Capítulo 3

Postulado Dinâmico da Mecânica Quântica

No capítulo anterior vimos o que é um estado em Mecânica Quântica, bem como a sua relação com observáveis físicos, tais como momento linear, momento angular, energia, etc. É importante notar que para utilizarmos os postulados cinemáticos não precisamos saber qual o sistema (dinâmica) sendo considerado, já que para um tempo fixo a função de onda Ψ carrega toda a informação sobre o estado. Analogamente ao que ocorre na Mecânica Clássica, precisamos explicitar a dinâmica só quando desejamos analisar a evolução temporal do estado a partir de uma dada condição inicial.

3.1 Quarto Postulado: Evolução Temporal

Partindo dos postulados anteriores ou da Mecânica Clássica, é impossível deduzir a equação para a evolução no tempo de uma função de onda. Todavia, podemos argumentar heuristicamente o porquê de sua escolha. Dados os postulados anteriores podemos inferir **três propriedades gerais** que a equação de movimento para os estados Ψ deve satisfazer:

1. A equação deve ser **linear e homogênea** para que o princípio da superposição seja válido em todos os instantes de tempo.

- 2. Equações contendo derivadas de ordem n no tempo, requerem o conhecimento de derivadas de Ψ até ordem n-1 no instante inicial para que o problema de condição inicial fique bem definido. Uma vez que Ψ contém toda informação sobre o sistema, segundo o primeiro postulado, é natural impor que a equação de movimento do sistema seja de **primeira ordem no tempo**, dispensando assim o conhecimento de derivadas de Ψ no instante inicial.
- 3. A evolução temporal do sistema deve ser tal que haja conservação de probabilidade, a fim de que o segundo postulado seja compatível com sua dinâmica.

Postulamos que a evolução dinâmica do sistema é controlada pela equação de Schrödinger dependente do tempo

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, \mathbf{t}) = \mathbf{H} \Psi(\mathbf{x}, \mathbf{t}) ,$$
 (3.1)

onde H é o operador hamiltoniana. É trivial verificar que esta equação satisfaz os dois primeiros requisitos acima, restando apenas a verificação de que o terceiro também é respeitado.

Exemplo: Partícula livre

A equação de Schrödinger para uma partícula livre, cuja hamiltoniana é $H=\frac{\mathbf{p}^2}{2m}$, é dada por

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{x}, t) .$$
 (3.2)

Esta equação possui soluções particulares da forma

$$\Psi(\mathbf{x},t) = Ne^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)} \tag{3.3}$$

desde que a seguinte relação seja satisfeita

$$\omega = \frac{\hbar \mathbf{k}^2}{2m} \tag{3.4}$$

e N seja uma constante. Esta é determinada impondo que a função de onda esteja normalizada. Para um espaço finito de volume V, temos que $N=1/\sqrt{V}$.

Exemplo: sistema conservativo

Para um sistema descrito pela hamiltoniana clássica $H_{\rm cl} = \frac{{\bf p}^2}{2m} + V({\bf x})$ temos que a equação de Schrödinger toma a forma

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\mathbf{x}) \Psi . \qquad (3.5)$$

3.1.1 Conservação de probabilidade

Uma vez que o estado de um sistema e sua subseqüente evolução temporal são determinados por uma função de onda inicial $\Psi(\mathbf{x}, t_0)$, é importante verificar sob que condições a dinâmica do sistema preserva a normalização desta. Para tanto calculamos $\frac{d}{dt} \int d^3\mathbf{x} |\Psi(\mathbf{x}, t)|^2$, onde a integração é feita sobre o espaço todo. Para que haja coerência entre os postulados esta quantidade deve anular-se.

$$\frac{d}{dt} \int d^3 \mathbf{x} |\Psi(\mathbf{x}, t)|^2 = \int d^3 \mathbf{x} \left\{ \frac{\partial \Psi^*}{\partial t} \Psi + \Psi^* \frac{\partial \Psi}{\partial t} \right\}
= \int d^3 \mathbf{x} \frac{1}{i\hbar} \left\{ -(H\Psi)^* \Psi + \Psi^* H \Psi \right\} , (3.6)$$

onde utilizamos a equação de Schrödinger (3.1). Exigindo que expressão (3.6) acima seja nula, temos que o operador H deve ser hermitiano. Este fato é mais do que natural uma vez que a hamiltoniana é o operador associado à energia e conseqüentemente H deve ser hermitiano.

