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Content: first lecture
• Overview: cosmological parameters in the standard model of cosmology

• Dark matter in galaxies and in the Milky Way

structure of the Milky Way

galactic rotation curve and what can we learn from it

dark matter distribution

simulations of the Milky Way’s dark halo

- spatial distribution of dark matter

- velocity distribution of dark matter

- the dark matter disk

• Candidates for dark matter, overview

neutrinos

WIMPs and freeze-out

candidates from supersymmetry

- allowed parameter space in a constrained SUSY model
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Content: second lecture

• Direct detection of WIMPs: principles

expected rates in a terrestrial detector

kinematics of elastic WIMP-nucleus scattering

differential rates

corrections I: movement of the Earth

corrections II: form factors 

cross sections for scattering on nucleons

- spin independent

- spin dependent

• Expected WIMP signal and backgrounds

time and directional signal dependance

quenching factors and background discrimination

background sources in direct detection experiments

detector strategies: overview
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Content: third lecture

• Overview of experimental techniques

example: theoretical predictions and experimental limits

vanilla exclusion plot

WIMP mass and cross section determination

complementarity between different targets and astrophysical uncertainties

• Cryogenic experiments at mK temperatures

Principles of phonon mediated detectors

Detection of fast and thermalized phonons

Temperature measurements: thermistors, SC transition sensors (SPT, TES)

• Phonon and light detectors

Example: CRESST

• Phonon and charge detectors

Examples: CDMS,  EDELWEISS

• Future detectors

Challenges; examples: SuperCDMS, EURECA, GEODM
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Content: fourth lecture

• Liquid Noble Element Experiments

Principles and properties of noble liquids

Charge and light in noble liquids

Calibration issues (electronic and nuclear recoils)

• Single Phase Experiments

Principles

Examples: XMASS, DEAP/CLEAN

• Double Phase Experiments
Principles 
Examples: XENON, ZEPLIN, ArDM, WARP, LUX

• Future detectors
Challenges
Examples: DARWIN, MAX, LZS

• Overall summary and conclusions

5



Literature

1. “Particle Dark Matter”, editor Gianfranco Bertone; Cambridge University Press, December 2009

2. Cold thermal relics: “The Early Universe”, by Edward W. Kolb, Michael S. Turner, Addison Wesley, 1990

3. Introduction to supersymmetry: “Weak Scale Supersymmetry”, by Howard Baer, Xerxes Tata, Cambridge University 
Press, 2006

4. Direct and indirect detection: “Supersymmetric Dark Matter”, by G. Jungmann, M. Kamionkowski and K. Griest, 
Physics Reports 267 (1996)

5. Principles of direct dark matter detection: “Review of mathematics, numerical factor and corrections for dark matter 
experiments based on elastic nuclear recoils”, by J.D. Lewin and P.F. Smith, Astroparticle Physics 6 (1996)

6. Reviews of direct detection experiments: “Direct Detection of Dark Matter” by R.J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 
54 (2004), L. Baudis, “Direct Detection of Cold Dark Matter” SUSY07 Proceedings

7. Low background techniques:  “Low-radioactivity background techniques” by G. Heusser, Ann. Rev. Part. Sci. 45 (1995)

8. Particle Astrophysics: “Particle and Astroparticle Physics” by U. Sarkar. Taylor & Francis 2008; “Particle Astrophysics” 
by D. Perkins, Oxford University Press 2003

9. mK Cryogenic Detectors: “Low-Temperature Particle Detectors”, by N.E. Booth, B. Cabrera, E. Fiorini, Annu. Rev. Nucl. 
Part. Sci. 46, 1996

10.Liquid xenon detectors: “Liquid xenon detectors for particle physics and astrophysics”, by E. Aprile and T. Doke, 
Reviews of Modern Physics, Volume 82, 2010

11. PDG: Particle Detectors for Non-Accelerator Physics (http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectors-
non-accel.pdf)

6

http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectors-non-accel.pdf
http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectors-non-accel.pdf
http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectors-non-accel.pdf
http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectors-non-accel.pdf


The Standard Model of Cosmology

Dark
Matter 
22%

Dark 
Energy
 73%

Atoms (visible Matter)
5%

Large scale structuresClusters (lensing)Galaxies

Clusters (lensing) Cosmic Microwave BG
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Overview: WMAP results

• WMAP data reveals that its contents include 
4.6% atoms, the building blocks of stars and 
planets. 

• Dark matter comprises 23% of the universe. 
This matter, different from atoms, does not 
emit or absorb light. It has only been detected 
indirectly by its gravity. 

• 72% of the universe, is composed of "dark 
energy", that acts as a sort of an anti-gravity. 
This energy, distinct from dark matter, is 
responsible for the present-day acceleration 
of the universal expansion. 

Credit: NASA / WMAP Science Team
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The Standard Model of Cosmology

• Cosmological Parameters (WMAP7)

➡Total matter and energy density: Ωtot = 1.02 ± 0.02

➡Total matter density: Ωm  = 0.266 ± 0.029

➡Density of baryons: Ωb   = 0.0449 ± 0.0028

➡Energy density of the vacuum: ΩΛ   = 0.743 ± 0.029

➡Hubble constant: H0 = (71.0 ± 2.5) km/s/Mpc 

➡Age of the Universe: τU  = (13.75 ± 0.13) Gy

http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm

Ωx ≡
ρx
ρc

ρc ≡
3H0

2

8πG
= 9.47 ×10−27kg  m−3

density parameter critical density

 
H(t) ≡ &a

a
a(t) = scale factor, describes 
the expansion of the Universe

expansion rate

⇢c ' 6H� atomsm�3
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Dark Matter in the Milky Way 
and in galaxies
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The Milky Way as a galaxy

• Complex system made of stars, dust, gas and dark matter

ASTRO II, SS06 9.1 Interstellarer Staub 93

Die Milchstraße im optischen Spektralbereich

Sternlicht, starke Absorption durch Dunkelwolken (Staub)

93
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The Milky Way as a galaxy, initial remarks

• Its study has proven to be quite challenging, as we live at the edge of a disk of stars, dust and gas 
that severely impacts our ability to “see” beyond our stellar neighborhood when we look along the 
plane of the disk, and the problem is most severe when we look towards the Galactic Center (GC)

• Much of what is known today about the formation and evolution of our galaxy is encoded in the 
motion of its constituents  

• Measuring this motion is complicated, because it occurs from an “observing platform” that is itself 
undergoing a complex motion that involves the motion of the Earth around the Sun and the Sun’s 
path around the Galaxy

• As we shall see, the detailed study of these motions lead to the conclusion that the luminous, 
baryonic matter in the Galaxy is only a small fraction of what the Milky Way is composed of

COBE near IR view
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• The Milky Way consists of:

galactic thin disk (scale height* zthin ≈ 350 
pc), composed of relatively young stars and 
region of current star formation

galactic thick disk (zthick ≈ 1000 pc), 
composed of an older population of stars; 
the stars per unit volume is only about 
8.5% of the one in the think disk

galactic bulge

visible (stellar) halo

dark halo

dark disk (new!)

