Probing dark energy and inflation with 21cm line observations

Toyokazu Sekiguchi (RESCEU, Univ of Tokyo)

JSPS-FAPESP workshop on dark energy, dark matter and galaxies University of Sao Paulo, 19.02.2019

Plan of talk

- Introduction: 21cm line signals from IGM and minihalos
- Applications:
 - Primordial perturbations
 - Dark energy
- Summary

Refs:

- M. Kawasaki, TS, T. Takahashi [1104.5591]
- K. Kohri, Y. Oyama, T. Sekiguchi & T. Takahashi [arXiv:(1404.4847), (1303.1688), 1608.01601]
- (H. Tashiro, T. Sekiguchi & J. Silk, N. Sugiyama [arXiv:1311.3295])
- T. Sekiguchi, T. Takahashi, H. Tashiro & S. Yokoyama [arXiv:1705.00405,1807.02008]

Introduction

S.G. Djorgovski et al. & Digital Media Center, Caltech

Mao+ '08

Redshifted 21cm line surveys

- Ongoing
 LOFAR, MWA, ...
- Near future
 - Square Kilometer Array (SKA-low)
 - **–** 21cm line from 3<z<27;
 - phase1 will start by 2023
 - Hydrogen Epoch Reionization Array (HERA)
 - main target: 21cm line from 7<z<12
- Far future

FFTT, Omniscope, Lunar telescope?

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 - starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

(c) www.skatelescople.org

What do 21cm surveys observe?

• Spin temperature

• Ratio of triplets to singlet $n_{\text{triplet}}/n_{\text{singlet}} = 3 \exp \left[-E_{21\text{cm}}/T_s\right]$

What do 21cm surveys observe?

• Spin temperature

• Ratio of triplets to singlet $n_{\text{triplet}}/n_{\text{singlet}} = 3 \exp \left[-E_{21\text{cm}}/T_s\right]$

Emission if T_s>T_{CMB}

• Brightness temperature

Radiative transfer

$$T_{21cm}(\nu) = \frac{T_s(z_{\nu}) - T_{CMB}(z_{\nu})}{1 + z_{\nu}} (1 - e^{-\tau_{21cm}(\nu)}) \simeq (T_s - T_{CMB})\tau_{21cm}$$
Absorption if $T_s < T_{CMB}$

• 21cm optical depth
$$\tau_{21cm}(\nu) = \int dl \frac{3A_{10}\lambda_{21cm}^2}{32\pi} \frac{n_{\rm HI}(z_{\nu})}{T_s(z_{\nu})} \phi(\nu)$$

Sources of 21cm line

Messinger et al. 2011

• Fluctuations in 21 cm brightness temperature

$$\delta_{21\text{cm}} \approx \underbrace{\frac{\bar{T}_{\text{CMB}}}{\bar{T}_s - \bar{T}_{\text{CMB}}} (\delta_{T_s} - \delta_{T_{\text{CMB}}}) + \delta_{n_{\text{HI}}}}_{\text{depends on } \delta_b} - \underbrace{\frac{\hat{n} \cdot d\vec{v}_b/dr}{H}}_{\text{isotropic}} + \underbrace{\frac{\hat{n} \cdot d\vec{v}_b/dr}{H}}_{\text{depends only on } \delta_m} + \underbrace{\frac{\mu = \hat{k} \cdot \hat{n}}{\hat{n} : \text{line-of-sight}}}_{\text{direction}}$$

21 cm can probe δ_b , separately from δ_m .

IGM 21cm power spectrum

CDM/baryon isocurvature perturbation can be distinguished by 21cm.

Distinguishing CDM and baryon isocurvature

Kawasaki, TS, Takahashi 2011

Fisher matrix analysis

 $r_{\rm CI} = P_{\rm CI}(k_0)/P_{\rm adi}(k_0), \ r_{\rm BI} = P_{\rm BI}(k_0)/P_{\rm adi}(k_0) \quad k_0 = 0.002 {\rm Mpc^{-1}}$

Dark energy

Kohri, Oyama, TS, Takahashi 2017

Parameterized EoS

$$w(z) = w_0 w_1 \frac{a^p + a_s^p}{w_1 a^p + w_0 a_s^p} \approx \begin{cases} w_0 & (\text{for } a \gg a_s) \\ w_1 & (\text{for } a \ll a_s) \end{cases}$$

Redshifted 21cm line fluctuations can constrain early-type dark energy better than CMB.

Sources of 21cm line

Minihalos

Halos too small to host galaxies

- No star formation: T_{gas}<10⁴K (inefficient radiative cooling)
 - → dense neutral hydrogen inside; resistant to ionization

Sensitive to small-scale (<0.1Mpc) fluctuations

• Abundant, even at high-z

21cm line signal from minihalos

lliev+ '02; Furlanetto & Loeb '02

"21cm forest" in CMB

 Minihalos create emission/absorption features in CMB spectrum at radio frequency v=1.4GHz/(1+z)

- Large (small) halos appear as emission (absorption)
- Individual halos are too small (size~kpc) to be resolved
 → intensity maps (like CMB)

N-body+hydro simulations Shapiro+ '06

Minihalos can exceed the IGM around the epoch of reionization

Semi-analytical description agrees with simulations

Simulations

21cm angular power spectrum from minihalos (1)

Iliev+ '02; TS, Takahashi, Tashiro & Yokoyama '17

Tomographic anisotropy (w/o redshift space distortion)

21cm angular power spectrum from minihalos (2)

Iliev+ '02; TS, Takahashi, Tashiro & Yokoyama '17

Redshift-space distortion (Kaiser effect)

