) (8.21):

R1,1(−
κ

ℏ

∫
dy g(y)ϕ(y), ϕ(x)) =

iκ

ℏ

∫
dy g(y)[ϕ(y)ϕ(x)]⋆θ(x

0 − y0). (9.27)

The commutator is very simple to calculate:

[ϕ(y)ϕ(x)]⋆ = ϕ(y) ⋆ ϕ(x)− ϕ(x) ⋆ ϕ(y)

= ϕ(y)ϕ(x) + ℏ∆+(y − x)− (ϕ(x)ϕ(y) + ℏ∆+(x− y))

= ℏ
(
∆+(y − x) + ∆+(x− y)

)
= −iℏ∆(x− y). (9.28)

In the above equation, we have used:

∆+(y − x)−∆+(x− y) = i∆(y − x) = −i∆(x− y). (9.29)

Last but not least, we use one more relation involving the propagators:

∆(x)θ(x0) = ∆ret(x). (9.30)

and conclude:

R1,1(x) =
iκ

ℏ

∫
dy g(y)(−iℏ∆(x− y))θ(x0 − y0) = κ

∫
dy g(y)∆ret(x− y). (9.31)

The computation of higher orders is even simpler! As discussed in section (8.3), the inductive
construction ofR2,1, consists in calculating commutations of the form [R0,1(ϕ(a)), R1,1(ϕ(b)), ϕ(c)).
But R1,1 ∈ C. Therefore, all the commutators are zero and we do not have any higher orders.
Thus:

ϕS(x) = R(e
S
ℏ , ϕ(x)) = ϕ(x) + κ

∫
dy g(y)∆ret(x− y). (9.32)

That is exactly the classical result (7.16)!
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9.4 Example 2: R- product considering Lint = −κ
∫
dx g(x)ϕ2(x)

up to order 2

Again, we start with

R(e
S/ℏ
⊗ , ϕ(x)) = R0,1(ϕ(x)) +R1,1(S/ℏ, ϕ(x)) +R2,1(

S ⊗ S

2ℏ2
, ϕ(x)). (9.33)

To organize the calculation, we will compute each term individually starting by R0,1(ϕ(x)) =

ϕ(x).

R1,1(S/ℏ, ϕ(x))

By definition:

R1,1(S/ℏ, ϕ(x)) = R1,1(−
κ

ℏ

∫
dy g(y)ϕ2(y), ϕ(x)) = −κ

ℏ

∫
dy g(y)R1,1(ϕ

2(y), ϕ(x)). (9.34)

using (8.21):

R1,1(S/ℏ, ϕ(x)) = − iκ
ℏ

∫
dy g(y)[ϕ2(y), ϕ(x)]⋆θ(x

0 − y0). (9.35)

To calculate the commutator we use:

ϕ2(y) ⋆ ϕ(x) = ϕ2(y)ϕ(x) + ℏ
δϕ2(y)

δϕ
∆+(y − x)

δϕ(x)

δϕ
+ .... (9.36)

Where the ... indicates higher derivatives terms that are zero and δA(ϕ(x))
δϕ is a short notation

for:

δA(ϕ(x))

δϕ
:=

∫
dy
δA(ϕ(y))

δϕ(x)
. (9.37)

Hence:

ϕ2(y) ⋆ ϕ(x) = ϕ2(y)ϕ(x) + 2ℏϕ(y)∆+(y − x)

ϕ(x) ⋆ ϕ2(y) = ϕ(x)ϕ2(y) + 2ℏϕ(y)∆+(x− y)

⇒
[
ϕ2(y), ϕ(x)

]
⋆
= 2ℏϕ(y)

(
∆+(y − x)−∆+(x− y)

)
= 2ℏϕ(y)(−i∆(x− y)). (9.38)

In the above equation we have once again used:
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∆+(y − x)−∆+(x− y) = i∆(y − x) = −i∆(x− y). (9.39)

Hence:

R1,1(ϕ
2(y), ϕ(x)) = 2κ

∫
dy g(y)ϕ(y)∆ret(x− y) = Rcl(S, ϕ(x)). (9.40)

To derive the previously result we have used:

∆(x)θ(x0) = ∆ret(x). (9.41)

In first order we recover the classical product and do not have any quantum corrections.

Now we proceed to the next term.

R2,1(
S⊗S
2ℏ2 , ϕ(x))

Once again we start by a simple definition:

R2,1(
S ⊗ S

2ℏ2
, ϕ(x)) =

κ2

2ℏ2

∫
dx1dx2 g(x1)g(x2)R2,1(ϕ

2(x1), ϕ
2(x2);ϕ(x)). (9.42)

Remark: We will omit the ⋆ when writing []⋆ ≡ [] when there is no risk of confusion.

The first step in the inductive construction is to restrain the domain. On M1 we have the
following relation (8.27):

R2,1(ϕ
2(x1), ϕ

2(x2);ϕ(x))

= −θ(x0 − x01)

([[
ϕ2(x2), ϕ

2(x1)
]
, ϕ(x)

]
θ(x01 − x02)+[

ϕ2(x1),
[
ϕ2(x2), ϕ(x)

]]
θ(x0 − x02)

)
. (9.43)

Before continuing, let us calculate [ϕ2(x2), ϕ
2(x1)]:
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ϕ2(x2) ⋆ ϕ
2(x1) = ϕ2(x2)ϕ

2(x1) + ℏ
δϕ2(x2)

δϕ
∆+(x2 − x1)

δϕ2(x1)

δϕ

+
ℏ2

2

δ2ϕ2(x2)

δ2ϕ
(∆+(x2 − x1))

2 δ
2ϕ2(x1)

δ2ϕ

= ϕ2(x2)ϕ
2(x1) + 4ℏϕ(x2)ϕ(x1)∆+(x2 − x1) + 2ℏ2(∆+(x2 − x1))

2. (9.44)

Hence:

[ϕ2(x2), ϕ
2(x1)] = 4ℏϕ(x2)ϕ(x1)(∆+(x2 − x1)−∆+(x1 − x2))

+ 2ℏ2
{
(∆+(x2 − x1))

2 − (∆+(x1 − x2))
2
}

= 4ℏiϕ(x2)ϕ(x1)∆(x2 − x1) + ω0(R1,1(ϕ
2(x2);ϕ

2(x1))). (9.45)

In the last equation, we have used

ω0(R1,1(ϕ
2(y);ϕ2(z))) ≡ 2ℏ2

i

{
(∆+(y − z))2 − (∆+(z − y))2

}
Using this result we can calculate the next term,[[ϕ2(x2);ϕ2(x1)], ϕ(x)]. To do it, we use:

ϕ(x1)ϕ(x2) ⋆ ϕ(x) = ϕ(x)ϕ(x1)ϕ(x2) + ℏ∆+(x1 − x)ϕ(x2) + ℏ∆+(x2 − x)ϕ(x1). (9.46)

Hence:

[[ϕ2(x2), ϕ
2(x1)], ϕ(x)] = −4ℏ2∆(x2 − x1) (∆(x1 − x)ϕ(x2) + ∆(x2 − x)ϕ(x1)) . (9.47)

The calculation of the other term is analogous:

[ϕ2(x1), [ϕ
2(x2), ϕ(x)]] = −4ℏ2∆(x2 − x)∆(x1 − x2)ϕ(x1). (9.48)

Combining the results above, on M1, the expression for the retarded product is:

R2,1(x) = − κ2

2ℏ2

∫
dx1dx2 g(x1)g(x2)θ(x

0 − x01)(
(−4ℏ2∆(x2 − x1)(∆(x1 − x)ϕ(x2) + ∆(x2 − x)ϕ(x1))θ(x

0
1 − x02))

− 4ℏ2∆(x2 − x)∆(x1 − x2)ϕ(x1)θ(x
0 − x02)

)
. (9.49)

We can simplify the expression above using ∆(x)θ(x0) = ∆ret(x):
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R2,1(x) = 2κ2
∫
dx1dx2 g(x1)g(x2)

(
∆ret(x1 − x2)∆

ret(x− x1)ϕ(x2)

+ ∆ret(x1 − x2)∆
ret(x− x2)ϕ(x1)−∆ret(x− x2)∆(x1 − x2)θ(x

0 − x01)ϕ(x1)

)
. (9.50)

The expression is still not as we want. We factorize ∆(x1 − x2) using the identity:

∆(x1 − x2) = ∆(x1 − x2)(θ(x
0
1 − x02) + θ(x02 − x01)) = ∆ret(x1 − x2)−∆ret(x2 − x1). (9.51)

To finally get the final result:

R2,1(x) = 2κ2
∫
dx1dx2 g(x1)g(x2)∆

ret(x1 − x2)∆
ret(x− x1)ϕ(x2) + x1 ↔ x2. (9.52)

We have used the notation x1 ↔ x2 to indicate that there are more terms identical to the
written ones except that we need to change x to y.

Changing variables:

R2,1(x) = 4κ2
∫
dx1dx2 g(x1)g(x2)∆

ret(x− x1)∆
ret(x1 − x2)ϕ(x2). (9.53)

The expression above is clearly symmetric under exchange x1 ↔ x2. To complete the con-
struction, we need to calculate R2,1(x) on M2. Due to the symmetry of the problem, that is
equivalent to changing x1 → x2. Since both expressions are equal, the final result is simply:

R2,1(x) = 8κ2
∫
dx1dx2 g(x1)g(x2)∆

ret(x− x1)∆
ret(x1 − x2)ϕ(x2). (9.54)

Once again, we recover the classical product. Just as in the case of Lint = −κ
∫
dx g(x)ϕ(x),

we do not have any quantum corrections. We can, actually, claim a stronger sentence about
quantum corrections of this interaction. We claim that there is no quantum correction in any
order of perturbative expansion. We can prove this using an induction argument. Essentially,
what we are going to show is that 1

ℏnRn,1(S
⊗n, ϕ(x)) is independent of ℏ. Since the construction

is carried out in such a way that we recover the classical expression when ℏ = 0, the quantum
and the classical retarded product are the same.

Since we have proved that R1,1(
S
ℏ ;ϕ(x)) and R2,1(

S⊗2

ℏ2 ;ϕ(x)) are independent of ℏ, the begin-
ning of the induction is already complete. Suppose that the argument holds for Rn,1(S

⊗n

ℏn , ϕ(x)).
Now, let us consider the field equation axioms for Rn+1,1(

S⊗n+1

ℏn+1 , ϕ(x)):
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Rn+1,1(
S⊗n+1

ℏn+1
, ϕ(x)) = −ℏ

∫
dy∆ret(x− y)

n∑
l=1

Rn,1

(
S1
ℏ

⊗ ...
Ŝl
ℏ

⊗ ...⊗ Sn−1
ℏ

;
1

ℏ
δSl
δϕ(y)

)
.

(9.55)

Using δS
δϕ(y) = 2g(y)ϕ(y) and that all interactions are equal, we can rewrite the expression

above as:

Rn+1,1(
S⊗n+1

ℏn+1
, ϕ(x)) = −(n− 1)ℏ

∫
dy∆ret(x− y)Rn,1(

S⊗n

ℏn
,
2g(y)ϕ(y)

ℏ
)

= −2(n− 1)ℏ
∫
dy g(y)∆ret(x− y)Rn,1(

S⊗n

ℏn
, ϕ(y)). (9.56)

Using the inductive hypothesis, Rn,1(S
⊗n

ℏn , ϕ(y)) is independent of ℏ. Thus, Rn+1,1 is also
independent of ℏ and that completes the proof.

9.5 Example 3: R- product considering Lint = −( λ4!)
∫
dx g(x)ϕ4(x)

up to order 2

Just as in the case of the classical retarded product, the interaction described in this problem
leads to a much more sophisticated expression, compared to the case of Lint =

∫
dx g(x)ϕ2 or

Lint =
∫
dx g(x)ϕ. We will derive the expression, but we will not work through the renormaliza-

tion.

We star with the definition:

ϕS(x) ≡ R(e
−

( λ
4!

)

ℏ
∫
dx1 g(x1)ϕ4(x1)

⊗ ;ϕ(x)) = R0,1(ϕ(x))

+R1,1(−
( λ4!)

ℏ

∫
dx1 g(x1)ϕ

4(x1);ϕ(x))

+R2,1(
( λ4!)

2

2ℏ2

∫
dx1 g(x1)ϕ

4(x1),

∫
dx2 g(x2)ϕ

4(x2);ϕ(x)) +O((
λ

4!
)3). (9.57)

Using linearity, we can write:

R1,1(−
( λ4!)

ℏ

∫
dy g(x1)ϕ

4(x1);ϕ(x)) = −(
λ

4!
)

∫
dx1 g(x1)R1,1

(
ϕ4(x1);ϕ(x)

)
R2,1(

( λ4!)
2

2ℏ2

∫
dx1 g(x1)ϕ

4(x1),

∫
dx2 g(x2)ϕ

4(x2);ϕ(x))

=
( λ4!)

2

2ℏ2

∫
dX2 g(x1)g(x2)R2,1(ϕ

4(x1), ϕ
4(x2);ϕ(x)). (9.58)
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The initial condition reads:

R0,1(ϕ(x)) = ϕ(x). (9.59)

Now, let us calculate R1,1. To do it,we use (8.21):

R1,1(−
( λ4!)

ℏ

∫
dx1 g(x1)ϕ

4(x1), ϕ(x))

= −
( λ4!)

ℏ

∫
dx1 g(x1)(−i)

[
ϕ4(x1), ϕ(x)

]
θ(x0 − x01)

= i
( λ4!)

ℏ

∫
dx1 g(x1)(ϕ

4(x1) ⋆ ϕ(x)− ϕ(x) ⋆ ϕ4(x1))θ(x
0 − x01)

= i
( λ4!)

ℏ

∫
dx1 g(x1)

(
4ℏϕ3(x1)(∆+(x1 − x)−∆+(x− x1)

)
θ(x0 − x01)

= i
( λ4!)

ℏ

∫
dx1 g(x1)

(
4iℏϕ3(x1)∆(x1 − x)θ(x0 − x01)

)
= −λ

6

∫
dx1, g(x1)∆

ret(x− x1)ϕ3(x1). (9.60)

In the equation above we have used:

ϕ4(x1) ⋆ ϕ(x) = ϕ(x)ϕ4(x1) + 4ℏϕ3(x1)∆+(x1 − x)

ϕ(x) ⋆ ϕ4(x1) = ϕ(x)ϕ4(x1) + 4ℏϕ3(x1)∆+(x− x1)

∆+(z)−∆+(−z) = i∆(z)

∆(z)θ(−z) = −∆(−z)∆(−z) = ∆ret(z). (9.61)

Note that, once again, the result is the same as in the classical case.

The formula for R2,1 is more complicated since we have to divide the domain. We start
in M1 :=

{
(x1, x2, x3) ∈ M3|x1 /∈ (x3 + V +)

}
. The corresponding expression is given in (8.27).

Hence:

R2,1(ϕ
4(x1), ϕ

4(x2);ϕ(x)) =

θ(x0 − x02)

([[
ϕ4(x1), ϕ

4(x2)
]
, ϕ(x)

]
θ(x02 − x01) +

[
ϕ4(x2),

[
ϕ4(x1), ϕ(x)

]]
θ(x0 − x01)

)
. (9.62)

The calculation is long, but straightforward. To simplify the notation, we follow the notation
from [24] section 3.2.8 and denote
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jk(x) := −i((∆+(x))k − (∆+(−x))k). (9.63)

We start by calculating
[
ϕ4(x1), ϕ

4(x2)
]
:

[[
ϕ4(x1), ϕ

4(x2)
]
, ϕ(x)

]
= 42iℏϕ3(x1)∆(x1 − x2)ϕ

3(x2)

+ 4232
ℏ2

2!
ϕ2(x1)

j2(x1 − x2)

−i
ϕ2(x2)

+ 423222
ℏ3

3!
ϕ(x1)

j3(x1 − x2)

−i
ϕ(x2). (9.64)

Now we commute the term above with ϕ(x):

[[ϕ2(x1), ϕ
4(x2)], ϕ(x)]

= 48(iℏ)2(ϕ2(x1)∆(x1 − x)∆(x1 − x2)ϕ
3(x2) + ϕ3(x1)∆(x2 − x)∆(x1 − x2)ϕ

2(x2))

− 144ℏ3j2(x1 − x2)(ϕ(x1)∆(x1 − x)ϕ2(x2) + ϕ2(x1)∆(x2 − x)ϕ(x2))

− 96ℏ4j3(x1 − x2)(∆(x1 − x)ϕ(x2) + ϕ(x1)∆(x2 − x)). (9.65)

The second commutator is equal to:

[ϕ4(x2), [ϕ
4(x1), ϕ(x)]] = [ϕ4(x2), 4iℏ∆(x1 − x)ϕ3(x1)] = 4iℏ∆(x1 − x)

×
(
4 · 3iℏϕ3(x2)∆(x2 − x1)ϕ

2(x1) + 4 · 32ℏ2 j2
−i

(x2 − x1)ϕ(x1)

)
= −48ℏ2ϕ2(x1)∆(x1 − x)∆(x2 − x1)ϕ

3(x2)− 144ℏ3ϕ(x1)j2(x2 − x1)ϕ
2(x2)

− 96ℏ4j3(x2 − x1)ϕ(x2). (9.66)

Hence:
Next we separate the terms proportional to ℏ2. We are going to factorize then to obtain the

classical retarded product. The rest of the terms are the quantum corrections.

Note that:
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ϕ3(x2)

(
∆(x1 − x)∆(x2 − x1)θ(x

0 − x01)

+ ∆(x1 − x)∆(x1 − x2)θ(x
0
2 − x01)

)
θ(x0 − x02)ϕ

2(x1)

+ ϕ3(x1)∆(x2 − x)∆(x1 − x2)θ(x
0 − x02)θ(x

0
2 − x01)ϕ

2(x2)

= −ϕ3(x2)
(
∆ret(x− x1)∆(x2 − x1) + ∆(x1 − x)∆ret(x1 − x2)

)
θ(x0 − x02)ϕ

2(x1)

+ ϕ3(x1)∆
ret(x− x2)∆

ret(x2 − x1)ϕ
2(x2). (9.67)

We can manipulate the first term above:

∆ret(x− x1)∆(x2 − x1) + ∆(x1 − x)∆ret(x1 − x2)

=∆ret(x− x1)

(
∆ret(x2 − x1)−∆ret(x1 − x2)

)
+

(
∆ret(x1 − x)−∆ret(x1 − x)

)
∆ret(x1 − x2)

= −∆ret(x− x1)∆
ret(x1 − x2) + ∆ret(x2 − x1)∆

ret(x1 − x). (9.68)

The original expression is multiplied by θ(x0 − x02):

−∆ret(x− x1)∆
ret(x1 − x2)θ(x

0 − x02) + ∆ret(x2 − x1)∆
ret(x1 − x)θ(x0 − x02)

= −∆ret(x− x1)∆
ret(x1 − x2). (9.69)

In the above equation, we use the fact supp∆(x) ⊆ {x2 ≤ 0, x0 > 0} and the definition
of θ(x) to cancel the second term and simplify the first one. Taking all the results, the term
proportional to ℏ2 is equal to:

− 48ℏ2(ϕ3(x2)ϕ2(x1)∆ret(x− x1)∆
ret(x1 − x2)

+ ϕ3(x1)ϕ
2(x2)∆

ret(x2 − x1)∆
ret(x− x2))

= −48ℏ2ϕ3(x2)ϕ2(x1)∆ret(x− x1)∆
ret(x1 − x2) + x1 ↔ x2

≡ ℏ2rcl2,1(x1, x2;x). (9.70)

The quantum corrections is:
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ℏ3rq2,1(x1, x2;x) = −144ℏ3j2(x1 − x2)(ϕ(x1)∆(x1 − x)ϕ2(x2)

+ ϕ2(x1)∆(x2 − x)ϕ(x2))θ(x
0 − x02)θ(x

0
2 − x01)

− 144ℏ3ϕ(x1)j2(x2 − x1)ϕ
2(x2)θ(x

0 − x02)θ(x
0 − x01)

− 96ℏ4j3(x1 − x2)

(
∆(x1 − x)ϕ(x2)

+ ϕ(x1)∆(x2 − x)

)
θ(x0 − x02)θ(x

0
2 − x01)

− 96ℏ4j3(x2 − x1)ϕ(x2)θ(x
0 − x02)θ(x

0 − x01). (9.71)

Due to the symmetry of the retarded product, R2,1(x1, x2;x) in M2 basically changes x1 ↔
x2. Hence:

R2,1(
S⊗2

ℏ2
, ϕ(x)) =

λ2

2 · 4!2

∫
dx1dx2 g(x1)g(x2)

(rcl2,1(x1, x2;x) + ℏrq2,1(x1, x2;x)) + x1 ↔ x2. (9.72)

We emphasize that if d ≥ 4, the terms j2(z), j3(z) need renormalization. We will not do it
here (instead we are going to focus on the renormalization of the T matrix), but it can be found
on page 154 [24].

9.6 Example 4:Scattering amplitude considering Lint =

−( λ4!)
∫
dx g(x)ϕ4(x) up to order 2

The T− product is much simpler than the R− product. Just as in the case of the R− product,
we want to calculate:

S(Lint) ≡ T (e
iLint

ℏ ) =
i

ℏ
T1(Lint) +

i2

2!ℏ2
T2(Lint, Liny) +O((

λ

4!
)3). (9.73)

In first order:

i

ℏ
T1

(
− λ

4!

∫
dx1 g(x1)ϕ

4(x1)

)
=

−i( λ4!)
ℏ

∫
dx1 g(x1)ϕ

4(x1). (9.74)

Second order:
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i2

2ℏ2
T2(

−λ
4!

∫
dx1 g(x1)ϕ

4(x1),
−λ
4!

∫
dx2 g(x2)ϕ

4(x2))

= − λ2

2(4!ℏ)2

∫
dx1dx2 g(x1)g(x2)ϕ

4(x1) ⋆F ϕ
4(x2) = − λ2

2(4!ℏ)2

∫
dX2g(x1)g(x2)

×
(
ϕ4(x1)ϕ

4(x2) + 16ℏϕ3(x1)ϕ3(x2)∆F (x1 − x2) + 72ℏ2ϕ2(x1)ϕ2(x2)(∆F (x1 − x2))
2

+ 32ℏ3ϕ(x1)ϕ(x2)(∆F (x1 − x2))
3 + 8ℏ4(∆F (x1 − x2))

4

)
. (9.75)

Using the examples above, we can compute the scattering amplitude T . In the formalism of
QFT in Fock space, the fields that appear in the T− product are normal ordered [67]. We will
use this fact to invoke the theorem of Section (6.4). We will focus on the scattering involves 4
particles, two incoming and two outgoing particles. The first order in λ reads:

T1 = ⟨Ωa∗F(p1)a∗F(p2)|
∫
dx

−iλ
4!ℏ

g(x) : ϕ4(x) : |a∗F(p3)a∗F(p4)Ω⟩

=

(
4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dY⃗4dx

× ω0

(
eip1y1+ip2y2ϕ(y1)ϕ(y2) ⋆

−iλ
4!ℏ

g(x)ϕ4(x) ⋆ e−ip3y3−ip4y4ϕ(y3)ϕ(y4)

)
. (9.76)

The calculation above is long, but not very hard. We start by attacking the star product. For
simplicity, we first calculate ϕ(y1)ϕ(y2) ⋆ ϕ4(x) and then the result of the mentioned calculation
star product with the rest of the fields.

ϕ(y1)ϕ(y2) ⋆ ϕ
4(x) = ϕ(y1)ϕ(y2)ϕ

4(x)

+ 4ℏ
(
ϕ(y1)∆

+(y2 − x)ϕ3(x) + ϕ(y2)∆
+(y1 − x)ϕ3(x)

)
+

4 · 3ℏ2

2!