• The distance Sun - Galactic Center (GC)

R0 = 8.5 kpc (official value, IAU 1985)

new value R0 = 8.0±0.5  kpc

Structure of the Milky Way

• The diameter of the disk (including dust,

 stars and gas)  is: D ≈ 50 kpc

* one scale height (z) = the distance over which the number density decreases by e-1
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Mass-to-light ratio

• Based on data from star counts and orbital motions, the estimated stellar mass of the thin disk is 
roughly:

• To this, we must add the contribution from dust and gas:

• The luminosity of stars in the think disk in the blue-wavelength band is:

• From this, we obtain a mass-to-light ratio of:

• For the thick disk, the blue-band luminosity is ~ 1% of the one of the thin disk, with the mass around 
3% of the thin-disk mass (it has been much more difficult to detect; diagnostic importance for the 
dynamics of the disk); the bulge is very similar to the thin disk. 

⇠ 6⇥ 1010M�

⇠ 0.5⇥ 1010M�

LB ' 1.8⇥ 1010L�

M
LB

' 3M�
L�
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Differential rotation of the Milky Way

• The galactic disk undergoes a differential rotation

• That is, the angular velocity is not constant, but decreases as one moves outwards (with exception of 
the central region)

• The local rotation of the Milky Way was first studied by Jan Oort, 1927; he also derived a series of 
relations that became the framework with which astronomers have attempted to determine the 
differential rotation of the Milky Way 

• We will not go into details in this lecture, we are concerned with the outcome and its interpretation
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Rotation curve of the Milky Way

• One measures the relative velocities between stars and the 
Sun, that is - the relative radial vr and transversal vt velocities 
of stars (in fact, the proper motion, µ = vt/d, that is converted 
into a transverse velocity if the distance to the star is known)

• Requires some trigonometry, Oort’s coordinates etc...

• Measurements of Θ(R) at R > R0 requires measurement of 
objects for which distances can be determined directly, for 
instance variable (Cepheids or RR-Lyrae) stars

• Each object with known d and vr gives one datapoint for the 
galactic rotation curve

galactic 
center

Sun

Θ

Θ0

star

⇥0 = ⇥(R0) = 220 km s�1
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Rotation curve of the Milky Way

• Inner part: rigid-body rotation

• The rotation curve for R > R0 does not decrease significantly

• Θ(R) at R > R0 is practically constant, we shall see the implications later

⇥ / R, ! =

⇥
R = konst.
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! !

Der flache Verlauf der Rotationskurven bei großem Radius ist
erstaunlich: Eigentlich sollte in der äußeren Scheibe Vrot mit 
(1/r)1/2 gehen, d.h. einen Kepler-Verlauf zeigen.

Erwarteter Abfall für eine exponentielle Massendichteverteilung 
(Annahme: Masse verteilt sich so wie die Leuchtkraft)

Astro II, SS06 154

Radius ⇤

V
ro

t ⇤
Rotation curve of the Milky Way

• As we discussed, the movement of stars and gas, as a function of distance r to the GC is observed

=> rotation curve, vr(r)

• If the mass of the MW would be distributed similar to its luminosity, which decreases exponentially as 
one moves to larger radii => vr(r) in the outer parts of the disk should go with             (Kepler behavior)

exponential disk

Kepler behavior

1/
p
r

vr / 1p
r
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Galactic Rotation Curve

• From balancing the centripetal force with gravity we expect:

• Observations: 

=> a non-visible mass component, which increases linearly with radius, must exist

mvr
2

r
= G Mrm

r2

vr
2 = G Mr

r

vr =
GMr

r

⇒ vr ∝
1
r

vr (r ≥ R0 ) ≈ const.

(Mr = total mass interior to r)

vr / 1p
r

vr(r � R0) ⇠ const.

=) Mr / r
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Galactic Rotation Curve

• The rotation curve depends on the distribution of mass => we can thus use the measured rotation 
curve to learn about the dark matter distribution

“Rigid body” rotation: the mass must be ~ spherically distributed and the density ρ ~ constant

Flat rotation curve: most of the matter in the outer parts of the galaxy is spherically distributed, and the 
density is

• To see this, we assume a constant rotation velocity V. The force, acting on a star of mass m by the 
mass Mr of the galaxy inside the star’s position r is:

• if we assume spherical symmetry. We solve for Mr:

• and then differentiate with respect to the radius r of the distribution:

ρ(r)∝ r −2

mV 2

r
=
GMrm
r 2

Mr =
V 2r
G

dMr

dr
=
V 2

G
20



Galactic Rotation Curve

• We then use the equation for the conservation of mass in a spherically symmetric system:

• and obtain for the mass density in the outer parts of the Milky Way: 

• the r-2 -dependency is in strong contrast to the number density of stars in the visible, stellar halo, 
which varies with r-3.5, thus decays much more rapidly as one would expect from the galactic rotation 
curve

=> the main component of the Milky Way’s mass is in a form non-luminous, or dark matter [so far, the 
dark matter has been observed only indirectly, through its gravitational influence on visible matter]

ρ(r) = V 2

4π r 2G

dMr
dr = 4⇡r2⇢(r)
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Galactic Rotation Curve

• We need to modify the previous equation:

• in order to force the density function to approach a constant value near the center (rather than to 
diverge!), to be consistent with the observational evidence of a rigid-body rotation

• Thus, a better form for the density distribution is given by: 

• where C0 and a are obtained from fits to the overall measured rotation curve:

We note that:

for r >>  a => ρ(r) ∝ r-2

for r <<  a => ρ(r) ∝ const.

ρ(r) = V 2

4πGr 2

ρ(r) = C0
a2 + r 2

 

C0 = 4.6 ×108M�kpc−1

a = 2.8 kpc
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Remark re: galactic rotation curve

• The previous equation can not be correct to arbitrarily large values of r

• Reason: the total amount of mass in our Galaxy would increase without bound, since

• That means that the density function for the dark matter halo must eventually terminate or at least 
decrease sufficiently rapidly so that the mass integral remains finite:
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Rotation curves of other galaxies

• The rotation curves of other galaxies are easier to measure, as we can observe them from outside

• Measurements are done via the Doppler effect, test ‘particles’ are stars and HI-gas (21-cm line)

• The extent of the HI-gas in the disk  >> dimensions of the stellar disk

Figure 2.2: NGC3198 viewed in HI (left) and its ‘rotation curve’ (right).

We may then crudely write the cluster ‘kinetic energy’ as T = 1
2M3�2, where � is the line of sight

velocity dispersion: �2 = v2 � v2 and M is the mass. Similarly, the potential energy can be estimated
as V = �GM2/R, where R is some scale that defines the rough ‘size’ of the cluster. (This is all
slightly hand-wavy at this stage; we will return to mass modelling more carefully in later lectures.)
Thus, from the virial theorem and the above estimates, the cluster mass is estimated as:

M ⇠ 3�2R/G (2.5)

Zwicky used data from Edwin Hubble for the doppler shifts of the galaxies in Coma to estimate
�2 ⇠ 1000 km/s (Hubble 1936). Using a cluster radius of R ⇠ 1000 kpc, we have: M ⇠ 6 ⇥ 1014 M�
which is not too far o↵ the modern value.

Thus, we arrive at Zwicky’s puzzling result: there is apparently far more mass than light in the
Coma cluster: ‘dark matter’ is born! Unfortunately, Zwicky had trouble convincing his colleagues of
the importance of these findings and it was not until rotation curves of galaxies showed the same result
some forty years later, that the idea of dark matter really took o↵. (Note that in Zwicky 1937, Zwicky
also advanced the idea of using gravitational lensing to measure cluster masses. We will discuss this
in detail later on, but Zwicky was clearly well ahead of his time!)

