
Lecture 2

Renormalization Flow

In the previous lecture we saw that integrating out high energy modes results in an effec-
tive action for the low energy fields that contains modifications of the existing operators
as well as new operators. These modifications will appear as changes in the parameters of
the action (couplings, masses, fields). Our next step is to understand how these respond
to continuous changes in the rescaling responsible for the split between high and low en-
ergy. To start, we define the momentum and length rescaling in terms of the parameter
b as

k′ =
k

b
, x′ = bx, (2.1)

where just as before 0 < b < 1. We write the effective action for the low energy modes
φ` → φ as

S[φ] =

∫
ddx

{
1

2
(1 + ∆Z)∂µφ∂µφ+

1

2
(m2 + ∆m2)φ2 +

1

4!
(λ+ ∆λ)φ4

+∆C (∂µφ∂µφ)2 + ∆Dφ6 + . . .
}
, (2.2)

where we now denote the low energy fields as just φ. In (2.2) the effects of integrating
out the high energy modes φh are encoded in the parameters ∆Z,∆m2,∆λ,∆C,∆D, . . .
etc. In the case of the higher dimensional operators, they actually are induced by this
procedure, i.e. even if the original (classical) theory is renormalizable (C = D = 0) these
operators are generated by integrating out φh, as we discussed in the previous lecture.
But in addition to these shifts and the presence of the new operators, the parameters of
the action change with the rescaling (2.1). Focusing on the length rescaling we have

ddx = b−d ddx′,
∂

∂xµ
= b

∂

∂x′µ
≡ b ∂′µ . (2.3)
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Replacing these relations in (2.2) we obtain

S[φ] =

∫
ddx′ b−d

{
1

2
(1 + ∆Z) b2 ∂′µφ∂

′
µφ+

1

2
(m2 + ∆m2)φ2 +

1

4!
(λ+ ∆λ)φ4

+∆C b4 (∂′µφ)4 + ∆Dφ6 + . . .
}
, (2.4)

In order to have a canonically normalized kinetic term in (2.4) we define

φ′ ≡
[
b2−d (1 + ∆Z)

]1/2
φ . (2.5)

Writing the action in terms of φ′ and x′ we have

S[φ′] =

∫
ddx′

{
1

2
∂′µφ

′∂′µφ
′ +

1

2
m′2φ

′2 +
1

4!
λ′φ′4 + C ′

(
∂′µφ

′)4 +D′φ′6 + . . .

}
, (2.6)

where we defined

m′2 ≡ (m2 + ∆m2) (1 + ∆Z)−1 b−2,

λ′ ≡ (λ+ ∆λ) (1 + ∆Z)−2 bd−4,

C ′ ≡ ∆C (1 + ∆Z)−2 bd

D′ ≡ ∆D (1 + ∆Z)−3 b2d−6, (2.7)

which we can repeat for the coefficients of all other higher dimensional operators.

The first important lesson from (2.7) is that, even when absent in the initial lagrangian, co-
efficients like C ′ andD′ corresponding to higher dimensional opeartors (non-renormalizable
operators) are generated by the rescaling procedure. Thus, only considering renormaliz-
able operators is not consistent with rescaling. The lagrangian must always contain an
infinite tower of higher dimensional operators. However, as we will soon see, these will
be suppressed by inverse powers of the cutoff Λ. Then, when we write down only renor-
malizable operators we are implicitely assuming that the cutoff of the theory is much
higher than the typical energy scales in which the theory is being used. The combi-
nation of integrating out high energy degrees of freedom together with the rescaling of
momenta and lengths results in a transformation of the lagrangian. If we now consider
small rescalings with b just infinitesimally below 1, we can obtain a continous transfor-
mation. The differential equation (or equations ) resulting from this process is referred
to as the renormalization group.
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We can compare the rescaling procedure with the renormalization by couterterms we used
previously. In that case the UV behavior of the theory appears through loop effects which
resulted in quantum corrections. The divergences were absorbed by the couterterms.
In the renormalization group approach we obtain an effective lagrangian by integrating
out the UV degrees of freedom. Their effect appears as redefinitions or shifts in the
parameters of the theory, as in m′, λ′, etc. The effects are small as long as the couplings
are perturbative.