(
∆+(y1 − x)∆+(y2 − x)ϕ2(x)

+ ∆+(y2 − x)∆+(y1 − x)ϕ2(x)

)
. (9.77)

Since we are going to compute the vacuum expectation value, we need to consider only the
terms proportional to ϕ2 of the above equation when computing (ϕ(y1)ϕ(y2)⋆ϕ

4(x))⋆ϕ(y3)ϕ(y4),
that is, the term in the last line. Using:
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ϕ2(x) ⋆ ϕ(y3)ϕ(y4) = ϕ2(x)ϕ(y3)ϕ(y4)

+ 2ℏ
(
ϕ(x)∆+(x− y3)ϕ(y4) + ϕ(x)∆+(x− y4)ϕ(y3)

)
=

2ℏ2

2
(∆+(x− y4)∆

+(x− y3) + ∆+(x− y4)∆
+(x− y3))

= 2ℏ2∆+(x− y4)∆
+(x− y3). (9.78)

We conclude:

ω0(ϕ(y1)ϕ(y2) ⋆ ϕ
4(x) ⋆ ϕ(y3)ϕ(y4))

= 24ℏ4∆+(y1 − x)∆+(y2 − x)∆+(x− y3)∆
+(x− y4). (9.79)

Hence:

T1 = −iλℏ3
(

4∏
i=1

2ωpi

(2π)
d−1
2

)

×
∫
dY⃗4dx g(x)∆

+(y1 − x)∆+(y2 − x)∆+(x− y3)∆
+(x− y4)e

ip1y1+ip2y2−ip3x3−ip4x4 . (9.80)

We can calculate the integral on Y⃗4 above. The integral in x must be considered with caution
since the test function g complicates the calculation. The goal is to take the limit g(x) → 1∀x,
but to do it we need to guarantee that the integral above is well defined. The integrals that need
to be calculated are:

∫
dy⃗1∆

+(y1 − x)eip1y1 =

∫
dy⃗1

1

(2π)d−1

∫
dk⃗1
2ωk1

e−ik1(y1−x)eipiy1

=
e−i(k

0
1−p01)y01

(2π)d−1

∫
dk⃗1
2ωk1

(2π)d−1δ(k⃗1 − p⃗1)e
ik1x =

eip1x

2ωp1
(9.81)∫

dy⃗3∆
+(x− y3)e

−ip3y3 =
1

(2π)d−1

∫
dy⃗3

dk⃗3
2ωk3

e−ik3(x−y3)e−ip3y3 =
e−ip3x

2ωp3
. (9.82)

Collecting all the results, we obtain:

T1 = −iλℏ3
(

4∏
i=1

2ωpi

(2π)
d−1
2

)(
4∏
i=1

1

2ωpi

)∫
dx g(x)ei(p1+p2−p3−p4)x

g→1
= −i λ

(2π)d−2
ℏ3δ(p1 + p2 − p3 − p4). (9.83)

Note that in this case, the adiabatic limit is well defined. The above result is known as the
Feynman rule (in momentum space) for the vertex in λϕ4 theories. Diagrammatically:
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Figure 9.2: Every vertex correspond to a factor of −iλℏ3
(2π)d−2 . The δ(p1 + p2 − p3 − p4) just

tell us we have momentum conservation.

Remark: The difference between the usual text book result T1 = −iλδ(p1 + p2 − p3 − p4) is
due to different conventions of Fourier transformations.

To compute the scattering amplitude in second order of lambda we first need i2

2!ℏ2T2(Lint, Lint).
It is given by:

i2

2ℏ2
T2(Lint, Lint) = − 1

2ℏ2
Lint ⋆F Lint

= − λ2

2(4!)2ℏ2

∫
dxy g(x)g(y)ϕ4(x) ⋆F ϕ

4(y)

= − λ2

2(4!)2ℏ2

∫
dxy g(x)g(y)

(
ϕ4(x)ϕ4(y) + 16ℏϕ3(x)∆F (x− y)ϕ3(y)

+
ℏ2

2
144ϕ2(x)(∆F (x− y))2ϕ2(y) +

ℏ3

6
576ϕ(x)(∆F (x− y))3ϕ(y)

+
ℏ4

24
576(∆F (x− y))4

)
. (9.84)

Only terms with four powers of ϕ contribute to the amplitude. Hence:

ω0

(
ϕ(p1)ϕ(p2) ⋆

(
−36λ2ℏ2

(4!ℏ)2

∫
dxdy g(x)g(y)ϕ2(x)ϕ2(y)(∆F (x− y))2

)
⋆ ϕ(p3)ϕ(p4)

)
. (9.85)

Where we have used the short notation:
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ϕ(p1)ϕ(p2) ≡
4ωp1ωp2
(2π)d−1

∫
dx⃗1dx⃗2 e

ip1x1+ip2x2ϕ(x1)ϕ(x2)

ϕ(p3)ϕ(p4) ≡
4ωp3ωp4
(2π)d−1

∫
dx⃗3dx⃗4 e

−ip3x3−ip4x4ϕ(x3)ϕ(x4). (9.86)

The calculation of the star product is long but straightforward. As usual, we first compute
ϕ(x1)ϕ(x2) ⋆ ϕ

2(x)ϕ2(y):.

ϕ(x1)ϕ(x2) ⋆ ϕ
2(x)ϕ2(y) = ϕ(x1)ϕ(x2)ϕ

2(x)ϕ2(y)

+ 2ℏ
(
ϕ(x2)(∆

+(x1 − x)ϕ(x)ϕ2(y) + ∆+(x1 − y)ϕ2(x)ϕ(y))

+ ϕ(x1)(∆
+(x2 − x)ϕ(x)ϕ2(y) + ∆+(x2 − y)ϕ2(x)ϕ(y))

)
+ ℏ2(∆+(x1 − x)∆+(x2 − x)ϕ2(y) + 2∆+(x1 − x)∆+(x2 − y)ϕ(x)ϕ(y))

+ ℏ2(2∆+(x1 − y)∆+(x2 − x)ϕ(x)ϕ(y) + ∆+(x1 − y)∆+(x2 − y)ϕ2(x))

+ ℏ2(∆+(x2 − x)∆+(x1 − x)ϕ2(y) + 2∆+(x2 − x)∆+(x1 − y)ϕ(x)ϕ(y))

+ ℏ2(2∆+(x2 − y)∆+(x1 − x)ϕ(x)ϕ(y) + ∆+(x2 − y)∆+(x1 − y)ϕ2(x))

≡ 2ϕ2(x)∆+(x1 − y)∆+(x2 − y)

+ 4ϕ(x)ϕ(y)∆+(x1 − x)∆+(x2 − y) + x↔ y. (9.87)

The relevant term is the one with two powers of the field:

2ℏ2∆+(x1 − x)∆+(x2 − x)ϕ2(y) + 2ℏ2∆+(x1 − y)∆+(x2 − y)ϕ2(x)

+4ℏ2(∆+(x1 − x)∆+(x2 − y) + ∆+(x1 − y)∆+(x2 − x))ϕ(x)ϕ(y). (9.88)

Now we need to compute the term above “star” ϕ(x3)ϕ(x4). The term that is not proportional
to any power of the field is

4ℏ4∆+(x1 − x)∆+(x2 − x)∆+(y − x3)∆
+(y − x4)

4ℏ4∆+(x1 − x)∆+(x2 − y)∆+(x− x3)∆
+(y − x4)

4ℏ4∆+(x1 − x)∆+(x2 − y)∆+(y − x3)∆
+(x− x4)

+x↔ y. (9.89)

The corresponding Feynman diagrams are:
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Figure 9.3: There are other three diagrams corresponding to x↔ y

Using (9.82), we can perform the integrals in X⃗4:

(
4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dX⃗4 e

i(p1x1+p2x2−p3xy−p4x4)

ω0

(
ϕ(x1)ϕ(x2) ⋆ ϕ

2(x)ϕ2(y) ⋆ ϕ(x3)ϕ(x4)
)

=
4ℏ4

(2π)2(d−1)
ei(p1+p2)x−i(p3+p4)y

+
4ℏ4

(2π)2(d−1)
ei(p1−p3)x+i(p2−p4)y

+
4ℏ4

(2π)2(d−1)
ei(p1−p4)x+i(p2−p3)y

+ x↔ y. (9.90)

The terms above correspond to de diagrams drawn before them. Finally, the corresponding
expression to each diagram reads.

− 144λ2ℏ2

(2π)2(d−1)(4!)2

∫
dxdy g(x)g(y)ei(p1+p2)x−i(p3+p4)y(∆F (x− y))2 (9.91)

− 144λ2ℏ2

(2π)2(d−1)(4!)2

∫
dxdy g(x)g(y)ei(p1−p3)x+i(p2−p4)y(∆F (x− y))2 (9.92)

− 144λ2ℏ2

(2π)2(d−1)(4!)2

∫
dxdy g(x)g(y)ei(p1−p4)x+i(p2−p3)y(∆F (x− y))2. (9.93)

Until now, all calculations have been done independently of the number of dimensions. The
problem of renormalization becomes apparent in the expressions above if d ≤ 4. If we naively
try to compute the integrals above, we will find a divergence in the limit x → y. The reason
is,as discussed in the renormalization section, due to:

sd(∆F ) = 2 ⇒ sd((∆F )2) = 4. (9.94)

In this case, the W expansion is quite simple. Let us calculate, for example,

∫
dxdy g(x)g(y)ei(p1+p2)x−i(p3+p4)y(∆F (x− y))2. (9.95)
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First, we change the variables z := x− y, x = z + y:

∫
dxdy g(z + y)g(y)ei(p1+p2)(z+y)−i(p3+p4)y(∆F (z))2

≡
∫
dy g(y)ei(p1+p2−p3−p4)y⟨(∆F )2, ei(p1+p2)zg(y + z)⟩z. (9.96)

Since sd((∆F )2) = 4, following the notation from section (8.7.2), we have ω = 0. Hence, the
W− projection is simply:

⟨(∆F )2,Wei(p1+p2)zg(y + z)⟩z =
∫
dz (∆F (z))2(ei(p1+p2)zg(y + z)− ω(z)g(y))

+ Cei(p1+p2)0g(y + 0). (9.97)

Where Cg(y) is the counter-term. Using:

(∆F (z))2
d=4
=

1

(2π)8

∫
dpdq

e−ipz

p2 −m2 + i0

e−iqz

q2 −m2 + i0
. (9.98)

we conclude:

⟨(∆F )2,Wei(p1+p2)zg(y + z)⟩z

=
1

(2π)8

∫
dz

∫
dpdq{

e−ipz

p2 −m2 + i0

e−iqz

q2 −m2 + i0
(ei(p1+p2)zg(y + z)− ω(z)g(y))

}
+ Cg(y). (9.99)

The expression above is sufficiently “well behaved” to choose ω(z) = 1∀z and take the adia-
batic limit g → 1. Once the parameters was chosen as mentioned, the corresponding expression
is:
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⟨(∆F )2,Wei(p1+p2)z⟩z − C

=
1

(2π)8

∫
dz

∫
dpdq

e−ipz

p2 −m2 + i0

e−iqz

q2 −m2 + i0
(ei(p1+p2)z − 1)

=
1

(2π)4

∫
dpdq

δ(p1 + p2 − p− q)− δ(p+ q)

(p2 −m2 + i0)(q2 −m2 + i0)

=
1

(2π)4

∫
dp

1

(p2 −m2 + i0)((p− p1 − p2)2 −m2 + i0)
− 1

(p2 −m2 + i0)2

=
1

(2π)4

∫
dp
p2 −m2 + i0− ((p− p1 − p2)

2 −m2 + i0)

(p2 −m2 + i0)2((p− p1 − p2)2 −m2 + i0)

=
1

(2π)4

∫
dp

2p(p1 + p2)− (p1 + p2)
2

(p2 −m2 + i0)2((p− p1 − p2)2 −m2 + i0)
. (9.100)

The integral above is not simple to calculate, but its result is well known in the literature
[19] eq.22.8 and eq22.42 or [20] page 46 eq.2.74 and page 49 eq.2.87. The result is:

⟨(∆F )2,Wei(p1+p2)z⟩z = Cs +



i
4(2π)2

(
2− 2

√
4m2−s

s arctan
[√

s
4m2−s

])
, 0 < s < 4m2

i
4(2π)2

(
2 +

√
s−4m2

s ln
[√

s−
√
s−4m2

√
s+
√
s−4m2

]
+ iπ

)
, s > 4m2

i
4(2π)2

(
2 +

√
4m2−s
|s| ln

[√
4m2−s−

√
|s|

√
4m2−s+

√
|s|

])
, s < 0

(9.101)
where s = (p1+p2)

2. We are left with the integral in the y coordinate. In the adiabatic limit
it is simply:

∫
dy g(y)ei(p1+p2−p3−p4)y⟨(∆F )2, ei(p1+p2)zg(y + z)⟩z

= δ(p1 + p2 − p3 − p4)⟨(∆F )2, ei(p1+p2)zg(y + z)⟩z. (9.102)

Note that all integrals (9.93) have the same format, the only difference being the combination
of momentum in the exponential. Therefore, we can summarize the expression of the amplitude
by writing:

T = (Γ̃(s) + Γ̃(u) + ˜Γ(t) + Cs + Cu + Ct)δ(p1 + p2 − p3 − p4). (9.103)

Where
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Γ̃(s) = −λ2ℏ2



i
8(2π)2

(
2− 2

√
4m2−s

s arctan
[√

s
4m2−s

])
, 0 < s < 4m2

i
8(2π)2

(
2 +

√
s−4m2

s ln
[√

s−
√
s−4m2

√
s+
√
s−4m2

]
+ iπ

)
, s > 4m2

i
8(2π)2

(
2 +

√
4m2−s
|s| ln

[√
4m2−s−

√
|s|

√
4m2−s+

√
|s|

])
, s < 0

(9.104)

.In the above expression, we have already considered the change x ↔ y. The constants
Cs, Cu, Ct need to be fixed by physical arguments. A suggestion is done in [19]. We fixed the
scale at s0 = 4m2, t0 = u0 = 0 imposing


Γ̃(4m2) + Cs = 0

Γ̃(u0 = 0) + Cu = 0

Γ̃(t0 = 0) + Ct = 0

. (9.105)

Since the extension in Dω is unique, the above solution is unique and the problem is com-
pletely solved.

9.7 Example 5: Amplitude of massless Lint = −λ
∫
dx g(x)(ϕ∂µϕ)

2

up to order 1 in the ϕϕ→ ϕϕ process.

The last example we want to show involves a calculation with a derivative.

T1 = − iλ
ℏ

(
4∏
i=i

2ωpi

(2π)
d
2

)∫
dxdX⃗4 g(x)e

ip1x1+ip2x2−ip3x3−ip4x4

× ω0(ϕ(x1)ϕ(x2) ⋆ ϕ
2∂µϕ∂

µϕ(x) ⋆ ϕ(x3)ϕ(x4)). (9.106)

We can calculate the star product ϕ2∂µϕ∂µϕ(x) ⋆ ϕ(x3)ϕ(x4):
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ϕ2(x)∂µϕ(x)∂
µϕ(x) ⋆ ϕ(x3)ϕ(x4) = ϕ2(x)∂µϕ(x)∂

µϕ(x)ϕ(x3)ϕ(x4)+

ℏ
(
2ϕ(x)(∂µϕ(x))2∆+(x− x3)ϕ(x4) + 2ϕ(x)(∂µϕ(x))2∆+(x− x4)ϕ(x3)

− 2ϕ2(x)∂µϕ(x)∂
µ∆+(x− x3)ϕ(x4)− 2ϕ2(x)∂µϕ(x)∂

µ∆+(x− x4)ϕ(x3)

)
+ ℏ2

(
(∂µϕ(x))2∆+(x− x3)∆

+(x− x4)− 2ϕ(x)∂µϕ(x)∆
+(x− x3)∂

µ
x∆

+(x− x4)

+ (∂µϕ(x))2∆+(x− x3)∆
+(x− x4)− 2ϕ(x)∂µϕ(x)∆

+(x− x4)∂
µ
x∆

+(x− x3)

− 2ϕ(x)∂µϕ(x)∂
µ
x∆

+(x− x3)∆
+(x− x4) + ϕ2(x)∂x,µ∆

+(x− x3)∂
µ
x∆

+(x− x4)

− 2ϕ(x)∂µϕ(x)∆
+(x− x3)∂

µ
x∆

+(x− x4) + ϕ2(x)∂x,µ∆
+(x− x3)∂

µ
x∆

+(x− x4)

)
. (9.107)

It is meaningful to explain why some terms changed sign. The sign comes from the derivative
of the delta function:

∂µϕ(x) ⋆ ϕ(x3) =

∫
dy1dy2

δ∂µϕ(x)

∂ϕ(y1)
∆+(y1 − y2)

δϕ(x3)

∂ϕ(y2)

=

∫
d1dy2 ∂

µ
xδ(x− y1)∆

+(y1 − y2)δ(x3 − y2)

= −
∫
d1dy2 δ(x− y1)∂

µ
x (∆

+(y1 − y2)δ(x3 − y2))

= −∂µx∆+(x− x3). (9.108)

The term important to the amplitude is the one that contains two powers of the fields. We
can summarize it as:

ℏ2
(
ϕ2(x)∂x,µ∆

+(x− x3)∂
µ
x∆

+(x− x4) + (∂µϕ(x))2∆+(x− x3)∆
+(x− x4)

− 4ϕ(x)∂µϕ(x)∆
+(x− x3)∂

µ
x∆

+(x− x4) + x3 ↔ x4

)
. (9.109)

The term that does not contain any power of fields of the star product of the expression
above with ϕ(x1)ϕ(x2) is:
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ℏ4

2
(4∆+(x1 − x)∆+(x2 − x)∂x,µ∆

+(x− x3)∂
µ
x∆

+(x− x4)

+ 4∂µ,x∆
+(x1 − x)∂µx∆

+(x2 − x)∆+(x− x3)∆
+(x− x4)

+ 4∆+(x1 − x)∂µ,x∆
+(x2 − x)∂µx∆

+(x− x3)∆
+(x− x4)

+ 4∂x,µ∆
+(x1 − x)∆+(x2 − x)∂µx∆

+(x− x3)∆
+(x− x4)

+ x3 ↔ x4

)
. (9.110)

The expression above can be “simplified” if we disconsider the permutation of the terms. To
fix the notation, consider:

P (x1, x2, x3, x4;x) := ℏ4
(
∆+(x1 − x)∆+(x2 − x)∂x,µ∆

+(x− x3)∂
µ
x∆

+(x− x4)

+ ∂µ,x∆
+(x1 − x)∂µx∆

+(x2 − x)∆+(x− x3)∆
+(x− x4)

+ 2∆+(x1 − x)∂µ,x∆
+(x2 − x)∂µx∆

+(x− x3)∆
+(x− x4)

)
. (9.111)

Then, the full expression for the vacuum of the interaction is given by:

ω0 (ϕ(x1)ϕ(x2) ⋆ (ϕ(x)∂
µϕ(x)) ⋆ ϕ(x3)ϕ(x4)) =

P (x1, x2, x3, x4;x) + P (x1, x2, x4, x3;x) + P (x2, x1, x3, x4;x) + P (x2, x1, x4, x3;x). (9.112)

Now, we plug P (x1, x2, x3, x4;x) in the expression for the amplitude:

T1 = − iλ
ℏ

(
4∏
i=i

2ωpi

(2π)
d−1
2

)∫
dxdX⃗4 g(x)e

ip1x1+ip2x2−ip3x3−ip4x4

× P (x1, x2, x3, x4;x). (9.113)

P (x1, x2, x3, x4;x) can be written as:

P (x1, x2, x3, x4;x) =
ℏ4

(2π)4(d−1)

∫ ( 4∏
i=1

dk⃗i
2ωki

)
(k3 · k4 + k1 · k2 + 2k1 · k3)e−ik1(x1−x)−ik2(x2−x)−ik3(x−x3)−ik4(x−x4)

. (9.114)

The calculation of the integrals in the adiabatic limit is essentially the same. Once the
integral over all the P ’s is done, the final result, i.e, the Feynman rule is:
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T1 = −i λℏ
3

(2π)2

(
(p3 · p4 + p1 · p2 + 2p1 · p3) + (p4 · p3 + p1 · p2 + 2p1 · p4)

+ (p3 · p4 + p2 · p1 + 2p2 · p3) + (p4 · p3 + p2 · p1 + 2p2 · p4)
)
δ(p1 + p2 − p3 − p4)

= −4i
λℏ3

(2π)2

(
p1 · p2 + p3 · p4 +

1

2
(p1 + p2) · (p3 + p4)

)
δ(p1 + p2 − p3 − p4). (9.115)

Note that since we have the momentum of the particles appearing in the formula, it is
important to distinguish incoming from outgoing particles when drawing the diagram!!

Figure 9.4: The diagram of the scattering ϕϕ→ ϕϕ
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Chapter 10

Renormalization

10.1 Introduction: The problem in simple words

Before describing the abstract theory, let us give a taste of the problem we are about to attack.
Suppose that we want to calculate the S-matrix considering an interaction of the form Lint =

−λ
∫
g(x)ϕ4(x)dx in 4 dimensions. As we have seen, we need to fix the counter-terms using

physical inputs. Since these inputs are physically relevant, what does that mean? In the above
example, we were able to perform the adiabatic limit, but fixing the parameters of the theory
should not depend on how the interaction is turned on/off by the test function g(x). Is it possible
to find a formulation regardless of g?

We will answer all the aforementioned by studying the so-called “Stückelberg-Petermann”
renormalization group.

10.2 Stückelberg-Petermann renormalization group

Here we change the discussion presented in [24] Chapter 3.6 to a most “intuitive one”. The price
one pays by doing it is limiting the exposure to the lowest-order terms. However, the most
general discussion is not of central importance in this work.

Given two T− products, T (e
iλ
ℏ F
⊗ ), T̃ (e

iλ
ℏ F
⊗ ) where F ∈ Floc. We want to construct a map

Z : FlocJℏ, λK → FlocJℏ, λK such that

T

(
e

i
ℏλF
⊗

)
= T̃

(
e

i
ℏZ(λF )
⊗

)
(10.1)

and Z can be written as a series:

Z(F ) :=
∞∑
n=0

1

n!
Zn(F

⊗n). (10.2)
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We simplify the notation using Fn ≡ F (xn). We also impose, for simplicity, symmetry in
the arguments Z(Fπ(1), ..., Fπ(n)) = Z(F1, ..., Fn)∀π ∈ Sn. As usual, let us construct the map Z
order by order in perturbation theory.

[λ] = 1:

In first order in perturbation theory we obtain:

T1(
iλ

ℏ
F ) =

iλ

ℏ
F

!
= T̃1(

iλ

ℏ
Z(F )) =

iλ

ℏ
Z1(F )

⇒ Z1(F ) = F. (10.3)

[λ] = 2:

Now the formula gets a bit more engaging1:

e
i
ℏZ(λF )
⊗ = 1 +

i

ℏ
Z(λF ) +

i2

ℏ2
(Z(λF ))⊗2

=
i

ℏ

(
λZ1(F ) +

λ2

2
Z2(F1, F2)

)
+
i2

ℏ2
λ2Z1(F1)⊗ Z1(F2). (10.4)

Thus:

i2λ2

2ℏ2
T2(F1, F2) =

iλ2

2ℏ
T̃1(Z2(F1, F2)) +

i2λ2

2ℏ2
T̃2 (Z1(F1), Z1(F2))

⇒ Z2(F1, F2) =
i

ℏ

(
T2(F1, F2)− T̃2(F1, F2)

)
. (10.5)

In the above equation, we have used Z1(F ) = F and T1(F ) = F . The general formula for the
n−th order can be found using the same procedure. Just one last example to “get the feeling”
of how higher orders are constructed:

[λ] = 3:

Now the combinatorial are more complicated. First, we write:

1Note that we have two tipes of terms proportional to λ2 in the expansion from e
i
ℏZ(λF )
⊗ , one is Z2

1

and the other Z2
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Z(λF ) = Z0(λF )︸ ︷︷ ︸
=0

+λZ1(F1) +
λ2

2
Z2(F1, F2) +

λ3

3!
Z3(F1, F2, F3)

⇒ exp⊗(
i

ℏ
Z(F ))

λ3
=
i3

ℏ3
λ3

3!
(Z1(F1))

⊗3

+
1

2

i2

ℏ2

(
λZ1(F1) +

λ2

2
Z2(F1, F2)

)⊗2
+
i

ℏ
λ3

3!
Z3(F1, F2, F3)

λ3
=
λ3

3!

[
i3

ℏ3
Z1(F1)⊗ Z1(F2)⊗ Z1(F3)

+
i2

ℏ2
(Z2(F1, F2)⊗ Z1(F3)

+ Z2(F1, F3)⊗ Z1(F2) + Z2(F2, F3)⊗ Z1(F1))

+
i

ℏ
Z3(F1, F2, F3)

]
. (10.6)

The term in the fourth line was symmetrized to maintain the symmetry of Z. Therefore, the
T− product is given by:

i3

ℏ3
T3(F1, F2, F3) =

i3

ℏ3
T̃3(F1, F2, F3)

+
i2

ℏ2
∑
π∈S3

T̃2(Z2(Fπ1 , Fπ2), Z1(Fπ3)) +
i

ℏ
T̃1(Z3(F1, F2, F3))

⇒ Z3(F1, F2, F3) =
i2

ℏ2
T3(F1, F2, F3)−

i2

ℏ2
T̃3(F1, F2, F3)

− i

ℏ
∑
π∈S3

T̃2(Z2(Fπ1 , Fπ2), Z1(Fπ3)). (10.7)

Just a quick remark on the general formula: Note that by expanding Z(λF ) to the n−th
order and composing with T , the result is always of the form:

T

(
iλn

ℏn!
Zn(F1, ..., Fn)

)
=
iλn

ℏn!
T1(Zn(F1, ..., Fn)) =

iλn

ℏn!
Zn(F1, ..., Fn). (10.8)

That means that we can explicitly write Zn as a combination of the preceding orders, namely:

iλn

ℏn!
Zn(F1, ..., Fn) = T̃n(F1, ..., Fn)− Combinations of lowest orders from T’s and Z’s. (10.9)

A proof that this construction is well defined can be found in [60] and on page 227 [24].