2.2 Galaxy rotation curves

The earliest evidence for missing matter in galaxies came from Freeman 1970, but the evidence became
irrefutable after later studies by Bosma (e.g. Bosma and van der Kruit 1979), Rubin (Rubin et al.
1980) and van Albada (van Albada et al. 1985). In Figure 2.2, I show the data from van Albada et
al. 1985 for the galaxy NGC3198. Like Zwicky, these authors used kinematical tracers of galaxies
to measure their total mass. However, disc galaxies are easier to mass model than galaxy clusters
because they have large amounts of HI gas in a disc. This is useful for two reasons. Firstly, it is
straightforward to measure the velocity of this HI gas by using the relative doppler shifts of the 21cm
hydrogen line. Secondly, we can expect this gas to move on near-circular orbits, since this is the lowest
energy state of the system. A simple proof of this follows using Lagrangian mechanics (a refresher

18

Dunkle Materie in Galaxien

• Beobachtung von interstellarem Gas bei grossen Radien: die Rotationskurven sind 
flach, soweit man messen kann => 10 x mehr Materie, als man direkt sehen kann

 bulge & disk

 bulge, disk & halo

 halo

Kein guter Fit!
U. Klein et al., SuW Sept. 2005

NGC5204

HI-Komponente

24



Galactic rotation curves	

• Rotation curves were measured for many thousands of galaxies

• Some of the first measurements were done by Vera Rubin and her team, in the 70s

• We observe that rotation curves stay flat as far out as one can measure, and they can be described 
by so-called universal density profiles
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Galactic rotation curves	

• Galaxies are thus surrounded by a halo of dark matter; from the rotation curves, one can derive - as 
we have seen - the density profiles. The rotation curve can be described by

• The rotation curve that we would expect from luminous matter alone is:

• If we take a constant and plausible value for M/L of the visible matter (M/L is determined from the 
spectral light distribution of stars, plus knowledge about the star populations, or from fits of the inner 
parts of the rotation curves, where the dark matter contribution can be neglected), we can determine:

M(R): mass inside radius R

(in the simple case of spherical geometry)v2lum(r) = GMlum(r)
r

v2(r) = GM(r)
r

Mlum(r)
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Galactic rotation curves	

• Then, from the discrepancy between v2lum and v2, we can determine the contribution of the dark 
matter:

• and finally obtain:

• One example for a decomposition is shown here:

v2dark(r) = v2(r)� v2lum(r) = GMdark
r

Figure 2.2: NGC3198 viewed in HI (left) and its ‘rotation curve’ (right).

We may then crudely write the cluster ‘kinetic energy’ as T = 1
2M3�2, where � is the line of sight

velocity dispersion: �2 = v2 � v2 and M is the mass. Similarly, the potential energy can be estimated
as V = �GM2/R, where R is some scale that defines the rough ‘size’ of the cluster. (This is all
slightly hand-wavy at this stage; we will return to mass modelling more carefully in later lectures.)
Thus, from the virial theorem and the above estimates, the cluster mass is estimated as:
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Zwicky used data from Edwin Hubble for the doppler shifts of the galaxies in Coma to estimate
�2 ⇠ 1000 km/s (Hubble 1936). Using a cluster radius of R ⇠ 1000 kpc, we have: M ⇠ 6 ⇥ 1014 M�
which is not too far o↵ the modern value.

Thus, we arrive at Zwicky’s puzzling result: there is apparently far more mass than light in the
Coma cluster: ‘dark matter’ is born! Unfortunately, Zwicky had trouble convincing his colleagues of
the importance of these findings and it was not until rotation curves of galaxies showed the same result
some forty years later, that the idea of dark matter really took o↵. (Note that in Zwicky 1937, Zwicky
also advanced the idea of using gravitational lensing to measure cluster masses. We will discuss this
in detail later on, but Zwicky was clearly well ahead of his time!)

2.2 Galaxy rotation curves

The earliest evidence for missing matter in galaxies came from Freeman 1970, but the evidence became
irrefutable after later studies by Bosma (e.g. Bosma and van der Kruit 1979), Rubin (Rubin et al.
1980) and van Albada (van Albada et al. 1985). In Figure 2.2, I show the data from van Albada et
al. 1985 for the galaxy NGC3198. Like Zwicky, these authors used kinematical tracers of galaxies
to measure their total mass. However, disc galaxies are easier to mass model than galaxy clusters
because they have large amounts of HI gas in a disc. This is useful for two reasons. Firstly, it is
straightforward to measure the velocity of this HI gas by using the relative doppler shifts of the 21cm
hydrogen line. Secondly, we can expect this gas to move on near-circular orbits, since this is the lowest
energy state of the system. A simple proof of this follows using Lagrangian mechanics (a refresher
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Mdark(r) =
r

G

⇥
v2(r)� v2lum(r)

⇤
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Milky Way: fits to the observed rotation curve

(Klypin, Zhao & Somerville 2002)

Dark matter halo

Bulge

Disk

Disk + Bulge

Sum of halo + disk + bulge

Data

 Mtot ,lum ≈ 9 ×10
10M�

 
M25kpc ≈ 2.8 ×10

11M�

 
M230kpc ≈ 1.3×10

12M�
In reality one models each contribution (disk, bulge) separately
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What can we learn from the rotation curve?

• As we saw, a mass that grows linearly would derive from a density distribution falling like ρ(r) ~ 1/r2

• We would now like to learn something about the distribution of dark matter

• We assume the dark matter is made of a collisionless gas (particles which are for instance weakly 
interacting) with isotropic initial velocity distribution    

• Its equation of state is given by:

• If we impose the condition of hydrostatic equilibrium on the system, with pressure balancing gravity, we 
obtain:

σ = velocity dispersion

M(r) = total mass interior to r

p(r) = ⇢(r) · �2 = ⇢(r)h(v
x

� v̄
x

)2i

dp(r)
dr = �GM(r)

r2 ⇢(r)
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What can we learn from the rotation curve?

• Using the expression for p(r) and multiplying by                    yields the equation:

• We now differentiate with respect to r and obtain:

• where we have used again the equation for the conservation of mass:

r 2

ρ
1
σ 2

r2

⇢
d⇢(r)
dr = � 1

�2GM(r)

d
dr

⇣
r2 d ln ⇢

dr

⌘
= � G

�2
dM(r)

dr = � 4⇡G
�2 r2⇢(r)

dM
dr = 4⇡r2⇢(r)
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What can we learn from the rotation curve?

• Solving this equation yields:

• This configuration corresponds to a spherical, 

isothermal distribution of the dark matter : “isothermal sphere”

• It describes the gravitational collapse of collisionless particles*

ρ(r)∝ 1
r2

• *explained in detail in Binney and Tremaine, Galactic Dynamics, Princeton Univ. Press 2008

⇢(r) =
�2

2⇡G · r2
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vc,1 =
p

2/3�

�(x)

The Standard Halo Model

• A system of many particles is described by its distribution function f(x,v,t) which is the number 
density of particles in phase space (x,v). The steady-state phase space distribution function for a 
collection of collisionless particle is given by the solution to the collisionless Boltzmann equation:

• The standard halo model (SHM) is an isotropic, isothermal sphere with density profile r-2. In this case, 
the solution of the collisionless Boltzmann equation is a so-called Maxwellian velocity distribution, 
given by:

• where N is a normalization constant. The velocity dispersion is related to the asymptotic value of the 
circular speed, which is the speed at which objects on circular orbits orbit the Galactic centre

�f
�t + v · �f

�x � ��
�x

�f
�v = 0

f(v) = N exp

⇣
� 3|v|2

2�2

⌘

gravitational potential
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The Standard Halo Model

• Usually it is assumed that the rotation curve has already reached its asymptotic value at the solar 
radius r = R0, such that

• where 

• As we saw, the density distribution in the SHM is formally infinite and hence the velocity distribution 
also extends to infinity. In reality however, the Milky Way halo is finite, and particles with speeds 
greater than the escape speed:

• will not be gravitationally bound to the Milky Way. 

