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MOTIVATION

Limited curvature hypothesis

There is a fundamental scale limiting the curvature invariants 

Markov 1982; Markov, Mukhanov 1985; 
Ginsburg et al. 1988

Singularity at the early stage of the universe

One of the problems of cosmology in general relativity

Non-singular cosmology with a finite number of bounded curvature  
invariants Mukhanov et al. 1993; Chamseddine, Mukhanov 2016; 

Yoshida et al. 2017

Analogous to the limitation on the velocity by c in Special Relativity



MOTIVATION

Einstein gravity theory may have some corrections from the higher order  
curvature invariants like

Renormalization group method gives the relation between the coupling  
constant and the field strength.  

Our idea: the boundedness of the curvature invariants is dynamically 
realized if the function f is bounded where its derivatives have divergence. 

The simplest case is bounded f(R)   
(Partial realization of limiting curvature hypothesis)

Ghost-free scalar-fermion interactions
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We discuss a covariant extension of interactions between scalar fields and fermions in a flat space-

time. We show, in a covariant theory, how to evade fermionic ghosts appearing because of the

extra degrees of freedom behind a fermionic nature even in Lagrangian with first derivatives. We

will give a concrete example of a quadratic theory with up to the first derivative of multiple scalar

fields and a Weyl fermion. We examine not only the maximally degenerate condition, which makes

the number of degrees of freedom correct, but also a supplementary condition guaranteeing that

the time evolution takes place properly. We also show that proposed derivative interaction terms

between scalar fields and a Weyl fermion cannot be removed by field redefinitions.
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MOTIVATION

Rmin

R

f(R)

Rmax

bounded function

Picking up the feature that the derivatives (fR=∂f/∂R, …) are divergent,   
we discuss cosmological solutions w/o assuming precise functional  
form of f(R) 
we discuss how the boundedness of the curvature affect  
the existence/behavior of cosmological solutions.



SETUP

FLRW metric ansatz

6

II. BASIC EQUATIONS FOR FLRW SOLUTIONS IN f(R) GRAVITY THEORIES

In this section, we start from the equations of motion of metric f(R) gravity theories and find out a set of the
di↵erential equations that we solve for the FLRW cosmological solutions. Latin indices run from 1 to 3 and Greek
indices run from 0 to 3. The dots represent the derivative with respect to time, and the primes represent the derivative
with respect to R.

The equations of motion for metric f(R) gravity theories are

Fµ
⌫ = 8⇡GTµ

⌫ , where Fµ
⌫ = fRR

µ
⌫ � 1

2
�µ⌫f �rµr⌫fR + �µ⌫⇤fR , (5)

f is an arbitrary function of the scalar curvature R = gµ⌫Rµ⌫ and Rµ⌫ = Rµ↵⌫
↵ is the Ricci tensor associated to the

metric connection of the metric gµ⌫ . For convenience, we have used a short notation fR = df/dR5. The matter is
minimally coupled to gravity and appears as the stress-energy tensor on the right hand side6. The modified Bianchi
identity,

rµFµ
⌫ = 0 , (6)

where r is the metric compatible covariant derivative, can be shown by making use of the usual Bicanchi identity,
rµ(Rµ

⌫ � �µ⌫R/2) = 0. This fact implies the conservation of the energy momentum tensor,

rµT
µ
⌫ = 0 . (7)

Here we introduce a metric ansatz for the FLRW spacetime,

gµ⌫dx
µdx⌫ = �dt2 + a(t)2


dr2

1�Kr2
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�
, (8)

where a is the scale factor. With this metric ansatz, the nonzero components of Fµ
⌫ are given by
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where the Hubble parameter H has introduced in the standard definition,

H = ȧ/a , (9)

and the Ricci scalar R is explicitly written as

R = 6

✓
Ḣ + 2H2 +

K

a2

◆
. (10)

As is well-known, the modified Einstein equations for f(R) theories are in general the third order di↵erential equation
of a for (0, 0) component and the fourth order di↵erential equation of a for (i, i) components. From now on, the
matter is assumed to be the perfect fluid, i.e., Tµ

⌫ = diag(�⇢, p, p, p). Then, the equations of motion (5) become

F0

0

= �8⇡G⇢ , F1

1

= 8⇡Gp , (11)

Thanks to the modified Bianchi identity, (also by the direct calculation,) we can show that

dF0

0

dt
= 3H(F1

1

� F0

0

) ,

and the conservation of the energy momentum tensor (7) results in the continuity equation,

⇢̇+ 3H(⇢+ p) = 0 . (12)
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Similarly, we use f
RR

= d2f/dR2

and f
RRR

= d3f/dR3

later.
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mat

is the matter Lagrangian (density).