Para entendermos melhor este resultado calcularemos $\frac{d}{dt} \int_V d^3 \mathbf{x} |\Psi(\mathbf{x},t)|^2$, onde V é um volume arbitrário do espaço. Consideraremos ainda que $H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x})$.

$$\frac{d}{dt} \int_V d^3 \mathbf{x} \ |\Psi(\mathbf{x},t)|^2 \ = \ \int_V d^3 \mathbf{x} \ \left\{ \frac{\partial \Psi^*}{\partial t} \Psi + \Psi^* \frac{\partial \Psi}{\partial t} \right\} \ ,$$

¹Interprete este resultado usando as relações de incerteza.

$$= \int_{V} d^{3}\mathbf{x} \left\{ \frac{i\hbar}{2m} \left(\Psi^{*} \nabla^{2} \Psi - \Psi \nabla^{2} \Psi^{*} \right) + \frac{i}{\hbar} \Psi^{*} \Psi (V^{*} - V) \right\}, \qquad (3.7)$$

aonde novamente utilizamos a equação (3.1). Considerando que o potencial V é real obtemos que

$$\int_{V} d^{3}\mathbf{x} \frac{\partial}{\partial t} |\Psi|^{2} = \int_{V} d^{3}\mathbf{x} \nabla \cdot \left[\frac{i\hbar}{2m} \left(\Psi^{*} \nabla \Psi - \Psi \nabla \Psi^{*} \right) \right], \quad (3.8)$$

$$= \frac{i\hbar}{2m} \int_{S} d\mathbf{S} \cdot \left[\Psi^{*} \nabla \Psi - \Psi \nabla \Psi^{*} \right], \quad (3.9)$$

onde utilizamos o teorema de Gauss para obter a última igualdade e S é a superfície contendo o volume V.

Inicialmente vamos reobter a conservação de probabilidade, mostrando que no limite de V tendendo a todo espaço, a última integral é nula. Uma vez que $\Psi(\mathbf{x},t)$ é uma função contínua de t, a integral

$$\int_{V} d^{3}\mathbf{x} \, |\Psi(\mathbf{x},t)|^{2}$$

também é contínua e por isso finita, já que a condição inicial o é. Logo, o comportamento assintótico², *i.e.* para $|\mathbf{x}| = R$ grande, de $\Psi(\mathbf{x}, t)$ é $\mathcal{O}(R^{-3/2-\epsilon})$, onde ϵ é positivo e arbitrário. Com isso, o comportamento a grandes distâncias (R) do integrando da Eq. (3.9) é $\mathcal{O}(R^{-4})$, e a integral anula-se para $R \to \infty$ como R^{-2} . Portanto, a normalização da função de onda é preservada pela evolução temporal.

Dado que o volume utilizado V é arbitrário, podemos interpretar a Eq. (3.8) como uma lei local de conservação de probabilidade, a qual afirma que a diminuição da probabilidade em um determinado elemento de volume é igual ao fluxo de probabilidade através de sua superfície. Podemos escrever esta lei na forma diferencial

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{J} , \qquad (3.10)$$

²Estas considerações valem para espaços tridimensionais.

onde

$$\rho = |\Psi|^2 \,, \tag{3.11}$$

$$\mathbf{J} \equiv \frac{\hbar}{i2m} \left[\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right] . \tag{3.12}$$

Note que a corrente de probabilidade (**J**) é **real** e que a expressão (3.10) é totalmente análoga à expressão para a conservação da carga elétrica. Mais ainda, podemos reescrever esta expressão na forma

$$\mathbf{J} = \frac{1}{2} \left[\Psi^* \mathbf{v} \Psi + (\mathbf{v} \Psi)^* \Psi \right] , \qquad (3.13)$$

onde \mathbf{v} é o operador velocidade \mathbf{p}/m . Esta última expressão também é válida para sistemas imersos num campo magnético $\mathbf{B} = \nabla \wedge \mathbf{A}$ desde que utilizemos $\mathbf{v} = (\mathbf{p} - q\mathbf{A})/m$, onde q é carga elétrica da partícula.

