
Lecture 5

Solutions to the Dirac Equation

As a first step before we quantize Dirac fields, we need to study the solutions to the Dirac
equation in momentum space. We start from the equation in position space

(iγµ∂µ −m)ψ(x) = 0 , (5.1)

If we act on the left with the conjugate of the Dirac operator

(−iγν∂ν −m)(iγµ∂µ −m)ψ(x) = 0 , (5.2)

and use the anti-commutation relations

{γµ, γν} = 2gµν (5.3)

to prove that

∂ν∂µγ
µγν = ∂2 , (5.4)

we arrive at

(∂2 +m2)ψ(x) = 0 . (5.5)

This expression means that each of the spinorial components of ψa(x) with a = 1, 2, 3, 4
the spinorial index, obeys the Klein-Gordon equation. A a result it is clear that in
moementum space solutions will be of the form

e±ip·x , (5.6)
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multiplied by a spinor that depends on the momentum p. Here we use covanriant notation
for p·x = p0x0−p·x. The solutions with positive energy (the minus sign in the exponential)
can be written as (up to a normalization we will worry about later)

ψ+(x) ∼
∫

d3p

(2π)3
u(p) e−ip·x , (5.7)

where clearly the momentum-dependent coefficient carries spinorial indices (i.e. is a
spinor) and, when applying (5.1) obeys

(6p−m)u(p) = 0 . (5.8)

On the other hand, the negative energy solutions (corresponding to the plus sign in the
exponential in (5.6)) are defined in momentum space as

ψ−(x) ∼
∫

d3p

(2π)3
v(p) e+ip·x , (5.9)

which results in

(6p+m)v(p) = 0 . (5.10)

In order to understand better how to build these solutions, let us step back to the original
form of the Dirac equation in terms of the αi matrices, with i = 1, 2, 3, 4. The Dirac
equation in momentum space is

ℵu(p) = (α · p + α4m)u(p) = E u(p) , (5.11)

where E is the energy eigenvalue. We will first consider the positive-energy solutions in
momentum space for a fermion at rest, i.e. p = 0. In this limit and using the standard
representation

α4 =

(
1 0
0 −1

)
, αi =

(
0 σi
σi 0

)
, (5.12)

we have that

ℵu(0) =

(
m1 0
0 −m1

)
u(0) , (5.13)
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where the masses in the matrix are multiplied by the 2×2 identity matrix. The eigenvalues
are {m,m,−m,−m}, corresponding to the eigenvectors


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 . (5.14)

We see clearly, in this example at p = 0, that the two first eigenvectors correspond to
positive energy eigenvalues (+m) whereas the last two eigenvectors are those associated
with negative energy eigenvalues (in this case −m). We can write this in compact form
as

us(0) =

(
χs

0

)
, vs(0) =

(
0
χs

)
, (5.15)

where s = 1, 2 is a two-component spinor index and we have defined the two-component
spinors

χ1 ≡
(

1
0

)
, χ2 ≡

(
0
1

)
. (5.16)

Armed with this notation, we can now obtain the general solutions of the Dirac equation
in momentum space. Let us first consider the positive energy solutions us(p). We can
write them as

u(p) = Np (6p+m)u(0) , (5.17)

where Np is a momentum dependent normalization to be determined later. The reason
why we can write the solution as in (5.17) is that it trivially satisfies (5.8) since

(6p−m)u(p) = ( 6p−m) (6p+m)u(0) = 0 , (5.18)

since ( 6p−m)(6p+m) = pµpµ −m2 = 01. Explicitly, we have

6p+m = Eγ0 − γ · p +m

=

(
E +m −σ · p
σ · p m− E

)
, (5.19)

1Convince yourself of this by proving that 6p 6p = pµpµ = p2
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where we use the standard representation for the γ matrices. Then, applying (5.19) to
u(0) gives

us(p) = Np (6p+m)

(
χs

0

)
= Np

(
(E +m)χs

σ · pχs
)

= Np (E +m)

(
χs

σ·p
E+m

χs

)
. (5.20)

Finally, in order to obtain the normalization of the spinors we will impose that factors of
1/
√

2E that we will have in the fermion field momentum expansion in terms of us(p) and
vs(p) are cancelled. This requires that

us†(p)us(p) = 2Eδsr , (5.21)

which results in

Np =
1√

E +m
. (5.22)

Using (5.22) in (5.20) we obtain the final expression for the positive energy solutions,

us(p) =
√
E +m

(
χs

σ·p
E+m

χs

)
. (5.23)

Similarly, postulating that

vs(p) = Np(6p−m) vs(0) , (5.24)

which clearly satisfies

( 6p+m) vs(p) = 0 , (5.25)

and following the same procedure as for the us(p) spinors, we obtain

vs(p) =
√
E +m

( σ·p
E+m

χs

χs

)
. (5.26)

Equations (5.23) and (5.26) are the spinors in momentum space that solve the Dirac
equation, with the plus and minus signs in (5.6) respectively. Each of them consists
actually of two solutions, one with spin “up” (s = 1) and the other with spin “down”
(s = 2).
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5.1 Some Properties of the Solutions

It is useful to have the follow identities:

ūs(p)ur(p) = 2mδsr

v̄s(p) vr(p) = −2mδsr , (5.27)

where, as usual, we have ūs = us†γ0, and analogously for v̄s. To prove (5.27) we just use
(5.23) to write

ūs†(p)ur(p) = (E +m)
(
χs† σ·p

E+m
χs†

) ( 1 0
0 −1

) (
χr

σ·p
E+m

χr

)
,

= (E +m)
(
χs† σ·p

E+m
χs†

) ( χr

− σ·p
E+m

χr

)
,

= (E +m)

(
1− (σ · p)2

((E +m)2

)
= E +m− (E −m) ,

= 2m . (5.28)

Proving the second equation in (5.27) is very similar. Finally, it is strightforward to see
explicitely that the us(p) and vr(p) solutions are orthogonal.

Also very useful, are the following identities, which will call polarization (or helicity) sums.

∑
s=1,2

us(p) ūs(p) = 6p+m ,∑
s=1,2

vs(p) v̄s(p) = 6p−m , . (5.29)

To prove the first identity in (5.29) we start from

∑
s=1,2

us(p) ūs(p) = (E +m)
∑
s

(
χs

σ·p
E+m

χs

) (
χs† − σ·p

E+m
χs†

)
. (5.30)

Here, it would be useful to do the two-component spin sums carefully. The expression
(5.30) is a 4× 4 matrix. At ever 2× 2 block there is a spin sum resulting in

∑
s

χs χs† = 1 , (5.31)
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i.e. in the 2× 2 identity matrix. Then we have

∑
s=1,2

us(p) ūs(p) = (E +m)

 1 − σ·p
E+m

σ·p
E+m

− (σ·p)2
(E+m)2

 . (5.32)

Using that (σ · p)2 = (p)2 (prove it! ) and writing (p)2 = (E − m)(E + m) in the
expression above, we arrive at

∑
s=1,2

us(p) ūs(p) =

 E +m −σ · p

σ · p m− E

 =6p+m , (5.33)

where the last equality comes from using (5.19). Deriving the second equality in (5.29) is
very similar and is left as an exercise.

Additional suggested readings

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 2.