Matter: vacuum

Metric f(R) gravity theory   … consider the metric compatible connection
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I. INTRODUCTION

As early as 1982, M. A. Markov proposed the concept of a limit density, at which no di↵erence between various
types of matter would exist [? ? ]. Because of the tight link between the matter content and gravity, this brought to
the proposal that a final theory of gravity should incorporate the limiting curvature hypothesis [? ]. Intuitively, the
fundamental idea behind the limiting curvature hypothesis is in the presence of a fundamental length scale, which
implies the boundedness of all curvature invariants. Indeed, a natural upper bound can be obtained in terms of this
fundamental length scale. This powerful intuitive idea naturally realizes curvature singularity avoidance, and has
been e↵ectively implemented in various models, discussed for example in [? ]. There is also the possibility that the
maximum curvature is realized in our observable universe due to the fact that regions with high (Planck scale) energy
density disconnect from the ambient space [? ]. In this paper we aim to discuss the limiting curvature hypothesis in
the context of f(R) cosmology at the background level.

The connection between maximum curvature and a singularity free cosmology, appeared shortly after M. A.Markov
proposal. In particular, the idea has been used by V. P. Frolov, M. A. Markov, and V. Mukhanov to propose a
model that cures the black hole singularity of the Schwarzschild solution, by a spacelike junction along a constant
Schwarzschild radius hypersurface of Schwarzschild black hole with de Sitter spacetime: in this early model, the
presence of a new scale (an e↵ective cut-o↵) at the junction radius, results in an upper bound on the curvature, and
concretely realizes the limiting curvature hypothesis. From our perspective an attractive aspect of this model is the
possibility to perform a second junction of the same type around spatial infinity in de Sitter spacetime. This second
junction now connects to the white hole region of a new Schwarzschild spacetime patch. It is then possible for a test
particle that falls inside the black hole horizon, to later re-emerge in this second Schwarzschild patch, which is, in all
respects, a new universe compared to the one, where the test particle initially was. In this and other similar models
the limiting curvature hypothesis is used not only to e↵ectively address the problem of the central singularity, but
also to propose the idea that black holes could act as gateway to new universes: this is intuitively suggestive of a
bouncing universe scenario, an idea that we will pursue in what follows.

Another point that we would like to discuss is that it is natural, in some sense, to consider the limiting curvature
hypothesis in the context of modified gravity theories [? ].

In this paper, we would like to consider the possibility that the curvature is e↵ectively bounded because of the form
of the gravitational Lagrangian in the context of f(R) gravity theories, i.e., the form of the function f in

S
G

=

Z
d4x

p�gf(R) . (1)

Such a situation can be inspired by the renormalization group, since the relation between the coupling constant and
the field strength can be obtained. Thus, if we see the gravitational constant G as a running coupling constant, then
GR action with the coupling G = G(R) then in general results in f(R) action.1 The boundedness of the curvature,
field strength, is also guessed by an example of pure Yang–Mills theory with gauge group SU(N). There, the running
coupling constant is given by[? ]

µ = ⇤ exp

✓
8⇡2

g2�
0

◆
(g2�

0

)�1

/(2�2

0

) , (2)

where g2 is the coupling constant, �
0

= 11N/3 and �
1

= 34N2/3 are defined for the gauge group SU(N), µ is the
renormalization point, and ⇤ is an invariant scale. The scale ⇤ can be associated with the strength of the gluon
condensate; we can set up the relationship ⇤ ⇠ (field strength invariant squared)4. We can read o↵ the relationship
as

(renormalization point)

(field strength invariant)↵
⇠ exp

✓
constant

coupling

◆
⇥ (coupling)� ,

where ↵ and � are real numbers and � > 0. The behavior at (couplingconstant) ! 0 and G ! 1 imply the existence
of the minimum of the left hand side, i.e., the maximum of the absolute value of the field strength. Similar situation,
where the maximum value of R exists, may occur also for a gravitational action starting from GR action.

This article is organized as follows. In Sec. II, we derive the basic equations of FLRW solutions in f(R) gravity
theories, of which flat version is used in the following sections. In Sec. III, we make some assumptions related to

1

In the most general case, other curvature invariants may appear in the action, so that G = G(R,R
↵�

R↵� , R
�µ⌫⇢

R�µ⌫⇢, . . . ), but we

just confine ourselves the simplest case where G = G(R).