Exemplo: Partícula livre

A corrente de probabilidade ${\bf J}$ associada à solução (3.3) é dada por

$$\mathbf{J} = |N|^2 \frac{\mathbf{p}}{m} = \frac{1}{V} \frac{\mathbf{p}}{m} \,, \tag{3.14}$$

a qual nada mais é do que a velocidade da partícula (\mathbf{p}/m) multiplicada pela densidade de probabilidade (1/V). É trivial verificar que o fluxo através de qualquer superfície fechada é nulo, pois \mathbf{J} é constante. Esta expressão é análoga a que obtemos para a conservação da carga elétrica, principalmente quando notamos que $\mathbf{J} = \rho \mathbf{v}$!

Observação

Uma vez que a equação de Schrödinger (3.1) é linear podemos sempre obter soluções que satisfazem a condição de normalização

$$\int d^3 \mathbf{x} |\Psi|^2 = 1.$$

Dada uma solução (Φ) da Eq. (3.1), a qual não obedece esta condição, podemos multiplicá-la por uma constante conveniente, devido a linearidade da equação, de forma a obter uma função de onda normalizada

 $(\Psi_{nor}).$

$$\Psi_{\text{nor}}(\mathbf{x}, t) = \frac{1}{\sqrt{\int d^3 \mathbf{x} |\Phi(\mathbf{x}, t)|^2}} \Phi(\mathbf{x}, t)$$
 (3.15)

Para que esta última expressão seja verdadeira $\int d^3\mathbf{x} |\Phi(\mathbf{x}, t)|^2$ deve ser independente do tempo, fato que acabamos de demonstrar.

3.2 Solução formal da Equação de Schrödinger

Para obter uma solução formal da equação de Schrödinger dependente do tempo (3.1), dadas uma hamiltoniana H independente do tempo e uma condição inicial $\Psi(\mathbf{x}, t=0)$, utilizaremos o método de separação de variáveis. Este problema reduz-se a um problema de autovalores quando procuramos soluções particulares de (3.1) da forma

$$\Psi(\mathbf{x},t) = u(\mathbf{x}) \ T(t) \ . \tag{3.16}$$

De fato, substituindo este ansatz em (3.1) obtemos que³

$$i\hbar \frac{dT}{dt} = E T , (3.17)$$

$$Hu = E u, (3.18)$$

onde E é uma constante. A equação para T é fácil de resolver, sendo que $T = \exp(-iEt/\hbar)$. Logo, se conhecermos a solução para o problema de autovalores da hamiltoniana

$$Hu_n = E_n u_n$$
.

as soluções particulares da equação de Schrödinger dependente do tempo são dadas por

$$\Psi_n(\mathbf{x}, t) = u_n(\mathbf{x}) e^{-iE_n t/\hbar} . \tag{3.19}$$

Note que para estas soluções, a densidade de probabilidade

$$|\Psi_n(\mathbf{x},t)|^2 = |u_n(\mathbf{x})|^2 \tag{3.20}$$

³Aplique o método de separação de variáveis e veja que isto é verdade.

é independente do tempo. Por esta razão os estados Ψ_n são chamados de **estados estacionários**.

Uma vez que a equação de Schrödinger dependente do tempo é linear sabemos que uma combinação linear dessas funções

$$\Psi(\mathbf{x},t) = \sum_{n} c_n \Psi_n(\mathbf{x},t)$$
 (3.21)

também é solução, caso os c_n 's sejam constantes. Neste ponto é natural indagar se esta é a solução geral da Eq. (3.1). A resposta é **SIM**! Para verificar se isto é verdade devemos mostrar que dada uma condição inicial arbitrária podemos escrever a solução do problema de valor inicial na forma da Eq. (3.21).

