
6 Functional Integral for the Quantum Partition Func-

tion

We will make use of the coherent state formalism developed earlier to build the partition
function as a functional integral. The quantum partition function is

Z = Tr
[
e−β(H−µN)

]
(6.1)

=
∑
α

〈α|e−β(H−µN)|α〉 ,

The identity in Fock space is given by

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉〈φ| = 1F , (6.2)

where |φ〉 is a coherent state and we defined

d
(
φ̄, φ

)
≡
∏
i

dφ̄i, dφi
π

. (6.3)

Inserting (6.2) in (6.1) we obtain

Z =

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk

∑
α

〈α|φ〉〈φ|e−β(H−µN)|α〉 . (6.4)

Making use of the completeness relation

∑
α

|α〉〈|α| = 1 , (6.5)

and assuming that the states |α〉 are bosonic (so that we can switch 〈α| and |α〉, if
fermionic we pick up a minus sign in the process), we obtain

Z =

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk〈φ|e−β(H−µN)|φ〉 . (6.6)
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The expression above looks similar to what we started with when we derived the Feyn-
man path integral formulation of quantum mechanics. The are two differences: the time
interval ∆t is here iβ, and the initial state is the same as the final state since the parti-
tion function is a trace. We will then proceed to define the functional integral where the
integration functions are all the possible functional values that the φi’s and φ̄i’s can take.
We then consider β the time interval and discretize it dividing it in M segments of length
∆τ such that

β = M ×∆τ , (6.7)

as shown in Figure 6.1 below.

0
n n + 1

Figure 6.1: Discretization of β as a time interval, in discrete bits of size ∆τ .

The disretization then proceeds analogously to the case of quantum mechanics propaga-
tion amplitude. We have

〈φ0|e−∆τ(H−µN)e−∆τ(H−µN) . . . e−∆τ(H−µN)e−∆τ(H−µN) . . . e−∆τ(H−µN)|φM〉 , (6.8)

and now we insert the resolution of the identity in Fock space (6.2) in between each
exponential in (6.8).

〈φ0|e−∆τ(H−µN)|φ1〉〈φ1|e−∆τ(H−µN)|φ2〉 . . . 〈φn|e−∆τ(H−µN)|φn+1〉 . . . e−∆τ(H−µN)|φM〉 ,
(6.9)

where the integrals
∫
d
(
φ̄n, φn

)
are understood. In particular, in the insertion between

|φn〉 and |φn+1〉, we need to compute

In ≡
∫
d
(
φ̄n, φn

)
e−

∑
k φ̄

n
kφ

n
k 〈φn|e−∆τ(H−µN)|φn+1〉 , (6.10)

Next, we need to act with H and N on the coherent states |φn〉. But since they can be
written in second quantization as

H =
∑
i,j

hija
†
iaj +

∑
i,j,k,`

Vijk`a
†
ia
†
jaka` , (6.11)
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as well as the number of particles

N =
∑
i

a†iai . (6.12)

Using that

ai|φn〉 = φni |φn〉 , 〈φn|a†i = 〈φn|φ̄ni , (6.13)

For instance, we have

〈φn|e−∆τ
∑
i,j hija

†
iaj |φn+1〉 = e−∆τ

∑
i,j hij φ̄

n
i φ

n+1
j 〈φn|φn+1〉 , (6.14)

and similarly for the interaction term and for N . On the other hand, we know that the
product of coherent states satisfies

〈φn|φn+1〉 = e
∑
k φ̄

n
kφ

n+1
k . (6.15)

Using the definition

φ̄nφn+1 ≡
∑
k

φ̄nkφ
n+1
k , (6.16)

to simplify the notation, we arrive at

In =

∫
d
(
φ̄n, φn

)
e
−∆τ

(
(φ̄nφn−φ̄nφn+1)

∆τ
+H(φ̄n,φn+1)−µN(φ̄n,φn+1)

)
, (6.17)

where, for instance, we have

N(φ̄n, φn+1) =
∑
k

φ̄nkφ
n+1
k , (6.18)

coming from evaluating

〈φn|eN(a†k,ak)|φn+1〉 , (6.19)

and similarly for H(φ̄n, φn+1). The partition unction is then obtained in the limit for
M →∞ and ∆τ → 0. This is
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Z = lim
M→∞,∆τ→0

∫ ( M∏
n=1

d
(
φ̄n, φn

))
e−S[φ̄,φ] , (6.20)

where we defined

S[φ̄, φ] =
M∑
n=1

∆τ

(
(φ̄nφn − φ̄nφn+1)