Spatially flat background   K=0

Simple enough to solve

Analysis in 2 dim phase space (R, H)
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FIG. 3. The (R,H) phase space examples are shown. The leftThe parabola represents the curve for which Ḣ = 0. Stationary

points can be found along this parabola if also Ṙ = 0. The non-shaded area emphasizes the allowed range for the scalar
curvature. The generic case which has both the maximum/minimum curvatures is shown in panel (b), while panel (a) shows
the particular case in which R

min

= 0. Allowing the negative scalar curvature basically requires K 6= 0 in the equations as is
mentioned later.

These facts imply that we can just solve the combination of the first equation of (11) and Eq. (12), supplemented by
Eqs. (9) and (10). If we give the relation between the matter density and the matter pressure as p = p(⇢), we find
that these four equation gives a set of the first order di↵erential equations for a, H, R and ⇢,

Ṙ =
1

3fRRH


8⇡G⇢+

1

2
(fRR� f)� 3fRH

2 � fR
K

a2

�
, (13)

Ḣ =
R

6
� 2H2 � K

a2
, (14)

⇢̇ = �3H(⇢+ p) , (15)

ȧ = Ha . (16)

For simplicity, we restrict our analysis to the vacuum and spatially-flat solutions, ⇢ = p = 0 and K = 0. Then, the
first two equations (13) and (14) become free from the explicit dependence on the scale factor. Therefore, the above
system reduces to

Ṙ =
1

3fRRH


1

2
(fRR� f)� 3fRH

2

�
, (17)

Ḣ =
R

6
� 2H2 , (18)

and the time evolution of the flat-FLRW solutions are characterized by the flow on the (R,H) phase space. Since
Eq. (18) does not depend on the function f or its derivatives, we can always find a parabola R = 12H2 dividing the
positive Ḣ region and the negative H regions on the phase space independently from the choice of f . The stationary
points, characterizing the phase space, are found somewhere on this curve if exist. The choice of f is, however,
reflected in the allowed region bounded by the maximum curvature R

max

and/or the minimum curvature R
min

as the
examples are shown in Fig. 3.

Before going through the detailed inspection of the structure of the phase space, let us mention that, though the
two first order equations (17) and (18) have dimension, they are reduced to a set of non-dimensional equations by
normalizing with some mass scale M as

R̃ = R/M2, f̃ = f/M2, f̃R = fR, ˜fRR = fRRM
2, H̃ = H/M, t̃ = t/M. (19)

For instance, M can be taken to be the current Hubble parameter H
0

. From now on, these equations are supposed
to be normalized but we drop the tildes.



STATIONARY POINTS

Regular-stationary points  
Realized for curvatures in (Rmin , Rmax)
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III. GENERAL FEATURE OF THE PHASE SPACE IN BOUNDED CURVATURE MODELS

In this section, we consider the bounded f(R) theories with the maximum/minimum curvatures and examine how
the phase space representing the time evolution of flat-FLRW solutions are featured by the characteristic points and
the asymptotic behaviors under the conditions specifying the boundedness of the scalar curvature without assuming
a explicit form of f . We also explain that the characteristic points can be found graphically on the (R, f(R)) plane.

In the following throughout this article, we assume that fRR 6= 0 in the region where f is defined (i.e., f is a convex
function) for simplicity.4 We further choose fRR < 0 without loss of generality since the equations we solve (11) and
(16) are invariant under the change of the overall sign of f , f ! �f . We also assume R > 0 in this section and
a concrete treatment of models with (hemi-) circular type of f in Sec. IV includes R

min

= 0 case in addition. The
situation where R

min

< 0 is also possible in our context, but, the analysis on the two dimensional phase space (R,H)
does not reflect the typical feature of the phase space in the negative R region since the existence of the stationary
points with negative R requires the introduction of the negative K and the treatment on the three dimensional phase
space (R,H, a). Though we concentrate especially on f(R) theories with both of the maximum/minimum curvatures,
the phase space for the semi-bounded f(R) theories only with the minimum curvature can be extrapolated by removing
the features existing near the maximum curvature.

For specifying the bounded feature and for clearly defining the models to which our analysis applies, we introduce
the following assumptions.