O "posturema" enunciado no capítulo anterior permite-nos escrever $\Psi(\mathbf{x}, t = 0)$ como uma combinação linear dos u_n .

$$\Psi(\mathbf{x}, t = 0) = \sum_{n} d_n u_n(\mathbf{x}) , \qquad (3.22)$$

onde as constantes d_n são dadas por

$$d_n = \int d^3 \mathbf{x} \ u_n^*(\mathbf{x}) \ \Psi(\mathbf{x}, t = 0) , \qquad (3.23)$$

desde que tomemos a normalização dos autovetores tal que

$$\int d^3 \mathbf{x} \ u_n^*(\mathbf{x}) \ u_m(\mathbf{x}) = \delta_{n,m} \ . \tag{3.24}$$

Escolhendo os c_n 's da Eq. (3.21) como sendo dados por $c_n = d_n$, temos que $\Psi(\mathbf{x}, t)$ descrita por (3.21) satisfaz a condição inicial. Logo, esta é a solução geral do problema.

Em suma, para obtermos uma solução formal da equação de Schrödinger dependente do tempo devemos seguir os seguintes passos:

- Resolver o problema de autovalores $Hu_n = E_n u_n$.
- Expandir a condição inicial nos autovetores de H como em (3.22).
- Substituir os coeficientes (d_n) da expansão de $\Psi(\mathbf{x},0)$ por d_n $\exp(-iE_nt/\hbar)$, resultando assim a expansão em série (3.21) para a solução $\Psi(\mathbf{x},t)$.

$$\Psi(\mathbf{x},t) = \sum_{n} d_n \ e^{-iE_n t/\hbar} \ u_n(\mathbf{x})$$
 (3.25)

3.3 Primeira Aplicação: Partícula Livre

Com o intuito de ilustrar o procedimento acima para a obtenção da evolução temporal dos estados, consideremos uma partícula livre, cuja hamiltoniana é $H = \frac{\mathbf{p}^2}{2m}$. Neste caso o problema de autovalores da hamiltoniana escreve-se como

$$-\frac{\hbar^2}{2m}\nabla^2 u = E u , \qquad (3.26)$$

o qual admite soluções da forma⁴

$$u_{\mathbf{k}}(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}} \,, \tag{3.27}$$

com os correspondentes autovalores sendo dados por

$$E_{\mathbf{k}} = \frac{\hbar^2 \mathbf{k}^2}{2m} \,. \tag{3.28}$$

Logo, as soluções particulares deste problema são

$$\Psi_{\mathbf{k}}(\mathbf{x},t) = e^{i\left(\mathbf{k}\cdot\mathbf{x} - \frac{E_{\mathbf{k}}}{\hbar}t\right)}.$$
(3.29)

O próximo passo na solução formal da evolução temporal deste sistema é expandir a condição inicial $\Psi(\mathbf{x}, t=0)$ na base das autofunções da hamiltoniana. Uma vez que o conjunto dos autovalores de H é contínuo a soma sobre os autoestados em (3.22) é transformada numa integral em $\int d^3\mathbf{k}$

$$\Psi(\mathbf{x}, t = 0) = \int d^3 \mathbf{k} \ g(\mathbf{k}) \ e^{i\mathbf{k}\cdot\mathbf{x}} \ , \tag{3.30}$$

onde $g(\mathbf{k})$ são os coeficientes da expansão em termos dos autovetores. É fácil ver que $g(\mathbf{k})$ é a transformada de Fourier de $\Psi(\mathbf{x}, t = 0)$, a qual toma a forma

$$g(\mathbf{k}) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{k} \ e^{-i\mathbf{k}\cdot\mathbf{x}} \ \Psi(\mathbf{x}, t = 0) \ . \tag{3.31}$$

⁴Existe um problema técnico com a normalização destes autovetores, o qual será tratado em detalhe no próximo capítulo.