The set of maps Z(n) defines the so-called Stückelberg-Petermann renormalization group
[58]. There is a lot that can be talked about the group, but, for us, the importance of the group
is the so called “The main theory of perturbative renormalization”. It states [24] page
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225:

a) Given two renormalization prescriptions, i.e., two time-ordered products T and T̃ both
fulfilling the axioms, there exists a map Z : FlocJℏ, λK → FlocJℏ, λK of the form Z(F ) =∑∞

n=0
Zn(F )
n! , which is uniquely determined by

T̃ (e
i
ℏF ) = T (e

i
ℏZ(F )) ⇐⇒ S̃ = S ◦ Z. (10.10)

where Z is an element of the Stückelberg-Petermann group.

b) Conversely, given an S-matrix S fulfilling the axioms for the time-ordered product and an
arbitrary Z of the Stückelberg-Petermann group, the composition S̃ = S ◦ Z also satisfies
these axioms.

The proof of the statement can be found on page 225 [24]. The theorem above basically gives
the most general transformations between two normalization conditions and also justified why is
called a group. There is also a similar construction for the R− product [24] page 233.

The next question we want to answer is what the physical meaning of the renormalization
group is. To do it, we first introduce a change in the scale (x,m) → (ρx, mρ )page 93 [24]. We
call a scaling transformation σρ : F → F , ρ > 0 a linear transformation that acts on a single
field as:

σρ(ϕ(x)) := ρ− dim(ϕ)ϕ(ρ−1x). (10.11)

and in a generic field as:

σρ

(∫
dXnf(x1, ..., xn)ϕ(x1)...ϕ(xn)

)
:= ρ−n dimϕ

∫
dXnf(x1, ..., xn)ϕ(ρ

−1x)...ϕ(ρ−1xn). (10.12)

We emphasize that in the above formula σρ only change the argument of the fields!!

The formula above justifies the change in the space, but what about the change in the mass?
The dependence on the mass is restricted to the propagators ∆+(x) ≡ ∆+

m(x) and they appear
as argument in the star product ⋆ ≡ ⋆m. The is to compute σρ(F ⋆G) and see what happens to
the mass.

In our analyses, we will consider F =
∫
dXn f(x)ϕ

n(x), G =
∫
dYn g(y)ϕ

m(y), ∞ > n ≥ m

for simplicity. The general case involves only a more sophisticated combinatorial, but the result
is the same.

136



σρ(F ⋆m G) = σρ

(∫
dxdy f(x)g(y)ϕn(x)ϕm(y)

+
m∑
k=1

(n− k)!(m− k)!ℏk

k!

∫
dxdy f(x)g(y)ϕn−k(x)(∆+(x− y))kϕm−k(y)

)
=

∫
dxdy f(x)g(y)ρ−(n+m) dimϕϕn(ρ−1x)ϕm(ρ−1y)

+

m∑
k=0

(n− k)!(m− k)!ℏk

k!

∫
dxdy f(x)g(y)

ρ−(n+m+2k) dimϕϕn−k(ρ−1x)(∆+(x− y))kϕm−k(ρ−1y). (10.13)

Now we write:

ρ−(n+m+2k) dimϕ(∆+(x− y))k = ρ−(n+m) dimϕ(ρ−2 dimϕ∆+
m(x− y))k

= ρ−(n+m) dimϕ(ρ−2(
d
2
−1)∆+

m(x− y))k

= ρ−(n+m) dimϕ(ρd−2∆+
m(x− y))k

= ρ−(n+m) dimϕ((ρ−1)2−d∆+
m(x− y))k

= ρ−(n+m) dimϕ(∆+
ρm(ρ

−1x− ρ−1y))k. (10.14)

In the last equality we have used the last identity of (3.5). Hence:

σρ(F ⋆m G) =

∫
dxdy f(x)g(y)ρ−(n+m) dimϕϕn(ρ−1x)ϕm(ρ−1y)

+

m∑
k=0

(n− k)!(m− k)!ℏk

k!

∫
dxdy f(x)g(y)

× ρ−(n+m) dimϕϕn−k(ρ−1x)(∆+
ρm(ρ

−1(x− y)))kϕm−k(ρ−1y)

= ρ−(n+m) dimϕ

(∫
dxdy f(x)g(y)ϕn(ρ−1x)ϕm(ρ−1y)

+

m∑
k=0

(n− k)!(m− k)!ℏk

k!

∫
dxdy f(x)g(y)

× ϕn−k(ρ−1x)(∆+
ρm(

x− y

ρ
))kϕm−k(ρ−1y)

)
= σρ(F ) ⋆mρ σρ(G). (10.15)

From the formula above, we see that the scaling transformation indeed changes (x,m) →
(ρ−1x, ρm).

It is not difficult to check that a new scaled S− matrix defined by
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Smρ := σρ ◦ S
m
ρ ◦ σρ−1 . (10.16)

is also a S− matrix, that is, it fulfills the axioms of the T− product. The main theorem
of perturbative renormalization guarantees us that both descriptions are connected by a change
of renormalization. Thus, the physical meaning of the renormalization group is a change in
scale! Usually in QFT, this phenomenon is called “running of the constants” ([57] chapter 12).
The meaning of the name becomes clearer once the adiabatic limit is taken. Fortunately, when
working with renormalization, this limit always exists. It is far from obvious to show this fea-
ture, but it can be done using the formalism of algebraic quantum field theory (AQFT).
Roughly speaking, AQFT studies the most fundamental aspects of quantum field theory using
very abstract mathematics (net of algebras, category theory, and so on). A special case is the
perturbative approach of QFT. One can show that the perturbative approach developed here can
be formulated using AQFT, then it is shown that the crucial properties of the renormalization
can be obtained if we restrict the space-time to a diamond-shaped region, and last but not least,
one can then show that in this region the renormalization can be done independently from g.
A deeper discussion can be found in Chapter 3.7 from [24]. For more statements about the
adiabatic limit, we recommend [23] and references therein 2. The last reference we recommend
is about the general features and advances of AQFT [14].

For now on, we assume that the limit has been taken and use it to compute the renormal-
ization of a scalar theory with Lint = − λ

4!

∫
dxϕ4(x).

10.3 Renormalization of Lint = − λ
4!

∫
dx ϕ4(x) up to order

2

The strategy for computing the renormalization is the following: We know, due to the main
theorem of renormalization, that two T− products are connected by a scaling transformation.
Hence, we renormalize all the terms in T2 once and compute Z2 = σρ ◦ T

m
ρ

2 ◦ σρ−1 − Tm2 . Using
(9.84), the terms that need a non-trivial extension, that is, have a scaling degree d ≥ 4, are
(∆F )2, (∆F )3, (∆F )4. Unlike (9.6), we will use a different method to extend distributions. The
main reason to do so is thatW− expansion is easier to compute amplitudes that can be measured,
but the computations for Z are not that clear (see [60]). The calculations become easier if we
give up the W expansion and substitute it for a method called differential renormalization
page193 [24].

2in this article it is proved that the adiabatic limit we simply calculated in the examples of last section
always exists for massive theories! It also established boundaries in massless theories
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10.3.1 Differential renormalization

Before attacking the problem, let us briefly explain the method. Let t0 ∈ D′(Rd \ {0}) such that
sd(t0) = k ≥ d. If we manage to write t0 as

t0 = Df, D =
∑
|a|=l

Ca∂
a, Ca ∈ C. (10.17)

With k − l < d and (x∂x + k − l)Nf = 0. Then, we have an extension of the distribution t0.
We can prove this by writing:

⟨t, h⟩ = ⟨Df, h⟩ = (−1)|l|⟨f,Dh⟩. (10.18)

Since sd(f) < d, the extension is given by the same formula and the expression above is well
defined. The expression also scales almost homogeneously with degree D, since:

(x∂x + k)NDf = (x∂x + k − l)Nf = 0. (10.19)

The challenge is that there is no general method to find such a f . The existence of counter-
terms reflect that difficulty. Given a f0 with the desired properties, we can always sum g0 ∈
D′(Rk \ {0}) with degree D − l and Dg0 = 0 in D(Rk \ {0}). Since Dg0 = 0 in D(Rk \ {0}),
suppDg ⊆ {0} ⇒ Dg =

∑
aCa∂

aδ(x), that is, g contributes by adding counter-terms. Fortu-
nately, we have enough tolls to fix the propagators discussed in this dissertation.

To perform the renormalization, we need an auxiliary formula.

∂2
lnj(M2x2)

(x2)k
= ∂µ

(
2jxµ

lnj−1(M2x2)

(x2)k+1
− 2kxµ

lnj(M2x2)

(x2)k+1

)
= 2jd

lnj−1(M2x2)

(x2)k+1
+ 4j(j − 1)

lnj−2(M2x2)

(x2)k+1
− 4j(k + 1)

lnj−1(M2x2)

(x2)k+1

− 2kd
lnj(M2x2)

(x2)k+1
− 4kj

lnj−1(M2x2)

(x2)k+1
+ 4k(k + 1)

lnj(M2x2)

(x2)k+1

= (2jd− 4j(k + 1)− 4jk)
lnj−1(M2x2)

(x2)k+1

+ (4k(k + 1)− 2kd)
lnj(M2x2)

(x2)k+1
+ 4j(j − 1)

lnj−2(M2x2)

(x2)k+1
. (10.20)

where M is a mass scale, d is the number of space-time dimensions, and lna(x2) ≡ (ln(x))a.
The same formula holds for x2 ± i0 and x2 ± ip00 instead of x2.

To perform the calculation, we also need the Feynman propagator in position space. Although
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it can be computed with great generality for an arbitrary dimension [46], for our porpoises, it is
easier to start from formula 2.2.3 from [24]:

∆+
d=4(z) =

−1

4π2(z2 − iz00)
+m2f(m2z2) ln

(
−m

2

4
(z2 − iz00)

)
+m2g(m2z2). (10.21)

Where:

f(x) :=
1

8π2
√
x
J1(

√
x) ≡

∞∑
k=0

akx
k

g(x) := − 1

16π2

∞∑
k=0

(
Γ′(k + 1)

Γ(k + 1)
+

Γ′(k + 2)

Γ(k + 2)

)
(−x/4)k

k!(k + 1)!
≡
∞∑
k=0

bkx
k. (10.22)

Where J1(x) is the Bessel function of order 1:

J1(
√
x) :=

∞∑
l=0

(−1)l

22l+1l!(l + 1)!
xl
√
x. (10.23)

And Γ(x) is the gamma function:

Γ(x+ 1) :=

∫ ∞
0

dt e−ttx. (10.24)

The Feynman propagator can be computed using:

∆F (z) = θ(z0)∆+(z) + θ(−z0)∆+(−z)

d=4
= θ(z0)

(
1

4π2(z2 − iz00)
+m2f(m2z2) ln

(
−m

2

4
(z2 − iz00)

)
+m2g(m2z2)

)
+ θ(−z0)

(
1

4π2(z2 + iz00)
+m2f(m2z2) ln

(
−m

2

4
(z2 + iz00)

)
+m2g(m2z2)

)
=

1

4π2(z2 − i0)
+m2f(m2z2) ln

(
−m

2

4
(z2 − i0)

)
+m2g(m2z2). (10.25)

Note that, as expected,

ρ2∆F
m
ρ
(ρz) = ∆F (z). (10.26)

Returning to the problem of renormalization, we want to compute Z2(Lint, Lint). Using the
main theorem of perturbative renormalization, it can be computed using:
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Z2 =
i

ℏ

(
σρ ◦ T

m
ρ

2 (σρ−1(Lint), σρ−1(Lint))− T2(Lint, Lint)

)
. (10.27)

Using (9.75), we can easily compute σρ ◦ T
m
ρ

2 (σρ−1(Lint), σρ−1(Lint)):

σρ ◦ T
m
ρ

2 (σρ−1(Lint), σρ−1(Lint)) =
λ2

(4!)2

∫
dX2

×
(
ϕ4(x1)ϕ

4(x2) + 16ℏϕ3(x1)ϕ3(x2)ρ2∆F
m
ρ
(ρ(x1 − x2))

+ 72ℏ2ϕ2(x1)ϕ2(x2)(ρ2∆F
m
ρ
(ρ(x1 − x2)))

2

+ 96ℏ3ϕ(x1)ϕ(x2)(ρ2∆F
m
ρ
(ρ(x1 − x2)))

3

+ 24ℏ4(ρ2∆F
m
ρ
(ρ(x1 − x2)))

4

)
. (10.28)

Let us compute term by term of Z2. For simplicity, we denote y ≡ x1−x2 and Y ≡ −(y2−i0).
The first term reads::

λ2

(4!)2
16ℏ

∫
dX2 (ρ

2∆F
m
ρ
(ρy)−∆F (y))ϕ3(x1)ϕ

3(x2). (10.29)

Now, the renormalization strikes with full force. Since ∆F (y) ∈ D′(R4 \ {0}) has a trivial
extension to y = 0 and ρ2∆F

m
ρ
(ρy) = ∆F (y) outside the diagonal, the contribution of the first

term is zero. The second term reads:

λ2

(4!)2
72ℏ2

∫
dX2 ((ρ2∆F

m
ρ
(ρy))2 − (∆F (y))2)ϕ2(x1)ϕ

2(x2). (10.30)

(∆F (y))2 need a non-trivial renormalization. To do it, we write:

(∆F (y))2 =

(
1

4π2Y
+m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)2

=
1

(4π2)2Y 2
+

1

2πY

(
m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)
+

(
m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)2

. (10.31)

Note that the terms in the second line have scaling degree sd < 4 and therefore, it expansion
to y = 0 is given by the same formula. The term 1

(4π)2Y 2 has scaling degree d = 4 and is the only
one that needs a renormalization. That can be done substituting d = 4, j = 1, k = 1 in (10.20):
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1

Y 2
=

1

4
∂2y

ln
(
M2Y

)
Y

. (10.32)

Note that sd(
ln(M2Y )

Y ) = 2 < 4. Hence, it is renormalizable. Thus:

λ2

(4!)2
72ℏ2

∫
dX2 ((ρ2∆F

m
ρ
(ρy))2 − (∆F (y))2)ϕ2(x1)ϕ

2(x2)

=
λ2

(4!)2
72ℏ2

∫
dX2 1

4(4π2)2
(ρ4∂2ρy

ln(M2ρ2Y )

ρ2Y
− ∂2y

ln(M2Y )

Y
)ϕ2(x1)ϕ

2(x2)

=
λ2

(4!)2
72ℏ2

∫
dX2 1

4(4π2)2
(2 ln(ρ)∂2y

1

Y
)ϕ2(x1)ϕ

2(x2). (10.33)

Last but not least, we use:

∂2y
1

Y
= −4π2iδ(y). (10.34)

To write:

λ2

(4!)2
72ℏ2

∫
dX2 ((ρ2∆F

m
ρ
(ρy))2 − (∆F (y))2)ϕ2(x1)ϕ

2(x2)

=
λ2

(4!)2
72ℏ2

∫
dX2 −i

8π2
ln(ρ)δ(y)ϕ2(x1)ϕ

2(x2) = −i λ2

(4!)2π2
9ℏ2 ln(ρ)

∫
dx1 ϕ

4(x1)

=
ℏ
i

1

4!

−3ℏλ2

8π2
ln(ρ)

∫
dx1ϕ

4(x1) ≡
ℏ
i

1

4!

∫
dx1C̃ϕ

4(x1). (10.35)

Where C̃ = 3ℏλ2
8π2 ln(ρ).The factor ℏ

4!i was kept in the above formula because the original
expression of Z2 is proportional to i

ℏ and the factor 1
4! will make the calculation of renormalized

λρ easier (10.3.1).

The next term is proportional to (∆F (y))3. Before computing it, let us do the renormalization
of the term:

(∆F (y))3 =

(
1

4π2Y
+m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)3

(
1

4π2Y

)3

+ 3

(
1

4π2Y

)2(
m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)
+R. (10.36)

We denote all terms by R by sd < 4. Now we expand:
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3

(
1

4π2Y

)2(
m2f(m2y2) ln

(
m2

4
Y

)
+m2g(m2y2)

)
=3

(
1

4π2Y

)2(
m2 1

16π2
ln

(
m2

4
Y

)
+m2 −1

16π2

(
Γ′(2)

Γ(2)
+

Γ′(1)

Γ(1)

))
+R

=
3m2

8π2

(
1

4π2Y

)2(
ln

(
m2

4
Y

)
+

2γ − 1

2

)
+R. (10.37)

where γ ≈ 0.577 is the Euler-Mascheroni constant.
Hence:

(∆F (y))3 = a
1

Y 3
+ b

m2 ln(m
2

4 Y )

Y 2
+ c

m2

Y 2
+R

a ≡ 1

(4π2)3
b ≡ 3

16π2(4π2)2
c ≡ 3(2γ − 1)

16π2(4π2)2
. (10.38)

Remark:
There is only a small technical problem with the formula above; it does not fulfill the Sm-

expansion axiom. We can fix this by artificially introducing a mass scale M > 0. We write:

ln(
m2

4
Y ) = ln(

m2

4
Y ) + ln(

M2

4
Y )− ln(

M2

4
Y ) = ln(

M2

4
Y ) + 2 ln

(m
M

)
. (10.39)

Leading to:

(∆F (y))3 = a
1

Y 3
+
m2(b ln(M

2

4 Y ) + c)

Y 2
+ 2b

m2

Y 2
ln
(m
M

)
. (10.40)

Remark: The “right” way to do the calculation is to star from the Sm-expansion and derive
the formula above, not the other way around. We decide to take the opposite direction to keep
the idea “as intuitive as possible”.

The term 1
Y 3 in d = 4. We fix j = 0 and k = 2 in the formula (10.20) which results in:

∂2
1

y2
= (4b(b+ 1)− 2bd)

1

y3
=

8

y3
⇒ 1

−(y2 − i0)3
=

−1

8
∂2

1

Y 2
. (10.41)

The term 1
Y 2 can be written as

1

Y 2
=

1

4
∂2

ln(M2Y )

Y
. (10.42)

Thus:
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1

Y 3
= −1

8
∂2

1

Y 2
= − 1

32
∂2∂2

ln(M2Y )

Y
. (10.43)

The term above can be expanded to y = 0 using integration by parts.

To tackle the term ln(M2Y )
Y 2 , the simplest choice we can make in (10.20) is j = 2 and k = 1,

leading to:

∂2
ln2(M2y2)

y2
= −8

ln(M2y2)

(y2)1+1
+ 8

1

(y2)1+1
⇒ ln(M2y2)

(y2)2
=

1

(y2)2
− 1

8
∂2

ln2(M2y2)

y2

⇒ ln(M2Y )

Y 2
=

1

4
∂2

ln(M2Y )

Y
+

1

8
∂2

ln2(M2Y )

Y
. (10.44)

Since

sd(
ln(M2Y )

Y
) = sd(

ln2(M2Y )

Y
) = 2 < 4. (10.45)

The extension to y = 0 is immediate.
Hence, we can write:

(∆F (y))3 = a
1

Y 3
+
m2(b ln(M

2

4 Y ) + c)

Y 2
+ 2b

m2

Y 2
ln
(m
M

)
= − a

32
∂2∂2

ln(M2Y )

Y
+
bm2

4
∂2

ln(M2Y )

Y
+
bm2

8
∂2

ln2(M2Y )

Y

− bm2

4
ln(4)∂2

ln(M2Y )

Y
+
cm2

4
∂2

ln(M2Y )

Y

+
bm2

2
ln
(m
M

)
∂2

ln(M2Y )

Y
+R. (10.46)

Thus:

(
ρ2∆F

m
ρ
(ρy)

)3
−
(
∆F
m(y)

)3
= − a

16
ln(ρ)∂2∂2

1

Y

+
bm2

2
ln(ρ)∂2

1

Y
+
bm2

2
ln2(ρ)∂2

1

Y
+
bm2

2
ln(ρ)∂2

ln(M2Y )

Y

− bm2

2
ln(4) ln(ρ)∂2

1

Y
+
cm2

2
ln(ρ)∂2

1

Y
− bm2 ln2(ρ)∂2

1

Y

− bm2

2
ln(ρ)∂2

ln(M2Y )

Y
+ bm2 ln(ρ) ln

(m
M

)
∂2

1

Y

= − a

16
ln(ρ)∂2∂2

1

Y
+
bm2

2
ln(ρ)∂2

1

Y
− bm2

2
ln2(ρ)∂2

1

Y

− bm2

2
ln(4) ln(ρ)∂2

1

Y
+
cm2

2
ln(ρ)∂2

1

Y
+ bm2 ln(ρ) ln

(m
M

)
∂2

1

Y
. (10.47)
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Note: the non-local terms ∼ ∂2 ln(M
2Y )

Y cancel in the above equation.

Now we use ∂2 1
Y = −4π2iδ(y) to write the equation above as:

aπ2i

4
ln(ρ)∂2δ(y)− 2π2ibm2 ln(ρ)δ(y) + 2π2ibm2 ln2(ρ)δ(y)

+ 2π2ibm2 ln(4) ln(ρ)δ(y)− 2π2icm2 ln(ρ)δ(y)

− 4π2ibm2 ln(ρ) ln
(m
M

)
δ(y)

≡ aπ2i

4
ln(ρ)∂2δ(y) +

6B̃

iλ2ℏ2
δ(y). (10.48)

Remark: The complete expression includes a constant C1 page 196 [24] due to the most
general expansion to the thin diagonal t = t0 + C1δ(y). For simplicity, we set the constant to 0
in our calculations.

Where:

6B̃

iλ2ℏ2
= −2π2ibm2 ln(ρ) + 2π2ibm2 ln2(ρ)

+ 2π2ibm2 ln(4) ln(ρ)− 2π2icm2 ln(ρ)− 4π2ibm2 ln(ρ) ln
(m
M

)
. (10.49)

The constants multiplying B̃ will become clear in a second. To finish, we compute

i

ℏ
λ2

(4!)2

∫
dx1dx2

(
96ℏ3

(
ρ2∆F

m
ρ
(ρy)

)3
−
(
∆F
m(y)

)3)
ϕ(x1)ϕ(x2)

=
iλ2ℏ2

6

∫
dx1dx2

(
aπ2i

4
ln(ρ)∂2δ(y) +

6B̃

iλ2ℏ2
δ(y)

)
ϕ(x1)ϕ(x2)

=
iλ2ℏ2

6

∫
dx1

aπ2i ln(ρ)

2
(ϕ(x1)∂

2ϕ(x1)− ∂µϕ(x1)∂µϕ(x1)) +
6B̃

iλ2ℏ2
ϕ2(x1)

≡
∫
dx1Ã(ϕ(x1)∂

2ϕ(x1)− ∂µϕ(x1)∂µϕ(x1)) + B̃ϕ2(x1). (10.50)

In the last equation we have used:

∫
dx1dx2∂

2
yδ(y)ϕ(x1)ϕ(x2) =

∫
dx1dx2δ(y)(∂x1 − ∂x2)

2ϕ(x1)ϕ(x2)

=

∫
dx1dx2 δ(y)(ϕ(x1)∂

2
x2ϕ(x2) + (∂2x1ϕ(x1))ϕ(x2)− 2ϕµx1ϕ(x1)∂µ,x2ϕ(x2)

= 2

∫
dx1((∂

2ϕ)ϕ− ∂µϕ∂µϕ)(x1). (10.51)

and
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Ã =
iλ2ℏ2

6

aπ2i ln(ρ)

2
= −λ

2ℏ2 ln(ρ)
48(2π)4

. (10.52)

The last term we have to renormalize is (∆F (y))4. Note that is not indeed necessary. To see
it, let us consider the general form of the last term:

∫
dx1dx2 (ρ

2∆F
m
ρ
(ρy))4 − (∆F

m(y))
4 =

∫
dx1dx2Cδ(y) +

N∑
n>0

Cn(∂
2)nδ(y). (10.53)

Where C,Cn are functions of ρ,m,M . The last term do not contribute, since:

∫
dx1dx2 (∂

2)nδ(y) +

∫
dx1dx2 (∂

2)nδ(y) · 1 = (−1)2n
∫
dx1dx2 δ(y)(∂

2)n1 = 0. (10.54)

The first term contributes with a constant term in the interaction lagrangian and can be
ignored.

