
7 Effective Field Theory of the Interacting Electron

Gas

As an exercise in using the functional integral in the coherent state representation it will
be useful to consider the case of an interacting electron gas. This will allow us to sample
the techniques that will be needed to describe superconductivity, among other systems.
We will integrate in degrees of freedom that may or may not become dynamical, depending
of the applications. We start with the action in the Matsubara representation

S[ψ̄, ψ] =
∑
p

ψ̄p,σ

(
−iωn +

p2

2m
− µ

)
ψp,σ ,

+
1

2βL3

∑
p,p′,q

ψ̄p+q,σψ̄p′−q,σ′V (q)ψp′,σ′ψp,σ , (7.1)

where use the four-momentum p = (ωn, p) for simplicity so the p sum includes the fre-
quency sums, σ = ±1 is the spin projection, and the potential is the Fourier transform of
the Coulomb potential given by

V (q) =
4πe2

|q|2
. (7.2)

We want to decouple the interaction to obtain a form that is quadratic in the fermions
fields so that we can perform the functional integral. For this purpose we integrate in a
real scalar degree of freedom φ by making use of

1 ∼
∫
Dφ e−

e2β

2L3

∑
q φqV

−1(q)φ−q . (7.3)

This Gaussian functional integral is proportional to the identity so we can introduce it in
our funcional integral without loss of generality. But before we do that we will shift the φ
field by a constant (with respect to the φ functional integral). The shift we will choose is

φq → φq +
i

eβ
V (q)ρq , (7.4)

where we have defined
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ρq ≡
∑
p

ψ̄p,σψp+q,σ . (7.5)

Making this shift in φq we can rewrite (7.3) as

1 ∼
∫
Dφ e

(1/L3)
∑
q

{
− e

2β

2L3 φqV
−1(q)φ−q −ieρqφ−q +(1/2β)ρqV (q)ρ−q

}
. (7.6)

Inserting (7.6) in

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ] , (7.7)

we can see that the last term in the exponential above will exactly cancel the interaction
in (7.1). The resulting action is

S[ψ̄, ψ, φ] =
β

8πL3

∑
q

φq|q|2φ−q +
∑
p,p′

ψ̄p,σ

[(
−iωn +

p2

2m
− µ

)
δpp′ +

ie

L3
φp′−p

]
ψp′,σ .

(7.8)

So we decouple the purely fermionic interaction at the cost of introducing a new degree of
freedom, the scalar field φ. This trick is called the Hubbard-Stratonovich transformation
and it will be very useful in many other instances. We can go back to the τ representation
using

φq =
1√
β

∫ β

0

d3x ei(ωqτ−q·x) φ(τ, x) , (7.9)

and similarly for the Fourier transform from ψp,σ → ψσ(τ, x) to get

S[ψ̄, ψ, φ] =

∫
dτ

∫
d3x

{
1

8π
(∂µφ)2 + ψ̄σ

[
∂τ −

∂2

2m
− µ+

ie

L3
φ

]
ψσ

}
, (7.10)

The Hubbard-Stratonovich procedure introduced here is exact. We have not made any
approximations yet. However, the way we decouple the fermion interaction is not unique.
There are other possible choices, all of them valid. The choice we made is called direct
channel since it couples ψ̄σ(τ, x)ψσ(τ, x) with the scalar field. A second choice is called
exchange channel, and it couples ψ̄σ(τ, x)ψσ′(τ, x’). Finally, there is a third choice coupling
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ψσ(τ, x)ψσ′(τ, x’). This is the Cooper channel and we can see that it and its conjugate
carry fermion number ±2, whereas the other two cases carry zero fermion number. Which
channel is chosen for the decoupling depends on what systems is being described, which
determines what approximation needs to be done. We will carry on this example in the
direct channel. For describing a superconductor we will make use of the Cooper channel.

Going back to the action in (7.8), we see that since it is now quadratic in the fermion
fields we can integrate them out. The result of this procedure is

Z =

∫
Dφ e−(β/8πL3)

∑
q φq |q|2φ−q det

[
−iω̂ +

p̂2

2m
− µ+

ie

L3
φ̂

]
, (7.11)

As we have seen many times before, the fermionic determinant can be exponentiated
resulting in the effective action for φ given by

Seff [φ] =
β

8πL3

∑
q

φq|q|2φ−q − Tr

[
ln

(
−iω̂ +

p̂2

2m
− µ+

ie

L3
φ̂

)]
, (7.12)

To go further we need to make some approximation. First, we consider the mean field ap-
proximation which results from the saddle point approximation of the functional integral
in (7.11). Then, we will consider the fluctuations around the mean field solution.