1. The function f is defined only over a (bounded) interval of values of R, denoted by [(R
min

, R
max

)];

2. the function f is continuous in the interval and class C4 in (R
min

, R
max

);

3. the derivatives fR, fRR, · · · of f are divergent at R
min

and R
max

and satisfy

lim
R!R

min

+0

f

fR
= 0 , lim

R!R
max

�0

f

fR
= 0 , (18)

lim
R!R

min

+0

fR
fRR

= 0 , lim
R!R

max

�0

fR
fRR

= 0 . (19)

A. Characteristic points on the phase space

To see the general feature of the phase space, we find the characteristic points of the first order di↵erential equa-
tions (15) and (16). As we will see later there are three types of characteristic points: extremal-stationary points,
regular stationary points, and throats.

First, we focus on where the stationary points exist. Their stability is examined later. The stationary points are
obtained by the equilibrium condition,

Ṙ = 0 , Ḣ = 0 . (20)

From the second equation, we have the relation between the scalar curvature and the Hubble parameter as

H
±

(R) = ±
r

R

12
, (21)

where the upper sign corresponds to the H > 0 region (upper panel) and the lower one corresponds to the H < 0
region (lower panel). If we substitute the relation into (15), we have

Ṙ = ± fRR� 2f

2
p
3R1/2fRR

. (22)

For the equilibrium condition to be realized, there are two possibilities,

fRR� 2f = 0 , (23)

and

fRR ! �1 . (24)

Let us note that the second case is specific to our (analytically-)bounded f(R) assumption, though the first case can
exist even in non-bounded f(R) models.

4

The situation where f
RR

= 0 at some curvatures will be discussed in another publication.
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In the following throughout this article, we assume that fRR 6= 0 in the region where f is defined (i.e., f is a convex
function) for simplicity.4 We further choose fRR < 0 without loss of generality since the equations we solve (11) and
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= 0 case in addition. The
situation where R

min

< 0 is also possible in our context, but, the analysis on the two dimensional phase space (R,H)
does not reflect the typical feature of the phase space in the negative R region since the existence of the stationary
points with negative R requires the introduction of the negative K and the treatment on the three dimensional phase
space (R,H, a). Though we concentrate especially on f(R) theories with both of the maximum/minimum curvatures,
the phase space for the semi-bounded f(R) theories only with the minimum curvature can be extrapolated by removing
the features existing near the maximum curvature.

For specifying the bounded feature and for clearly defining the models to which our analysis applies, we introduce
the following assumptions.

1. The function f is defined only over a (bounded) interval of values of R, denoted by [(R
min

, R
max

)];

2. the function f is continuous in the interval and class C4 in (R
min

, R
max

);

3. the derivatives fR, fRR, · · · of f are divergent at R
min

and R
max

and satisfy

lim
R!R

min

+0

f

fR
= 0 , lim

R!R
max

�0

f

fR
= 0 , (18)

lim
R!R

min

+0

fR
fRR

= 0 , lim
R!R

max

�0

fR
fRR

= 0 . (19)

A. Characteristic points on the phase space

To see the general feature of the phase space, we find the characteristic points of the first order di↵erential equa-
tions (15) and (16). As we will see later there are three types of characteristic points: extremal-stationary points,
regular stationary points, and throats.

First, we focus on where the stationary points exist. Their stability is examined later. The stationary points are
obtained by the equilibrium condition,

Ṙ = 0 , Ḣ = 0 . (20)

From the second equation, we have the relation between the scalar curvature and the Hubble parameter as

H
±

(R) = ±
r

R

12
, (21)

where the upper sign corresponds to the H > 0 region (upper panel) and the lower one corresponds to the H < 0
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Ṙ = ± fRR� 2f

2
p
3R1/2fRR

. (22)

For the equilibrium condition to be realized, there are two possibilities,

fRR� 2f = 0 , (23)

and

fRR ! �1 . (24)
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4

The situation where f
RR

= 0 at some curvatures will be discussed in another publication.

Two Possibilities
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In this section, we consider the bounded f(R) theories with the maximum/minimum curvatures and examine how
the phase space representing the time evolution of flat-FLRW solutions are featured by the characteristic points and
the asymptotic behaviors under the conditions specifying the boundedness of the scalar curvature without assuming
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function) for simplicity.4 We further choose fRR < 0 without loss of generality since the equations we solve (11) and
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the phase space for the semi-bounded f(R) theories only with the minimum curvature can be extrapolated by removing
the features existing near the maximum curvature.

For specifying the bounded feature and for clearly defining the models to which our analysis applies, we introduce
the following assumptions.