Therefore, what we obtained is:

Z2(Lint, Lint) =

∫
dx1 Ã(ϕ(x1)∂

2ϕ(x1)− ∂µϕ(x1)∂
µϕ(x1)) + B̃ϕ2(x1) + C̃ϕ4(x1)

=

∫
dx1 − 2Ã∂µϕ(x1)∂µϕ(x1) + B̃ϕ2(x1) +

1

4!
C̃ϕ4(x1). (10.55)

Note that the result has the same formula as the original lagrangian! Actually, we can
define a new field ϕρ(x) := f(ρ)ϕ(x), a new mass mρ and a new coupling constant λρ such that
L0 − Z(Lint) is the new Lagrangian. Explicitly:

L0 + Z(Lint) = L0 + Z1(Lint) +
1

2
Z2(Lint, Lint)

=L0 + Lint +
1

2
Z2(Lint, Lint)

!
=

1

2
(∂µϕρ∂

µϕρ −m2
ρϕ

2
ρ)−

λρ
4!
ϕ4ρ. (10.56)

Using:

Ã = − λ2ℏ2

96(2π)4
ln(ρ)

B̃ =
λ2ℏ2m2 ln(ρ)

8(2π)4

(
γ − ln(2)− ln(ρ)

2
+ ln

(m
M

))
C̃ =

3ℏλ2

8π2
ln(ρ). (10.57)

Thus:
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• Wave function renormalization

1

2
(1− 2Ã)∂µϕ∂µϕ

!
=

1

2
∂µϕρ∂µϕρ = f2(ρ)

1

2
∂µϕ∂µϕ

⇒ f(ρ) =
√

1− 2Ã =

√
1 +

λ2ℏ2 ln ρ
48(2π)4

. (10.58)

• Mass renormalization:

1

2
(m2 + B̃)ϕ2

!
=

1

2
m2
ρϕ

2
ρ =

1

2
m2
ρf

2(ρ)ϕ2

⇒ mρ =

√
m2 + B̃

f(ρ)
= m

√√√√√1 + λ2ℏ2 ln(ρ)
8(2π)4

(
γ − ln(2)− ln(ρ)

2 + ln
(
m
M

))
1 + λ2ℏ2 ln ρ

48(2π)4

. (10.59)

• Coupling constant renormalization

− 1

4!
(λ+

C̃

2
)ϕ4

!
= −λρ

4!
ϕ4ρ = −λρ

4!
f4(ρ)ϕ4

⇒ λρ =
λ+ C̃

2

f4(ρ)
= λ

1 + 3ℏλ ln(ρ)
16π2(

1 + λ2ℏ2 ln ρ
48(2π)4

)2 . (10.60)
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Chapter 11

Miscellaneous of theories of physical
interest

11.1 Introduction

This chapter is devoted to introduce a series of fields one usually works in physics. We introduce
complex scalar fields, (abelian) gauge fields and fermion fields. We will discuss briefly the star
product for these fields and an example of interaction to deduce the Feynman rules (in momentum
space) for the theory. For now, we do not mix fields with different spins. We will do it in the
next chapter, which discusses scalar and “usual” quantum electrodynamics (QED)

11.2 Complex scalar field

The complex scalar field ϕ∗(x) is very similar to the real scalar field field ϕ(x). It is also defined
as a functional over C given by:

ϕ∗(x) :C∞(M) → C

h(x) 7→ h(x). (11.1)

Where h(x) indicates the complex conjugate. We can define the configuration space for a
theory containing ϕ(x), ϕ∗(x) as C := C∞(M). If we want to emphasize that the fields are
independent, we can also define C := C∞(M)⊕ C∞(M).

The space of fields is the set:

F :=

{
N∑
n=0

M∑
m=0

∫
dXndYm fn,m(x1, ...xn, y1, ..., ym)ϕ(x1)...ϕ(xn)ϕ

∗(y1)...ϕ
∗(ym)

}
. (11.2)

The term corresponding to n = m = 0 is denoted by f0 ∈ C.
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The functional derivative is also the same as for real scalar fields:

δϕ(x)

δϕ(y)
=
δϕ∗(x)

δϕ∗(y)
:= δ(x− y)

δϕ(x)

δϕ∗(y)
=
δϕ∗(x)

δϕ(y)
:= 0. (11.3)

The free action for the complex scalar field is given by:

S0 :=

∫
dx ∂µϕ(x)∂

µϕ∗(x)−m2ϕ(x)ϕ∗(x) ≡
∫
dx ∂µϕ∂

µϕ∗ −m2|ϕ|2. (11.4)

The equations of motion follows immediately:

δS0
δϕ(x)

= −∂µ∂µϕ∗(x)−m2ϕ∗(x) = −(∂2 +m2)ϕ∗(x)

δS0
δϕ∗(x)

= −∂µ∂µϕ(x)−m2ϕ(x) = −(∂2 +m2)ϕ(x). (11.5)

The Poisson structure is “twice” (one for the scalar field, one for it’s conjugate) the one of
the real scalar field:

{F,G} =
δF

δϕ(x)
∆(x− y)

δG

δϕ∗(y)
+

δF

δϕ∗(x)
∆(x− y)

δG

δϕ(y)
. (11.6)

We can check that we recover the usual commutation relation of classical fields computing
the Poisson bracket of:

F = ϕ(x), G = π(x) :=
∂L
∂ϕ̇(x)

= ∂x0ϕ
∗(x)

F = ϕ∗(x), G = π∗(x) :=
∂L

∂ϕ̇∗(x)
= ∂x0ϕ(x). (11.7)

The calculation is the same as for the real field (5.34).

The quantization procedure is also “twice” the one for a real scalar field:
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F ⋆ G : = FG+ ℏ
(∫

dxdy
δF

δϕ(x)
∆+(x− y)

δG

δϕ∗(y)
+

δF

δϕ∗(x)
∆+(x− y)

δG

δϕ(y)

)
+

ℏ2

2

(∫
dX2dY2

δF

δϕ(x1)δϕ(x2)
∆+(x1 − y1)∆

+(x2 − y2)
δG

δϕ∗(y1)δϕ∗(y2)

+ 2
δF

δϕ(x1)δϕ∗(x2)
∆+(x1 − y1)∆

+(x2 − y2)
δG

δϕ∗(y1)δϕ(y2)

+
δF

δϕ∗(x1)δϕ∗(x2)
∆+(x1 − y1)∆

+(x2 − y2)
δG

δϕ(y1)δϕ(y2)

)
+ .... (11.8)

We can write the above formula in compact notation[59]:

F ⋆ G :=
∞∑

n,m=0

ℏn+m

n!m!

∫
dXndYmdX̃ndỸm

δn+mF

δϕ(x1)...δϕ(xn)δϕ∗(y1)...δϕ∗(ym)
n∏
i=1

m∏
k=1

∆+(xi − x̃i)∆
+(yi − ỹi)

δn+mG

δϕ∗(x̃1)...δϕ∗(x̃n)δϕ(ỹ1)...δϕ(ỹm)
. (11.9)

The construction of the T product is basically the same.

11.2.1 Example: Scattering of 2 particles → 2 particles consider

Lint = − λ
4!

∫
dx |ϕ(x)|4

We compute the amplitude of two different processes ϕϕ→ ϕ∗ϕ∗ and ϕϕ→ ϕϕ in the first order
of perturbation theory in the momentum space. Since our theory is massive, we already took
the adiabatic limit. The proof that the limit is well defined can be found in [23].

ϕϕ→ ϕ∗ϕ∗

The T− product in the first order for this process is given by:

T1 =
i

ℏ
Lint = − iλ

4!ℏ

∫
dx (ϕ(x)ϕ∗(x))2. (11.10)

The amplitude is given by:

T1 = ω0(ϕ(p1)ϕ(p2) ⋆ T1 ⋆ ϕ(p3)ϕ(p4))

= − iλ

4!ℏ

∫
dxω0(ϕ(p1)ϕ(p2) ⋆ ϕ

2(x)(ϕ∗)2(x) ⋆ ϕ∗(p3)ϕ
∗(p4)). (11.11)
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Where we have used the short notation:

ϕ(p1,2) :=
2ωp1,2

(2π)
d−1
2

∫
dx⃗1,2e

ip1,2x1,2ϕ∗(x1,2)

ϕ∗(p3,4) :=
2ωp3,4

(2π)
d−1
2

∫
dx⃗3,4e

−ip3,4x3,4ϕ∗(x3,4). (11.12)

We want to emphasize that the fact that the field is now complex does not change the sign
on the exponential. The sign is a consequence of the interpretation of the creator operator acting
on the vacuum, not on the field itself!

Essentially, we need to compute

ω0(ϕ
∗(x1)ϕ

∗(x2) ⋆ ϕ
2(x)(ϕ∗(x))2 ⋆ ϕ∗(x3)ϕ

∗(x4)). (11.13)

However, we do not need to go through all the calculations to obtain the result. Since the
star product only acts on a pair ϕϕ∗ and we have 6 ϕ∗’s and 2ϕ’s, the final result is necessarily
proportional to (ϕ∗)4. Hence,

T1 = 0. (11.14)

The above result is one facet of charge conservation. Roughly speaking, we can attribute
the field ϕ to a charge +1 and ϕ∗ to a charge −1. Every process preserves the charge, that is,
we have the same number of ϕ∗’s and ϕ’s before and after scattering. A better explanation and
further discussion can be found in [59].

ϕϕ→ ϕϕ

The tree-level amplitude is given by:

T1 = −i λ
4!ℏ

∫
dxω0(ϕ(p1)ϕ(p2) ⋆ ϕ

2(x)(ϕ∗)2(x) ⋆ ϕ(p3)ϕ(p4)). (11.15)

We can write the star product as:

(ϕ∗(x1)ϕ
∗(x2) ⋆ ϕ

2(x)((ϕ∗(x))2 ⋆ ϕ(x3)ϕ(x4))

|ϕ|=0
= ℏ4∆+(x1 − x)∆+(x2 − x)∆+(x− x3)∆

+(x− x4). (11.16)

The notation
|ϕ|=0
= indicates we are only considering the terms that does not contain any

powers of ϕ. Hence, the amplitude is:
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T1 =
−iλ
4!ℏ

ℏ4
(

4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dX⃗4dx e

ip1x1+ip2x2−ip3x3−ip4x4

×∆+(x1 − x)∆+(x2 − x)∆+(x− x3)∆
+(x− x4)

= − iλℏ3

4!(2π)d−2
δ(p1 + p2 − p3 − p4). (11.17)

11.3 (Abelian) Gauge fields

The next field we have to worry about is the spin-1 field called the “gauge field” or (specifically
in our context) photon field Aµ(x):

A(x) :

Cphoton := C∞(M,Rd) → Rd

h ≡ (hµ)µ=0,1...,d−1 7→ A(x)(h) = h(x)
. (11.18)

The set of fields Fphoton is defined as the set of functionals F : Cphoton → C of the form:

F =

R∑
r=0

∫
dYrf

µ1...µr
r (y1, ..., yr)Aµ1(y1)...Aµr(yr) ≡ ⟨fµ1...µrr , Aµ1 ...Aµr⟩ . (11.19)

Where R <∞, f0 ∈ C and fµ1...µrr ∈ F ′(M) is defined analogously to the scalar field (5.2.1).
The ∗ operation is introduced as

F ∗ :=
〈
fµ1...µrr , Aµ1 ...Aµr

〉
, A∗(x) = A(x). (11.20)

It transforms under action of (Λ, a) ∈ P↑+ as:

βΛ,aA
µ(x) := (Λ−1)µνA

ν(Λx+ a). (11.21)

We define the field strength tensor Fµν as usual:

Fµν := ∂µAν − ∂νAµ. (11.22)

And the free action as:

S0 := −1

4

∫
dxFµν(x)Fµν(x) =

1

2

∫
dxAµ(x)D

µνAν(x). (11.23)
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Where Dµν := ηµν∂2 − ∂µ∂ν . The functional derivative is done component by component:

δAν(x)

δAµ(y)
= δµνδ(x− y). (11.24)

Hence, the free field equation is simply:

δS0
δAµ

= DµνAν(x)
!
= 0. (11.25)

As usual, the retarded field equation reads:

(
δS0 + S

δAµ

)
◦ rS0+S,S0

!
=
δS0
δAµ

⇒ DµνAret
ν (x) = DµνAν(x)−

(
δS

δAµ
(x)

)ret

. (11.26)

The next step would be to invert Dµν . The problem is that Dµν is not invertible. That is a
direct consequence of the gauge invariance of the action. To avoid these problem, we introduce
a gauge-fixing term:

Sgf
0 :=

−λ
2

∫
dx(∂µA

µ(x))2. (11.27)

Leading to a different differential operator Dµν
λ :

Dµν
λ = ηµν∂2 − (1− λ)∂µ∂ν . (11.28)

Next we chose λ = 1, known as the “Feynman Gauge” leading to the massless Klein-Gordon
field equation:

Dµν
λ=1Aν = ∂2Aµ(x)

!
= 0. (11.29)

Hence, we have really 4 copies of scalar fields.

Last but not least, the star product is defined through:
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F ⋆ G =

∞∑
n=0

(−ℏ)n

n!
dXndYn

δnF

δAµ1(x1)...δAµn(xn)

n∏
l=1

D+(xl − yl)
δnG

δAµ1(y1)...δAµn(yn)
. (11.30)

As an example, let us compute Aµ(x) ⋆ Aν(y):

Aµ(x) ⋆ Aν(y) = Aµ(x)Aν(y)− ℏ
∫
dx̃dỹ

δAµ(x)

δAα(x̃)
D+(x̃− ỹ)

δAν(y)

δAα(ỹ)
. (11.31)

To compute the derivative in the last line, we have to match the indices. This is done using
the metric:

δAµ(x)

δAα(x̃)
= ηµρ

δAρ(x)

Aα(x̃)
= ηµρδαρδ(x− x̃) = ηµαδ(x− x̃). (11.32)

Hence, the star product is simply:

Aµ(x) ⋆ Aν(y) = Aµ(x)Aν(y)− ℏηµνD+(x− y). (11.33)

Remark: to do the quantization properly we also need ghost fields. Since they decouple in
the examples we work in this dissertation, we will skip this discussion.

11.3.1 Free photons

If we naively quantize the photon field as

Aµ(x) =
1

(2π)
3
2

∫
dp⃗

2ωp
aµ(p⃗)e−ikx + (aµ(p⃗))∗eikx. (11.34)

We are, basically, quantizing 4 different scalar fields, one for each component of the photon
field. However, the photon has only two degrees of freedom, corresponding to two different
polarizations. To solve the problem, we have to separate the Fock space of particles in the
physical Fock space (where only transverse polarized photons are allowed) and the nonphysical
Fock space (containing longitudinal and scalar photons). The entire discussion is presented in
[67] chapter 2.11. For our porpoises, it suffices to state that a physical photon with wave function
χ(p) is created from the vacuum by:

a∗(χ(p⃗,−t)) =
∫

dp⃗

2ωp
χ(p⃗)ϵµ(p⃗)a

∗
µ(p⃗)e

ikx

∣∣∣∣
p0=ωp

. (11.35)
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where ϵµ(k⃗) is called the polarization vector:

ϵµ(p⃗ ) := (0, ϵ⃗ ) p⃗ · ϵ⃗(p⃗ ) (⃗ϵ )2 = 1. (11.36)

With this choice of polarization vector, we guarantee that only physical photons are allowed.
Note that the indices of the photon and the creation operator are “down”, i.e,they do not represent
a Lorenz contraction. Hence, external photons needed a different Feynman rule in our formalism:

• Incoming photons with momentum p⃗ and polarization ϵµ(p⃗) contributes with

1

(2π)
3
2

∫
dp⃗

2ωp
ϵ∗µ(p⃗)Aµ(p⃗)e

ipx. (11.37)

• Outgoing photons with momentum p⃗ and polarization ϵµ(p⃗) contributes with

1

(2π)
3
2

∫
dp⃗

2ωp
ϵµ(p⃗)Aµ(p⃗)e

−ipx. (11.38)

11.4 Fermion Fields

This section is a simplified exposition of [24] Chapter 5.Just as in the reference, we will do the
construction for fermion fields in only 3+1 dimensions.

In this chapter, we are going to mimic the construction of the scalar field. As introduced in
the text of the scalar field, a single spinor field is characterized as a function C∞(M,C4) → C4:

ψ(x) :

C∞(M,C4) → C4

h ≡ (hk)k=1,...,4 7→ ψ(x)(h) = h
. (11.39)

The field ψ is restricted to the Fermi statistic and transforms according to D( 1
2
,0) ⊕ D(0, 1

2
)

under the action of L↑+. Associated with the field ψ we define the “complex ψ field” denoted by
ψ := ψ†γ0:

ψ(x) :

C∞(M,C4) → C1×4

h ≡ (hk)k=1,...,4 7→ ψ(x)(h) = h†(x)γ0 =
∑4

k=1 h
c
k(x)γ

0
kj

. (11.40)

where γ0 is the usual gamma matrix of the Dirac theory and the superscript c denotes the
complex conjugation.

The product of fields IS NOT defined as the “usual QFT of textbooks”. In these references,
the product of the fields is defined as the product of two vectors in C4 → C:
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(ψ(y)ψ(x))(h) :=

4∑
k,l=1

hck(y)γ
0
klhl(x) ∈ C. (11.41)

In our formalism, we define the product of two fields using the “wedge” product:

ψ(y) ∧ ψ(x) ≡ 2!ψ(y)⊗as ψ(x) : C(M,C2)×2 → C16 (11.42)

(h1, h2) 7→ (h†1(y)γ
0)⊗ h2(x)− (h†2(y)γ

0)⊗ h1(x). (11.43)

where ⊗as stands for antisymmetric product tensor. Note that by using this definition, we
also have products of the form:

ψ(x) ∧ ψ(y), ψ(x) ∧ ψ(y) : C(M,C2)×2 → C16. (11.44)

The usual objects of the theory involving products of ψψ, for example, the current jµ :=

ψ(x)∧γµψ(x) :=
∑4

k,l=1 γ
µ
klψl(x)∧ψk(x), are no longer numbers but vectors in C4n , n ≡ number

of fields. With this definition, we guarantee the anti-symmetry of fermion fields. For now on,
we adopt the Einstein summation convention, that is, repeated indices must be summed. For
example, the current jµ = γµklψl(x) ∧ ψk(x).

The next step of our construction is the definition of the (functional) derivative. We define
it as usual:

δ

δψr(y)
ψk1(x1) ∧ ... ∧ ψkl(xl) ∧ ψkl+1

(xl+1) ∧ ... ∧ ψkn(xn)

:=
l∑

j=1

(−1)j−1δkrδ(xj − y)

× ψk1(x1) ∧ ... ∧ ψ̂kj (xj) ∧ ψkl(xl) ∧ ψkl+1
(xl+1) ∧ ... ∧ ψkn(xn)

δ

δψr(y)
ψk1(x1) ∧ ... ∧ ψkl(xl) ∧ ψkl+1

(xl+1) ∧ ... ∧ ψkn(xn)

:=

l∑
j=l+1

(−1)j−1δkrδ(xj − y)

ψk1(x1) ∧ ... ∧ ψkl(xl) ∧ ψkl+1
(xl+1) ∧ ... ∧ ψ̂kj (xj) ∧ ψkn(xn)

. (11.45)

We also define the derivative acting on the right:
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δr
δψk(y)

ψ(x1) ∧ ... ∧ ψ(xn) = (−1)n−1
δ

δψk(y)
ψ(x1) ∧ ... ∧ ψ(xn). (11.46)

In practice, what we do when we need to compute a derivative is to “commute” the derivative
with the fields. For example:

δ

δψk(x)
(ψl1(x1) ∧ ψl2(x2) ∧ ψl3(x)) =

(
δψl1(x1)

δψk(x)

)
∧ ψl2(x2) ∧ ψ(x3)

− ψl1(x1) ∧

(
δψl2(x2)

δψk(x)

)
∧ ψl3(x3) + ψl1(x1) ∧ ψl2(x2)

(
δψl3(x3)

δψk(x)

)
= 0− 0 + ψl1(x1) ∧ ψl2(x2)δkl3δ(x− x3). (11.47)

The right derivative is calculate “beginning with the derivative on the right”:

δr
δψk(x)

(ψl1(x1) ∧ ψl2(x2) ∧ ψl3(x)) = ψl1(x1) ∧ ψl2(x2)
(
δψl3(x3)

δψk(x)

)
− ψl1(x1) ∧

(
δψl2(x2)

δψk(x)

)
∧ ψl3(x3) +

(
δψl1(x1)

δψk(x)

)
∧ ψl2(x2) ∧ ψ(x3)

= ψl1(x1) ∧ ψl2(x2)δkl3δ(x− x3)− 0 + 0. (11.48)

We also define the “Spinor field space”. We start with the classical configuration space:

Cspinor :=

∞⊕
n=0

C∞(M, C4)×n. (11.49)

The spinor field space Fspinor is defined as the set of functionals F : Cspinor → C of the form

F spinor :=

{
F = f0 ⊕

M⊕
m=0

N⊕
n=0

∫
dXndYmf

k1...kn,l1...lm(x1, ..., xn, y1, ..., ym)

ψk1(x1) ∧ ... ∧ ψkn(xn) ∧ ψl1(y1) ∧ ... ∧ ψlm(ym)
}
. (11.50)

In the above definition, we need to exclude the term n = m = 0 (it was already accounted
for in f0).

=:
N⊕
n=0

n∑
l=0

〈
fk1,...,knn,l , ψk1 ∧ · · · ∧ ψkl ∧ ψkl+1

∧ · · · ∧ ψkn
〉
, . (11.51)
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For n ≥ 1, each fk1,...,knn,l is a C-valued distribution with compact support, fk1,...,knn,l (x1, . . . , xn)

is totally antisymmetric under permutations of (k1, x1), . . . , (kl, xl) and permutations of (kl+1, xl+1), . . . , (kn, xn),
and it fulfills the wave front set condition (5.2.1). We will write F ′spinor(Mn) for the space of
distributions of this kind. [24] page 354.

11.4.1 even-odd grading and the η trick:

Now we introduce some subsets of Fspinor with the objective of facilitating the construction of the
retarded product and the matrix T . Essentially, we divide Fspinor into two subsets, one respecting
the Bose-statistics and the other respecting the Fermi-statistics. This division is called “even-odd
grading”:

Fspinor = F+
spinor ⊕F−spinor with

F+
spinor := C ⊕ [{Fn|n ∈ N∗is even}] F+

spinor := [{Fn|n ∈ N∗is odd}] . (11.52)

where Fn ∈ Fspinor is defined above and [−] denotes the linear span. Note that for F, F1, F2 ∈
F−spinor and G,G1, G2 ∈ F+

spinor:

F1 ∧ F2, G1 ∧G2 ∈ F+
spinor

F ∧G,G ∧ F ∈ F−spinor
. (11.53)

The η trick consists of transforming every field into a Bose field. To do it, we introduce some
Grassmann variables ηi,j respecting:

ηjηk = −ηkηj ∀j, k ∈ N. (11.54)

Defining the fields

F̃j :=

1⊗ Fj , Fj ∈ F+
spinor

ηj ⊗ Fj , Fj ∈ F−spinor
. (11.55)

F̃j obeys the Fermi statistics. Defining:

(a1 ⊗ F1) (a1 ⊗ F1) := (a1a2)⊗ (F1F2) where aj ∈ {1, ηj}. (11.56)

we can derive all the properties of the R product described for the scalar field for the fermion
fields and recover the sign at the end. The idea will become transparent further in the text (see
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11.4.4).

11.4.2 *-operation and Poincaré group

The last feature we have to impose on the Dirac spinors is how it transforms under the or-
thochronus Poincaré group P+ and the ∗− operation.

The (linear) action of the proper orthochronous Poincaré group P↑+ on ψ(x1) ∧ ... ∧ ψ(xn) ∧
ψ(y1) ∧ ...ψ(yn) is defined by [67] Chapter 1.2, notation page 356 [24]:

βΛ,aψ(x1) ∧ ... ∧ ψ(xn) ∧ ψ(y1) ∧ ...ψ(yn)

:= (ψ(Λ(A)x1 + a)S(A)) ∧ ... ∧ (ψ(Λ(A)xn + a)S(A))

∧ (S(A−1)ψ(Λ(A)y1 + a)) ∧ ... ∧ (S(A−1)ψ(Λ(A)yn + a)). (11.57)

We use the following representation:

D

(
1

2
, 0

)
⊕D

(
0,

1

2

)
: SL(2,C) → C4×4 A 7→ S(A) :=

(
A 0

0 (A−1)†

)
, . (11.58)

and A 7→ Λ(A) is the usual group homomorphism from SL(2,C) onto L+
↑ , see, e.g., [72] [67].