∆τ
+H(φ̄n, φn+1)− µN(φ̄n, φn+1)

)
. (6.21)

This action defined above has the continuum limit

S[φ̄, φ] =

∫ β

0

dτ
{
φ̄∂τφ+H(φ̄, φ)− µN(φ̄, φ)

}
, (6.22)

where it is understood that the fields φ and φ̄ are functions of τ , i.e φ(τ) and φ̄(τ). Then,
the quantum partition function is written as a functional integral in the coherent state
representation as

Z =

∫
D(φ̄)D(φ)e−S[φ̄,φ] . (6.23)

As usual, the measure of the function integral in (6.23) is

D(φ̄)D(φ) = lim
M→∞

M∏
n=1

d
(
φ̄n, φn

)
. (6.24)

Finally, since the partition function is a trace the integration over τ in (6.22) assumes the
periodic (anti-periodic in the case of fermions) boundary conditions

φ(0) = φ(β) , φ̄(0) = φ̄(β) . (6.25)

We have succeeded in writing the partition function as a functional integral in (6.23).
We see that the integration is over all the possible functional forms of the φ and φ̄
eigenvalues of the coherent states. These are the fields in this formulation. Although we
have exemplify every step for the case of bosons, i.e. commuting ai and a†i operators,
everything we have said can be rederived for fermions. The anti-commuting properties
of the annihilation and creation operators are inherited by the fermionic fields, resulting
in Grasmann variables in the functional integral. As mentioned earlier, the boundary
conditions (6.25) in this case will be anti-periodic.
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6.1 Frequency (Matsubara) Representation

Given the boundary conditions in (6.25), results in a discrete Fourier transform to the
conjugate variable which we call ωn given by

φ(τ) =
1√
β

∑
n

φne
−iωnτ , (6.26)

where we interpret the conjugate variables ωn as frequencies, in the same sense τ is a
time. The φn are the fields in the frequency or Matsubara representation. The inversion
of (6.26) is

φn =
1√
β

∫ β

0

dτ φ(τ)eiωnτ . (6.27)

The Matsubara frequencies take discrete values according with

ωn =
2πn

β
, (6.28)

with n integer. They satisfy

∫ β

0

dτ e−iωnτ = δ0,n . (6.29)

For instance, if we consider the hamiltonian in (6.11), the action (6.22) can be expressed
in the Matsubara representation as

S[φ̄, φ] =
∑
i,j,n

φ̄in [(−iωn − µ) δij + hij]φjn +
1

β

∑
i,j,k,`,ni

Vijk`φ̄in1φ̄jn2φkn3φ`n4δn1+n2,n3+n4 ,

(6.30)

where we used (6.29).

6.2 Free Electron Gas

As a simple application fo the Matsubara representation we consider the example of a
free electron gas. Then the hamiltonian can be written as
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H = H0(φ̄, φ) =
∑
i,j

H0ijφ̄iφj

=
∑
a

εaφ̄a(τ)φa(τ) , (6.31)

where in the last line we used the fact that we can always diagonalize H0, and εa are the
eigenvalues. Then, in the Matsubara representation we have

S[φ̄, φ] =
∑
a

∑
n

φ̄an (−iωn + εa − µ)φan , (6.32)

Then the functional integral can be factorized as

Z =

∫ ∏
a

[
D(φ̄a)D(φa)e

−
∑
n φ̄a(−iωn+ξa)φa

]
≡
∏
a

Za , (6.33)

where we defined ξa = εa − µ and

Za =

∫
D(φ̄a)D(φa)e

−
∑
n φ̄a(−iωn+ξa)φa

=
∏
n

[β (−iωn + ξa)]
−1

= det [β (−iω̂ + ξa)]
−1 , (6.34)

where the factor of β in the last two lines appears as a consequence of changing the
integration variables from φ’s in the τ representation to the ones in the Matsubara for-
malism, the −1 exponent corresponds to the boson case and should be replace with a +1
for fermions, and we defined the operator ω̂ by

ω̂n,n′ = ωn δn,n′ . (6.35)

We could use this partition function to compute the distribution of bosons or fermions.
This would require to perform sums over the Matsubara frequencies. Although this looks
too complicated to obtain such a simple result, the advantage of the field theory formu-
lation appears in more complex situations.
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Additional suggested readings

• Condensed Matter Field Theory, Altland and Simons, Section 4.2.

• Quantum Theory of Many Particle Systems, A. L. Fetter and J. D. Walecka, Chap-
ters 1 and 2.
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