1. The function f is defined only over a (bounded) interval of values of R, denoted by [(R
min

, R
max

)];

2. the function f is continuous in the interval and class C4 in (R
min

, R
max

);

3. the derivatives fR, fRR, · · · of f are divergent at R
min

and R
max

and satisfy

lim
R!R

min

+0

f

fR
= 0 , lim

R!R
max

�0

f

fR
= 0 , (18)

lim
R!R

min

+0

fR
fRR

= 0 , lim
R!R

max

�0

fR
fRR

= 0 . (19)

A. Characteristic points on the phase space

To see the general feature of the phase space, we find the characteristic points of the first order di↵erential equa-
tions (15) and (16). As we will see later there are three types of characteristic points: extremal-stationary points,
regular stationary points, and throats.

First, we focus on where the stationary points exist. Their stability is examined later. The stationary points are
obtained by the equilibrium condition,

Ṙ = 0 , Ḣ = 0 . (20)

From the second equation, we have the relation between the scalar curvature and the Hubble parameter as

H
±

(R) = ±
r

R

12
, (21)

where the upper sign corresponds to the H > 0 region (upper panel) and the lower one corresponds to the H < 0
region (lower panel). If we substitute the relation into (15), we have

Ṙ = ± fRR� 2f

2
p
3R1/2fRR

. (22)

For the equilibrium condition to be realized, there are two possibilities,

fRR� 2f = 0 , (23)

and

fRR ! �1 . (24)

Let us note that the second case is specific to our (analytically-)bounded f(R) assumption, though the first case can
exist even in non-bounded f(R) models.

4

The situation where f
RR

= 0 at some curvatures will be discussed in another publication.

Extremal-stationary points  
Realized at the maximum/minimum curvatures
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min

= 0 case in addition. The
situation where R

min

< 0 is also possible in our context, but, the analysis on the two dimensional phase space (R,H)
does not reflect the typical feature of the phase space in the negative R region since the existence of the stationary
points with negative R requires the introduction of the negative K and the treatment on the three dimensional phase
space (R,H, a). Though we concentrate especially on f(R) theories with both of the maximum/minimum curvatures,
the phase space for the semi-bounded f(R) theories only with the minimum curvature can be extrapolated by removing
the features existing near the maximum curvature.

For specifying the bounded feature and for clearly defining the models to which our analysis applies, we introduce
the following assumptions.

1. The function f is defined only over a (bounded) interval of values of R, denoted by [(R
min

, R
max

)];

2. the function f is continuous in the interval and class C4 in (R
min

, R
max

);

3. the derivatives fR, fRR, · · · of f are divergent at R
min

and R
max

and satisfy

lim
R!R

min

+0

f

fR
= 0 , lim

R!R
max

�0

f

fR
= 0 , (18)

lim
R!R

min

+0

fR
fRR

= 0 , lim
R!R

max

�0

fR
fRR

= 0 . (19)

A. Characteristic points on the phase space

To see the general feature of the phase space, we find the characteristic points of the first order di↵erential equa-
tions (15) and (16). As we will see later there are three types of characteristic points: extremal-stationary points,
regular stationary points, and throats.

First, we focus on where the stationary points exist. Their stability is examined later. The stationary points are
obtained by the equilibrium condition,

Ṙ = 0 , Ḣ = 0 . (20)

From the second equation, we have the relation between the scalar curvature and the Hubble parameter as
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For the equilibrium condition to be realized, there are two possibilities,

fRR� 2f = 0 , (23)

and

fRR ! �1 . (24)

Let us note that the second case is specific to our (analytically-)bounded f(R) assumption, though the first case can
exist even in non-bounded f(R) models.
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1. Extremal-stationary points

In the second case (24), since we have assumed (18), (19), and the finiteness of fRR in (R
min

, R
max

),5 the mini-
mum/maximum points are unique equilibrium points. Let us call them the extremal-stationary points and refer to
them as (Re, H±

(Re)) from now on.

2. Regular-stationary points

To find points satisfying (23), in general, we have to solve for a given f(R) form as we have to solve a fourth-order
algebraic equation for the hemi-circular models, introduced in the following section. However, the existence of such
points and the number are easily found in a graphical way.