The ∗-operation can also be defined

ψ(x)∗ := ψ†(x) = ψ(x)γ0 and ψ(x)∗ :=
(
ψ†(x)γ0

)†
= γ0ψ(x), . (11.59)

The definition is extended using:

(F ∧G)∗ := G∗ ∧ F ∗.. (11.60)

11.4.3 Field equation

The free Lagrangian for spinor fields is

Sspinor
0 :=

∫
dxψk(x) ∧ (i∂µγ

µ
kj −m1kj)ψj(x) ≡

∫
dxψ(x) ∧ (i/∂ −m)ψ(x). (11.61)

We omit the identity matrix multiplying m and /a := aµγµ = γµaµ. From the free Lagrangian
we read the field equation for both spinors:

δS0
δψ

= i∂µψk(x)γ
µ
kj +mψ(x)

δS0

δψ
= (i/∂ −m)ψ(x). (11.62)
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11.4.4 Retarded propagator

Now we can construct the retarded product of the spinor field using the same machinery developed
to the scalar field. The retarded field equation reads:

δ(S + S0)

δψ
◦ rS0+S,S0 =

δS0
δψ

⇒ ψ
ret
(x)(i

←
/∂ +m) = ψ(x)(i

←
/∂ +m)−

(
δS

δψ
(x)

)ret

(11.63)

δ(S + S0)

δψ
◦ rS0+S,S0 =

δS0

δψ
⇒ (i/∂ −m)ψret(x) = (i/∂ −m)ψ(x)−

(
δS

δψ
(x)

)ret

. (11.64)

where
←
/∂ means the derivative is acting on the function on the left (in that case ψ).

As mentioned in the case of the scalar field, to solve the retarded field equation, we have to

calculate the “inverse” of (i/∂ −m) and (i
←
/∂ +m). Since these operators are matrices in spinor

space, the inverse of them will also be matrices. They are denoted by Sret(x) and Sadv(x).
Sret(x) is the “inverse” of (i/∂ −m) and it is given by:

Sret(z) := (i/∂z +m)∆ret(z)
d=4
=

1

(2π)4

∫
d4p

/p+m

p2 −m2 + ip00
e−ipx. (11.65)

Using the definitions above and

(i/∂ +m)(i/∂ −m) = −(∂2 +m2). (11.66)

It is easy to show that:

(i/∂ −m)Sret(x) = δ(x), suppSret ⊆ V +. (11.67)

Sadv(x) is the “inverse” of (i
←
/∂ +m) and is given by:

Sadv(z) := ∆ret(z)(i
←
/∂ −m)

z→−z
= ∆ret(−z)(i

←
/∂ +m) = (i/∂ +m)∆ret(−z)

d=4
=

1

(2π)4

∫
d4p

/p+m

p2 −m2 − ip00
eipx. (11.68)

Again, we can use

(i
←
/∂ +m)(i

←
/∂ −m) = −(

←
∂2 +m2). (11.69)

To show that
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Sadv(x)(i
←
/∂ +m) = δ(x), suppSadv ⊆ V −. (11.70)

Note that this propagator has the support in the past causal cone. That justifies the “slang”
used by the physicist that an antiparticle is the particle traveling backwards in time.

The propagator of the classical Poisson bracket is defined as:

S(z) := Sret(z)− Sadv(z). (11.71)

Since ψ,ψ have different propagators, we have two different Wightman two-point functions
page 358 [24]:

S+(x) := (i/∂ +m)∆+(x)
d=4
=

1

(2π)3

∫
d4p(/p+m)θ(p0)δ(p2 −m2)e−ipx

S−(x) := −(i/∂ +m)∆+(−x) d=4
=

1

(2π)3

∫
d4p(/p−m)θ(p0)δ(p2 −m2)eipx. (11.72)

The Feynman propagator is defined by page 369 [24]:

SFjk(x) := S+
jk(x)θ(x

0)− S−jk(x)θ(−x
0) = (i/∂ +m)∆F (x)

=
i

(2π)4

∫
d4p

/p+m

p2 −m2 + i0
e−ipx. (11.73)

Just as in the case of complex scalar field, the star product is defined through:

F ⋆ G = F ∧G

+ ℏ
∫
dxdy

(
δrF

δψt(x)
S+
tk(x− y) ∧ δG

ψk(x)
+

δrF

δψu(x)
S−vu(y − x) ∧ δG

δψv(y)

)
+

ℏ2

2!

∫
dX2dY2

(
δ2rF

δψt1(x1)δψt2(x2)
S+
t1k1

(x1 − y1)S
+
t2k2

(x2 − y2) ∧
δ2G

δψk1(y1)δψk2(y2)

+
δ2rF

δψt1(x1)δψu2(x2)
S+
t1k1

(x1 − y1)S
−
v2u2(y2 − x2) ∧

δ2G

δψk1(y1)δψv2(y2)

+
δ2rF

δψu1(x1)δψu2(x2)
S−v1u1(y1 − x1)S

−
v2vu2

(y2 − x2) ∧
δ2G

δψv1(y1)δψv2(y2)

)
+ .... (11.74)

In compact notation page 359 [24]:
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F ⋆ G :=

∞∑
n,m=0

∫
dXndYm

ℏn+m

n!m!
dXndYndX̃ndỸm

δn+mr F

δΨt(x1,n)δΨu(y1,m)

n∏
j=1

S+
tjsj

(xj − x̃j)

∧
m∏
l=1

S−vlul(ỹl − yl)
δn+mG

δΨs(x̃1,n)δΨv(ỹ1,m)
. (11.75)

Where:

δΨt(x1,n) := δψt1(x1)....δψtn(xn)

δΨu(y1,m) := δψu1(y1)...δψum(ym). (11.76)

Once the retarded/advanced propagators and the star product are defined, we can define the
Poisson bracket and the commutators. Unlike the Bose particles, the sign of the commutators is
not always the same. To avoid the problem, we use the eta trick and transforms all the fields in
Bosonic fields and compute the Poisson bracket/commutator as usual.

[F,G]⋆ := F̃ ⋆ G̃− G̃ ⋆ F̃

{F,G} := lim
ℏ→0

[F,G]

iℏ
= lim

ℏ→0

F̃ ⋆ G̃− G̃ ⋆ F̃

iℏ
. (11.77)

where F̃ , G̃ means the field considering the eta trick (11.55).

Let us try some examples:

Example 1: F = ψj(x), G = ψk(y)

Since F and G have odd powers of fields, the modified fields read:

F̃ = ηjψj(x) G̃ = ηkψk(x). (11.78)

We omit the symbol of the tensor product.

Hence:
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F ⋆ G = (ηjψj(x)) ⋆ (ηkψk(y)) = (ηjηk)(ψj(x) ∧ ψk(y) + ℏS−kj(y − x))

G ⋆ F = (ηkηj)(ψk(y) ∧ ψj(x) + ℏS+
kj(y − x))

[F,G] = ηjηkψj(x) ∧ ψk(y)− ηkηjψk(y) ∧ ψj(x)

+ ℏ((ηjηk)S−kj(y − x)− (ηkηj)S
+
kj(y − x))

= (ηjηk)(ψj(x) ∧ ψk(y) + ψk(y) ∧ ψj(x) + ℏ(S−kj(y − x) + S+
kj(y − x))

= ℏ(S−kj(y − x) + S+
kj(y − x)). (11.79)

The Poisson bracket is simply:

{F,G} = −i(S−kj(y − x) + S+
kj(y − x)) ≡ Skj(y − x) = (i/∂y +m)kj∆(y − x). (11.80)

Note that in this case, if we were to define the commutator using only the F,G fields, we
would have defined it as:

[F,G] = F ⋆ G+G ⋆ F. (11.81)

Due to the eta trick, that confusion with signs is not a big deal.

Example 2: F = ψj(x), G = ψk1(y1) ∧ ψk2(y2)

The new fields are simply:

F̃ = ηjψj(x) , G̃ = G = ψk1(y1) ∧ ψk2(y2). (11.82)

Hence:

F ⋆ G = ηj

(
ψj(x) ∧ ψk1(y1) ∧ ψk2(y2)

+ℏ(S−k1j(y1 − x)ψk2(y2) + S−k2j(y2 − x)ψk1(y1)

)
G ⋆ F = ηj

(
ψk1(y1) ∧ ψk2(y2) ∧ ψj(x)

+ℏ(S+
k1j

(y1 − x)ψk2(y2) + S+
k2j

(y2 − x)ψk1(y1)

)
[F,G] = F⋆G−G ⋆ F = ℏSk1k(y1 − x)ψk2(y2) + ℏSk2j(y2 − x)ψk1(y1). (11.83)

As one can see, the eta trick was not necessary in the above expression. One can summarize
the change of the sign using:
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[F,G] =

F ⋆ G+G ⋆ F F,G ∈ F−

F ⋆ G−G ⋆ F otherwise
. (11.84)

Using the eta-trick, one can construct the T− and R− product exactly as done for the scalar
field.

11.4.5 Free-Fermion states

Just as in the case of the scalar field, to compute scattering states, we need the Fock space
representation. The construction of Fock space is basically the same as done for scalar fields,
with the difference we need to consider anti-symmetric products:

Ffermion =
∞⊕
n=0

AH⊗n. (11.85)

Where A stands for anti-symmetrization. We assume the reader is familiar with the concept
of Fermionic Fock space. If it is not the case, we refer to [35] chapter 3 and/or [67] chapter 2.2.

The Dirac spinor (operator) is defined through:

ψop(x) :=
1

(2π)
3
2

∫
d3p⃗

2ωp

∑
s

as(p⃗)us(p⃗)e
−ipx + b∗s(p⃗)vs(p⃗)e

ipx

∣∣∣∣
p0=ωp

(ψop)† =
1

(2π)
3
2

∫
d3p⃗

2ωp

∑
s

a∗s(p⃗)u
†
s(p⃗)e

ipx + bs(p⃗)v
†
s(p⃗)e

−ipx
∣∣∣∣
p0=ωp

ψ
op

:= (ψop)†γ0. (11.86)

Where s = 1
2 ,−

1
2 represents the spin, b∗s(p⃗) is related to the creation operator of an

anti-particle with wave function ζ(p⃗) and spin s by:

b∗s(ψ) =

∫
dp⃗

2ωp
ζ(p⃗)b∗s(p⃗). (11.87)

a∗s(p⃗) on the other hand,is related to the creation operator of a particle with wave
function ζ(p⃗) and spin s by:

a∗s(ψ) =

∫
dp⃗

2ωp
ζ(p⃗)a∗s(p⃗). (11.88)

The operators as(p⃗), bs(p⃗) are related to the annihilation operators of particle/anti-particle
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just as in the case of bosonic field. The only difference is that they obey anti-commutation
relation, instead of commutation relations:

{a∗s(p⃗), al(q⃗)} := a∗s(p⃗)al(q⃗) + al(q⃗)a
∗
s(p⃗) = 2ℏωpδ(p⃗− q⃗)δsl

{b∗s(p⃗), bl(q⃗)} := b∗s(p⃗)bl(q⃗) + bl(q⃗)b
∗
s(p⃗) = 2ℏωpδ(p⃗− q⃗)δsl. (11.89)

u, v are eingenvectors of the free Hamiltonian. To properly introduce then, we need an
auxiliary notation:

χs :=



1

0

 , s = +1
20

1

 s = −1
2

. (11.90)

Then:

us(p⃗) :=
√
ωp +m

(
χS

σ⃗·p⃗
E+mχS

)

vs(p⃗) :=
√
ωp +m

(
σ⃗·p⃗
E+mχS

χS

)
. (11.91)

where σ⃗ · p⃗ is given by:

σ⃗ · p⃗ = pxσx + pyσy + pzσz, σi Pauli matrix i. (11.92)

From the above definitions, it can easily proven that:

u†s(p⃗)ul(p⃗) = v†s(p⃗)vl(p⃗) = 2ωpδsl

v†s(p⃗)ul(q⃗) = u†s(p⃗)vl(q⃗) = 0. (11.93)

Where the bold letters represent the matrix product in 4 dimensions. For a =


a1

a2

a3

a4

 and

b =


b1

b2

b3

b4
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a†b =

4∑
i=1

aibi. (11.94)

Last but not least, using γ0 :=

(
12×2 0

0 −12×2

)
is easy to show that:

∑
s

us(p⃗)us(p⃗) = /p+m (11.95)∑
s

vs(p⃗)vs(p⃗) = /p−m. (11.96)

As usual, the goal of when computing scattering amplitudes is to compute

⟨Ω(b∗s)n(a∗l )m|S(b∗t )t(a∗r)rΩ⟩. (11.97)

Just as we have done in the case of bosonic field, let us compute some simple examples in
the free theory to obtain the correct Feynman rules.

e+ → e+

The corresponding expression in the Fock space is given by:

T1 = ⟨Ωb∗s(p⃗)|b∗l (q⃗)Ω⟩ = ⟨Ω|bs(p⃗)b∗l (q⃗)Ω⟩

= ⟨Ω|(2ωpδ(p⃗− q⃗)− b∗l (q⃗)bs(p⃗))Ω⟩ = 2ωpδslδ(p⃗− q⃗). (11.98)

We compute the action of the field ψ acting on the vacuum:

ψ(x)Ω =
1

(2π)
3
2

∫
dp⃗

2ωp

∑
s

(as(p⃗)us(p⃗)e
−ipx + b∗s(p⃗)vs(p⃗)e

ipx)Ω

=
1

(2π)
3
2

∫
dp⃗

2ωp

∑
s

vs(p⃗)e
ipx(b∗s(p⃗)Ω). (11.99)

We can perform the inverse Fourier transformation:

1

(2π)
3
2

∫
dx eip⃗x⃗ψ(x) =

eiωpx0

2ωp

∑
s

vs(p⃗)(b
∗
s(p⃗)Ω). (11.100)

To completely isolate b∗s(p⃗)Ω in the equation above, we use (11.93) to write:
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b∗s(p⃗)Ω =
1

(2π)
3
2

∫
dx⃗ e−ipxv†s(p⃗)ψ(x)

∣∣∣∣
p0=ωp

. (11.101)

Hence, the expression in our formalism reads:

T1 = ω0

(
1

(2π)
3
2

∫
dx⃗ e−ipxv†s(p⃗)ψ(x)

∣∣∣∣
p0=ωp

⋆
1

(2π)
3
2

∫
dy⃗ e−iqyv†l (q⃗)ψ(y)

∣∣∣∣
q0=ωq

)

=
1

(2π)3

∫
dx⃗dy⃗ eipx−iqyω0

(
ψ†(x)vs(p⃗) ⋆ v

†
l (q⃗)ψ(y)

)
. (11.102)

The problem now is that the star product is only defined to ψ ⋆ ψ, not ψ† ⋆ ψ. To solve the
problem we introduce:

ψ† = ψ†14×4 = ψ
†γ0γ0 = ψγ0. (11.103)

We also introduce the vector indices to make the calculations clearer, i.e.:

ψ†(x)vs(p⃗) ≡
∑
t,q

ψt(x)γ
0
tq(vs(p⃗))q

v†l (q⃗)ψ(y) ≡
∑
r

(v†l (q⃗))rψr(y). (11.104)

We adopt the Einstein summation convention: repeated indices must be summed. Thus:

T1 =
1

(2π)3

∫
dx⃗dy⃗ eipx−iqyγ0tq(vs(p⃗))q(v

†
l (q⃗))rω0

(
ψt(x) ⋆ ψr(y)

)
=

1

(2π)3

∫
dx⃗dy⃗ eipx−iqyγ0tq(vs(p⃗))q(v

†
l (q⃗))r

(
ℏS−rt(y − x)

)
. (11.105)

We can write the expression above as a product of matrices:

T1 =
ℏ

(2π)3

∫
dx⃗dy⃗ eipx−iqyv†s(q⃗)S

−(y − x)γ0vl(p⃗)

=
ℏ

(2π)6

∫
dk⃗

2ωk
dx⃗dy⃗eipx−iqyv†s(q⃗)(k−m)eik(y−x)γ0vl(p⃗). (11.106)

Note that we can perform the integral over dx⃗dy⃗ just by integrating the exponential function:
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T1 =
ℏ

(2π)6

∫
dk⃗

2ωk
(2π)6δ(p⃗− k⃗)δ(k⃗ − q⃗)v†s(q⃗)(k−m)γ0vl(p⃗)

=
ℏ

2ωp
δ(p⃗− q⃗)v†s(p⃗)(p−m)γ0vl(p⃗). (11.107)

The final trick we have to use to compute the product of matrices is to write:

p−m =
∑
k

vk(p⃗)vk(p⃗). (11.108)

From which we obtain:

T1 =
ℏ

2ωp
δ(p⃗− q⃗)

∑
k

v†s(p⃗)vk(p⃗)vk(p⃗)γ
0vl(p⃗)

=
ℏ

2ωp
δ(p⃗− q⃗)

∑
k

v†s(p⃗)vk(p⃗)v
†
k(p⃗)vl(p⃗). (11.109)

From (11.93):

v†s(p⃗)vk(p⃗) = δsk2ωp v†k(p⃗)vl(p⃗) = δkl2ωp. (11.110)

We conclude:

T1 =
ℏ

2ωp
δ(p⃗− q⃗)

∑
k

δlkδks(2ωp)
2 = 2ℏωpδ(p⃗− q⃗)δls. (11.111)

e− → e−

Now we repeat the calculation with aa particle going to a particle in the free theory. In the
formalism of Fock space:

T1 = ⟨Ωa∗s(p⃗)|a∗l (q⃗)Ω⟩

= ⟨Ω|as(p⃗)a∗l (q⃗)Ω⟩ = 2ℏωpδ(p⃗− q⃗)δsl. (11.112)

The corresponding expression can be found if we apply ψ†Ω :
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(ψop)†Ω =
1

(2π)
3
2

∫
dp⃗

2ωp

∑
s

(a∗s(p⃗)u
†
s(p⃗)e

ipx + bs(p⃗)v
†
s(p⃗)e

−ipx)Ω

=
1

(2π)
3
2

∫
dp⃗

2ωp

∑
s

u†s(p⃗)e
ipx(a∗s(p⃗)Ω). (11.113)

We can compute the inverse Fourier transformation:

∑
s

u†s(p⃗)(a
∗
s(p⃗)Ω) =

2ωp

(2π)
3
2

∫
dx⃗ e−ipx(ψop)†(x)

=
1

(2π)
3
2

∫
dx⃗e−ipx(ψop)†(x)us(p⃗). (11.114)

In the above equation we have used (11.93). Hence:

T1 = ω0

(
1

(2π)
3
2

∫
dx⃗e−ipxψ†(x)us(p⃗) ⋆

1

(2π)
3
2

∫
dy⃗e−iqyψ†(x)ul(q⃗)

)

=
1

(2π)3

∫
dx⃗dy⃗ eipx−iqyω0

(
u†s(p⃗)ψ(x) ⋆ψ(y)γ

0ul(q⃗)
)
. (11.115)

Now we repeat the same kind of calculation done in the case of the free e− field.

T1 =
1

(2π)3

∫
dx⃗dy⃗ eipx−iqyu†s,a(p⃗)γ

0
bcul,cω0(ψa(x) ⋆ ψb(y))

=
ℏ

(2π)3

∫
dx⃗dy⃗ eipx−iqyu†s,a(p⃗)γ

0
bcul,c(q⃗)S

+
ab(x− y)

=
ℏ

(2π)6

∫
dx⃗dy⃗dk⃗

2ωk
eipx−iqyu†s,a(p⃗)γ

0
bcul,c(q⃗)(/k +m)abe

−ik(x−y)

=
ℏ

2ωk
δ(p⃗− q⃗)u†s(p⃗)(/p+m)γ0ul(p⃗). (11.116)

Using (11.96) and (11.93) we can write:

u†s(p⃗)(/p+m)γ0ul(p⃗) =
∑
k

u†s(p⃗)uk(p⃗)uk(p⃗)γ
0ul(p⃗)

=
∑
k

(2ωp)
2δskδkl = 4ω2

pδsl. (11.117)

Thus:

T1 =
ℏ

2ωp
δ(p⃗− q⃗)4ω2

pδsl = 2ℏωpδ(p⃗− q⃗)δsl. (11.118)
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As expected.

We can summarize the Feynman rule for incoming/outgoing Fermions/ anti-fermions as fol-
lows:

• Incoming anti-fermions with momentum p⃗ and spin s are described by a term

1

(2π)
3
2

∫
dx⃗ eipxψ(x)γ0vs(p⃗). (11.119)

• Outgoing anti-fermions with momentum p⃗ and spin s are described by a term

1

(2π)
3
2

∫
dx⃗ e−ipxv†s(p⃗)ψ(x) =

1

(2π)
3
2

∫
dx⃗ e−ipxvs(p⃗)γ

0ψ(x). (11.120)

• Incoming fermions with momentum p⃗ and spin s are described by a term

1

(2π)
3
2

∫
dx⃗ eipxu†s(p⃗)ψ(x) =

1

(2π)
3
2

∫
dx⃗ eipxus(p⃗)γ

0ψ(x). (11.121)

• Outgoing fermions with momentum p⃗ and spin s are described by a term

1

(2π)
3
2

∫
dx⃗ e−ipxψ(x)γ0us(p⃗). (11.122)

11.4.6 Fermi four fermion interaction

As an example of a model involving only fermionic fields, we consider an adaptation of the Fermi
four fermion interaction [30]

S =

∫
dxψj(x) ∧ (i∂µγ

µ
jk −m)ψk(x)− λ(ψk(x) ∧ ψk(x))2. (11.123)

The original theory is composed with more than a type of fermion, and here we consider only
one type to make it as simple as possible. Although the above theory is non-renormalizable, it
was an important model for the β decay [62]. To avoid terms of the form ψ in the formulas, we
denote ψ ≡ ψ+ and ψ ≡ ψ−.

Let us compute the vertex of the theory given by the amplitude of ψ+ψ− → ψ+ψ−:

T1 =
i

ℏ
ω0(ψ

+
s1(p1) ∧ ψ−s2(p2) ⋆ Lint ⋆ ψ+

s3(p3) ∧ ψ
−
s4(p4)). (11.124)

Where:
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ψ−s1(p1) =
1

(2π)
3
2

∫
dx⃗1 e

ip1x1u†s1(p⃗1)ψ(x1)

≡ 1

(2π)
3
2

∫
dx⃗1 e

ip1x1u†s1,k1(p⃗1)ψk1(x1)

ψ+
s2(x2) =

1

(2π)
3
2

∫
dx⃗2 e

ip2x2ψ(x2)γ
0vs2(p⃗2)

≡ 1

(2π)
3
2

∫
dx⃗2 e

ip2x2ψk2(x2)γ
0
k2k′2

vs2,k′2(p⃗2)

ψ−s3(p3) =
1

(2π)
3
2

∫
dx⃗3 e

−ip3x3ψ(x3)γ
0us3(p⃗3)

≡ 1

(2π)
3
2

∫
dx⃗3 e

−ip3x3ψk3(x3)γ
0
k3k′3

us3,k′3(p⃗3)

ψ+
s4(p4) =

1

(2π)
3
2

∫
dx⃗4 e

−ip4x4v†s4(p⃗4)ψ(x4)

≡ 1

(2π)
3
2

∫
dx⃗4 e

−ip4x4 v†s4,k4(p⃗4)ψk4(x4). (11.125)

Now we compute ψk(x)∧ψk(x)∧ψj(x)∧ψj(x)⋆ψk3(x3)∧ψk4(x4). The final expression is long;
therefore, we change the notation in the hope that we manage to increase clarity. We omit the
wedge symbol, that is, ψ∧ψ ≡ ψψ and the arguments of ψk(x), ψk(x), ψj(x), ψj(x), ψk3(x3), ψk4(x4).
Since the argument of the function is related to the spinorial index, we should not have a problem
reading the final expression. Remark: By omitting ∧ we do not mean that we are computing the
inner product in C4!!