7.1 Mean Field Solution

To start we consider the saddle point approximation and the simplest solution satisfying
it: a constant (classical) background field φ. The saddle point solution must satisfy

δSeff.[φ]

δφq
= 0, (7.13)

for all q 6= 0, since q = 0 has no propagation. We define the operator

Ĝ−1[φ] ≡ iω̂ − p̂2

2m
+ µ− ie

L3
φ̂ . (7.14)

Then, to obtain an equation for the mean field solution we need to compute

δTr
[
ln Ĝ−1[φ]

]
δφq

(7.15)
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The question is how to perform the derivative of the trace. It turns out that we can just
apply the usual rules of derivation as if the trace was not there. To see this let us consider
a function f(Â) where Â is some operator (for us is the ln Ĝ−1). Then the derivative of
the trace of f(Â) is

∂Tr
[
f(Â)

]
= ∂Tr

[∑
n

f(n)(0)

n!
Ân

]
, (7.16)

where ∂ refers to derivation with respect to the variable Â depends on, f (n)(0) is the n-th
derivative of f and we expanded around Â = 0. Then we have

∂Tr
[
f(Â)

]
= ∂

∑
n

f (n)(0)

n!
Tr
[
Ân
]

=
∑
n

f (n)(0)

n!
∂Tr

[
Ân
]

=
∑
n

f (n)(0)

n!
Tr
[
∂ÂÂn−1 + Â∂ÂÂn−2 + · · ·+ Ân−1∂Â

]
=

∑
n

f (n)(0)

n!
nTr

[
Ân−1∂Â

]
= Tr

[
f ′(Â) ∂Â

]
, (7.17)

which proves that the derivative of the trace is just the trace of the derivative. Going
back to (7.15), applying (7.17), we now have

δTr
[
ln Ĝ−1[φ]

]
δφq

= Tr

[
Ĝ
δĜ−1

δφq

]

= 2
∑
q1,q2

Ĝq1q2

(
δĜ−1

δφq

)
q2q1

, (7.18)

where the factor of 2 comes from the summ over spins σ = ±1. From (7.8). we can read
the matrix form for the operator Ĝ−1. This is

Ĝ−1
q1q2

=

(
−iω̂ − p̂2

2m
+ µ

)
δq1,q2 −

ie

L3
φq2−q1 , (7.19)
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which means that the only non-diagonal term is the one depending on φ. In fact, φ̂
is always off-diagonal since for q1 = q2 we would have φ0 which is zero due to charge
neutrality. Then, we have

(
δĜ−1

δφq

)
q2q!

= − ie
L3
δq1−q2,q , (7.20)

Putting it all together, the saddle point condition (7.13) reads

δSeff.[φ]

δφq
=

β

4πL3
|q|2φ−q + 2

ie

L3

∑
q1,q2

Ĝq1q2δq1−q2,q

=
β

4πL3
|q|2φ−q + 2

ie

L3

∑
q1

Ĝq1(q1−q) = 0 . (7.21)

From the last line in (7.21) we can see that for q 6= 0, φ̂ = 0 is a solution. This is the case
since for q 6= 0 the non-diagonal term Ĝq1(q1−q) only vanishes if φq = 0. Then we conclude
that φq = 0 for q 6= 0 is a solution of (7.21) and therefore a mean field solution. On the
other hand, we can see that this is the only solution that is homogeneous, i.e. a constant
independent on n and q since there is a momentum dependence in the first term of (7.21).
Then, we conclude that our classical background solution is φq = 0 for all q 6= 0, Below,
we will consider the quantum fluctuations around this background.

