next up previous
Next: Coordenadas Polares Up: aula1_html Previous: Livros-texto e provas

Coordenadas Polares

\begin{figure}\centerline{\epsfig{file=xy_polar.eps,width=17cm,height=7cm}}\end{figure}

Versores (com chapéu): vetores de norma unitária.
$\displaystyle \vec{r} = {\color{myblue}x} \, {\color{myred}\hat{x}} + {\color{myblue}y} \, {\color{myred}\hat{y}}
\quad \quad \quad$ $\textstyle ,$ $\displaystyle \quad \quad \quad
\vec{r} = {\color{mygreen}r} \, {\color{myred}\hat{r}}$  
$\displaystyle {\color{myblue}x} = {\color{mygreen}r \, {\rm cos} \theta}
\quad \quad \quad \quad$ $\textstyle ,$ $\displaystyle \quad \quad \quad
{\color{mygreen}r} = {\color{myblue}\sqrt{x^2 + y^2}}$  
$\displaystyle {\color{myblue}y} = {\color{mygreen}r \, {\rm sen} \theta}
\quad \quad \quad \quad$ $\textstyle ,$ $\displaystyle \quad \quad \quad
{\color{mygreen}{\rm tan} \theta} = {\color{myblue}\frac{y}{x}}$  


$\displaystyle {\color{myred}\hat{r}}$ $\textstyle =$ $\displaystyle {\color{myred}\hat{x}} \, {\rm cos} \theta +
{\color{myred}\hat{y}} \, {\rm sen} \theta$  
$\displaystyle {\color{myred}\hat{\theta}}$ $\textstyle =$ $\displaystyle - {\color{myred}\hat{x}} \, {\rm sen} \theta +
{\color{myred}\hat{y}} \, {\rm cos} \theta$  

Note que, quando consideramos uma trajetória qualquer, tanto o raio quanto o ângulo podem ser funções do tempo.



Luis Raul Weber Abramo 2002-08-08