ψk(x) ∧ ψk(x) ∧ ψj(x) ∧ ψj(x) ⋆ ψk3(x3) ∧ ψk4(x4)

≡ ψkψkψjψj ⋆ ψk3ψk4 = ψkψkψjψjψk3ψk4

+ ℏ

(
δrψkψkψjψj

δψt(x)
S+
ts(x− x̃)

δψk3ψk4

δψs(x̃)
+
δrψkψkψjψj

δψu(y)
S−vu(ỹ − y)

δψk3ψk4
ψv(ỹ)

)

+ ℏ2
(
δ2rψkψkψjψj

δψt(x)δψu(y)
S+
ts(x− x̃)S−vu(ỹ − y)

δ2ψk3ψk4

δψs(x̃)δψv(ỹ)

)
. (11.126)

The term proportional to ℏ is:

ψkψkψjS
+
jk3

(x− x3)ψk4 + ψkψjψjS
+
jk3

(x− x3)ψk4

+ ψkψkψjS
−
k4j

(x4 − x)ψk3 + ψkψjψjS
−
k4k

(x4 − x)ψk3 . (11.127)

The term proportional to ℏ2 is:
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S+
jk3

(x− x3)S
−
k4j

(x4 − x)ψkψk − S+
kk3

(x− x3)S
−
k4j

(x4 − x)ψkψj

+S+
jk3

(x− x3)S
−
k4k

(x4 − x)ψkψj + S+
kk3

(x− x3)S
−
k4k

(x4 − x)ψjψj . (11.128)

We can simplify the result by changing j ↔ k in the second order of (11.128). Then:

2ℏ2(S+
jk3

(x− x3)S
−
k4j

(x4 − x)ψkψk − S+
kk3

(x− x3)S
−
k4j

(x4 − x)ψkψj). (11.129)

Computing ψk1(x1) ∧ ψk2(x2)⋆equation above, we obtain:

|ψ|=0
= − 2ℏ4S+

jk3
(x− x3)S

−
k4j

(x4 − x)S−kk2(x− x2)S
+
k1k

(x1 − x)

+ 2ℏ4S+
kk3

(x− x3)S
−
k4j

(x4 − x)S−jk2(x− x2)S
+
k1k

(x1 − x). (11.130)

To complete the calculation, we need to use the same kind of trick we use to compute the
amplitude of free-fermions. The first line reads:

T1 = −2iλℏ3
∫
dx dX⃗4

(2π)6
eip1x1+ip2x2−ip3x3−ip4x4

×
(
u†s1(p⃗1)S

+(x1 − x)S−(x− x2)γ
0vs2(p⃗2)

)
×
(
v†s4(p⃗4)S

−(x4 − x)S+(x− x3)γ
0us3(p⃗3)

)
. (11.131)

Using

S+(z) =
1

(2π)3

∫
dq⃗

2ωq
(/q +m)e−iqz =

1

(2π)3

∫
dq⃗

2ωq

∑
s

us(q⃗)us(q⃗)e
−iqz

S−(z) =
1

(2π)3

∫
dq⃗

2ωq
(/q −m)eiqz =

1

(2π)3

∫
dq⃗

2ωq

∑
s

vs(q⃗)vs(q⃗)e
iqz (11.132)

We can write the contribution to the amplitude as:

T1 = iλℏ3
∫

dx dX⃗4dQ⃗4

(2π)18
(∏4

i=1 2ωqi

)
eip1x1+ip2x2−ip3x3−ip4x4−iq1(x1−x)+iq2(x−x2)−iq3(x−x3)+iq4(x4−x)∑
k1,k2,k3,k4

(
u†s1(p⃗1)uk1(q⃗1)uk1(q⃗1)vk2(q⃗2)vk2(q⃗2)γ

0vs2(p⃗2)
)

×
(
v†s4(p⃗4)vk4(q⃗4)vk4(q⃗4)uk3(q⃗3)uk3(q⃗3)γ

0us3(p⃗3)
)

(11.133)
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The integrals can easily be done:

iλℏ3
∫

dxdy dX⃗4dQ⃗4

(2π)18
(∏4

i=1 2ωqi

)
eip1x1+ip2x2−ip3x3−ip4x4−iq1(x1−x)+iq2(x−x2)−iq3(x−x3)+iq4(x4−x)

=
iλℏ3

(2π)6

∫
dx dQ⃗4(∏4
i=1 2ωqi

) ( 4∏
i=1

δ(p⃗i − q⃗i)

)
ei(q1+q2−q3−q4)x =

iλℏ3

(2π)3
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)(∏4

i=1 2ωqi

)
(11.134)

Using p⃗i = q⃗i, the matrix product can be computed using (11.93):

∑
k1,k2

u†s1(p⃗1)uk1(p⃗1)uk1(p⃗1)vk2(p⃗2)vk2(p⃗2)γ
0vs2(p⃗2)

=
∑
k1,k2

2ωp12ωp2δs1k1δs2k2uk1(p⃗1)vk2(p⃗2) = 4ωp1ωp2us1(p⃗1)vs2(p⃗2) (11.135)

∑
k3,k4

v†s4(p⃗4)vk4(p⃗4)vk4(p⃗4)uk3(p⃗3)uk3(p⃗3)γ
0us3(p⃗3)

4ωp3ωp4
∑
k3,k4

δk3s3δk4s4vk4(p⃗4)uk3(p⃗3) = 4ωp3ωp4vs4(p⃗4)us3(p⃗3) (11.136)

Thus, the first term correspond to:

−2
iλℏ3

(2π)3
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)(us1(p⃗1)vs2(p⃗2))(vs4(p⃗4)us3(p⃗3)). (11.137)

The second term is analogous and contributes with:

2
iλℏ3

(2π)3
(u†s1(p⃗1)us3(p⃗3))(v

†
s2(p⃗2)vs4(p⃗4))δ(p⃗1 + p⃗2 − p⃗3 − p⃗4). (11.138)

Thus, the total amplitude is simply:

2
iλℏ3

(2π)3
((u†s1(p⃗1)us3(p⃗3))(v

†
s2(p⃗2)vs4(p⃗4))− (us1(p⃗1)vs2(p⃗2))(vs4(p⃗4)us3(p⃗3)))δ(p⃗1 + p⃗2 − p⃗3 − p⃗4).

(11.139)

The corresponding Feynman diagrams
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Figure 11.1: We follow the usual convention: Antiparticles are represented going in the
opposite direction they are actually traveling. Note that since are working with Fermions,
changing p3 ↔ p4 implies a change in the sign.
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Chapter 12

Examples of more sophisticated
perturbative theories

12.1 Warm-up: effective theory for 2 scalar fields

The first theory we want to consider that contains more than one field is the simplest possible:
a theory with two different types of scalar fields ϕ1, ϕ2. The space of fields is defined as

F := F1 ⊗F2. (12.1)

The multiplication and star product are simply defined by:

(F1 ⊗ F2) · (G1 ⊗G2) := (F1 ·G1)⊗ (F2 ·G2) (12.2)

(F1 ⊗ F2) ⋆ (G1 ⊗G2) := (F1 ⋆ G1)⊗ (F2 ⋆ G2). (12.3)

All the constructions done for a single real scalar field also work for the product of scalar
fields. We are interested in studying the action:

S =

∫
dx {1

2
∂µϕ1(x)∂

µϕ1(x)−m2ϕ21(x)

+∂µϕ2(x)∂
µϕ2(x)−M2ϕ22(x)− µϕ2(x)ϕ

2
1(x)}. (12.4)

Once again, we work in the adiabatic limit since for massive theories it is well defined. In the
limit M2 ≫ any energy scale involved in the problem. The problem is known in the literature
as effective field theory (Chapter 33 [68]). The idea is to change the full theory that contains
two types of field to a simpler one that contains only one type of field. Typically, this is done
by matching the amplitudes of the original theory to those of the new theory. There are more
sophisticated methods to perform the calculation [52], but since the goal here is to introduce
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how to work with two different types of fields, the tree level matching is already good enough.

Figure 12.1: We want to exchange diagram for two types of fields to a tree-level diagram
of ϕ4

1 theory. The dashed line indicates ϕ1 and the bubble interactions involving ϕ1 and
ϕ2. We compute only the first order.

Let us get down to business. We want to compute ϕ1ϕ1 → ϕ1ϕ1 scattering. Considering
the form of our interaction, this process corresponds to T2(Lint, Lint). The construction of T−
product respects the same rules, hence:

T2(Lint, Lint) = −µ
2

ℏ2

∫
dxdy ϕ21(x1)ϕ2(x) ⋆F ϕ

2
1(y)ϕ2(y)

= −µ
2

ℏ2

∫
dxdy (ϕ21(x1) ⋆F ϕ

2
1(y))(ϕ2(x) ⋆F ϕ2(y)). (12.5)

The corresponding amplitude is given by:

T2 = ω0(ϕ1(p1)ϕ1(p2) ⋆ T2(Lint, Lint) ⋆ ϕ1(p3)ϕ1(p4)). (12.6)

Again:

ϕ(p1)ϕ(p2) ≡
4ωp1ωp2
(2π)d−1

∫
dx⃗1dx⃗2 e

ip1x1+ip2x2ϕ(x1)ϕ(x2)

ϕ(p3)ϕ(p4) ≡
4ωp3ωp4
(2π)d−1

∫
dx⃗3dx⃗4 e

−ip3x3−ip4x4ϕ(x3)ϕ(x4). (12.7)

Since we have the contraction of 4 ϕ1’s and none ϕ2 in the amplitude, the term that has a
non-zero contribution for the amplitude is:

−µ
2

ℏ2
ϕ21(x)ϕ

2
1(y)ℏ∆F

2 (x− y) = −µ
2

ℏ
ϕ21(x)ϕ

2
1(y)

(
i

∫
dp

(2π)d
e−ip(x−y)

p2 −M2 + i0

)
. (12.8)

Plugging the expression above into the amplitude we obtain:

T2 = −µ
2

ℏ

(
4∏
i=1

2ωpi

(2π)
d−1
2

)∫
dX⃗4e

ip1x1+ip2x2−ip3x3−ip4x4

×
∫
dxdy ω0(ϕ1(x1)ϕ1(x2) ⋆ ϕ

2
1(x)ϕ

2
1(y) ⋆ ϕ1(x3)ϕ1(x4))∆

F
2 (x− y). (12.9)
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The star product can be easily computed:

ω0(ϕ1(x1)ϕ1(x2) ⋆ ϕ
2
1(x)ϕ

2
1(y) ⋆ ϕ1(x3)ϕ1(x4)) =

2ℏ4∆+(x1 − x)∆+(x2 − x)∆+(y − x3)∆
+(y − x4) (12.10)

2ℏ4∆+(x1 − x)∆+(x2 − y)∆+(x− x3)∆
+(y − x4) (12.11)

2ℏ4∆+(x1 − x)∆+(x2 − y)∆+(y − x3)∆
+(x− x4)

. (12.12)

And they correspond precisely to the diagrams:

Figure 12.2: There are 3 ways of connecting 4 scalar fields with a propagator in between.

Consider the calculation of 2ℏ4∆+(x1−x)∆+(x2−x)∆+(y−x3)∆+(y−x4). The remaining
terms represent a permutation of the variables and need not be done in full.

T2 = −2iµ2ℏ3
(

4∏
i=1

2ωpi

(2π)
d−1
2

)
1

(2π)4(d−1)+d

∫
dX⃗4e

ip1x1+ip2x2−ip3x3−ip4x4

∫
dxdydp

(
4∏
i=1

dk⃗i
2ωki

)
e−ik1(x1−x)−ik2(x2−x)+ik3(y−x3)+ik3(y−x4)−ip(x−y)

p2 −M2 + i0
. (12.13)

The calculation above is very simple if we perform the integrals in the right order. We star
with the integrals on the x and y variables:

T2 = −2iµ2ℏ3
(

4∏
i=1

2ωpi

(2π)
d−1
2

)
1

(2π)4(d−1)+d

∫
dX⃗4e

ip1x1+ip2x2−ip3x3−ip4x4

∫
(2π)2ddp

(
4∏
i=1

dk⃗i
2ωki

)
e−ik1x1−ik2x2−k3x3−ik4x4δ(p− k1 − k2)δ(p+ k3 + k4)

p2 −M2 + i0
. (12.14)

Now we perform the integral in the p variable:

177



T2 = −2iµ2ℏ3
(

4∏
i=1

2ωpi

(2π)
d−1
2

)
1

(2π)4(d−1)−d

∫
dX⃗4e

ip1x1+ip2x2−ip3x3−ip4x4

∫ ( 4∏
i=1

dk⃗i
2ωki

)
δ(−k1 − k2 − k3 − k4)

(k1 + k2)2 −M2 + i0
e−ik1x1−ik2x2−ik3x3−ik4x4 . (12.15)

The integral over dX⃗4 will contribute to changing the expontentials by:

(2π)4(d−1)δ(k1 − p1)δ(k2 − p2)δ(k3 + p3)δ(k4 + p4). (12.16)

hence, we can perform the remaining integrals very easily:

T2 = − 2iµ2ℏ3

(2π)d−2
δ(p1 + p2 − p3 − p4)

(p1 + p2)2 −M2 + i0

M≫(p1+p2)2−→ 2iµ2ℏ3

(2π)d−2M2
δ(p1 + p2 − p3 − p4). (12.17)

The contributions of the other terms are the same. Hence, the final form of the amplitude is:

T2 = i
6µ2ℏ3

(2π)d−2M2
δ(p1 + p2 − p3 − p4). (12.18)

Hence, comparing the result with (9.83) we can change the interaction by an effective inter-
action of the form:

Lint = − λ

4!

∫
dxϕ4(x), λ = −6µ2

M2
. (12.19)

12.2 Scalar QED

We will follow [68] Chapter 9.

The scalar QED also involves two types of fields: A complex scalar field and a gauge pho-
ton. A nice and intuitive deduction of it’s Lagrangian consists in starting with the free theory
and imposing invariance under local U(1) transformations ϕ → eiα(x)ϕ, α : M → R [17]. The
procedure described leads to:

S =

∫
dx ∂µϕ(x)∂

µϕ∗(x)−m2|ϕ(x)|2 − 1

4
FµνF

µν(x)

− ieAµ(ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ
∗(x)) + e2Aµ(x)A

µ(x)|ϕ(x)|2. (12.20)

Here e is the coupling constant. We denote the gauge field by the Greek letter γ. As an
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example, we compute the Feynman rules for some vertices present in the theory:

I) Particle scattering: ϕ→ ϕγ.

II) Antiparticle scattering: ϕ∗ → ϕ∗γ

III) Pair creation: γ → ϕϕ∗

IV) Pair annihilate and create one photon ϕϕ∗ → γ

V) Pair annihilate and create two photons ϕϕ∗ → γγ

VI) Particle/antiparticle light scattering ϕγ → ϕγ

We can compute the Feynman rules (in momentum space) for all those processes. Note that
in the first four the only relevant term of the interaction Lagrangian is −ieAµ(ϕ∗(x)∂µϕ(x) −

ϕ(x)∂µϕ
∗(x)). To simplify the notation, we define dσ⃗n := dX⃗n

(∏n
i=1

2ωpi

(2π)
d−1
2

)
.

Remark: Compared to our reference [68], the sign of the first four vertices is changed. That
happened because the book chose to create a particle/ annihilate anti-particle with ϕ∗ and cre-
ate an anti-particle/ annihilate a particle with ϕ. That is the opposite convention we have
followed. The results are recovered if we simply change ϕ → ϕ∗. Then the interaction term
−ieAµ(ϕ∗(x)∂µϕ(x) − ϕ(x)∂µϕ

∗(x)) → ieAµ(ϕ∗(x)∂µϕ(x) − ϕ(x)∂µϕ
∗(x)) and the sign are re-

covered.

12.2.1 I) Particle scattering: ϕ→ ϕγ

T1 =
i

ℏ
ω0(ϕ(p1) ⋆ Lint ⋆ A

ν(p2)ϕ(p3)) =
e

ℏ

∫
dxdσ⃗3 e

ip1x1−ip2x2+ip3x3

ω0(ϕ
∗(x1) ⋆ (A

µ(ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ
∗(x))) ⋆ Aν(x2)ϕ(x3)). (12.21)

Let us compute the star product separately:

ϕ∗(x1) ⋆ A
µ(x)ϕ∗(x)∂µϕ(x) ⋆ A

ν(x2)ϕ(x3)

=(ϕ∗(x1) ⋆ ϕ
∗(x)∂µϕ(x) ⋆ ϕ(x3))(A

µ(x) ⋆ Aν(x2))

|fields|=0
= (−ℏ2∂x,µ∆+

ϕ (x1 − x)∆+
ϕ (x− x3))(−ℏηµν∆+

A(x− x2))

=ℏ3∆+
A(x− x2)∆

+
ϕ (x− x3)∂

ν
x∆

+
ϕ (x1 − x). (12.22)

In the above equation, we have used the result of star products with derivative fields dis-
cussed in Section (9.7). The notation |field| = 0 means we do not have any powers of fields.

The second term is easily computed:
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ϕ∗(x1) ⋆ A
µ(x)ϕ(x)∂µϕ

∗(x) ⋆ Aν(x2)ϕ(x3)

= (ϕ∗(x1) ⋆ ϕ(x)∂µϕ
∗(x) ⋆ ϕ(x3))(A

µ(x) ⋆ Aν(x2))

|fields|=0
= (−ℏ2∆+

ϕ (x1 − x)∂x,µ∆
+
ϕ (x− x3))(−ℏηµν∆+

A(x− x2))

=ℏ3∆+
A(x− x2)∆

+
ϕ (x1 − x)∂νx∆

+
ϕ (x− x3). (12.23)

Now we just have to perform the integrals:

eℏ2
∫
dxdσ⃗3 e

ip1x1−ip2x2+ip3x3∆+
A(x− x2)∆

+
ϕ (x− x3)∂

ν
x∆

+
ϕ (x1 − x)

=eℏ2
∫
dxdσ⃗3

dk⃗3∏3
i=1 2ωpi

1

(2π)3(d−1)

× eip1x1−ip2x2+ip3x3(∂νxe
−ik1(x1−x))e−ik2(x−x2)−ik3(x−x3)

=
eℏ2

(2π)
d−3
2

(ipν1δ(p1 − p2 − p3)) = i
eℏ2

(2π)
d−3
2

pν1δ(p1 − p2 − p3). (12.24)

−eℏ2
∫
dxdσ⃗3 e

ip1x1−ip2x2+ip3x3∆+
A(x− x2)∆

+
ϕ (x1 − x)∂νx∆

+
ϕ (x− x3)

= −eℏ2
∫
dxdσ⃗3

dk⃗3∏3
i=1 2ωpi

1

(2π)3(d−1)

× eip1x1−ip2x2+ip3x3e−ik1(x1−x)−ik2(x−x2)(∂νxe
−ik3(x−x3))

=
eℏ2

(2π)
d−3
2

(−ipν3δ(p1 − p2 − p3)) = i
eℏ2

(2π)
d−3
2

pν1δ(p1 − p2 − p3). (12.25)

Hence:

T1 = i
eℏ2

(2π)
d−3
2

(pν1 + pν2)δ(p1 − p2 − p3). (12.26)

The corresponding diagram reads:

Figure 12.3: The Feynman rule is i eℏ2

(2π)
d−3
2
(pν1 + pν2)
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The process II−IV have a similar Feynman rule. For that reason, we go a bit faster through
the calculations:

12.2.2 II) Antiparticle scattering: ϕ∗ → ϕ∗γ

The amplitude:

T1 =
i

ℏ
ω0(ϕ

∗
(p1) ⋆ Lint ⋆ A

ν(p2)ϕ
∗(p3)) =

e

ℏ

∫
dxdσ⃗3 e

ip1x1−ip2x2+ip3x3

ω0(ϕ(x1) ⋆ (A
µ(ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ

∗(x))) ⋆ Aν(x2)ϕ
∗(x3)). (12.27)

Star product of the first term:

ϕ(x1) ⋆ A
µ(x)ϕ∗(x)∂µϕ(x) ⋆ A

ν(x2)ϕ
∗(x3)

= (ϕ(x1) ⋆ ϕ
∗(x)∂µϕ(x) ⋆ ϕ

∗(x3))(A
µ(x) ⋆ Aν(x2))

|fields|=0
= (−ℏ2∂x,µ∆+

ϕ (x− x3)∆
+
ϕ (x1 − x))(−ℏηµν∆+

A(x− x2))

=ℏ3∆+
A(x− x2)∆

+
ϕ (x1 − x)∂νx∆

+
ϕ (x− x3). (12.28)

Star product of the second term:

ϕ(x1) ⋆ A
µ(x)ϕ(x)∂µϕ

∗(x) ⋆ Aν(x2)ϕ
∗(x3) = (ϕ(x1) ⋆ ϕ(x)∂µϕ

∗(x) ⋆ ϕ∗(x3))(A
µ(x) ⋆ Aν(x2))

|fields|=0
= (−ℏ2∆+

ϕ (x3 − x)∂x,µ∆
+
ϕ (x1 − x))(−ℏηµν∆+

A(x− x2))

= ℏ3∆+
A(x− x2)∆

+
ϕ (x− x3)∂

ν
x∆

+
ϕ (x1 − x).

(12.29)

Note the expressions above are the same as in the first case, but exchanged first ↔ second.
Hence:

T1 = −i eℏ2

(2π)
d−3
2

(pν1 + pν2)δ(p1 − p2 − p3). (12.30)

The corresponding diagram reads:

Figure 12.4: The Feynman rule is −i eℏ2

(2π)
d−3
2
(pν1 + pν3)
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12.2.3 III) Pair creation: γ → ϕϕ∗

Amplitude:

T1 =
i

ℏ
ω0(A

ν
(p1) ⋆ Lint ⋆ ϕ

∗(p2)ϕ(p3)) =
e

ℏ

∫
dxdσ⃗3 e

ip1x1−ip2x2+ip3x3

ω0((A
ν(x1) ⋆ A

µ(x))((ϕ∗(x)∂µϕ(x)− ϕ∂µϕ
∗(x)) ⋆ ϕ∗(x2)ϕ(x3)). (12.31)

Star product:

(Aν(x1) ⋆ A
µ(x))((ϕ∗(x)∂µϕ(x)− ϕ∂µϕ

∗(x)) ⋆ ϕ∗(x2)ϕ(x3))

|fields|=0
= ℏ3ηµν∆+

A(x1 − x)(∂x,µ∆
+
ϕ (x− x2)∆

+
ϕ (x− x3)

−∆+
ϕ (x− x2)∂x,µ∆

+
ϕ (x− x3)). (12.32)

The integrals

T1 =
ℏ2e

(2π)3(d−1)

∫
dxdσ⃗3

dK⃗3∏3
i=1 2ωpi

eip1x1−ip2x2−ip3x3

× e−ik1(x1−x)−ik2(x−x2)−ik3(x−x3)(−ikν2 + ikν3 )

= i
eℏ2

(2π)
d−3
2

(pν3 − pν2)δ(p1 − p2 − p3). (12.33)

The corresponding diagram reads:

Figure 12.5: The Feynman rule is i eℏ2

(2π)
d−3
2
(pν3 − pν2)(p

ν
2 − pν3)

12.2.4 IV) Pair annihilate and create one photon ϕϕ∗ → γ

Amplitude:
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T1 =
i

ℏ
ω0(ϕ

∗
(p1)ϕ(p2) ⋆ Lint ⋆ A

ν(p3)) =
e

ℏ

∫
dxdσ⃗3 e

ip1x1+ip2x2−ip3x3

ω0(ϕ(x1)ϕ
∗(x2) ⋆ (ϕ

∗(x)∂µϕ(x)− ϕ∂µϕ
∗(x)))(Aµ(x) ⋆ Aν(x3)). (12.34)

Star product:

(ϕ(x1)ϕ
∗(x2) ⋆ (ϕ

∗(x)∂µϕ(x)− ϕ(x)∂µϕ
∗(x)))(Aµ(x) ⋆ Aν(x3))

=ℏ3ηµν(∆+
ϕ (x1 − x)∂x,µ∆

+
ϕ (x2 − x)− ∂x,µ∆

+
ϕ (x1 − x)∆+(x2 − x))∆+

A(x− x3). (12.35)

The integrals

T1 =
ℏ2e

(2π)3(d−1)

∫
dxdσ⃗3

dK⃗3∏3
i=1 2ωpi

, eip1x1+ip2x2−ip3x3

× e−ik1(x1−x)−ik2(x2−x)−ik3(x−x3)(ikν2 − ikν1 )

= i
eℏ2

(2π)
d−3
2

(pν2 − pν1)δ(p1 + p2 − p3). (12.36)

The corresponding diagram reads:

Figure 12.6: The Feynman rule is ie(2π)
d−1
2 ℏ2(pν1 − pν2)

12.2.5 V) Pair annihilate and create two photons ϕϕ∗ → γγ

This process involves the other part of the interaction Lagrangian Lint = e2
∫
dxAµ(x)A

µ(x)|ϕ(x)|2.
Nevertheless the calculations are not much different from the other processes.