A partir do que foi exposto acima, temos que a solução da equação de Schrödinger dependente do tempo de uma partícula livre é dada por

$$\Psi(\mathbf{x},t) = \int d^3 \mathbf{k} \ g(\mathbf{k}) \ e^{i\left(\mathbf{k}\cdot\mathbf{x} - \frac{\hbar \mathbf{k}^2}{2m}t\right)} , \qquad (3.32)$$

onde $g(\mathbf{k})$ é obtida usando a Eq. (3.31).

Para compreendermos melhor as consequências de (3.32), consideremos uma partícula livre unidimensional cuja condição inicial é dada por

$$\Psi(x,t=0) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{ik_0 x} e^{-\frac{\alpha}{2}x^2} . \tag{3.33}$$

Como vimos anteriormente, este estado é caracterizado por

$$\langle x \rangle = 0 , \qquad (3.34)$$

$$\langle p \rangle = \hbar k_0 , \qquad (3.35)$$

$$\left(\Delta x\right)^2 = \frac{1}{2\alpha} \,, \tag{3.36}$$

$$(\Delta p)^2 = \frac{\hbar^2 \alpha}{2} \,. \tag{3.37}$$

Utilizando (3.31)⁵, temos que os coeficientes da expansão deste estado na base de autovetores da hamiltoniana são dados por

$$g(k) = \left(\frac{1}{4\pi^3 \alpha}\right)^{1/4} e^{-\frac{(k-k_0)^2}{2\alpha}}.$$
 (3.38)

Agora com a ajuda de (3.32), temos que o estado do sistema num dado instante t é dado por

$$\Psi(x,t) = \left(\frac{\alpha}{\pi}\right)^{1/4} \sqrt{\frac{1}{1+i\hbar\alpha t/m}} \exp\left\{-\frac{\alpha}{2} \frac{(x-v_g t)^2}{1+i\hbar\alpha t/m}\right\} e^{i\left(k_0 x - \frac{\hbar k_0^2}{2m}t\right)},$$
(3.39)

onde $v_g = \hbar k_0/m$ é a velocidade do centro do pacote de ondas. Note que devido a evolução temporal a forma do pacote alterou-se, fato este que pode ser visto a partir da distribuição de probabilidades em x

$$|\Psi(x,t)|^2 = \sqrt{\frac{1}{\Gamma^2(t)\pi}} \exp\left\{-\frac{(x-v_g t)^2}{\Gamma^2(t)}\right\},$$
 (3.40)

 $^{^5{\}rm Note}$ que no caso unidimensional o fator $(2\pi)^3$ em (3.31) deve ser substituído por $2\pi.$

cuja largura $\Gamma(t) = \sqrt{(1 + \hbar^2 \alpha^2 t^2/m^2)/\alpha}$ é dependente do tempo. Esta distorção é devida a relação de dispersão (3.28) ser não linear, isto é E_k não é proporcional a k. É sempre bom lembrar que as ondas eletromagnéticas no vácuo propagam-se sem distorção por causa da sua relação de dispersão ser linear.

É interessante calcular alguns valores esperados como função do tempo:

$$\langle x \rangle = v_g t , \qquad (3.41)$$

$$\langle p \rangle = \hbar k_0 , \qquad (3.42)$$

$$(\Delta x)^2 = \frac{1}{2\alpha} + \frac{\hbar^2 \alpha}{2m^2} t^2 , \qquad (3.43)$$

$$\left(\Delta p\right)^2 = \frac{\hbar^2 \alpha}{2} \,, \tag{3.44}$$

os quais permitem verificar que os valores médios de x e p possuem um comportamento clássico, i.e. sua evolução temporal é idêntica a de uma partícula clássica. Contudo, note que Δx cresce com o tempo, ao passo que Δp permanece constante. Isto faz com que o produto $\Delta x \Delta p$ seja uma função crescente do tempo.