Let us consider a function gA(R) = AR2, where A is a real parameter. This function obviously satisfies

gRR� 2g = 0 . (25)

When we pick up a curvature R = R
1

(> 0), by choosing A properly, we can make the function gA intersect with f at
(R

1

, f(R
1

)), i.e., gA(R
1

)(R
1

) = f(R
1

). If we define a function,

I(R) = fRR� 2f , (26)

the condition (23) then becomes

I(R
1

) = 0 , , fR(R1

) = (gA(R
1

))R(R1

) . (27)

This means that, if f has a point where I = 0 is satisfied, at that point a quadratic curve with the minimum/maximum
at the origin is tangent to f , and the inverse is also true. Thus, we can graphically find the stationary points by
considering one parameter series of the quadratic functions. Let us call them the regular-stationary points, since they
exist even in non-bounded f(R) gravity theories, and refer to them as (Rs, H±

(Rs)) from now on.

3. Non-stationary characteristic points

There are other special points on R-axis. On R-axis, where H = 0, Eq. (15) becomes

Ṙ =
fRR� f

6fRRH
, (28)

of which the r.h.s. is essentially divergent as far as the numerator is finite, while the r.h.s. of (16) is obviously finite.
Almost all the flows around R-axis are parallel with R-axis, and the unique possibility where the value of the r.h.s.
of (28) is finite should be the vanishment of the numerator, i.e.,

fRR� f = 0 . (29)

Similarly to the case of the regular-stationary points, if f has a curvature R = R
2

where (29) is satisfied, at that
point a line passing through the origin,

hB(R
2

)(R) = B(R
2

)R , (30)

where B(R
2

) is the real parameter defined for the function hB(R) = BR to pass through (R
2

, f(R
2

)), is tangent to f ,
and the inverse is also true. Thus, we can graphically find the points with a finite Ṙ, which we call the non-stationary
characteristic points, by considering one parameter series of the linear functions, which can be done by drawing
tangent lines to f from the origin. Let us refer to the non-stationary characteristic points as (RT , 0) from now on.

5

If there are some points where f
RR

is divergent, any solution cannot go beyond the point, and therefore, this assumption is imposed

without the loss of generality.
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FIG. 1. The (R,H) phase space examples for bounded models of f are shown. The case which has R
min

> 0 is shown. Allowing

the negative scalar curvature basically requires K 6= 0 in the equations as is mentioned later. The non-shaded area emphasizes

the allowed range for the scalar curvature. The parabola represents the curve for which

˙H = 0. Stationary points can be found

along this parabola where also

˙R = 0.

.

Thanks to the modified Bianchi identity, we can show that

dF0

0

dt
= 3H(F1

1

� F0

0

) ,

and the conservation of the energy momentum tensor (5) results in the continuity equation,

⇢̇+ 3H(⇢+ p) = 0 . (10)

These facts imply that we can just solve the combination of the first equation of (9) and Eq. (10), supplemented by
Eqs. (7) and (8). If we give the relation between the matter density and the matter pressure as p = p(⇢), we find that
these four equation gives a set of the first order di↵erential equations for a, H, R and ⇢,

Ṙ =
1

3fRRH


8⇡G⇢+

1

2
(fRR� f)� 3fRH

2 � fR
K

a2

�
, (11)

Ḣ =
R

6
� 2H2 � K

a2
, (12)

⇢̇ = �3H(⇢+ p) , (13)

ȧ = Ha . (14)

For simplicity, we restrict our analysis to the vacuum and spatially-flat solutions, ⇢ = p = 0 and K = 0. Then, the
first two equations (11) and (12) become free from the explicit dependence on the scale factor. Therefore, the above
system reduces to

Ṙ =
1

3fRRH


1

2
(fRR� f)� 3fRH

2

�
, (15)

Ḣ =
R

6
� 2H2 , (16)

and the time evolution of the flat-FLRW solutions are characterized by the flow on the (R,H) phase space. Since
Eq. (16) does not depend on the function f or its derivatives, we can always find a parabola R = 12H2 dividing the
positive Ḣ region and the negative H regions on the phase space independently from the choice of f . The stationary
points, characterizing the phase space, are found somewhere on this curve if exist. The choice of f is, however,
reflected in the allowed region bounded by the maximum curvature R

max

and/or the minimum curvature R
min

as the
examples are shown in Fig. 1.