Amplitude:

T1 =
i

ℏ
ω0(ϕ

∗
(p1)ϕ(p2) ⋆ Lint ⋆ A

µ(p3)A
ν(p4))

=
ie2

ℏ

∫
dxdσ⃗4 e

ip1x1+ip2x2−ip3x3−ip4x4

ω0(ϕ(x1)ϕ
∗(x2) ⋆ ϕ

∗(x)ϕ(x))(Aα(x)Aα(x) ⋆ A
µ(x3)A

ν(x4)). (12.37)
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Star product:

ϕ(x1)ϕ
∗(x2) ⋆ ϕ

∗(x)ϕ(x))(Aα(x)Aα(x) ⋆ A
µ(x3)A

ν(x4))

|fields|=0
= ℏ2∆+

ϕ (x1 − x)∆+
ϕ (x2 − x)(2ℏ2ηνµ∆+

A(x− x3)∆
+
A(x− x4))

= 2ℏ4δµν∆+
ϕ (x1 − x)∆+

ϕ (x2 − x)∆+
A(x− x3)∆

+
A(x− x4). (12.38)

The star product of the photon fields deserves more attention:

Aα(x)Aα(x) ⋆ A
µ(x3)A

ν(x4) = ηαβAα(x)Aβ(x) ⋆ A
µ(x3)A

ν(x4)

= ηαβAα(x)Aβ(x)A
µ(x3)A

ν(x4)

− ηαβℏ
(∫

dwdz
δAα(x)Aβ(x)

δAρ(w)
∆+
A(w − z)

δAµ(x3)A
ν(x4)

δAρ(z)

)
+

ℏ2

2
ηαβ

(∫
dW2dZ2

δ2Aα(x)Aβ(x)

δAσ(z1)δAρ(z2)
∆+
A(z1 − w1)∆

+
A(z2 − w2)

× δAµ(x3)A
ν(x4)

δAσ(w1)δAρ(w2)

)
. (12.39)

The important term for us is the second one. Now we can use our functional derivative rule
to compute:

δ2Aα(x)Aβ(x)

δAσ(z1)δAρ(z2)
=

δ

δAσ(z1)

(
δAα(x)Aβ(x)

δAρ(z2)

)
=

δ

δAσ(z1)
δαρ(δ(x− z2)Aβ(x) + δβρδ(x− z2)A

α(x))

= (δαρδβσ + δασδβρ)δ(x− z2)δ(x− z1). (12.40)

Similarly for the other derivative:

δAµ(x3)A
ν(x4)

δAσ(w1)δAρ(w2)
= δµσδρνδ(x3 − w1)δ(x4 − w2) + δµρδνσδ(x3 − w2)δ(x4 − w1). (12.41)

Now we plug the derivatives in the last line of (12.39)

ℏ2

2
ηαβ

∫
dW2dZ2(δαρδβσ + δασδβρ)δ(x− z2)δ(x− z1)∆

+
A(z1 − w1)∆

+
A(z2 − w2)

× (δµσδρνδ(x3 − w1)δ(x4 − w2) + δµρδνσδ(x3 − w2)δ(x4 − w1))

=
ℏ2

2
ηαβ∆+

A(x− x3)∆
+
A(x− x4)(δ

ανδβµ + δαµδβν + δαµδβν + δανδβµ)

= ℏ2∆+
A(x− x3)∆

+
A(x− x4)η

αβ(δµαδνβ + δµβδνα)

= ℏ2∆+
A(x− x3)∆

+
A(x− x4)(η

µν + ηνµ) = 2ℏ2ηµν∆+
A(x− x3)∆

+
A(x− x4). (12.42)
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In the above equation we have used ηµν = ηνµ.
Hence, the amplitude is:

T1 = 2ie2ℏ3ηµν
1

(2π)4(d−1)

∫
dxdσ⃗4

dK⃗4∏4
i=1 2ωpi

eip1x1+ip2x2−ip3x3−ip4x4e−ik1(x1−x)−ik2(x2−x)−ik3(x−x3)−ik4(x−x4)

= 2i
e2ℏ3

(2π)d−2
ηµνδ(p1 + p2 − p3 − p4). (12.43)

The corresponding diagram reads:

Figure 12.7: The Feynman rule is 2i e2ℏ3
(2π)d−2η

µν

12.2.6 VI) Particle/antiparticle light scattering ϕγ → ϕγ

The amplitude:

T1 = ω0(ϕ(p1)A
µ
(p2) ⋆ Lint ⋆ ϕ(p3)ϕA

ν(p4))

=
ie2

ℏ

∫
dxdσ⃗4 e

ip1x1+ip2x2−ip3x3−ip4x4

ω0((ϕ
∗(x1) ⋆ ϕ

∗(x)ϕ(x) ⋆ ϕ(x3))(A
µ(x2) ⋆ A

α(x)Aα(x) ⋆ A
ν(x4)). (12.44)

Star product:

(ϕ∗(x1) ⋆ ϕ
∗(x)ϕ(x) ⋆ ϕ(x3))(A

µ(x2) ⋆ A
α(x)Aα(x) ⋆ A

ν(x4))

|fields|=0
= ℏ2∆+

ϕ (x1 − x)∆+
ϕ (x− x3)(2ℏ2ηµν∆+

A(x2 − x)∆+
A(x− x4))

= 2ℏ4ηµν∆+
ϕ (x1 − x)∆+

ϕ (x− x3)∆
+
A(x2 − x)∆+

A(x− x4). (12.45)

The amplitude:
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T1 = 2i
e2ℏ3

(2π)d−2
ηµνδ(p1 + p2 − p3 − p4). (12.46)

The corresponding diagram reads:

Figure 12.8: The Feynman rule is = 2i e2ℏ3
(2π)d−2η

µν

12.3 QED

As discussed in the scalar QED chapter, one can obtain the action of QED starting with the free
theory of fermions and imposing invariance under local U(1) charge [17]. Long story short, the
action is:

S = Sfermion
0 + Sgauge + e

∫
dxψj(x) ∧Aµ(x)γ

µ
jkψk(x) (12.47)

where

Sfermion
0 :=

∫
dxψj(x) ∧ (i∂µγ

µ
jk +m)ψk(x)

Sgauge :=

∫
dx− 1

4
FµνF

µν − 1

2
(∂µA

µ(x))2

ψj(x) ∧Aµ(x)γ
µ
jkψk(x) ≡ Aµ(x)j

µ(x), jµ(x) := ψj(x) ∧ γ
µ
jkψk(x). (12.48)

and e is the coupling constant. As usual when working with QED, we denote the particle
as e− (in analogy to the electron), the antiparticle as e+ (in analogy to the positron), and the
gauge field as γ (in analogy to the photon). As an example of application, we compute some
amplitudes of QED:

I) Moeller Scattering with anti-particles e+e+ → e+e+

II) Compton Scattering e−γ → e−γ (page 195 [67])

III) Bhabha scattering e−e+ → e−e+

186



Remark: Due to the fixing of the gauge, we also have the presence of ghosts in full Lagrangian.
Nevertheless, since they decouple, we ignore them here.

12.3.1 I)

Since we have two particles in the initial state and two in the final state, we need the second
order of the T− matrix to compute the tree-level diagram. It is given by:

T2(Lint, Lint) =
i2

2!ℏ2
Lint ⋆F Lint = − e2

2ℏ2

∫
dxdy

(ψj(x) ∧ γ
µ
jkψk(x) ⋆F ψl(y) ∧ γ

ν
lmψm(y))(Aµ(x) ⋆F Aν(y)). (12.49)

Note that in the scattering process, we need two powers of ψ and two powers of ψ, hence, we
can consider only the first term of the star product:

ψj(x) ∧ γ
µ
jkψk(x) ⋆F ψl(y) ∧ γ

ν
lmψm(y) = ψj(x) ∧ γ

µ
jkψk(x)ψl(y) ∧ γ

ν
lmψm(y). (12.50)

The star product of the photon field can be easily calculated:

Aµ(x) ⋆F Aν(y) = Aµ(x)Aν(y)− ℏηµν∆F
A(x− y). (12.51)

Since in the scattering process we do not have any photons, the relevant term is ℏηµνD+(x−
y).

Hence, the second-order T− product can be written as:

ψj(x) ∧ γ
µ
jkψk(x)ψl(y) ∧ γ

ν
lmψm(y)ηµνD

F (x− y). (12.52)

The scattering amplitude is given by:

T2 = ω0(ψ−s1(p1)ψ
−
s2(p2) ⋆ T2 ⋆ ψ

−
s3(p3)ψ

−
s4(p4))

=
1

(2π)6

∫
dX⃗4dxdye

ip1x1+ip2x2−ip3x3−ip4x4(− e2

2ℏ2
)(−ℏDF (x− y)ηµνγ

µ
jkγ

ν
lm)

× γ0k1,k′1
vs1,k′1(p⃗1)γ

0
k2,k′2

vs2k′2(p⃗2)v
†
s3,k3

(p⃗3)v
†
s4,k4

((p⃗4)

× ω0(ψk1(x1)ψk2(x2) ⋆ ψj(x)ψk(x)ψl(y)ψm(y) ⋆ ψ(x3)ψ(x4)). (12.53)

Where we have used the following notation:
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ψ+
s1(p1) =

∫
dx⃗1

(2π)
3
2

eip1x1ψ(x1)γ
0vs1(p⃗1) ≡

∫
dx⃗1

(2π)
3
2

eip1x1γ0k1,k′1
vs1,k′1(p⃗1)ψk1(x1)

ψ+
s2(p2) =

∫
dx⃗2

(2π)
3
2

eip2x2ψ(x2)γ
0vs2(p⃗2) ≡

∫
dx⃗2

(2π)
3
2

eip2x2γ0k2,k′2
vs2,k′2(p⃗2)ψk2(x2)

ψ+
s3(p3) =

∫
dx⃗3

(2π)
3
2

e−ip3x3v†s3(p⃗3)ψ(x3) ≡
∫

dx⃗3

(2π)
3
2

e−ip3x3v†s3,k3(p⃗3)ψk3(x3)

ψ+
s4(p4) =

∫
dx⃗4

(2π)
3
2

e−ip4x4v†s4(p⃗4)ψ(x4) ≡
∫

dx⃗4

(2π)
3
2

e−ip4x4v†s4,k4(p⃗4)ψk4(x4). (12.54)

The relevant star product can be computed in two steps:

ψk1(x1)ψk2(x2) ⋆ ψj(x)ψk(x)ψl(y)ψm(y)
|ψ|=2
=

ℏ2

2

∫
dW2dZ2(

δ2rψk1(x1)ψk2(x2)

δψu1(w1)δψu2(w2)
S−v1u1(z1 − w1)S

−
v2u2(z2 − w2)

δ2ψj(x)ψk(x)ψl(y)ψm(y)

δψv1(z1)δψv2(z2)

)

=
ℏ2

2
(S−kk1S

−
mk2

− S−mk1S
−
kk2

− S−kk2S
−
mk1

+ S−mk1S
−
kk2

)ψj(x)ψl(y)

= ℏ2(S−kk1S
−
mk2

− S−mk1S
−
kk2

)ψj(x)ψl(y). (12.55)

On the other hand:

ψj(x)ψl(y) ⋆ ψk3(x3)ψk4(x4)
|ψ|=0
=

ℏ2

2

∫
dW2dZ2

×
δ2rψj(x)ψl(y)

δψu1(w1)δψu2(w2)
S−v1u1(z1 − w1)S

+
v2u2(z2 − w2)

δψk3(x3)δψk4(x4)

δψv1(z1)δψv2(z2)

=
ℏ2

2
(S−k4jS

−
k3l

− S−k3jS
−
k4l

− S−k4lS
−
k3j

+ S−k3lS
−
k4j

)

= ℏ2(S−k4jS
−
k3l

− S−k3jS
−
k4l

). (12.56)

Hence:

ω0(ψk1(x1)ψk2(x2) ⋆ ψj(x)ψk(x)ψl(y)ψm(y) ⋆ ψ(x3)ψ(x4))

= ℏ4(S−kk1S
−
mk2

− S−mk1S
−
kk2

)(S−k4jS
−
k3l

− S−k3jS
−
k4l

). (12.57)

Next we insert the gamma matrices to write the amplitude as a product of matrices:
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γµjkγ
ν
lm(S

−
kk1
S−mk2 − S−mk1S

−
kk2

)(S−k4jS
−
k3l

− S−k3jS
−
k4l

)

= (S−(x4 − x)γµS−(x− x1))k4k1(S
−(x3 − y)γνS−(y − x2))k3k2

− (S−(x3 − x)γµS−(x− x1))k3k1(S
−(x4 − y)γνS−(y − x2))k4k2

− (S−(x4 − x)γµS−(y − x2))k4k2(S
−(x3 − y)γνS−(x− x1))k3k1

+ (S−(x3 − x)γµS−(x− x2))k3k2(S
−(x4 − y)γνS−(y − x1))k4k1 . (12.58)

Using the above result, we conclude the amplitude is:

T2 =
e2ℏ3

2(2π)6

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4D+(x− y)

×
(
(v†s4(p⃗4)S

−(x4 − x)γµS−(x− x1)γ
0vs1(p⃗1))

× (v†s3(p⃗3)S
−(x3 − y)γµS

−(y − x2)γ
0vs2(p⃗2))

− (v†s3(p⃗3)S
−(x3 − x)γµS−(x− x1)γ

0vs1(p⃗1))

× (v†s4(p⃗4)S
−(x4 − y)γµS

−(y − x2)γ
0vs2(p⃗2))

− (v†s4(p⃗4)S
−(x4 − x)γµS−(y − x2)γ

0vs2(p⃗2))

× (v†s3(p⃗3)S
−(x3 − y)γµS

−(x− x1)γ
0vs1(p⃗1))

+ (v†s3(p⃗3)S
−(x3 − x)γµS−(x− x2)γ

0vs2(p⃗2))

× (v†s4(p⃗4)S
−(x4 − y)γµS

−(y − x1)γ
0vs1(p⃗1))

)
. (12.59)

Before solving the matrix multiplication, we perform the integrals. We do compute explicitly
the first term, the others are essentially the same computation. Since v, v† do not depend on
x, xi we omit then in the following.

e2ℏ3

2(2π)6

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4DF (x− y)

× (S−(x4 − x)γµS−(x− x1))k4k1(S
−(x3 − y)γµS

−(y − x2))k3k2

=
e2ℏ3

2(2π)6

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4 1

(2π)4

∫
dq
e−iq(x−y)

q2 − i0

=
e2ℏ3

2(2π)12

∫
dQ⃗4∏4
i=1 2ωqi

((/q4
−m)eiq4(x4−x)γµ(/q1

−m)eiq1(x−x1))k4k1

× (/q3
−m)eiq3(x3−y)γµ(/q2

−m)eiq2(y−x2))k3k2 . (12.60)

Note that we can “ignore” the matrices and perform the integral over the exponential, as long
as it is done in the right order. The integrals over dqdQ⃗4 must be the last to be done, since their
result is not simply a delta function. The integrals over the exponential reads:
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∫
dxdydqdX⃗4dQ⃗4 e

ip1x1+ip2x2−ip3x3−ip4x4−iq(x−y)

× eiq1(x−x1)+iq2(y−x2)+iq3(x3−y)+iq4(x4−x)

=

∫
dxdydqdX⃗4dQ⃗4 × ei(q1−q4−q)x+i(q2−q3+q)y

× ei(p1−q1)x1+i(p2−q2)x2+i(q3−p3)x3+i(q4−p4)x4 (12.61)

Now we perform the integrals over dxdydX⃗ leading to:

∫
dqdQ⃗4(2π)

8(2π)3·4

(
4∏
i=1

δ(p⃗i − q⃗i)

)
δ(q1 − q4 − q)δ(q + q2 − q3). (12.62)

In the expression above, we already cancel the exponential of the form ei(ωp−ωq)x0 . Inserting
the result in the amplitude we obtain:

δ(p1 + p2 − p3 − p4)(∏4
i=1 2ωpi

)
(2π)2(p1 − p4)2 − i0

× ((/p4
−m)γµ(/p1

−m))k4k1((/p3
−m)γµ(/p2

−m))k3k2 . (12.63)

The integral over the other terms are essentially the same; one just has to be careful with
the fraction. Thus, the amplitude reads:

T2 =
e2ℏ3

2
(∏4

i=1 2ωpi

)
(2π)2

δ(p1 + p2 − p3 − p4)

(
(v†s4(p⃗4)(/p4

−m)γµ(/p1
−m)γ0vs1(p⃗1))(v

†
s3(p⃗3)(/p3

−m)γµ(/p2
−m)γ0vs2(p⃗2))

(p1 − p4)2 − i0

−
(v†s3(p⃗3)(/p3

−m)γµ(/p1
−m)γ0vs1(p⃗1))(v

†
s4(p⃗4)(/p4

−m)γµ(/p2
−m)γ0vs2(p⃗2))

(p3 − p1)2 − i0

−
(v†s4(p⃗4)(/p4

−m)γµ(/p2
−m)γ0vs2(p⃗2))(v

†
s3(p⃗3)(/p3

−m)γµ(/p1
−m)γ0vs1(p⃗1))

(p2 − p4)2 − i0

(v†s3(p⃗3)(/p3
−m)γµ(/p2

−m)γ0vs2(p⃗2))(v
†
s4(p⃗4)(/p4

−m)γµ(/p1
−m)γ0vs1(p⃗1))

(p3 − p2)2 − i0

)
. (12.64)

Using conservation of momentum p1 − p4 = p3 − p2 and p3 − p1 = p2 − p4 we can simplify
the expression to:
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T2 = 2
e2ℏ3

2
(∏4

i=1 2ωpi

)
(2π)2

δ(p1 + p2 − p3 − p4)

(
(v†s4(p⃗4)(/p4

−m)γµ(/p1
−m)γ0vs1(p⃗1))(v

†
s3(p⃗3)(/p3

−m)γµ(/p2
−m)γ0vs2(p⃗2))

(p1 − p4)2 − i0

−
(v†s3(p⃗3)(/p3

−m)γµ(/p1
−m)γ0vs1(p⃗1))(v

†
s4(p⃗4)(/p4

−m)γµ(/p2
−m)γ0vs2(p⃗2))

(p3 − p1)2 − i0

)
. (12.65)

Now we use (11.96) and (11.93) to write:

v†s4(p⃗4)(/p4
−m)γµ(/p1

−m)γ0vs1(p⃗1) = 4ωp1ωp4vs4(p⃗4)γ
µvs1(p⃗1)

v†s3(p⃗3)(/p3
−m)γµ(/p2

−m)γ0vs2(p⃗2) = 4ωp2ωp3vs3(p⃗3)γµvs2(p⃗2)

v†s3(p⃗3)(/p3
−m)γµ(/p1

−m)γ0vs1(p⃗1) = 4ωp1ωp3vs3(p⃗3)γµvs1(p⃗1)

v†s4(p⃗4)(/p4
−m)γµ(/p2

−m)γ0vs2(p⃗2) = 4ωp2ωp4vs4(p⃗4)γ
µvs2(p⃗2). (12.66)

And simplify the expression tremendously:

T2 =
e2ℏ3

(2π)2
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)(

(vs4(p⃗4)γ
µvs1(p⃗1))(vs3(p⃗3)γµvs2(p⃗2))− (vs3(p⃗3)γµvs1(p⃗1))(vs4(p⃗4)γ

µvs2(p⃗2))
)
. (12.67)

One can find a totally independent expression from the indices considering the square of the
expression above (disconsider the delta function) and averaging over the spins just as done in
[67] page 193. The corresponding diagrams are:

Figure 12.9: The t and u channel

12.3.2 II)

Before computing the amplitude, let us explicitly compute T2(j
µ(x), jν(y)) using the causal

factorization (9.1):
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T2(j
µ(x), jν(y)) =

i2

2ℏ2
(
T1(j

µ(x)) ⋆ T1(j
ν(y))θ(x0 − y0) + T1(j

ν(y)) ⋆ T1(j
µ(x))θ(y0 − x0)

)
. (12.68)

Remark: in the formula above we implicitly use the eta trick to get the right sign in the
second term. In the process we are studying, we are interested in a term that has both ψ and ψ:

jµ(x) ⋆ jν(y) = γµk1k2γ
ν
k3k4(ψk1(x) ∧ ψk2(x) ⋆ ψk3(y) ∧ ψk4(y))

|ψ|=|ψ|=1
= ℏγµk1k2γ

ν
k3k4

(
S+
k2k3

(x− y)ψk1(x) ∧ ψk4(y) + S−k4k1(y − x)ψk2(x) ∧ ψk3(y)
)
. (12.69)

Hence:

T2(j
µ(x), jν(y))

|ψ|=|ψ|=1
=

−1

2ℏ
ℏγµk1k2γ

ν
k3k4(

S+
k2k3

(x− y)ψk1(x)ψk4(y)θ(x
0 − y0) + S−k2k3(x− y)ψk4(y)ψk1(x)θ(y

0 − x0)

+ S−k4k1(y − x)ψk2(x)ψk3(x)θ(x
0 − y0) + S+

k4k1
(y − x)ψk3(y)ψk2(x)θ(y

0 − x0)

)
=

−1

2ℏ
ℏγµk1k2γ

ν
k3k4

(
SFk2k3(x− y)ψk1(x)ψk4(y) + SFk4k1(y − x)ψk3(y)ψk1(x)

)
=

−1

2ℏ
jµ(x) ⋆F j

ν(y)

≡ − 1

2ℏ
(
ψ(x)γµSF (x− y)γνψ(y) +ψ(y)γνSF (y − x)γµψ(x)

)
. (12.70)

Now we can compute the amplitude. The incoming electron is represented by:

1

(2π)
3
2

∫
dx⃗1 e

ip1x1u†s1(p⃗1)ψ(x) ≡
1

(2π)
3
2

∫
dx⃗1 e

ip1x1u†s1,k1(p⃗1)ψk1(x). (12.71)

The outgoing electron is represented by

1

(2π)
3
2

∫
dx⃗3 e

−ip3x3ψ(x3)γ
0us3(p⃗3) ≡

1

(2π)
3
2

∫
dx⃗3 e

−ip3x3γ0k3k′3
ψk3(x3)uk′3(p⃗3). (12.72)

The incoming photon is represented by:

2ωp2

(2π)
3
2

∫
dx⃗2 e

ip2x2ϵµ2(p⃗2)Aµ2(x2). (12.73)

The outgoing photon is represented by:
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2ωp4

(2π)
3
2

∫
dx⃗4 e

−ip4x4ϵµ4(p⃗4)Aµ4(x4). (12.74)

Hence, the amplitude for the process e−γ → e−γ is given by:

T2 =
4ωp2ωp4
(2π)6

∫
dX⃗4 e

ip1x1+ip2x2−ip3x3−ip4x4ϵµ2(p⃗2)ϵµ4(p⃗4)

×
(
u†s1,k1(p⃗1)γ

0
k3k′3

us3,k′3(p⃗3)ω0(ψk1(x1)Aµ2(x2) ⋆ T2(Lint, Lint) ⋆ ψk3(x3)Aµ4(x4))
)

(12.75)

where

T2(Lint, Lint)

= − e2

2ℏ
(
ψ(x)γµSF (x− y)γνψ(y) +ψ(y)γνSF (y − x)γµψ(x)

)
Aµ(x)Aν(y). (12.76)

Now we have to compute the star product. The star product for the photon field is given by:

Aµ2(x2) ⋆ Aµ(x)Aν(y) ⋆ Aµ4(x4)

= −ℏ(ηµ2µD+(x2 − x)Aν(y) + ηµ2νD
+(x2 − y)Aµ(x)) ⋆ Aµ4(x4)

|A|=0
= ℏ2

(
ηµ2µηνµ4D

+(x2 − x)D+(y − x4) + ηµ2νηµµ4D
+(x2 − y)D+(x− x4)

)
. (12.77)

The star product of the fermion fields (already considering the contractions) leads to:

u†s1(p⃗1)ψ(x1) ⋆ψ(x)γ
µSF (x− y)γνψ(y) ⋆ γ0ψ(x3)us3(p⃗3)

|ψ|=|ψ|=0
= ℏ2u†s1(p⃗1)S

+(x1 − x)γµSF (x− y)γνS+(y − x3)γ
0us3(p⃗3). (12.78)

And similarly for the second term. Hence, the amplitude can be written as:
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T2 =
−e2ℏ34ωp2ωp4

2(2π)4

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4

u†s1(p⃗1)S
+(x1 − x)ϵµ(p⃗2)γµS

F (x− y)ϵν(p⃗4)γν

×S+(y − x3)γ
0us3(p⃗3)D

+(x2 − x)D+(y − x4)

+u†s1(p⃗1)S
+(x1 − x)ϵµ(p⃗4)γµ

×SF (x− y)ϵν(p⃗2)γνS
+(y − x3)γ

0us3(p⃗3)D
+(x2 − y)D+(x− x4)

+u†s1(p⃗1)S
+(x1 − y)ϵµ(p⃗4)γµS

F (y − x)ϵν(p⃗2)γν

×S+(x− x3)γ
0us3(p⃗3)D

+(x2 − x)D+(y − x4)

+u†s1(p⃗1)S
+(x1 − y)ϵµ(p⃗2)γµS

F (y − x)ϵν(p⃗4)γν

×S+(x− x3)γ
0us3(p⃗3)D

+(x2 − y)D+(x− x4) (12.79)

The expression above is big, but can be simplified. First of all, note that since ϵ0 = 0:

ϵµγµ = −ϵµγµ = −
3∑
i=1

ϵiγ
i = /ϵ. (12.80)

Since we have two contractions, we can change ϵµγµ → /ϵ and the overall sign is correct.
The integrals that have to be done are essentially integrals over exponential. For example,

the integrals of the first line are:

1

(2π)12(2π)4

∫
dxdydX⃗4 e

ip1x1+ip2x2−ip3x3−ip4x4

×
∫

dK⃗4dk(∏4
i=1 2ωpi

)e−ik1(x1−x)−ik(x−y)−ik3(y−x3)−ik2(x2−x)−ik4(y−x4)
=

(2π)4(∏4
i=1 2ωpi

) ∫ dK⃗4dk

(
4∏
i=1

δ(p⃗i − k⃗i)

)
δ(k⃗1 + k⃗2 − k⃗)δ(k⃗ − k⃗3 − k⃗4) (12.81)

The other integrals are essentially the same. Hence, the result is
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T2 =
−e2iℏ34ωp2ωp4

2(2π)2
(∏4

i=1 2ωpi

)
u†s1(p⃗1)(/p1

+m)/ϵ(p⃗2)
/p1

+ /p2
+m

(p1 + p2)2 −m2
/ϵ(p⃗4)(/p3

+m)γ0us3(p⃗3)

+u†s1(p⃗1)(/p1
+m)/ϵ(p⃗4)

/p1
− /p4

+m

(p1 − p4)2 −m2
/ϵ(p⃗2)(/p3

+m)γ0us3(p⃗3)

+u†s1(p⃗1)(/p1
+m)/ϵ(p⃗4)

/p1
− /p4

+m

(p1 − p4)2 −m2
/ϵ(p⃗2)(/p3

+m)γ0us3(p⃗3)

+u†s1(p⃗1)(/p1
+m)/ϵ(p⃗2)

/p1
+ /p2

+m

(p1 + p2)2 −m2
/ϵ(p⃗4)(/p3

+m)γ0us3(p⃗3)

= − e2iℏ3

(2π)24ωp1ωp3

×
(
u†s1(p⃗1)(/p1

+m)/ϵ(p⃗2)
/p1

+ /p2
+m

(p1 + p2)2 −m2
/ϵ(p⃗4)(/p3

+m)γ0us3(p⃗3)

+u†s1(p⃗1)(/p1
+m)/ϵ(p⃗4)

/p1
− /p4

+m

(p1 − p4)2 −m2
/ϵ(p⃗2)(/p3

+m)γ0us3(p⃗3)

)
. (12.82)

Finally, we use (11.93) and (11.96) to write:

u†s1(p⃗1)(/p1
+m) = 2ωp1us1(p⃗1)

(/p3
+m)γ0us3(p⃗3) = 2ωp3us3(p⃗3). (12.83)

and obtain:

T2 = − ie
2ℏ3

(2π)2

(
us1(p⃗1)/ϵ(p⃗2)

/p1 + /p2 +m

(p1 + p2)2 −m2
/ϵ(p⃗4)us3(p⃗3)

+ us1(p⃗1)/ϵ(p⃗4)
/p1 − /p4 +m

(p1 − p4)2 −m2
/ϵ(p⃗2)us3(p⃗3)

)
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4). (12.84)

The calculation of the cross-section from the amplitude above can be found at page 198 [67].

