Cosmological solutions in bounded curvature models

Yuki Sakakihara (Kwansei Gakuin University, Japan)

with Stefano Ansoldi (University of Udine),
Eduardo Guendelman (Ben Gurion University of the Negev), Hideki Ishihara (Osaka City University)

MOTIVATION

- Singularity at the early stage of the universe
- One of the problems of cosmology in general relativity
- Limited curvature hypothesis

Markov 1982; Markov, Mukhanov 1985; Ginsburg et al. 1988

- There is a fundamental scale limiting the curvature invariants

Analogous to the limitation on the velocity by c in Special Relativity

- Non-singular cosmology with a finite number of bounded curvature invariants Mukhanov et al. 1993; Chamseddine, Mukhanov 2016; Yoshida et al. 2017

MOTIVATION

- Renormalization group method gives the relation between the coupling constant and the field strength.
- Einstein gravity theory may have some corrections from the higher order curvature invariants like $\quad \mathcal{L}_{G}=\sqrt{-g} R \rightarrow \sqrt{-g} f\left(R, R_{\mu \nu} R^{\mu \nu}, R_{\mu \nu \alpha \beta} R^{\mu \nu \alpha \beta}, \cdots\right)$
- Our idea: the boundedness of the curvature invariants is dynamically realized if the function f is bounded where its derivatives have divergence.
- The simplest case is bounded $f(R)$ (Partial realization of limiting curvature hypothesis)

MOTIVATION

Picking up the feature that the derivatives $\left(f_{R}=\partial f / \partial R, \ldots\right)$ are divergent,

- we discuss cosmological solutions w/o assuming precise functional form of $f(R)$
- we discuss how the boundedness of the curvature affect the existence/behavior of cosmological solutions.

SETUP

- Metric $f(R)$ gravity theory ... consider the metric compatible connection

$$
\begin{aligned}
S_{\mathrm{G}}=\int d^{4} x \sqrt{-g} f(R) & \quad \text { FLRW metric ansatz } \\
& g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+a(t)^{2}\left[\frac{d r^{2}}{1-K r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& \bullet \text { Matter: vacuum } \\
& \bullet \text { Spatially flat background } K=0
\end{aligned}
$$

- Simple enough to solve

$$
\begin{aligned}
& \dot{R}=\frac{1}{3 f_{R R} H}\left[\frac{1}{2}\left(f_{R} R-f\right)-3 f_{R} H^{2}\right], \\
& \dot{H}=\frac{R}{6}-2 H^{2}, \quad \text { Analysis in } 2 \text { dim phase space }(R, H)
\end{aligned}
$$

STATIONARY POINTS

$\dot{R}=0, \quad \dot{H}=0$.

$\dot{R}= \pm \frac{f_{R} R-2 f}{2 \sqrt{3} R^{1 / 2} f_{R R}}=0$
Two Possibilities

$$
\begin{aligned}
f_{R} R-2 f=0 & \text { Regular-stationary points } \\
& \text { Realized for curvatures in }\left(R_{\min }, R_{\max }\right) \\
f_{R R} \rightarrow-\infty &
\end{aligned}
$$

REGULAR-STATIONARY POINTS

- What's the meaning of the condition $f_{R} R-2 f=0$
- Find the quadratic curve(s) tangential to $f(R)$

R , at which regular-stationary points are found

NON-STATIONARY CHARACTERISTIC POINTS

- Near R-axis, i.e., $H \sim 0$

$$
\dot{R}=\frac{f_{R} R-f}{6 f_{R R} H} \quad \text { Divergent } \quad \text { except for } f_{R} R-f=0
$$

- Almost all the points on $H=0$ are not allowed

At $f_{R} R-f=0$,

- Flows pass through the point in a finite time.
- A solution exists for any initial condition near the throat. Uniqueness condition is broken. (w/o Lipschitz continuity)

Throats connecting the $H<0$ region and $H>0$ the region

- Such the point is unique for a convex function $f(R)$

NON-STATIONARY CHARACTERISTIC POINTS

- What's the meaning of the condition $f_{R} R-f=0$
- Find the linear function(s) tangential to $f(R)$

GLOBAL STRUCTURE

STABILITY AND ASYMPTOTIC BEHAVIORS

HEMI-CIRCULAR MODEL

- Upper hemi-circle

$$
f_{+}(R)=Y+\sqrt{r^{2}-(R-X)^{2}} \quad \text { defined in } \quad X-r \leq R \leq X+r
$$

PHASE SPACE

PHASE SPACE

INTERPRETATION

 $(X, Y)=(5,2)$

INTERPRETATION

 $(X, Y)=(5,2)$

CHANGE OF PARAMETER

$(X, Y)=(5,2)$

$(X, Y)=(5,-1)$

$(X, Y)=(5,-2)$

- The exact position of characteristic points changes
- Their existence and stability never change for $R_{\min }>0$ models

RMin= o CASES

- Phase space

$Y>O$
$f(R)$

$Y<O$

SUMMARY

- We motivated bounded curvature models with divergence in the derivatives of $f(R)$ at the boundaries by referring to the renormalization of the gravitational constant.
- Flat-FLRW solutions in convex and bounded $f(R)$ theories. Stability of stationary points, the structure of phase space $(R, H), \ldots$
- Explicit example: $f(R)$ in hemi-circular form.

SUMMARY

- We have found two typical types of evolution:

One experiences
(1) Rapid decrease of H,
(2) Almost constant H phase,
(3) Convergence into de Sitter attractor; the other experiences
(1) Contraction phase,
(2) Expanding phase after the passage through the throat
(3) Convergence into de Sitter attractor.

- The difference of $R_{\min }=0$ cases from $R_{\min }>0$ cases is
(1) Phase space is more sensitive to the choice of $f(R)$ (i.e., of parameters)
(2) The spacetime converges into Minkowski.

FUTURE PLAN

- We discussed flat FLRW case.
\rightarrow How about negative R region. Inclusion of the spatial curvature.
- We discussed vacuum cases.
\rightarrow How about inclusion of matter.
We are now discussing. The results seem positive.
- We discussed only the evolution of background spacetime.
\rightarrow How about the perturbative stability.
There is a correspondence between $f(R)$ and Brans-Dicke theories at regular curvatures, away from the maximum/minimum curvatures.
- We discussed cosmological solutions.
\rightarrow How about the realization of GR in our solar system.
Screening mechanism of the fifth force at the minimum curvature?