2.1 Gaussian Fixed Point

The rescaling procedure defined in (2.1) and (2.3) leave the kinetic term unchanged.
Thus, if we consider all operators other than this as perturbations, including the mass
term (m2 � Λ2), we can say that the free massless theory

L0 =
1

2
∂µφ∂

µφ , (2.8)

is unchanged by these rescalings. A theory that behaves in this way is called a fixed
point. In particular, the theory in (2.8) is called a Gaussian fixed point. In the vicinity of
a Gaussian fixed point, theories are very simple since only a few operators are generated
as perturbations, those that are renormalizable and not suppressed by the cutoff Λ. We
will see next how to make this statement more precise.

2.2 Renormalization Flow and Renormalizability

Let us consider a generic action written as

S[φ] =

∫
ddx

∑
j

cj Oj(φ) , (2.9)

where φ is a generic field or set of fields. We will ignore the quantum corrections obtained
from integrating out high energy fields (i.e. the ∆’s in (2.2)) and only consider the effects
of the rescaling by b < 1. Usisng (2.1), (2.3) and (2.5) the action is now

S[φ′] =

∫
ddx′ b−d

∑
j

cjb
Ndφ+M Oj(φ′) , (2.10)

where N is the numbers of fields φ in O(φ), dφ is the canonical dimension of φ, and M
is the number of derivatives in Oj(φ). Then we can define the rescaled coefficients of the
operators as
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c′j = bNdφ+M−d cj . (2.11)

Noticing that

dOj ≡ Ndφ +M , (2.12)

is the canonical dimension of the operator Oj we can write

c′j = bdOj−d cj . (2.13)

We can now establish the differential change of the coefficients of operators as a differential
equation, and use it to classify the different behaviors according to the rescaling flow. To
do this we consider a value of b only infinitesimally below 1, i.e.

b ' 1− δ , (2.14)

with δ � 1 and positive. Then we have

x′ = b x = (1− δ)x = x− δx ≡ x− dx . (2.15)

Then

c′j = cj + δcj = (1− δ)dOj−d cj (2.16)

resulting in

δcj ' −
(
dOj − d

)
δ cj . (2.17)

Using δ = dx/x, this can be rewritten as

x
dcj
dx

= −
(
dOj − d

)
cj . (2.18)

We see that there are three possibilities.

• dOj = d: Marginal or Renormalizable Operator

This corresponds to dimensionless coefficients, such as λ in the φ4 theory in 4D. We
see from (2.18) that rescalings in length do not shift this coefficients. Remember
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this is just the behavior under rescalings. This changes when considering quantum
corrections from the UV (i.e. the ∆’s). What happens, as we will see later, is that
Oj acquires an anomalous dimension due to quantum corrections that would change
the behavior of the coefficient into one of the two other cases.

• dOj < d: Relevant or Super-renormalizable Operator

This case corresponds to coefficients that have positive mass dimensions, such as
the mass term in φ4 theory in 4D. From (2.18) we see that the derivative of the
coefficient is positive meaning that it grows as x does. In other words, the mass
term grows in the IR, so it is a relevant operator in the effective low energy theory.

• dOj > d: Irrelevant or Non-renormalizable Operator

Finally, we see that this case corresponds to non-renormalizable interactions (higher
dimensional operators). For this coefficients (2.18) implies that they become smaller
towards larger scales. This is why they are called irrelevant. This means, for
instance, that the higher the dimension of the operator the faster it becomes small
at large distances. Also, if the cutoff is large the larger will be the evolution of the
coefficient. Then, as anticipated, in a theory with a larger cutoff the coefficients of
non-renormalizable operators become irrelevant faster.

The analysis performed above is very intuitive and gives us a clear picture of what
is renormalization flow. In the next lecture we will develop a formalism that will
allow us to make contact with the renormalization program as presented in the first
part of the course.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Section
12.1.

• The Quantum Theory of Fields, Vol. I, by S. Weinberg, Section 12.4.

• The Quantum Theory of Fields, Vol. II, by S. Weinberg, Sections 18.3 and 18.5.