� =
p

3/2 vc

vc ⌘ vc(R0)

vesc(r) =
p

2|�(r)| �(r) is the potential
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The Standard Halo Model

• This is addressed by truncating the velocity distribution at the measured local escape speed

• such that 

• This is clearly unphysical, an alternative is to make the truncation smooth:

f(v) =

(
N

h
exp

⇣
� 3|v|2

2�2

⌘
exp

⇣
� 3v2

esc
2�2

⌘i
, |v| < vesc ,

0 , |v| � vesc .

vesc ⌘ vesc(R0)

f(v) = 0 for |v| � vesc
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498 km s�1 < vesc < 608 km s�1

The Standard Halo Model

• The standard parameter values used for the SHM are the following:

• local density

• local circular speed

• local escape speed

• The escape speed is the speed required to escape the local gravitational field of the MW, and the 
local escape speed is estimated from the speeds of high velocity stars 

• The RAVE survey has measured:

⇢0 ⌘ ⇢(R0) = 0.3GeV cm�3

vc = 220 km s�1

vesc = 544 km s�1

⇢0 = 0.008M�pc�3 = 5⇥ 10�25g cm�3
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Simulations of cold dark matter halos

• To go beyond the smooth spherical isotropic model for the Galactic halo, numerical studies 
of the formation of dark matter halos are used

• Such studies (N-body simulations of the gravitational collapse of a collisionless system of 
particles) have yielded global properties of halos (e.g., their mass profiles and substructure 
properties) that are tested against observational data ranging from the scale of dwarf 
galaxies to galaxy clusters

• There is quite some uncertainly regarding the inner (< few 100 pc) density profiles, however:
• these central regions in galaxies, groups and clusters are dominated by baryons
• hence, predictions of the dark matter and total mass distribution require a realistic 

treatment of the baryons and their dynamical interactions with dark matter 
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Example: GHALO simulation

Ben Moore, UZH:

GHALO: A billion particle simulation of the dark matter distribution surrounding a 
galaxy. 3 million cpu hours with the parallel gravity code pkdgrav (Stadel et al 2008)
50 parsec, 1000Mo resolution, 100,000 substructures
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Example: Simulations of the Milky Way Dark Halo

~ 600 kpc

high resolution (109 particles, 
each particles has 1000 Mo) 
cosmological CDM simulation 
of a Milky Way type halo

inner 20 kpc: density  

inner 20 kpc: phase space density  

(J. Diemand et all,  Nature 454, 2008, 735-738)
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Distribution of the Dark Matter - Numerical Simulations

• NFW - Profile (Navaro, Frenk, White, 1996), through numerical simulations of the formation of dark 
matter halos: 

• The NWF density profile behaves as ∼ r-2 for a large part of the halo, and is flatter ∼ r-1 in the vicinity 
of the GC and falls steeper at the ‘edge’ of the halo ∼ r-3. 

• More general:  

α β γ a(kpc)

Kravtsov 2.0 3.0 0.4 10.0

NFW 1.0 3.0 1.0 20.0
Moore 1.5 3.0 1.5 28.0

Isother. 2.0 2.0 0 3.5

different groups obtain 
different profiles for the
inner parts of the galaxy
(from the numerical 
simulations)

⇢NFW (r) =
⇢0

(r/a)(1 + r/a)2

⇢(r) = ⇢0
⇣ r
a

⌘��1 h
1 +

r

a
↵
i(���)/↵

39



Examples for density profile curves

• Density profile curve from the Via 
Lactea II simulation

• for the main dark matter halo and 
eight large subhalos 
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• 1. Question: how smooth is the dark matter mass distribution at the solar position?

Spatial Distribution of the Dark Matter

High resolution simulations of six 
galaxy halos taken from the 
Aquarius Project

Parameters for the Aquarius 
simulations: 

Ωm  = 0.25
ΩΛ   = 0.75
H0= 100 h km s-1 Mpc-1 
h = 0.73

Answer: 
- very smooth
- substructure is far from Sun

2 Vogelsberger et al.

per limits established by other experiments (see Savage et al. 2004;

Gondolo & Gelmini 2005; Gelmini 2006, for a discussion and pos-

sible solutions). Regardless of this, recent improvements in detector

technology may enable a detection of “standard model” WIMPS or

axions within a few years.

Event rates in all direct detection experiments are determined

by the local DM phase-space distribution at the Earth’s position.

The relevant scales are those of the apparatus and so are extremely

small from an astronomical point of view. As a result, interpret-

ing null results as excluding specific regions of candidate param-

eter space must rely on (strong) assumptions about the fine-scale

structure of phase-space in the inner Galaxy. In most analyses the

dark matter has been assumed to be smoothly and spherically dis-

tributed about the Galactic Centre with an isotropic Maxwellian ve-

locity distribution (e.g. Freese et al. 1988) or a multivariate Gaus-

sian distribution (e.g. Ullio & Kamionkowski 2001; Green 2001;

Helmi et al. 2002). The theoretical justification for these assump-

tions is weak, and when numerical simulations of halo formation

reached sufficiently high resolution, it became clear that the phase-

space of CDM halos contains considerable substructure, both grav-

itationally bound subhalos and unbound streams. As numerical res-

olution has improved it has become possible to see structure closer

and closer to the centre, and this has led some investigators to sug-

gest that the CDM distribution near the Sun could, in fact, be almost

fractal, with large density variations over short length-scales (e.g.

Kamionkowski & Koushiappas 2008). This would have substantial

consequences for the ability of direct detection experiments to con-

strain particle properties.

Until very recently, simulation studies were unable to resolve

any substructure in regions as close to the Galactic Centre as the

Sun (see Moore et al. 2001; Helmi et al. 2002, 2003, for example).

This prevented realistic evaluation of the likelihood that massive

streams, clumps or holes in the dark matter distribution could af-

fect event rates in Earth-bound detectors and so weaken the par-

ticle physics conclusions that can be drawn from null detections

(see Savage et al. 2006; Kamionkowski & Koushiappas 2008, for

recent discussions). As we shall show in this paper, a new age has

dawned. As part of its Aquarius Project (Springel et al. 2008) the

Virgo Consortium has carried out a suite of ultra-high resolution

simulations of a series of Milky Way-sized CDM halos. Simula-

tions of individual Milky Way halos of similar scale have been car-

ried out by Diemand et al. (2008) and Stadel et al. (2008). Here we

use the Aquarius simulations to provide the first reliable character-

isations of the local dark matter phase-space distribution and of the

detector signals which should be anticipated in WIMP and axion

searches.