The diagrams are:

Figure 12.10: They are respectively the s and u channels

195



Remark: The above formula is slightly different from the ones in the usual QFT books
because we compute Sif instead of Sfi. However, it is easy to recover the formula Sfi from Sif ,
just change the indices 1 ↔ 3 and 2 ↔ 4 in the formula above. Then we recover the usual result
displayed, for example, in [18].

12.3.3 III)

The computation of Bhabha scattering is very similar to Möller scattering. We consider:

• The incoming electron is represented by∫
dx⃗1

(2π)
3
2

eip1x1u†s1(p⃗1)ψ(x1) ≡
∫

dx⃗1

(2π)
3
2

eip1x1u†s1,k1(p⃗1)ψk1(x1). (12.85)

• The outgoing electron is represented by∫
dx⃗3

(2π)
3
2

e−ip3x3ψ(x3)γ
0us3(p⃗3) ≡

∫
dx⃗3

(2π)
3
2

e−ip3x3γ0k3k′3
ψk3(x3)us3,k′3(p⃗3). (12.86)

• The incoming positron is represented by∫
dx⃗2

(2π)
3
2

eip2x2ψ(x2)γ
0vs2(p⃗2) ≡

∫
dx⃗2

(2π)
3
2

eip2x2γ0k2,k′2
vs2,k′2(p⃗2)ψk2(x2). (12.87)

• The outgoing positron is represented by:∫
dx⃗4

(2π)
3
2

e−ip4x4v†s4(p⃗4)ψ(x4) ≡
∫

dx⃗4

(2π)
3
2

e−ip4x4v†s4,k4(p⃗4)ψk4(x4). (12.88)

• The relevant term of the T− product is

−e2

2ℏ

∫
dxdy

(
ψj(x) ∧ γ

µ
jkψk(x)ψl(y) ∧ γ

ν
lmψm(y)ηµνD

F (x− y)
)
. (12.89)

The amplitude is given by:

T2 =
−e2

2ℏ(2π)4

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4

× u†s1,k1(p⃗1)γ
0
k3k′3

us3,k′3(p⃗3)γ
µ
jkD

F (x− y)γµ,lmγ
0
k2,k′2

vs2,k′2(p⃗2)v
†
s4,k4

(p⃗4)

× ω0

(
ψk1(x1)ψk2(x2) ⋆ ψj(x)ψk(x)ψl(y)ψm(y) ⋆ ψk3(x3)ψk4(x4)

)
. (12.90)

The computation of the star product is immediate:
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ψk1(x1)ψk2(x2) ⋆ ψj(x)ψk(x)ψl(y)ψm(y)

|ψ|=|ψ|=1
= −ℏ2

(
S−kk2S

+
k1j
ψlψm − S−kk2S

+
k1l
ψjψm + S−mk2S

+
k1j
ψkψl + S−mk2S

+
k1l
ψjψk

)
. (12.91)

Once again, we use the indices to omit the argument of the fields and propagators. The
expression above can be simplified if we consider the symmetry x↔ y, leading to:

−2ℏ2(S−kk2(x− x2)S
+
k1j

(x1 − x)ψl(y)ψm(y)− S−mk2(y − x2)S
+
k1j

(x1 − x)ψl(y)ψk(x)). (12.92)

Now we compute the star product of the above expression with ψk3(x3)ψk4(x4). The result
with |ψ| = |ψ| is:

−2ℏ4
(
S−kk2(x− x2)S

+
k1j

(x1 − x)S+
mk3

(y − x3)S
−
k4l

(x4 − y)

−S−mk2(y − x2)S
+
k1j

(x1 − x)S+
kk3

(x− x3)S
−
k4l

(x4 − y)

)
. (12.93)

Thus, the amplitude is:

T2 =
e2ℏ3

(2π)4

∫
dX⃗4dxdy e

ip1x1+ip2x2−ip3x3−ip4x4DF (x− y)×((
u†s1(p⃗1)S

+(x1 − x)γµS−(x− x2)γ
0vs2(p⃗2)

)
×
(
v†s4(p⃗4)S

−(x4 − y)γµS
+(y − x3)γ

0us3(p⃗3)
)

−
(
u†s1(p⃗1)S

+(x1 − x)γµS+(x− x3)γ
0us3(p⃗3)

)
×
(
v†s4(p⃗4)S

−(x4 − y)γµS
−(y − x2)γ

0vs2(p⃗2)
))

. (12.94)

The next steps are to compute the integrals and use (11.93) and (11.96) to simplify the
equation. Since it is basically the same computation as done for Möller scattering, we allow
ourselves to skip the computation and present only the final result:

T2 =
−ie2ℏ3

(2π)2
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)

×

((
u†s1(p⃗1)γ

µvs2(p⃗2)
)(

v†s4(p⃗4)γµus3(p⃗3)
)

(p1 + p2)2 − i0

−

(
u†s1(p⃗1)γ

µus3(p⃗3)
)(

v†s4(p⃗4)γµvs2(p⃗2)
)

(p1 − p3)2 − i0

)
. (12.95)
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The cross section can be obtained once the formula above is multiplied by its conjugate. This
can be fount at [77].

The diagrams are:

Figure 12.11: The s and t channel representing the annihilation and scattering process

198



Chapter 13

Conclusion

This dissertation discussed the basics of perturbative expansion of fields and the construction
of the scattering matrix using the formalism first developed by Stückelberg, improved by Bo-
goliubov and finally brought to solid mathematical foundations by Epstein-Glaser. The passage
from classical field theory to quantum field theory was done using deformation quantization, a
method mostly unknown in the main-stream theoretical physics community. The perturbative
expansion, both in the retarded product as well as in the S-matrix, was done inductively and
fixed by clear axioms; nevertheless, the formal steps were omitted and the we focus in practi-
cal calculations. The same philosophy guides us in the renormalization and computation that
involve more sophisticated fields.

13.1 What is new in the present work

This work contributed to the literature by explicit computing the scattering amplitudes to the
most usual theories studied in a quantum field theory course. We also highlighted how one can
start from the usual Fock space in quantum field theory and “translate” the formulas to the
aforementioned formalism allowing one to expand the formalism to theories that are not present
in the dissertation.

13.2 What is left to do

Now that we have computed a lot of scattering amplitudes, it is time to talk about important
aspects of quantum field theory that we have not mentioned in this work. Firs (and possible mos
important): we have not verify that the axioms of T-product are valid for theories that are not
the scalar field (specially QED). That is done in the first part of chapter 5 of [24].

In this work, we also did not discuss symmetries or anomalies. As a reference, we suggest
[24] Chapter 4 and references therein.
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Another important topic taught in a QFT course that was not mentioned here is non-abelian
fields and spontaneous symmetry breaking. Non-abelian theories can be studied adapting the
notation introduced for fermionic fields. One reference to this subject is [48]. Regarding sponta-
neous symmetry breaking, we cite [27].

Last but not least, we want to emphasize the relation of the material presented here with
algebraic quantum field theory [25] and the last chapter of [34].
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Appendix A

Proof of formula (A.1)

We want to prove that given V,W vector spaces, f(v1 ⊗ ... ⊗ vn) : V×n → W symmetric and
linear, than f can be written as

f(v1 ⊗ ...⊗ vn) =
1

n!

∂n

∂λ1...∂λn

∣∣∣∣
λ1=...=λn=0

f((
n∑
k=1

λkvk)
⊗n). (A.1)

Where λ1, λ2, ..., λn ∈ R. These can be easily done using induction. For n = 1 the statement
is trivial:

f(λv) = λf(v) ⇒ ∂

∂λ

∣∣∣∣
λ=0

f(λv) = f(v). (A.2)

For pedagogical reasons, we also write the second term explicitly. For simplicity, we use the
notation f(λ1v1 + λ2v2, λ1v1 + λ2v2) ≡ f((λ1v1 + λ2v2)⊗ (λ1v1 + λ2v2)):

∂2

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

f(λ1v1 + λ2v2, λ1v1 + λ2v2)

=
∂

∂λ2

∣∣∣∣
λ2=0

∂

∂λ2

∣∣∣∣
λ1=0

f(λ1v1 + λ2v2, λ1v1 + λ2v2)

=
∂

∂λ2

∣∣∣∣
λ2=0

(f(v1 + λv2, λv2) + f(λv2, v1 + λv2))

= 2
∂

∂λ2

∣∣∣∣
λ2=0

f(v1 + λv2, λv2)

= 2

(
f(v1 + v2, 0)︸ ︷︷ ︸

=0

+ f(v1, v2)

)
= 2f(v1, v2). (A.3)

In the above equation, we have used linearity f(0, v) = 0∀v ∈ V.

Now we assume that for n− 1 the formula ((A.1) holds true. Then for n we can compute:
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∂n

∂λ1...∂λn

∣∣∣∣
λ1=...=λn=0

f((
n∑
k=1

λkvk)
⊗n)

=
∂n−1

∂λ1...∂λn−1

∣∣∣∣
λ1=...=λn−1=0

∂

∂λn

∣∣∣∣
λn=0

f((

n∑
k=1

λkvk)
⊗n). (A.4)

We can “act” in n− different entries with the derivative ∂
∂λn

. Since f is symmetric in the
arguments, we can write:

∂

∂λn

∣∣∣∣
λn=0

f

[
(
n∑
k=1

λkvk)
⊗n

]

= f

[
(
n−1∑
k=1

λkvk + vn)⊗ (
n∑
k=1

λkvk)
⊗n−1

]

+f

[
(

n∑
k=1

λkvk)⊗ (

n−1∑
k=1

λkvk + vn)⊗ (

n∑
k=1

λkvk)
⊗n−2

]
+ ...

= nf

[
(
n∑
k=1

λkvk)
⊗n−1 ⊗ (

n−1∑
k=1

λkvk + vn)

]
λn=0
= nf

[
(
n−1∑
k=1

λkvk)
⊗n−1 ⊗ (

n−1∑
k=1

λkvk + vn)

]
. (A.5)

The tricky part of the demonstration is the following argument: The terms that the deriva-
tives “act” on the last entry do not contribute, just like the case n = 2. Writing the entire proof
is a bit complicated and, since it is not the main point of the thesis, not strictly necessary. We
will just present the argument: If a derivative “act” on the last entry, there will be n− 2 deriva-
tives left and n − 1 λ’ to eliminate. Since there are more λ’s than derivatives, after applying
all derivatives, using the linearity of f , the contribution will be proportional to λjf(....) → 0.
Therefore, to avoid these mismatches the derivatives have to “act” just in the firs n − 1 terms.
That is equivalent to setting:

nf

[
(
n−1∑
k=1

λkvk)
⊗n−1 ⊗ (

n−1∑
k=1

λkvk + vn)

]
→ nf

[
(
n−1∑
k=1

λkvk)
⊗n−1 ⊗ vn

]
. (A.6)

With that being said, we can use the induction hypotheses:

∂n−1

∂λ1...∂λn−1

∣∣∣∣
λ1=...=λn−1=0

nf

[
(
n−1∑
k=1

λkvk)
⊗n−1 ⊗ vn

]
= n(n− 1)!f(v1, ...., vn) = n!f(v1, ..., vn). (A.7)

Just like we wanted to show. An alternative proof of the result can be found at [3] (por-
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tuguese only).
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Appendix B

Some notions on distributions

B.1 Introduction

The goal of this appendix is to present some notion of the mathematical background underling
the physics exposed in the dissertation. We will follow mostly [2].

B.2 Schwartz functions and test functions

We begin the discussion by presenting the definition of a Schwarz function. A function f :

Rn → C is called a Schwartz function if and only if it is smooth (i.e., infinitely differentiable
≡∈ C∞(Rn)) and the functions as well as its derivatives decay faster than any polynomial at
infinity. The aforementioned condition can be stated as

∀m ∈ N, β multi-index : lim
∥x∥→∞

(1 + ∥x∥)m|Dβf(x)| = 0. (B.1)

Where D is a differential operator given by:

Dβ :=
∂|β|

∂xβ11 ...∂
βn
xn

. (B.2)

It is easy to see that the set of all Schwartz functions forms a vector space. This vector space
is denoted by J (Rn). The space is endowed with a norm:

∥f∥m,β := sup
{
(1 + ∥x∥)m|Dβf(x)|, x ∈ Rn

}
. (B.3)

We say that a sequence converges fn converges to f if and only if limn→∞ ∥fn − f∥m,β = 0

for all m ∈ N and β multi-indexes.
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An important subset of Schwartz functions is the set of test functions, already mentioned
in the first section of the present work. The notion of convergence in the space of test functions
is different from the convergence in the space of Schwartz functions. We say gn → g if

1 there is a compact K ⊂ Rn such that

∃N ∈ N, supp gn ⊆ K ∀n ≥ N. (B.4)

2

lim
n→∞

sup
x∈K

{
|Dβ(gn − g)(x)|

}
= 0. (B.5)

Note that convergence in D(Rn) implies convergence in J (Rn) but the opposite is not true.
As a counter example, let gn ∈ D(R) be given by [2]:

gn(x) =

e
−n2

exp
(
− 1

1−( x
n
)2

)
, x ∈ (−n, n)

0 x /∈ (−n, n)
. (B.6)

gn converges in J (R) but does not converges in D(R) (the condition 1 is not satisfied).

The spaces above are important due to the nice properties we can impose on then. First
of all, we can define linear differential operators acting on J (Rn): Given ak(x) functions
limited by polynomial1 grow and αk = (αk1 , ..., α

k
n) multi-indexes, then Lf ∈ J (Rn):

(Lf)(x) :=
N∑
k=1

ak(x)D
αk
f(x) ≡

N∑
k=1

ak(x)
∂|α

k|f

∂α
k
1x1...∂α

k
nxn

. (B.7)

defines a differential linear operator acting on J .

We can define (at least) two products in J (Rn): The usual pointwise product (fg)(x) :=

f(x)g(x) and the convolution product:

(f ∗ g)(x) := 1

(2π)
n
2

∫
dy f(x− y)g(y). (B.8)

For our porpoises, the most important feature of J (Rn) is that the Fourier transform F(f)(k)

(3.28), its complex conjugate Fc(f)(−k) are bijective maps F : J → J with F−1 = Fc.

1Functions limited by polynomials is to be understood as smooth functions g such that for all multi-
index α there is a Cα ∈ R and mα ∈ N such that |Dαg(x)| ≤ Cα(1 + ∥x∥)mα .
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B.3 Distributions and tempered distributions

As mentioned in the beginning of the dissertation, the distributions are continuous linear func-
tionals l : V → C where V is a complex vector space. Here we have defined two vector spaces,
the Schwartz vector space J and the vector space of the test functions D. We call T ∈ D′(Rn)
a distribution and S ∈ J ′(Rn) a temperate distribution. Note that since D(Rn) ⊂ J (Rn) ⇒
J ′(Rn) ⊆ D′(Rn) and for that reason, we usually call the elements of J ′(Rn) distributions also.
In both cases, the notion of continuity is given by:

T continuous ⇐⇒ ∀∥gk − g∥ → 0 ⇒ |T (gk − g)| → 0. (B.9)

where the norm ∥ · ∥ was introduced in the previous section. We emphasize that T ∈ D′(Rn)
does not imply T ∈ J ′(Rn). An example is the distribution T ∈ D′(R) given by

T (g(x)) =

∫
dx ex

4
g(x). (B.10)

Since g ∈ D(R) has compact support, the integral above is finite. But that is not true for
functions that decay faster than any polynomial, for example f(x) = e−x

2 .

B.3.1 Divergent integrals

A recurrent problem when working with distributions is divergent integrals. As mentioned in
(8.45), usually we need to “integrate” over domains in which the “integral” diverges. In this
subsection, we want to explain briefly how one can still make sense of such expressions. To do
it, we introduce as an example two distributions: The Cauchy’s principal value distribution and
the finite part of Hadamard [2]. For simplicity, we restrain ourselves to the one-dimensional case.

Cauchy Principal value

The Cauchy’s principal value distribution in D′(R) is defined as the limit:

⟨PVx0 , g⟩ := lim
r→0

(∫ x0−r

−∞
dx

g(x)

x− x0
+

∫ ∞
x0+r

dx
g(x)

x− x0

)
. (B.11)

We will show that this distribution is well defined (the proof originally found at [2]). Without
loss of generality, we set x0 = 0. To prove the finitude of the integral, let supp g ⊂ [−A,A] for
A be sufficiently big. We compute:
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∫ −r
−A

dx
g(x)

x
+

∫ A

r
dx

g(x)

x

=

∫ −r
−A

dx
g(x)

x
+

∫ A

r
dx

g(x)

x
+

∫ −r
−A

dx
g(0)− g(0)

x
+

∫ A

r
dx

g(0)− g(0)

x

=

∫ −r
−A

dx
g(x)− g(0)

x
+

∫ A

r
dx

g(x)− g(0)

x
+

∫ −r
−A

dx
g(0)

x
+

∫ A

r
dx

g(0)

x︸ ︷︷ ︸
=0

. (B.12)

Note that g(x)− g(0) can be written as xf(x), f(x) ∈ D(R) [2] prop 39.2. Hence:

∫ −r
−A

dx
g(x)

x
+

∫ A

r
dx

g(x)

x
=

∫ −r
−A

dx
xf(x)

x
+

∫ A

r
dx

xf(x)

x
=

∫ A

−A
dx f(x) <∞. (B.13)

The continuity of PV0 can be proved directly by the definition of the distribution. Let
gk(x) ∈ D′(R) be a test function that converges to g(x) = 0∀x ∈ R 2. Then:

|⟨PV0, gk⟩| =
∣∣∣∣∫ −r
−A

dx
gk(x)

x
+

∫ A

r

gk(x)

x

∣∣∣∣
≤
∫ −r
−A

dx

∣∣∣∣xfk(x)x

∣∣∣∣+ ∣∣∣∣∫ A

r

xfk(x)

x

∣∣∣∣ ≤ 2 sup |fk(x)|(A− r). (B.14)

In the above equation, we have used the same notation and trick as in (B.13). Now we have
to show that sup(fk(x)) → 0 as k → ∞. To do it, let us first consider x ∈ (r,A):

|xfk(x)| = x|fk(x)| = |gk(x)− g(0)| =
∣∣∣∣∫ x

0
dx g′k(x)

∣∣∣∣
≤
∫ x

0
dx | sup(g′k(x))| = x∥g′k∥0,1

⇒ |fk(x)| ≤ ∥g′k∥0,1 = sup(g′k(x)) → 0. (B.15)

Hence, sup(fk) → 0 and |⟨PV0, gk⟩| → 0 prove that it is a continuous functional and, there-
fore, a distribution.

If we have to compute higher powers of PV0 we can simply use the derivative:

1

xn+1
=

(−1)n

(n− 1)!

dn

dxn
1

x
. (B.16)

Thus,

2that is equivalent to defining gk(x) := h(x)− hk(x) where hk → h in D(R)
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lim
r→0

∫
R\[−r,r]

dx
1

xn+1
g(x) =

(−1)n

(n− 1)!
lim
r→0

∫
R\[−r,r]

dx

(
dn

dxn
1

x

)
g(x)

=
(−1)2n

(n− 1)!
lim
r→0

∫
R\[−r,r]

dx
1

x

(
dn

dxn
g(x)

)
=

1

(n− 1)!
⟨PV0, gn⟩. (B.17)

Note that the same arguments hold for the definition of PV ∈ J ′(R). As an example of a
calculation, we can compute ⟨ 1

x2
, e−x

2⟩:

⟨ 1

x2
, e−x

2⟩ = lim
r→0

∫
R\[−r,r]

dx
1

x2
e−x

2
= lim

r→0

∫
R\[−r,r]

dx

(
d

dx

−1

x

)
e−x

2

= lim
r→0

∫
R\[−r,r]

dx
1

x

(
d

dx
e−x

2

)
= lim

r→0

∫
R\[−r,r]

dx
1

x

(
−2xe−x

2
)

= −2
√
π. (B.18)

Hadamard finite part

Another distribution that “controls” bad-behaved integrals is called Hadamard finite part.
That distribution is closely related to the regularization scheme in quantum field theory. Before
introducing the distribution, we need an auxiliary result ([2]):

Let (ak, bk), k = 1, ..., n be a finite collection of complex numbers with Re(ak), Re(bk) ≥ 0 but
not simultaneously zero. Then if there are c1, ..., cn ∈ C such that:

lim
x→0+

(
n∑
k=1

ck
(lnx)bk

xak

)
= α ∈ C, |α| <∞. (B.19)

Then α = c1 = ... = cn = 0. In addition, we can prove that if f = s + h with s =(∑n
k=1 ck

(lnx)bk

xak

)
and limx→0 h(x) = L, |L| <∞, then the decomposition of f is unique, i.e, for

another combination f = s′ + h′, s′ =
(∑n

k=1 ck
(lnx)bk

xak

)
we have s′ = s, h′ = h.

The proof of these results can be found in [2] section 39.3.

Equipped with the above results, we define the Hadamard finite part of
∫
dx f(x) if for

all r > 03 ∫ dx f(x) can be written as:

∫
R\[−r,r]

dx f(x) = F (r) +D(r). (B.20)

3We assume f is singular only in 0
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with

D(r) =

(
n∑
k=1

ck
(lnx)bk

xak

)
and lim

x→0
F (r) = L, |L| <∞. (B.21)

as limr→0 F (r). Due to the results in the beginning of the section, that limit is unique. We
denote the Hadamard finite part by FP

∫
dx f(x). Essentially, what we have done is to separate

the divergent part in an expression containing only powers of 1
x and ln(x) and take as the result

of the integral what is left.

We define the Hadamard finite part distribution as:

〈
FP

(
1

(x− x0)m

)
, g

〉
:= FP

∫
dx,

g(x)

(x− x0)m
. (B.22)

The distribution above is closely related to the Cauchy principal value distribution, since:

FP

∫
dx

g(x)

x
= PV

∫
dx

g(x)

x
. (B.23)

To see it, we write g(x) = g(0) + xf(x) and perform the integral over supp g \ [−r, r]. For
higher orders, we just need to repeat the trick using the derivatives and the construction of
FP

(
1

(x−x0)m

)
.

With both methods mentioned above, we hope that the divergent integrals appearing in
quantum field theory are now less tricky.
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