 $\delta T_b(\hat{n},\nu) = \overline{T}_b(z) \left[\beta(z) + f(z)\mu^2\right] \delta(\vec{x},z) \qquad \text{with } \mu = \hat{k} \cdot \hat{n}$

mean signal: $\overline{T}_b(z) = \int dM \,\mathcal{F}(M, z) = \int dM \,T_b^{(\text{single})}(M, z) \frac{dN}{dM}(M, z)$ growth rate: $f(z) = d \ln D(z)/d \ln a$ flux-weighted effective bias: $\beta(z) = \frac{1}{\overline{T}_b(z)} \int dM \,\mathcal{F}(M, z) b(M, z)$

Tomographic angular power spectrum

$$C_{l}(z, z') = \frac{1}{2l+1} \sum_{m} a_{lm}(z) a_{lm}^{*}(z')$$

with $a_{lm}(z_{\nu}) = \int d\hat{n} \, \delta T_{b}(\hat{n}, \nu) Y_{lm}^{*}(\hat{n})$

21cm angular power spectrum from minihalos (3)

Application (1): Primordial spectral runnings

Spectrum of primordial fluctuations

 $\mathcal{P}(k) \propto k^{n_s - 1 + \frac{1}{2}\alpha_s \ln(k/k_*) + \frac{1}{6}\beta_s \ln^2(k/k_*)} + \dots$

Many models degenerate in the n_s-r plane

- However, they can be distinguished from the scale dependence of $n_{\rm s}$

Spectral runnings: a key observable for discriminating inflation models

TS, Takahashi, Tashiro & Yokoyama [arXiv:1705.00405]

Application (1): Primordial spectral runnings (cont'd)

Parameter response

- Lower order spectral parameters (e.g. n_s or α_s) → spectral shapes
- Higher order parameters (e.g. β_s) \rightarrow overall amplitudes
 - → Solves parameter degeneracy
- Radial scale-dependence also enhances the discrimination

Application (1): Primordial spectral runnings (cont'd)

Forecasted constraints

Combination of CMB and 21cm is beneficial due to lever-arm effect.

 $\Delta \alpha_s = 10^{-3}, \ \Delta \beta_s = 10^{-4}$

Constraints are dependent on z_{min} only mildly.

	z_{\min}	$10^{-3}\Delta n_s$	$10^{-3}\Deltalpha_s$	$10^{-3}\Delta\beta_s$
Planck+SKA	4	1.4	1.4	0.40
	6	1.7	2.0	0.63
	8	2.3	3.0	0.85
	10	3.6	4.7	1.2
COrE+FFTT	4	0.85	0.96	0.24
	6	0.95	1.1	0.28
	8	1.0	1.2	0.31
	10	1.1	1.3	0.33

Application (2): Primordial non-Gaussianity

TS, Takahashi, Tashiro & Yokoyama, in prep.

Local type non-Gaussianity:

 $\Phi(\vec{x}) = \Phi_{\rm G}(\vec{x}) + f_{\rm NL}(\Phi_{\rm G}(\vec{x})^2 - \langle \Phi_{\rm G} \rangle^2) + g_{\rm NL}\Phi_{\rm G}(\vec{x})^3$

Small in single field inflation: f_{NL}~O(0.01), g_{NL}<O(10⁻³)

Large in multi-field models (e.g. curvaton, modulated reheating, etc.)

Current tightest bound (Planck 2015)

 $f_{\rm NL} = 0.8 \pm 5.0, \quad g_{\rm NL} = (9.0 \pm 7.7) \times 10^4$

cf. g_{NL=}(-3.3±2.2)×10⁵ (WMAP 9yr) TS & Sugiyama '13

Application (2): Primordial non-Gaussianity (cont'd)

Effects of local-type non-Gaussianity on (mini)halos

- Correlation between large and small scale fluctuations
- relative halo # count $\frac{n_{
 m halo}}{
 ho_m}(ec{x})$ is modulated by large-scale fluctuations
- → scale-dependent halo bias Dalal+ '08; Slosar+ '08

Application (2): Primordial non-Gaussianity (cont'd)

Effects on minihalo power spectrum

Bias is more enhanced at larger scales

$$\Delta\beta(k,z) \approx \{\beta_f(z)f_{\rm NL} + \beta_g(z)g_{\rm NL}\} \frac{3\Omega_m H_0^2}{2k^2 T(k)D(z)}$$

- → 21cm line surveys are advantageous
 - ✓ large transverse scale comparable to CMB
 - ✓ cross-correlation of different redshifts

Application (2): Primordial non-Gaussianity (cont'd)

Forecasted constraints

, Current CMB bound

• Minihalos can improve the current (CMB) bound by orders of magnitude

 $\Delta g_{\rm NL} \simeq O(10^3), \Delta \tau_{\rm NL} \simeq O(10)$ (for SKA)

Suyama-Yamaguchi inequality can be tested

Application to dark energy

Constant EoS

- SKA: Δw ~ 0.05
- FFTT: Δw=0.02
- Cf. Planck: Δw=0.08

Both CMB and 21cm suffers from the degeneracy between w and the Hubble parameter.

Incorporation of direct Hubble measurements may be useful.

We will pursue our analysis with early-type DE in the future.

Summary

- High redshifted 21cm line fluctuations are a novel probe of the cosmological structure. There are largely two types of sources: smooth IGM and minihalos.
- Exploiting the tomographic nature of redshifted 21cm line fluctuations, we can constrain a variety of cosmological models.
 - Primordial fluctuations (spectral runnings, non-Gaussianity, etc.)
 - Dark energy
 - (DM, neutrinos, etc)