2 THE NUMERICAL SIMULATIONS

The cosmological parameters for the Aquarius simulation set are

Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1 and H0 =
100 h km s−1 Mpc−1 with h = 0.73, where all quantities have
their standard definitions. These parameters are consistent with cur-

rent cosmological constraints within their uncertainties, in partic-

ular, with the parameters inferred from the WMAP 1-year and

5-year data analyses (Spergel et al. 2003; Komatsu et al. 2008).

Milky Way-like halos were selected for resimulation from a par-

ent cosmological simulation which used 9003 particles to follow

the dark matter distribution in a 100h−1Mpc periodic box. Se-
lection was based primarily on halo mass (∼ 1012M") but also

required that there should be no close and massive neighbour at
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Figure 1. Top panel: Density probability distribution function (DPDF) for

all resimulations of halo Aq-A measured within a thick ellipsoidal shell

between equidensity surfaces with major axes of 6 and 12 kpc. The lo-
cal dark matter density at the position of each particle, estimated using an

SPH smoothing technique, is divided by the density of the best-fit, ellip-

soidally stratified, power-law model. The DPDF gives the distribution of

the local density in units of that predicted by the smooth model at random

points within the ellipsoidal shell. At these radii only resolution levels 1

and 2 are sufficient to follow substructure. As a result, the characteristic

power-law tail due to subhalos is not visible at lower resolution. The fluc-

tuation distribution of the smooth component is dominated by noise in our

64-particle SPH density estimates. The density distribution measured for

a uniform (Poisson) particle distribution is indicated by the black dashed

line. Bottom panel: As above, but for all level-2 halos after rescaling to

Vmax = 208.49 km/s. In all cases the core of the DPDF is dominated by
measurement noise and the fraction of points in the power law tail due to

subhalos is very small. The chance that the Sun lies within a subhalo is

∼ 10−4. With high probability the local density is close to the mean value

averaged over the Sun’s ellipsoidal shell.

z = 0. The Aquarius Project resimulated six such halos at a series
of higher resolutions. The naming convention uses the tags Aq-A

through Aq-F to refer to these six halos. An additional suffix 1 to
5 denotes the resolution level. Aq-A-1 is the highest resolution cal-
culation, with a particle mass of 1.712×103 M" and a virial mass

of 1.839 × 1012 M" it has more than a billion particles within the

virial radius R200 which we define as the radius containing a mean

density 200 times the critical value. The Plummer equivalent soft-

ening length of this run is 20.5 pc. Level-2 simulations are available

smooth 
component

subhalo 
population

Density probability distribution around the solar circle

6 kpc < r < 10 kpc

The Aquarius project, 6 halos
MNRAS 395, 2009
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Velocity Distribution of the Dark Matter

• 2. Question: how smooth is the dark matter velocity distribution at the solar position?

Answer: smooth, no streams
almost Maxwellian

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum. Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.

Velocity distribution in a 2 kpc box the solar circle

modulus major

intermediate minor

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum. Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.
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Including Baryons

• But: can we ignore the baryons? 

• The dark matter only simulations have certainly established a baseline for future work 

• This is an area of intense current activity

Ben Moore, UZH: 

By 2015 we will reach the 1 parsec resolution required to resolve the 

molecular disks and spatially resolved star formation.
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A Dark Matter Disk in the Milky Way?
• In ΛCDM numerical simulations which include the influence of baryons on the dark matter, it has been 

found that:
➡ stars and gas settle onto the disk early on, affecting how smaller dark matter halos are accreted
➡ the largest satellites are preferentially dragged towards the disk by dynamical friction, then torn 

apart, forming a disk of dark matter
➡ in the standard cosmology, the disk dark matter density is constrained to about 0.5 - 2 x halo density
➡ as we shall see, its lower rotation velocity with respect to the Earth has implications for direct 

detection experiments 

dark disk

Read, Lake, Agertz, Debattista, 
MNRAS 389, 1041, 2008

DM only
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Detecting the dark disk: hunting for accreted stars

• Dark disk velocity matches the 
accreted stars

• RAVE/GAIA will obtain 6D phase 
space information + chemistry for a 
million/billion of stars in the Galaxy => 
hunt for the accreted stars that trace 
the kinematics of the dark disk
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Dark Matter Candidates
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Reminder: the Standard Model Particle Content
LE

PT
O

N
S

Q
U

AR
KS

Matter: 3 Families (Fermions)

up charm top

down strange bottom

electron muon tau

νe νμ ντ

Forces (Bosons)
Photons

Electromagnetism

Gluons
Strong force

W and Z Bosons
Weak force

Graviton 
Gravitation

Forces are mediated by the 
exchange of particles

Leptons, Quarks
Spin 1/2

There is no candidate in the SM, which could provide the dark matter!
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Dark Matter Candidates

• New elementary particles, which could have been produced in the early Universe

• These are either long lived ( τ >> tU) or stable

• Neutrinos: they exist, but their mass is too small and there are problems with structure formation. 
Neutrinos are examples for Hot Dark Matter (HDM): relativistic at the time of decoupling, can thus not 
reproduce the observed large-scale structure in the Universe

• Axions: m ≈ 10-5 eV; light pseudo-scalar (0-) particle postulated in connection with the absence of CP 
violation in QCD

• WIMPs (Weakly Interacting Massive Particles): M ≈ 10 GeV - few TeV

these particles are examples for Cold Dark Matter (CDM) -> particles which were non-relativistic at 
the time of decoupling

WIMP-candidates: from supersymmetry (neutralinos); from theories with universal extra dimensions 
(UED) (lightest Kaluza-Klein particle), and from most other theories beyond the SM

• Superheavy dark matter (m ≈ 1012 - 1016 GeV): particles which could have been produced at the 
end of inflation, by different mechanisms (non-thermally), with unknown interaction strength; SIMPzillas 
-- WIMPzillas 
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• Neutrinos: thermal relics of the early Universe

• Number density: similar to photons

➡  ~ 109 neutrinos/proton!

➡  ~ 113 neutrinos/cm3 ! (411/cm3 for photons)

• Depending on their mass, neutrinos could 

have a (small) contribution to the dark matter

➡direct limits on the νe mass (3H β-decay):

➡ from cosmological observations:

Neutrinos as Dark Matter Candidates

Total density Ω in units of the critical density

Ω =
ρ
ρc

mν i
i
∑ < (0.17 − 2.0) eV

 mνe
< 2.5 eV
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Dark Matter Candidates: WIMPs

• General class of dark matter candidates: weakly interacting massive particles

• Interest in WIMPs comes from the fact that WIMPs in thermal equilibrium with the other 
particles in the early Universe naturally have the right abundance to be the cold dark matter

• Also, the same interactions that give the right WIMP density make the detection of WIMPs 
possible (hypothesis is testable!)