7.2 Fluctuations

We expand around the mean field solution φ̂MF = 0. Thus

φ̂ = φ̂MF + δφ̂ , (7.22)

where δφ̂ represents the small fluctuation. Of course, since the mean field solution van-
ishes, we can simply use φ̂ = δφ̂. We define the mean field value of the operator Ĝ−1

as

Ĝ−1
0 ≡ iω̂ − p̂2

2m
+ µ , (7.23)

so that to expand around the mean field solution we need to expand

Tr
[
ln Ĝ−1

]
= Tr

[
ln

(
Ĝ−1

0 −
ie

L3
φ̂

)]
, (7.24)
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where we are already using φ̂ = δφ̂ in the right hand side. We now Taylor expand (7.24)
around zero. This gives, to second order in φ̂ (i.e. in δφ̂)

Tr
[
ln Ĝ−1

]
= Tr

[
ln Ĝ−1

0

]
− ie

L3
Tr
[
Ĝ0 φ̂

]
+

1

2

( e

L3

)2

Tr
[
Ĝ0 φ̂ Ĝ0 φ̂

]
+ . . . , (7.25)

The first term in (7.25) is φ̂ independent, so it can be taken out of the functional integral.
It gives the partition function for the non-interacting electron gas

Z0 = eTr[ln Ĝ−1
0 ] = det

[
Ĝ−1

0

]
. (7.26)

The second term must vanish since we are expanding around the mean field solution φ̂MF

which satisfies

δSeff.[φ]

δφ̂
= 0 , (7.27)

but this term must be proportional to the first derivative evaluated at hatφMF.

Then the first contribution beyond the mean field approximations comes from the third
term in (7.25). We need to compute

Tr
[
Ĝ0 φ̂ Ĝ0 φ̂

]
= 2

∑
q1,q2,q3,q4

(
Ĝ0

)
q1q2

φ̂q3−q2

(
Ĝ0

)
q3q4

φ̂q1−q4 , (7.28)

where again the factor of 2 comes from the spins and we have used that

φ̂qp = φ̂p−q . (7.29)

Remembering that

(
Ĝ−1

0

)
q1q2

=

(
iω̂ − p̂2

2m
+ µ

)
δq1,q2 , (7.30)

we obtain

Tr
[
Ĝ0 φ̂ Ĝ0 φ̂

]
= 2

∑
q1,q3

Ĝ0,q1 φ̂q3−q1 Ĝ0,q3 φ̂q1−q3 . (7.31)
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It will be convenient to relabel the indexes as

q1 → p , q3 − q1 → q , q3 → p+ q , (7.32)

which results in

Tr
[
Ĝ0 φ̂ Ĝ0 φ̂

]
= 2

∑
q,p

G0,p φq G0,p+q φ−q

=
L3

T

∑
q

Πq φq φ−q , (7.33)

where in the last line we have defined

Πq ≡ 2
T

L3

∑
q

G0,pG0,p+q . (7.34)

In this way, the effective action of the scalar field φ to quadratic order is given by

Seff.[φ] =
β

8πL3

∑
q

φq|q|2φ−q −
e2

2TL3

∑
q

Πqφqφ−q , (7.35)

which can be rewritten as

Seff.[φ] =
1

2TL3

∑
q

φq

(
|q|2

4π
− e2Πq

)
φ−q . (7.36)

We can understand this expression as a first term for the free propagation of the field
φ and a self-energy of φ resulting from integrating out the fermions. This expression
results in a quadratic functional integral for φ itself, which then can be performed. As an
application, let us compute the contribution of the self-energy (or the contributions from
virtual fermions) to the free energy. We need to compute

∆F = −T (lnZ − lnZ0) , (7.37)

which is
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∆F =
T

2

∑
q

ln

(
1− 4πe2

|q|2
Πq

)
. (7.38)

The result above could have been obtained by using diagrammatic techniques in pertur-
bation theory plus resummation. They correspond to the contribution to the free energy
coming from the creation and annihilation of electrons above the Fermi energy (holes
below the Fermi energy) to second order in the interaction. The use of the functional
integral techniques above allows a rather simple way of accounting for these contribu-
tions. The result in perturbation theory is obtained by using the so-called random phase
approximation. The functional integral has allowed us to account for all these diagrams
and summed them in a very straightforward way.

Additional suggested readings

• Condensed Matter Field Theory, Altland and Simons, Section 4.2.

• Quantum Theory of Many Particle Systems, A. L. Fetter and J. D. Walecka, Chap-
ters 1 and 2.
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