
3 The Callan-Symanzik Equation

After we established the behavior of quantum field theories with scalings, we are now in
a position to make contact with what we learned earlier about renormailization. Then
we had seen that the renormalization conditions define the correlation functions of the
theory at arbitrary input scales, which defines a renormlization scale µ. The variation of
this scale will result in a renormalization flow of the renormalization parameters similar
to the one derived in the previous section, but now cast as a renormalization scale flow.

To start making contact with the renormalization procedure, we recall the relation be-
tween renormalized and non-renormalized correlation functions as given by

〈Tφ(x1) . . . φ(xn)〉 = Z−n/2 〈Tφ0(x1) . . . φ0(xn)〉 , (3.1)

where the field renormalization is defined by

φ(x) = Z−1/2 φ0(x) , (3.2)

We are going to concentrate on connected correlation functions, which we will denote
without the c subscript Gn(x1 . . . xn). The non-renormalized correlation functions de-
pend on the un-renormalized parameters (φ0, λ0,m0, . . . ) as well as on the cutoff Λ. On
the other hand, the renormalized correlation functions depend on the renormalized pa-
rameters (φ, λ,m, . . . ) as well as on the renormalization scale µ. Then, if we consider
an infinitesimal variation of the renormalization scale δµ the un-renormalized correlation
function must obeyed

dG
(n)
0

dµ
= 0 , (3.3)

since G
(n)
0 does not depend on µ. On the other hand, when µ→ µ+ δµ the renormalized

parameters shift as

λ → λ+ δλ

φ → φ+ δφ ≡ (1 + δη)φ, (3.4)

where in the last line we defined a dimensionless shift of the field δη. This means that
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d

dµ
Zn/2G(n) =

∂G(n)

∂µ
+
∂G(n)

∂λ

∂λ

∂µ
− n∂η

∂µ
= 0 , (3.5)

where we used that

Z1/2 = 1− δη , (3.6)

since φ = Z−1/2φ0. We can rewrite (3.5) as

(
µ
∂

∂µ
+ µ

∂λ

∂µ

∂

∂λ
− nµ ∂η

∂µ

)
G(n) = 0 . (3.7)

Defining

β ≡ µ
∂λ

∂µ
(3.8)

γ ≡ −µ ∂η
∂µ

, (3.9)

the Callan-Symanzik equation is given by

(
µ
∂

∂µ
+ β

∂

∂λ
+ n γ

)
G(n)(x1, . . . , xn;µ, λ) = 0 . (3.10)

Since G(n) does not depend on the cutoff Λ neither do β and γ. Furthermore, (3.8) and
(3.9) define β and γ as dimensionless. Thus, since the only scale in the problem is µ,
they do not depend on it. They only depend on the renormalized coupling λ. The beta
function β defined in (3.8) measures the coupling dependence on the renormalization scale
µ, whereas γ encodes the µ dependence of the field renormalization. In the context of
the program of renormalization by counterterms, the µ dependence of the correlation
functions is due to the introduction of counterterms introduced to cancel divergencies.
In fact, as we will see below, β and γ are directly related to the counterterms and in
particular to the coefficient of the divergencies.

3.1 Example: Massless λφ4 theory

We start with the 2-point function. The Callan-Symanzik (CS) equation is
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(
µ
∂

∂µ
+ β

∂

∂λ
+ 2γ

)
G(2)(p) = 0 . (3.11)

The 2-point function to one loop order is depicted in Figure 3.1.

Figure 3.1: Corrections to G(2) to one loop order. The diagram on the right is the
counterterm.

Since m = 0 there are no corrections to G(2)(p) at one loop since the renormalization
condition forces the two diagrams to cancel. Thus, to this order we obtain

γ = 0 . (3.12)

On the other hand, the one-loop 4-point function receives the contributions depicted in
Figure 3.2.

Figure 3.2: Contributions to G(4) to one loop order. The last diagram on the right is the
vertex counterterm.

The contributions corresponding to the renormalization of the external legs vanish since,
as we saw below γ = 0. The connected 4-point function then is

G(4)(s, t, u, µ) =
[
−iλ+ (−iλ)2 {Γ(s) + Γ(t) + Γ(u)} − iδλ

] 4∏
i=1

i

p2i
, (3.13)
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where the last factor is the product of the four massless propagators. Imposing the
renormalization condition at the space-like point s = t = u = −µ2

R we obtain

G(4)(−µ2
R,−µ2

R,−µ2
R) = −iλ

4∏
i=1

i

p2i
, (3.14)

which, after using dimensional regularization, fixes the vertex counterterm to be

δλ =
3

2(4π)d/2

∫ 1

0

dx
Γ(2− d/2)

[x(1− x)µ2
R]2−d/2

(3.15)

In terms of ε = 4− d the counterterm is

δλ = − 3λ2

32π2

{
2

ε
− lnµ2

R + finite terms

}
. (3.16)

The CS equation for the 4-point function is then

(
µ
∂

∂µ
+ β

∂

∂λ

)
G(4)(s, t, u, µ) = 0 . (3.17)

Clearly, the only µ dependence is in δλ. Then, we have

µ
∂G(4)

∂µ
= i

3λ2

16π2
. (3.18)

On the other hand, to leading order in λ we have

∂G(4)

∂λ
= −i+O(λ) . (3.19)

Putting these into the CS equation (3.17) we obtain

β =
3λ2

16π2
+O(λ3) . (3.20)

We can infer many interesting things from the beta function of the theory, even if it is
just in perturbation theory. But we will first generalize our calculation of β and γ.