• The determination of the WIMP relic density depends on the history of the Universe before 
BBN (which occurred ~ 200 s after the BB, T ≈ 0.8 MeV, and is the earliest epoch from 
which we have a trace, namely the abundance of light elements)

• WIMPs have their number fixed at T0 ≈ M/20, so WIMPs with MW > 100 MeV would freeze 
out before BBN and would thus be the earliest remnants

• Hence, if discovered, they would give information about the pre-BBN phase of the Universe
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Dark Matter Candidates: WIMPs

• To compute the WIMP relic density, one must make assumptions about the pre-BBN epoch

➡ the entropy of matter and radiation were conserved

➡ WIMPs were produced thermally (i.e., via interactions with particles in the plasma)

➡ they decoupled while the expansion of the Universe was dominated by radiation

➡ they were in thermal and chemical equilibrium before they decoupled*

• Important reactions were the production and annihilation of WIMP pairs in particle-
antiparticle collisions, such as:

*one can thus use thermodynamics to calculate the history of the early universe (thermal equilibrium means 
all particle species have the same temperature; chemical equilibrium means that the chemical potentials of 
different particle species are related according to their reaction formulas)
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• Let us then assume that a stable, neutral, massive, weakly interacting particle χ (WIMP) with a mass 
mχ existed in the early Universe. At early times, for                       the number density: 

• At lower  temperatures,                 , the equilibrium abundance is exponentially suppressed

• If the particle would have remained in thermal equilibrium until today, its abundance would be negligible:

• Since the particle is stable, its number density nχ per comoving volume a3 can be changed only by 
annihilation and inverse annihilation processes into other particles:

Dark Matter Candidates: WIMPs

χ + χ ↔ X + X

nχ = number density
s = entropy density

s⋅a3 = ct; a = cosmic scale factor

r(t) = a(t)·y, y = comoving coordinate
T = temperature

X = all the species into which the χ can annihilate
(quark-antiquark pairs, lepton-antileptons, Higgs-boson 
pairs, gauge-boson pairs etc - depending on the 
WIMP mass)

T � m� n� / T 3

T ⌧ m�
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• The particles were in equilibrium as long as their reaction rate Γ was larger than the expansion rate H

expansion rate:                     ,  reaction rate:

• Once the temperature T drops below mχ, the number density of WIMPs will drop exponentially, and the 
rate of annihilation Γ drops below the expansion rate H:

• At this point the WIMPs will cease to annihilate efficiently

• They fall out of equilibrium, and we are left with a relic cosmological abundance (“freeze-out”)

Dark Matter Candidates: WIMPs

 Γ ? H

 
H(t) ≡ &a

a

Γ ≤ H

σA = total annihilation cross section
v = relative velocity of the annihilating WIMPs

h�Avi

� = n�h�Avi

: thermally averaged total cross section for 
annihilation into lighter particles times their 
relative velocity

53



• One can calculate the relic number density of the species χ by solving the Boltzmann equation (where 
we have already summed over all annihilation channels), which describes the time evolution of the number 
density of WIMPs:

• In the absence of number-changing interactions, the term in brackets would be zero, we would find, as 
expected:

Dark Matter Candidates: WIMPs

decrease due to the Hubble 
expansion of the Universe change due to annihilation and creation: 

- the depletion rate due to the annihilation is ~ nχ × nχ 
- particles are also created by the inverse process with a rate 
proportional to [nχ(eq)]2 nχ = actual number density

nχ(eq) = equilibrium number density

dn�

dt
= �3Hn� � h�Avi

⇣
n2
� � n2

�(eq)

⌘

n� / a�3
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Freeze-out of WIMPs

• In the radiation dominated era (first few 105 years) the expansion rate H is given by 

• and the time-T relation is:

• Goal: obtain an evolution equation of nχ as a function of T.  If ones introduces the dimensionless 
variable x = mχ/T and normalizes nχ to the entropy density, Yχ=nχ/s one obtains (after some steps...) 
for the number density:

geff = effective number of relativistic degrees of freedom
mPl ≅ 1019 GeV

At t ∼1 s, T ∼ 1010K and  typical 
particle energies are 1 MeV

where  ΓA = nχ (eq) σ Av

H = 1.66
p
geff

T 2

mPl

t = 0.30
mPlp
geffT 2

✓
1MeV

T

◆
s

x

Y�(eq)

dY�

dx
= ��A

H

"✓
Y�

Y�(eq)

◆2

� 1

#
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Freeze-out of WIMPs

• this equation can be solved numerically with the boundary condition that for small x (early times):  

• As expected, the evolution is governed by ΓA/H, the interaction rate divided by the Hubble expansion 
rate

• Find Tf and xf at freeze-out, as well as the asymptotic value Yχ(∞) of the relic abundance

• The freeze-out temperature turns out to be (corresponding to a typical WIMP speed at freeze-out of 
vf = (3Tf/2mX)1/2 ≈ 0.27c ): 

Yχ ~ Yχ (eq) at high T the particle χ was in thermal equilibrium (all particle 
species have the same T) with the other particles

 
Tf ;

mχ

20

x

Y�(eq)

dY�

dx
= ��A

H

"✓
Y�

Y�(eq)

◆2

� 1

#
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Freeze-out of WIMPs

• After freeze-out, the abundance per comoving volume remains constant

• The entropy per comoving volume in the Universe also remains constant, so that nχ/s is constant, 
with s ≈ 0.4 geff T3

• Using the relation we had for H, and the freeze-out condition ΓA = H, one finds:

• The current entropy density: s0 ≈ 4000 cm-3 and ρc ≈ 10-5 h2 GeV cm-3 [h = H/(100 km s-1 Mpc-1)]

• One finds then for the present mass density in units of the critical density ρc:

• This is independent of the WIMP mass, and inversely proportional to the annihilation cross section

f --  value at freeze-out
0 -- value today
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Fig. 2. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and the
solid curve is the equilibrium abundance.

are plotted as a function of x,m!/¹ (which increases with increasing time). As the annihilation
cross section is increased the WIMPs stay in equilibrium longer, and we are left with a smaller relic
abundance.

An approximate solution to the Boltzmann equation yields the following estimate for the current
cosmological abundance of the WIMP:

!!h!"m!n!
!
!

K!3"10"!# cm$ s"%

"#
!
v$ " , (3)

where h is the Hubble constant in units of 100km s"%Mpc"%. The result is to a "rst approximation
independent of the WIMP mass and is "xed primarily by its annihilation cross section.

The WIMP velocities at freeze-out are typically some appreciable fraction of the speed of light.
Therefore, from Eq. (3), the WIMP will have a cosmological abundance of order unity today if the
annihilation cross section is roughly 10"&GeV"!. Curiously, this is the order of magnitude one
would expect from a typical electroweak cross section,

#
"#$%

K %!

m!
"#$%

, (4)

K. Griest, M. Kamionkowski / Physics Reports 333}334 (2000) 167}182 171

Figure 12.5: The freezing out of WIMPs in the early Universe.

important here – provides a natural stable WIMP candidate – the neutralino – a linear combination
of supersymmetric partners to the photon, Z0 and Higgs.

12.2.3.3 Detecting WIMPs

There are three main approaches for detecting WIMPs (e.g. Jungman et al. 1996). Firstly, we may
hope to create some in the laboratory for example at the Large Hadron Collider in Cern. Secondly,
we can try to detect WIMPs via interactions with a large underground detector – rather similar to the
neutrino detectors described already, above. Finally, we may hope to see indirect hints of WIMPs. If
they are Majorana particles then they can self-annihilate to produce quark-antiquark pairs, or lepton-
antilepton pairs – both of which further annihilate to produce gamma-rays (since WIMPs have a mass
on the ⇠ GeV range). Unlike the X-rays produced by decaying sterile neutrinos, these gamma-rays will
have a power law distribution in energy rather than a sharp line. This is because they are produced
via many di↵erent annihilation channels that act to broaden the energy distribution. The probability
for self-annihilation scales as the density squared (since a dark matter-dark matter particle collision
is required), thus this is most likely to occur at the very centres of dark matter halos. Good places to
look are the very centre of our Galaxy, or at the centres of nearby orbiting dwarf galaxies since these
are both dense in dark matter and nearby. Of these two options, the dwarfs are becoming increasingly
favoured due to their significantly lower astrophysical background. Finally, an alternative possibility
for indirect detection is to use the fact that WIMPs can be gravitationally captured at the centre
of the Sun (since they interact only very weakly with baryonic matter). There the WIMP density
can also become high enough for annihilation to occur. But now the signal must be detected in high
energy neutrinos that – unlike gamma-rays – can escape from the centre of the Sun to be detected in
neutrino telescopes on Earth. A similar signal may also be detectable from WIMPs captured at the
centre of the Earth.