3.4 Equação de Movimento para Médias

Vamos agora deduzir a equação de movimento para médias de observáveis a partir da equação de Schrödinger para os estados. Para tanto calculamos

$$\frac{d}{dt}\langle A \rangle = \frac{d}{dt} \int d^3 \mathbf{x} \ \Psi^* A \Psi \ , \tag{3.45}$$

$$= \int d^3 \mathbf{x} \left\{ \left(\frac{\partial \Psi}{\partial t} \right)^* A \Psi + \Psi^* A \frac{\partial \Psi}{\partial t} \right\} , \qquad (3.46)$$

$$= \frac{1}{i\hbar} \int d^3 \mathbf{x} \left\{ -(H\Psi)^* A\Psi + \Psi^* AH\Psi \right\} , \qquad (3.47)$$

onde utilizamos a equação de Schrödinger (3.1) para Ψ e assumimos que o observável A não depende explicitamente do tempo. Uma vez

que H é hermitiano, podemos reescrever esta expressão como

$$\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar} \int d^3 \mathbf{x} \ \Psi^*(-HA + AH)\Psi \ , \tag{3.48}$$

ou seja,

$$\frac{d}{dt}\langle A \rangle = \frac{1}{i\hbar}\langle [A, H] \rangle . \tag{3.49}$$

Logo, temos que o valor esperado de operadores que comutam com a hamiltoniana do sistema são constantes no tempo. Por exemplo, no caso de uma partícula livre temos que $\langle p \rangle$ é uma constante de movimento. Ainda para este sistema, utilizando (3.49) obtemos que

$$\frac{d}{dt}\langle x\rangle = \frac{1}{m}\langle p\rangle . {(3.50)}$$

Dado que $\langle p \rangle$ é constante segue que $\langle x \rangle(t) = \langle x \rangle(0) + \frac{\langle p \rangle}{m}t$. Note que estes fatos foram verificados explicitamente no exemplo acima.

3.5 Recuperando a Física Clássica

No capítulo anterior e neste postulamos o que entendemos por Mecânica Quântica, a qual é muito diferente da Mecânica Clássica, mesmo em aspectos qualitativos. Uma vez que esperamos que a Física Quântica deva reduzir-se à Clássica, é natural indagar quais as condições para que isto ocorra.

O exemplo que analisamos acima da evolução de um estado gaussiano de uma partícula livre sugere que a conexão entre observáveis clássicos e quânticos é que os primeiros podem ser entendidos como sendo dados pelos valores médios dos correspondentes quânticos. Para verificar se isto de fato é verdade devemos reobter as leis de Newton usando médias, *i.e.* precisamos verificar se

$$\langle \mathbf{p} \rangle = m \frac{d}{dt} \langle \mathbf{x} \rangle , \qquad (3.51)$$

$$\frac{d}{dt}\langle \mathbf{p} \rangle = -\nabla V(\langle \mathbf{x} \rangle) . \tag{3.52}$$

Para obter $\frac{d}{dt}\langle \mathbf{x} \rangle$ devemos utilizar a Eq. (3.49) e portanto calcular $[\mathbf{x}, H]$. Admitindo que a hamiltoniana do sistema é da forma H = $\frac{\mathbf{p}^2}{2m} + V(\mathbf{x})$, temos que $[\mathbf{x}, H] = i\hbar\mathbf{p}/m$. Logo, a Eq. (3.51) é válida.

Concentremo-nos agora na evolução temporal de $\langle \mathbf{p} \rangle$. Uma vez que

$$[\mathbf{p}, H] = [\mathbf{p}, \frac{\mathbf{p}^2}{2m}] + [\mathbf{p}, V(\mathbf{x})],$$
 (3.53)

$$= \frac{\hbar}{i} \nabla V , \qquad (3.54)$$

a expressão (3.49) conduz a

$$\frac{d}{dt}\langle \mathbf{p} \rangle = \int d^3 \mathbf{x} \ \Psi^*(-\nabla V)\Psi = \langle -\nabla V \rangle . \tag{3.55}$$

Este resultado é chamado de Teorema de Ehrenfest.