Before going through the detailed inspection of the structure of the phase space, let us mention that, though the
two first order equations (15) and (16) have dimension, they are reduced to a set of non-dimensional equations by
normalizing with some mass scale M as

R̃ = R/M2, f̃ = f/M2, f̃R = fR, ˜fRR = fRRM
2, H̃ = H/M, t̃ = t/M. (17)

For instance, M can be taken to be the current Hubble parameter H
0

. From now on, these equations are supposed
to be normalized but we drop the tildes.
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conditions we imposed in Sec. III B. Here we introduce hemi-circular type of f as a typical model with both of the
maximum and the minimum curvatures, satisfying all the conditions we referred to, and analyze it in detail. The
concreteness results in a definite number of the characteristic points and an evaluation of the timescale spent around
them.

We pick up a model of f(R) which has a hemi-circular shape as

f
+

(R) = Y +
p
r2 � (R�X)2 , X � r  R  X + r , (62)

where X(� r), Y , and r(> 0) are real constants. This corresponds the upper hemi-circle, and we can see that the the
lower hemi-circlular type of f ,

f
�

(R) = Y �
p

r2 � (R�X)2 , X � r  R  X + r , (63)

is completely equivalent to the upper hemi-circle case with �Y as far as we discuss the background solutions, since
the equations of motion for vacuum FLRW solutions (15) and (16) (flatness is unnecessary) are invariant under the
change f ! �f as mentioned in Sec. III.10 Thus, we perform the following analysis especially for the upper hemi-circle
case, f

+

, which satisfies fRR < 0, and we drop + sign in f
+

from now on.
The hemi-circular f(R) theories are further simplified for the vacuum FLRW solutions. If we divide (62) by r and

define,

f̃ = f/r , R̃ = R/r , X̃ = X/r , Ỹ = Y/r , (64)

we have

f̃ = Ỹ +
q

1� (R̃� X̃)2 , X̃ � 1  R̃  X̃ + 1 , (65)

where X̃(� 1). We note that the X̃ = 1 case corresponds to the R
min

= 0 case, and we will discuss this case separately
in latter subsections since the structure of the phase space is di↵erent from those of the R

min

> 0 cases. We omit the
tildes in the following since there will be no confusion and discuss

f = Y +
p

1� (R�X)2 , X � 1  R  X + 1 . (66)

A. Phase space in the circular models

Here, we show that the model defined by (66) satisfies all the requirement to apply the discussion in Sec. III and find
the characteristic points for the model. We also give the plots of the phase space for typical choices of the parameters.

The upper hemi-circular shape of f , (66), is an (upward-)convex function, and the second derivative is negative,

fRR = � 1

[1� (R�X)2]3/2
< 0 , (67)

for any R 2 [R
min

, R
max

] = [X � 1, X + 1]. The extremal stationary points are found at

(R,H) = (X + 1, H
±

(X + 1)) = (X + 1,
p

(X + 1)/12) , (68)

and

(R,H) = (X � 1, H
±

(X � 1)) = (X � 1,
p

(X � 1)/12) , (69)

where the maximum/minimum curvature is realized. (See (21) for the definition of H
±

.) There, f is finite but its
derivatives are divergent, and the assumptions, which we made, (18) and (19), are satisfied as

f

fR

����
R=X±1

= �Y
p
1� (R�X)2 + 1� (R�X)2

(R�X)

�����
R=X±1

= ⌥Y · 0 , (70)
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Note that, if we introduce Y
0

= �Y , the function f
�

becomes the minus of the function f
+

with the center placed at (X,Y
0

), i.e.,

f
�

|
Y =�Y

0

= � f
+

|
Y =Y

0

.
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FIG. 2. (a) We visualize a graphical way to identify the position of the curvatures R
s

and R
T

. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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FIG. 2. (a) We visualize a graphical way to identify the position of the curvatures R
s

and R
T

. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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FIG. 2. (a) We visualize a graphical way to identify the position of the curvatures R
s

and R
T

. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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FIG. 2. (a) We visualize a graphical way to identify the position of the curvatures R
s

and R
T

. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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FIG. 2. (a) We visualize a graphical way to identify the position of the curvatures R
s

and R
T

. The parameters of (66) are

explicitly chosen to be X = 3 and Y = 2. The orange curve is the quadratic function penetrating the origin and being tangent

to f . Similarly, we show in green the line penetrating the origin and being tangent to f . (b) We change the parameter value

of Y to Y = �2, keeping X = 3.
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FIG. 3. We show the phase space structure on (R,H) plane of the hemi-circular model for (a) Y = 2 > �1, (b) Y = �1, and

(c) Y = �2 < �1. The other parameter is set to be X = 5. The dynamics is described by the flow lines. The points P
min�

and P
max�

are stable nodes (attractors), while P
min+

and P
max+

are unstable nodes (repellors). The orange solid curves are

separatrices and indicate the boundary for the di↵erent fate of the flows. The blue dotted curves are where H is constant. The

points P
s±

are saddle points. The point P
T

= (R
T

, 0) is the throat for the flows to evolve from the H < 0 region to the H > 0

region.