So far none of the above strategies has yielded a clear signal of WIMPs, but the experiments
continue to improve. The LHC is only just beginning to collect and analyse data; there is every
chance that it will create WIMP-like matter in the next few years. WIMP detection experiments like
XENON and CDMS also continue to improve (e.g. Aprile et al. 2005; CDMS Collaboration 2008).
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Mass of a Thermal Relic Particle

Ωχh
2 =
mχnχ
ρc

≈
3×10−27cm3s−1

σ Av

⇒ the observed relic density points to the weak scale!

YEQ(x)

Yreal(x)

e-mχ/T

Y(x)

x =m/T

If a relic particle exists, its abundance will be:

For a new particle with a weak-scale interaction, 
we have:

Close to the value required for the dark matter in the 
Universe!
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Dark Matter Candidates 
from Supersymmetry 
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Supersymmetry

New fundamental space-time symmetry that relates the properties of fermions ⇔ bosons 
⇒ SM particles get superpartners (differ in spin by 1/2, otherwise same quantum numbers)

Once we include interactions, the SUSY particles will acquire interactions similar to those of the quarks and leptons. 
Example: the spin-0 squarks and sleptons couple to the photon and the Z-boson in the same way as quarks and leptons

Supersymmetric PartnersOrdinary Particles

Higgs Boson (spin 0)

Quarks Leptons

Higgsino (spin 1/2)

Bosons (spin 0)Fermions (spin 1/2)

Squarks Sleptons

Gauge Bosons (spin 1)
W±

charged

Z, B
gluons, photons

neutral
Graviton (spin 2) Gravitino (spin 3/2)

Gauginos (spin 1/2)
Winos

charginos

Zinos, Binos
gluinos, photinos

neutralinos
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Supersymmetry

• Stabilizes the hierarchy problem: 
weak scale (200 GeV) …. GUT scale (1016 GeV)…. Planck scale (1019 GeV):  radiative corrections 
to the masses of scalar particles (for instance the Higgs) are quadratically divergent, but in SUSY 
the corrections due to fermions and bosons cancel, thereby stabilizing existing mass hierarchies 
[SUSY does not explain why the ratio between weak and the GUT and/or Plack scale is so small]

• Promises unification of gauge couplings at GUT scale [if the superpartner masses are in the 
range 100 GeV - 10 TeV]

• If SUSY was exact, the squarks and sleptons would have the same mass as the quarks and leptons 
=> would contribute to the Z-decay width

• no SUSY particles have been observed so far => the symmetry must be broken
• is it still relevant?

Z

e

~

~

e

Z

e

e
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Supersymmetry

• The SUSY breaking scale must be around the TeV scale to ensure that the EWSB scale is not 
destabilized by quadratic divergencies coming from a higher scale (there are several possible 
mechanisms for this, introducing uncertainties in the low-energy predictions of SUSY)

• The dynamics of SUSY breaking are yet to be discovered; it is assumed that the breaking occurs in a ‘hidden 
sector’ [a sector of the theory which is decoupled from our world of q, l, Higgs bosons and their superpartners]

• Can we still solve the hierarchy problem?

• The cancellation of quadratic divergencies persists even if SUSY is not exact, but is ‘softly’ broken 
(only a certain subset of SUSY-breaking terms are present in the theory; these must be gauge 
invariant). The couplings of these operators = ‘soft parameters’, and the part of the Lagrangian 
containing these terms = the soft SUSY breaking Lagrangian

Lsoft contains 105 new parameters 

it includes mass terms for all superpartners (if all the mass eigenstates would be measured, 
32 of the 105 parameters would be determined).  

L = LSUSY + Lsoft
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The MSSM: Simplest SUSY Extension to the SM

• The Minimal Supersymmetric Standard Model: phenomenological model; contains the smallest 
number of new particles and new interactions consistent with phenomenology + all possible 
supersymmetry breaking soft terms (the origin of which is not specified -> the uncertainty in these terms 
comes from the lack of knowledge of the SUSY breaking mechanism)

• The gauge symmetry group is the one of the Standard Model:

• We need now two Higgs duplets to give mass to up- and down-type quarks

• Their vacuum expectation values are:

• with: 

SU(3)C × SU(2)L ×U(1)Y

Hd =
Hd

0

Hd
−

⎛

⎝⎜
⎞

⎠⎟
,    Hu =

Hu
+

Hu
0

⎛

⎝⎜
⎞

⎠⎟

Hd =
vd

0
⎛

⎝⎜
⎞

⎠⎟
,    Hu =

0
vu
⎛

⎝⎜
⎞

⎠⎟

vd
2 + vu

2 = v2,    v = 174 GeV and  tanβ = vu
vd

0 ≤ β ≤ π
2
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The MSSM

• In the Standard Model: we have a single Higgs duplet => one scalar field, as 3 components were 
‘eaten’ by the then massive EW gauge bosons (the photon remains massless)

• In the MSSM: 3 components are ‘eaten’ => 5 physical Higgs bosons
➡2 real scalars: h, H
➡1 pseudo-scalar: A
➡2 charged Higgs: H±

• It is predicted that the lightest Higgs mass (h) is mh ≤ 135 GeV -> testable at LHC!
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R-Parity

• Even the minimal superpotential (including the minimal particle and field content) has terms that 
violate lepton and baryon number by one unit, for instance through decays such as:

• To prevent rapid proton decay, a discrete symmetry, R-parity, is imposed:

p→ e+ + π 0

p→ µ+ + π 0

B = baryon number
L = lepton number
s = spin

R = −1( )3B+L+2s
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R-Parity

• Even the minimal superpotential (including the minimal particle and field content) has terms that 
violate lepton and baryon number by one unit, for instance through decays such as:

• To prevent rapid proton decay, a discrete symmetry, R-parity, is imposed:

p→ e+ + π 0

p→ µ+ + π 0

B = baryon number
L = lepton number
s = spin

electron: B=0, L=1, s=1/2 => R = (-1)2 = 1

photon: B=0, L=0, s=1 => R = (-1)2 = 1

R = −1( )3B+L+2s
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R-Parity

• Even the minimal superpotential (including the minimal particle and field content) has terms that 
violate lepton and baryon number by one unit, for instance through decays such as:

• To prevent rapid proton decay, a discrete symmetry, R-parity, is imposed:

p→ e+ + π 0

p→ µ+ + π 0

B = baryon number
L = lepton number
s = spin

electron: B=0, L=1, s=1/2 => R = (-1)2 = 1

photon: B=0, L=0, s=1 => R = (-1)2 = 1

selectron: B=0, L= 1, s=0 => R = (-1)1 = -1

photino: B=0, L=0, s=1/2 => R = (-1)1 = -1

R = −1( )3B+L+2s
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l±

R-Parity

• If R-parity is exactly conserved, then all lepton- and baryon-violating terms in the superpotential must 
be absent
➡R = + 1 for SM particles (even)
➡R =  - 1 for SUSY particles (odd) - they have the same B, L quantum numbers, but differ by 1/2 

units of spin)
• Implications of R-parity conservation:

➡ at any vertex, superparticles will enter in pairs => when a superparticle decays, the decay 
products will contain at least one superparticle:

➡ the lightest sparticle (LSP), R = -1, is absolutely stable
• The LSP thus naturally becomes a viable dark matter candidate: it is neutral, a color singlet and must 

interact only very weakly with other particles
• Examples: the sneutrino, the gravitino, the neutralino

~q
q

~
~χ10

~χ20
l±

l±
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The Lightest SUSY Particle

• Sneutrinos: cosmologically interesting if mass region 550 GeV - 2300 GeV
➡but scattering cross section is much larger than the limits found by direct detection experiments!