4



3.2 General Treatment

Our aim is to use the CS equation in order to obtain a general expression for the β function
of a theory in terms of the µ derivatives of the counterterms. As a first step, we are going
to obtain an expression for γ in terms of µ derivatives of the field renormalization Z.
Starting from

φ(µ) = Z−1/2(µ)φ0 , (3.21)

we consider the change under the shift in renormalization scale µ → µ + δµ. Then we
have

φ+ δφ = Z−1/2(µ+ δµ)φ0 . (3.22)

Dividing (3.22) by (3.21) we have

1 +
δφ

φ
=
Z−1/2(µ+ δµ)

Z−1/2(µ)
. (3.23)

Remembering that δη = δφ/φ we arrive at

δη =
Z−1/2(µ+ δµ)

Z−1/2(µ)
− 1 =

Z−1/2(µ+ δµ)− Z−1/2(µ)

Z−1/2(µ)
. (3.24)

Dividing this expression by δµ and taking the limit δµ→ 0 we obtain

∂η

∂µ
= −1

2

1

Z

∂Z

∂µ
, (3.25)

which recalling the definition of γ from (3.9) results in

γ =
1

2

1

Z
µ
∂Z

∂µ
. (3.26)

The above expression is exact. However, since we will be using perturbation theory, we
can always write

Z = 1 + δZ , (3.27)

with δZ � 1, which results in the approximate expression
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γ ' 1

2
µ
∂δZ

∂µ
+ . . . , (3.28)

where the dots denote higher orders in perturbation theory (or higher powers in δZ). We
will use this expression in what follows.

We now consider a generic theory with a coupling constant g. A given n-point function
can be schematically described as

G(n) = [−ig + 1PI loops + vertex counterterms

+ loops of external legs + counterterms of external legs]
n∏
i=1

i

p2i
, (3.29)

In general we can have different external fields each with their δZi, we can write the above
expression as

G(n) =

[
−ig + 1PI loops− iδg + (−ig)

n∑
i=1

(loops of ext. legs− δZi)

]
n∏
i=1

i

p2i
. (3.30)

Then, the CS equation becomes

µ
∂

∂µ

(
δg − g

∑
i

δZi

)
+ β(g) + g

∑
i

γi = 0 . (3.31)

The last term in the expression above replaces nγG(n) since here we consider the possibility
of having different fields (e.g. in QED having photons and charged fermions). Also in the
last terms in (3.31) we have taken G(n) ' −ig as we are working in perturbation theory
to leading order in the coupling constant g. As a result we can obtain an expression for
β as a function of the coupling g and valid up to a given order in g. This is

β(g) = µ
∂

∂µ

(
1

2
g
∑
i

δZi − δg

)
, (3.32)

where we have used (3.28) for the γi’s. The expression in (3.32) allows us to compute the
beta function of a theory once we know the counterterms. In particular, all we need to
know is the renormalization scale µ dependence in the counterterms. This, as we saw in
the example of λφ4 theory, is basically given by the coefficient of the divergences (up to
a sign and a factor of two).
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3.3 Example: the QED Beta Function

We will compute the QED beta function to one loop accuracy. The counterterms that
contribute to it are determined by the diagrams shown in Figure 3.3.

Figure 3.3: Contributions to the QED beta function to one loop order. For the case of
δZ2 it is understood that there is another similar diagram for the lower fermion leg.

Using (3.32) for QED we have

β(e) = µ
∂

∂µ

(
1

2
eδZ2 +

1

2
eδZ2 +

1

2
eδZ3 − δZ1

)
, (3.33)

where the first two terms reflect the renormalization of the two external fermion legs.
Making use of the Ward identity relation

δZ1 = e δZ2 , (3.34)

we arrive at

β(e) =
1

2
e µ

∂δZ3

∂µ
, (3.35)

which is consistent with the fact that the result is determined by the photon renormaliza-
tion only, i.e. gauge invariance guarantees that the result is independent of the identity
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of the external fermions. Finally, making use of our previous result

δZ3 = − e2

16π2

4

3

Γ(ε/2)

(µ2)ε/2
= − e2

12π2

(
2

ε
− lnµ2 + µ−independent terms

)
, (3.36)

where we used ε = 4− d and d is the number of dimensions we use (3.37) to obtain

β(e) =
e3

12π2
+O(e4) . (3.37)

We then see that –up to a sign– the beta function is determined by the coefficient of the
divergence in the counterterm δZ3. This is a generic feature: in order to compute the beta
function of a given coupling we need only determine the divergent parts of the relevant
counterterms.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Section
12.2.
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