As shown in Fig. 3, the phase space (R,H) has two saddle points, two attractors and two repellers. Four separatrices
are extended from the saddle points to the attractors/repellers, and two separatrices are extended to the high |H|
regions. Remaining separatrices meets at the throat on R-axis, though they are not smoothly connected at the throat.
The flows initially in the green regions evolve to either of the attractors P

min�

or P
max�

, which can be the cosmological
model experiencing both almost constant H region and the late time de Sitter phase. The blue regions are covered
by the flows evolving from either of the repellers P

min+

or P
max+

to large negative H region, where there is little
hope to mimic the viable cosmological evolution. The yellow regions are special to have bouncing solutions. There,
starting from de Sitter repellers, the Hubble parameter continuously increases, and the flows pass through the throat
and approach to either of the de Sitter attractors.
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FIG. 5. We show the approximate phase space structure of upper hemi-circular models for X = 1, i.e., R = 0. Three panels

correspond to (a)Y = 2 > 0, (b)Y = 0, , and (c)Y = �2 < 0, respectively. The dynamics is described by the flow lines. The

orange solid curves are separatrices, and the blue dotted curves are where H is constant. The points P
s±

are saddle points.

The lighter colors mean higher values of the modulus of the vector field as before. The yellow curve is

˙H = 0.

3. Approximate time dependence around the origin

We have analyzed the behavior around the origin and found that there are two possibility that the flows on the
phase space reach/come out from the origin for (a) Y = 0 and R � H2 and (b) Y < 0 and R ⌧ H2. We see how the
evolution of R is described as a function of t.

a. The first case: Y = 0 and R � H2 In this situation, the solutions around the origin are expressed as

R = R
0

H2

H2

0

, (105)

from (97). By substituting this relation into the di↵erential equation for H, (55), we obtain

Ḣ =
R

6
=

R
0

6H2

0

, (106)

which has the solution with the initial condition R
0

= R(t
0

) and H
0

= H(t
0

) as

H =
H

0

1 + (R
0

/6|H
0

|)|t� t
0

| . (107)

We note that
(
t� t

0

< 0 for H
0

> 0 ,

t� t
0

> 0 for H
0

< 0 ,
(108)

as we find in Table I. Thus, the time evolution of R is written as

R =
R

0

[1 + (R
0

/6|H
0

|)|t� t
0

|]2 , (109)

from (105).
b. The second case: Y < 0 and R ⌧ H2 This case has the solution around the origin as (103), and the di↵erential

equation for Ḣ is (98), which we have solved (61) as

H =
H

0

1 + 2|H
0

||t� t
0

| . (110)
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SUMMARY
We motivated bounded curvature models with divergence in the 
derivatives of f(R) at the boundaries by referring to the renormalization 
of the gravitational constant.  

Flat-FLRW solutions in convex and bounded f(R) theories. 
 Stability of stationary points, the structure of phase space (R, H), … 

Explicit example:  f(R) in hemi-circular form.



SUMMARY
We have found two typical types of evolution: 
One experiences  
　(1) Rapid decrease of H,  
　(2) Almost constant H phase, 
　(3) Convergence into de Sitter attractor; 
the other experiences  
　(1) Contraction phase, 
　(2) Expanding phase after the passage through the throat  
　(3) Convergence into de Sitter attractor. 

The difference of Rmin=0 cases from Rmin>0 cases is  
(1) Phase space is more sensitive to the choice of f(R) (i.e., of parameters) 
(2) The spacetime converges into Minkowski.



FUTURE PLAN
We discussed flat FLRW case.   
→ How about negative R region. Inclusion of the spatial curvature. 

We discussed vacuum cases. 
→ How about inclusion of matter. 
     We are now discussing. The results seem positive.  

We discussed only the evolution of background spacetime. 
→ How about the perturbative stability. 
     There is a correspondence between f(R) and Brans-Dicke theories  
     at regular curvatures, away from the maximum/minimum curvatures. 

We discussed cosmological solutions. 
→ How about the realization of GR in our solar system. 
     Screening mechanism of the fifth force at the minimum curvature? 

Similar treatment