• Gravitinos: superpartner of the graviton; only gravitational interactions, very difficult to observe. Also, 
can pose problems for cosmology (overproduction in the early Universe, destroy abundance of 
primordial  elements in some scenarios)

• Neutralinos: by far the most interesting dark matter candidates!.The superpartners of the B, W3 
gauge bosons and the neutral Higgs bosons mix into 4 Majorana fermionic eigenstates called 
neutralinos. The neutralino mass matrix:

 

M
%χi
0 =

m1 0 −MZcβsW MZsβsW
0 m2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ

MZsβsW −MZsβcW −µ 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

cβ = cos(β), sβ = sin(β)
cW = cos(θW), sW = sin(θW)

tan(β) = vu/vd

μ = higgsino mass parameter in the 
superpotential

m1, m2 = bino, wino mass parameters
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The Lightest SUSY Particle

• The lightest neutralino: a linear combination

• Its most relevant interactions for dark matter searches are:
➡ self-annihilation and co-annihilation
➡ elastic scattering off nucleons

• Neutralinos are expected to be extremely non-relativistic in the present epoch, so one can keep only 
the a-term in the expansion of the annihilation cross section:

• At low velocities, the leading channels for neutralino annihilations are to:
➡ fermion-antifermion pairs
➡gauge boson pairs
➡ final states containing the Higgs boson

 χ1
0 = α1 %B +α2

%W +α 3
%Hu
0 +α 4

%Hd
0

σv = a + bv2 +O(v4 )
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Supersymmetric Models

• MSSM: although relatively simple, it contains more than 100 free parameters
• For practical studies, the number of free parameters needs to be reduced by (theoretically motivated) 

assumptions

• In general, there are 2 philosophies:

• top-down approach: set boundary conditions at the GUT scale, run the renormalization group 
equations (RGEs) down to the weak scale in order to derive the low-energy MSSM parameters 
relevant for colliders and dark matter searches. The initial conditions for the RGEs depend on the 
mechanism by which SUSY breaking is mediated to the effective low energy theory (for example, 
models with gravity-mediated and gauge-mediated SUSY breaking)

• bottom-up approach: in the absence of a fundamental theory of supersymmetry breaking, ‘fix’ the 
parameters at the weak scale  (for instance, assume that the mass parameters are generation-
independent)
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Supersymmetric Models

• The minimal supergravity (mSUGRA) model: phenomenological model based on a series of 
theoretical assumptions, namely MSSM parameters obey a set of boundary conditions at the GUT 
scale:

• Gauge coupling unification:

• Unification of gaugino masses:

• Universal scalar masses:
sfermion and higgs boson masses

• Universal trilinear coupling:

• Five free parameters: 

tanβ,   m1/2 ,   m0 ,   A0 ,   sign(µ)

α1(MU ) = α2 (MU ) = α 3(MU ) = αU

m1(U ) = m2 (U ) = m3(U ) = m1/2

Au (U ) = Ad (U ) = Al (U ) = A0

m0
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Supersymmetric Models

• Evolution of gaugino masses, scalar masses and Higgs boson mass parameters from the GUT scale 
(MGUT ≈ 2×1016 GeV) to the weak scale (Mweak ≈ 1 TeV): from few input parameters, all the masses of 
the superparticles are determined

gaugino masses

scalar masses

Higgs mass parameters

induces radiative EWSB
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Supersymmetric Models

• Benchmark scenarios:

• the parameters of models with an 
acceptable cosmological relic density
falls in one of the regions shown here

• Co-annihilation tail: the mass of the 
neutralino and the stau are nearly degenerate

• Rapid annihilation funnel: the mass of the 
neutralino is close to one-half of the mass 
of A (pseudo-scalar Higgs)

• Focus point region: at high values of m0 
(edge of parameter space allowing for radiative 
EW symmetry breaking)

m1/2

m
0

LSP is charged

Cosmologically preferred region

Bulk region
Coannihilation tail

Rapid annihilation funnel

Focus point region

Bulk region
Co-annihilation tail

m1/2

m
0
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Constraints on SUSY

mSUGRA model:

Brown region: LSP is a selectron,
thus not a viable DM candidate

Green region: excluded by 
b -> sγ constraint

Long blue region: provides a relic 
density of 0.1 ≤ Ωh2 ≤ 0.3

Pink region: 2σ range for gμ-2
(dashed curves = 1σ bound)

Limit on Higgs mass from LEP2

Limit on chargino mass from LEP2

99 GeV selectron mass 
contour from LEP2
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Dark Matter Candidates from 
Universal Extra Dimensions 
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Universal Extra Dimensions

• UED: all SM particles propagate into flat extra dimensions (R-1 ~ TeV)

• for each SM particle => infinite tower of partner states 
with the same quantum numbers (identical spins, identical 
couplings) and with unknown masses:

• Translational invariance along the 5th dimension:
➡discrete symmetry called Kaluza-Klein parity Pkk = (-1)n

➡ the lightest KK-mode is stable
➡ the LKP yields a good dark matter candidate

mn
2 ∝

n2

R2
n = 0→ SM particles

n=0

n=1

n=2

n=3

m=1/R

m=2/R

m=3/R
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Universal Extra Dimensions: the LKP

• The lightest Kaluza-Klein particle is most likely the γ(1) 
➡however other candidates are possible (ν(1), Z(1), H(1),...)

LKP

1st KK-mode spectrum from Cheng, 
Matchev, Schmalz, PRD66 (2002) 

γ(1)

q q

q(1)

γ(1)

H

q q

γ(1) γ(1)
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LKP Relic Density

• The relic density of the LKP has been calculated including all co-annihilation processes (when the LKP 
is nearly degenerate with other particles, its relic abundance is determined not only by its self-annihilation cross 
section, but also by annihilation processes involving other particles) 

K. Kong, K. Matchev,JHEP 0601 (2006)

Δq(1) =
mq(1) − mLKP

mLKP

The mass splitting between the LPK and the 
KK-quarks (given by radiative corrections and 
boundary interactions at the cutoff scale Λ) is 
taken as a free parameter:

Relic density region preferred by WMAP:

0.1037 <ΩCDMh
2 < 0.1161
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SUSY and UED

n=0

n=1

n=2

n=3

SM

R-1

R-1

R-1

SM

Universal Extra DimensionsSupersymmetry

LSP, spin-1/2 LKP, spin-1
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End
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