Logo, para que a Mecânica Clássica seja um limite da Quântica, devemos comparar (3.52) e (3.55), o que conduz à condição

$$\langle \nabla V \rangle = \nabla V(\langle \mathbf{x} \rangle) ,$$
 (3.56)

o que em geral não é válido. Todavia, esta igualdade é uma boa aproximação se a variação do potencial for lenta na região em que Ψ é não nula, i.e. as dimensões características da função de onda Ψ são muito menores que as distâncias típicas do potencial.

3.6 Resumo do Formalismo

Os princípios básicos da Mecânica Quântica são:

Estados são dados por funções de onda $\Psi(\mathbf{x},t)$, cujo módulo ao quadrado é a densidade de probabilidade da partícula estar no ponto x. O conjunto dos estados forma um espaço vetorial devido ao princípio da superposição. Mais ainda, duas funções diferindo apenas por uma constante multiplicativa são consideradas iguais.

Observáveis estão associados a operadores lineares hermitianos através da regra $A_{\rm op} = A_{\rm cl}(\mathbf{p} = \frac{\hbar}{i} \nabla, \mathbf{x})$, sendo suas médias dadas por

$$\langle A \rangle = \int d^3 \mathbf{x} \ \Psi^* A_{\rm OP} \Psi \ .$$

Evolução temporal dos estados obedece a equação de Schrödinger

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = H \Psi(\mathbf{x}, t) .$$

Partindo dos postulados da Mecânica Quântica temos o aparecimento de problemas de autovalores em diversas situações, tais como na previsão de resultados experimentais e na solução formal de problemas de valor inicial. Antes de resolvermos diversos problemas de autovalores vamos resumir sua utilização na solução formal destes problemas.

Medidas

Os resultados possíveis de medidas da grandeza física A são os autovalores (a_n) do operador hermitiano A associado a esta quantidade.

$$Au_n = a_n u_n$$

Para operadores hermitianos o conjunto dos autovetores $\{u_n\}$ forma uma base do espaço dos estados e qualquer estado pode ser escrito na forma

$$\Psi = \sum_{n} c_n u_n , \qquad (3.57)$$

onde os c_n 's são constantes. Mais ainda, escolhendo a normalização dos autovetores tal que

$$\int d^3 \mathbf{x} \ u_n^*(\mathbf{x}) u_m(\mathbf{x}) = \delta_{m,n} \ , \tag{3.58}$$

temos que

$$c_n = \int d^3 \mathbf{x} \ u_n^*(\mathbf{x}) \Psi(\mathbf{x}) \ . \tag{3.59}$$

Como vimos anteriormente, para um sistema no estado Ψ , a probabilidade do resultado de uma medida o ser autovalor a_n é dada por

$$|c_n|^2 = \left| \int d^3 \mathbf{x} \ u_n^*(\mathbf{x}) \Psi(\mathbf{x}) \right|^2, \tag{3.60}$$

sendo que devemos adotar a normalização (3.58) para que esta expressão seja válida. Logo, para obter a distribuição de probabilidade das medidas de A devemos seguir os seguintes passos:

44 Capítulo 3. Postulado Dinâmico da Mecânica Quântica

- Resolver o problema de autovalores do operador A.
- Expandir o estado Ψ na base de autovetores de A, como em (3.57).
- As probabilidades dos autovalores são dadas por (3.60).

Evolução temporal

Dado um sistema cuja hamiltoniana é H e o estado inicial $\Psi(\mathbf{x}, 0)$, a evolução temporal deste estado é obtida seguindo a seguinte receita:

- Resolver o problema de autovalores da hamiltoniana $Hu_n = E_n u_n$.
- Expandir $\Psi(\mathbf{x}, 0)$ na base dos $\{u_n\}$.
- Substituir c_n em (3.57) por $c_n \exp(-iE_n t/\hbar)$ para obter a expansão de $\Psi(\mathbf{x},t)$.

$$\Psi(\mathbf{x},t) = \sum_{n} c_n e^{-iE_n t/\hbar} u_n(\mathbf{x}) . \qquad (3.61)$$