16:20-16:45, 20th Feb., 2019 @ Sao Paulo

Cosmological solutions in bounded curvature models

Yuki Sakakihara (Kwansei Gakuin University, Japan)

with Stefano Ansoldi (University of Udine), Eduardo Guendelman (Ben Gurion University of the Negev), Hideki Ishihara (Osaka City University)

MOTIVATION

- Singularity at the early stage of the universe
 - One of the problems of cosmology in general relativity
- Limited curvature hypothesis

Markov 1982; Markov, Mukhanov 1985; Ginsburg et al. 1988

There is a fundamental scale limiting the curvature invariants

Analogous to the limitation on the velocity by c in Special Relativity

 Non-singular cosmology with a finite number of bounded curvature invariants
 Mukhanov et al. 1993; Chamseddine, Mukhanov 2016; Yoshida et al. 2017

MOTIVATION

- Renormalization group method gives the relation between the coupling constant and the field strength.
- Einstein gravity theory may have some corrections from the higher order curvature invariants like $\mathcal{L}_G = \sqrt{-g} R \rightarrow \sqrt{-g} f(R, R_{\mu\nu}R^{\mu\nu}, R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta}, \cdots)$
- Our idea: the boundedness of the curvature invariants is dynamically realized if the function *f* is bounded where its derivatives have divergence.
- The simplest case is bounded *f*(*R*) (Partial realization of limiting curvature hypothesis)

MOTIVATION

Picking up the feature that the derivatives (*f_R=∂f/∂R*, ...) are divergent,
▶ we discuss cosmological solutions w/o assuming precise functional form of *f(R)*

we discuss how the boundedness of the curvature affect the existence/behavior of cosmological solutions.

SETUP

• Metric *f*(*R*) gravity theory ... consider the metric compatible connection

$$S_{\rm G} = \int d^4x \sqrt{-g} f(R)$$

FLRW metric ansatz $g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$

Matter: vacuum

▶ Spatially flat background K=o

$$\dot{R} = \frac{1}{3f_{RR}H} \left[\frac{1}{2} \left(f_R R - f \right) - 3f_R H^2 \right] ,$$

$$\dot{H} = \frac{R}{6} - 2H^2 ,$$

Analysis in 2 dim r

▶ Analysis in 2 dim phase space (R, H)

STATIONARY POINTS

$$\dot{R} = 0$$
, $\dot{H} = 0$.
 $H_{\pm}(R) = \pm \sqrt{\frac{R}{12}}$

$$\dot{R} = \pm \frac{f_R R - 2f}{2\sqrt{3}R^{1/2}f_{RR}} = \mathbf{0}$$

Two Possibilities

- $f_R R 2f = 0$ **>** Regular-stationary points Realized for curvatures in (R_{\min}, R_{\max})
- $f_{RR} \rightarrow -\infty$ \blacktriangleright Extremal-stationary points Realized at the maximum/minimum curvatures

REGULAR-STATIONARY POINTS

• What's the meaning of the condition $f_R R - 2f = 0$

Find the quadratic curve(s) tangential to f(R)

NON-STATIONARY CHARACTERISTIC POINTS

• Near *R*-axis, i.e., $H \sim 0$

$$\dot{R} = \frac{f_R R - f}{6 f_{RR} H}$$
 Divergent except for $f_R R - f = 0$

▶ Almost all the points on *H*=0 are not allowed

• At $f_R R - f = 0$,

- Flows pass through the point in a finite time.

- A solution exists for any initial condition near the throat. Uniqueness condition is broken. (w/o Lipschitz continuity)

Throats connecting the *H*<0 region and *H*>0 the region

- Such the point is unique for a convex function f(R)

NON-STATIONARY CHARACTERISTIC POINTS

• What's the meaning of the condition $f_R R - f = 0$

Find the linear function(s) tangential to f(R)

GLOBAL STRUCTURE

STABILITY AND ASYMPTOTIC BEHAVIORS

HEMI-CIRCULAR MODEL

• Upper hemi-circle

$$f_+(R) = Y + \sqrt{r^2 - (R - X)^2}$$
 defined in $X - r \le R \le X + r$

PHASE SPACE

INTERPRETATION

 At the attractors/repellers, de Sitter spacetime is realized

(X, Y) = (5, 2)

Almost constant *H* phase has similar behavior to inflationary universe

INTERPRETATION

CHANGE OF PARAMETER

The exact position of characteristic points changes
 Their existence and stability never change for *R*_{min}>0 models

SUMMARY

- We motivated bounded curvature models with divergence in *the derivatives of f(R)* at the boundaries by referring to the renormalization of the gravitational constant.
- Flat-FLRW solutions in convex and bounded f(R) theories.
 Stability of stationary points, the structure of phase space (R, H), ...
- Explicit example: *f*(*R*) *in hemi-circular form*.

SUMMARY

 We have found two typical types of evolution: One experiences

- (1) Rapid decrease of *H*,
- (2) Almost constant *H* phase,
- (3) Convergence into de Sitter attractor;

the other experiences

- (1) Contraction phase,
- (2) Expanding phase after the passage through the throat
- (3) Convergence into de Sitter attractor.
- The difference of *R*_{min}=0 cases from *R*_{min}>0 cases is
 (1) Phase space is more sensitive to the choice of *f(R)* (*i.e.*, of parameters)
 (2) The spacetime converges into Minkowski.

FUTURE PLAN

- We discussed flat FLRW case.
 - \rightarrow How about negative *R* region. Inclusion of the spatial curvature.
- We discussed vacuum cases.

Similar treatment

- → How about inclusion of matter.
 We are now discussing. The results seem positive.
- We discussed only the evolution of background spacetime.
 → How about the perturbative stability. There is a correspondence between *f(R)* and Brans-Dicke theories at regular curvatures, away from the maximum/minimum curvatures.
- We discussed cosmological solutions.
 - → How about the realization of GR in our solar system.
 Screening mechanism of the fifth force at the minimum curvature?