(Toward) new aspects of massive gravity

Rampei Kimura
Waseda Institute for Advanced Study, Waseda University

JSPS-FAPESP workshop @ San Paulo, 2/20/2019

Collaboration with
Daisuke Yamauchi (Kanagawa University)
Atsushi Naruko (Tohoku University)

Based on arXiv: 1812:10886

MASSIVE GRAVITY

- General relativity + non-zero graviton's mass

$$
S=\frac{M_{\mathrm{Pl}}^{2}}{2} \int d^{4} x \sqrt{-g}[R-\text { Mass term }]
$$

- Is it possible to construct such a massive general relativity?
- What is the consequence of introducing mass?
- Could it be responsible for the current accelerated expansion of the universe?
- Other interesting features...?

FIERZ-PAULI THEORY

- Fierz-Pauli theory (Fierz, Pauli, 1939)

$$
\begin{aligned}
S & =M_{\mathrm{Pl}}^{2} \int d^{4} x[\underbrace{-\frac{1}{2} h^{\mu \nu} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}}_{\text {Linearized }}-\underbrace{-\frac{1}{4} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)}_{\text {Only allowed mass term }}] \\
g_{\mu \nu} & =\eta_{\mu \nu}+h_{\mu \nu}^{\text {Einstein-Hilbert term }} \begin{array}{l}
\text { which does not have ghost at linear order }
\end{array} \\
\mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta} & =-\frac{1}{2}\left(\square h_{\mu \nu}-\partial_{\mu} \partial_{\alpha} h_{\nu}^{\alpha}-\partial_{\nu} \partial_{\alpha} h_{\mu}^{\alpha}+\partial_{\mu} \partial_{\nu} h_{\alpha}^{\alpha}-\eta_{\mu \nu} \square h_{\alpha}^{\alpha}+\eta_{\mu \nu} \partial_{\alpha} \partial_{\beta} h_{\beta}^{\alpha}\right)
\end{aligned}
$$

(1) Lorentz invariant theory
(2) Gauge invariance is broken due to the mass term
(3) No ghost (5 DOF $=2$ tensor +2 vector +1 scalar)
(4) Simple nonlinear extension contains ghost at nonlinear level
(Boulware-Deser ghost, 6th DOF) (Boulware, Deser, 1971)

dRGT MASSIVE GRAVITY

- dRGT massive gravity (de Rham, Gabadadze, Tolley 2011)

$$
\begin{aligned}
& S_{M G}=\frac{M_{\mathrm{Pl}}^{2}}{2} \int d^{4} x \sqrt{-g}\left[R-\frac{m^{2}}{4}\left(\mathcal{U}_{2}+\alpha_{3} \mathcal{U}_{3}+\alpha_{4} \mathcal{U}_{4}\right)\right]+S_{m}\left[g_{\mu \nu}, \psi\right] \\
& \mathcal{K}^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}-\sqrt{\delta^{\mu}{ }_{\nu}-H^{\mu}{ }_{\nu}}=\delta^{\mu}{ }_{\nu}-\left(\sqrt{g^{-1} \eta}\right)^{\mu}{ }_{\nu} \\
& \begin{array}{l}
H_{\mu \nu}=g_{\mu \nu}-\eta_{\mu \nu} \\
\sqrt{X^{\mu}}{ }_{\alpha} \sqrt{X^{\alpha}{ }_{\nu}}=X^{\mu}{ }_{\nu}
\end{array} \\
& \mathcal{U}_{2}=2 \varepsilon_{\mu \alpha \rho \sigma} \varepsilon^{\nu \beta \rho \sigma} \mathcal{K}^{\mu}{ }_{\nu} \mathcal{K}^{\alpha}{ }_{\beta}=4\left(\left[\mathcal{K}^{2}\right]-[\mathcal{K}]^{2}\right) \\
& \mathcal{U}_{3}=\varepsilon_{\mu \alpha \gamma \rho} \varepsilon^{\nu \beta \delta \rho} \mathcal{K}^{\mu}{ }_{\nu} \mathcal{K}^{\alpha}{ }_{\beta} \mathcal{K}^{\gamma}{ }_{\delta}=-[\mathcal{K}]^{3}+3[\mathcal{K}]\left[\mathcal{K}^{2}\right]-2\left[\mathcal{K}^{3}\right] \\
& \mathcal{U}_{4}=\varepsilon_{\mu \alpha \gamma \rho} \varepsilon^{\nu \beta \delta \sigma} \mathcal{K}^{\mu}{ }_{\nu} \mathcal{K}^{\alpha}{ }_{\beta} \mathcal{K}^{\gamma}{ }_{\delta} \mathcal{K}^{\rho}{ }_{\sigma}=-[\mathcal{K}]^{4}+6[\mathcal{K}]^{2}\left[\mathcal{K}^{2}\right]-3\left[\mathcal{K}^{2}\right]^{2}-8[\mathcal{K}]\left[\mathcal{K}^{3}\right]+6\left[\mathcal{K}^{4}\right]
\end{aligned}
$$

- Expanding the square root in the potential term

$$
\mathcal{U}_{2}=\left[H^{2}\right]-[H]^{2}-\frac{1}{2}\left([H]\left[H^{2}\right]-\left[H^{3}\right]\right)+\mathcal{O}\left(H^{4}\right)
$$

Fierz-Pauli mass term Infinite nonlinear corrections to eliminate BD ghost
No BD ghost at full order (5 DOF) (Hassan, Rosen, 2011)

NON-CANONICAL KINETIC TERM

(RK \& Yamauchi, 2013)

- dRGT mass term is uniquely determined
- Is dRGT theory a unique theory describing massive graviton without introducing other fields?

$$
S_{M G}=\frac{M_{\mathrm{Pl}}^{2}}{2} \int d^{4} x \sqrt{-g}\left[R-\frac{m^{2}}{4}\left(\mathcal{U}_{2}+\alpha_{3} \mathcal{U}_{3}+\alpha_{4} \mathcal{U}_{4}\right)\right]+S_{\text {int }}+S_{m}\left[g_{\mu \nu}, \psi\right]
$$

New Kinetic terms???

- Candidates for derivative interactions

$$
\begin{aligned}
\mathcal{L}_{i n t} \supset & M_{\mathrm{Pl}}^{2} \sqrt{-g} g . . H . R^{\cdots}, M_{\mathrm{Pl}}^{2} \sqrt{-g} H \ldots H^{\prime} \cdots, \cdots \\
& M_{\mathrm{Pl}}^{2} \sqrt{-g} \nabla . \nabla . H^{\cdot} . H^{*}, M_{\mathrm{Pl}}^{2} \sqrt{-g} \nabla . \nabla . H^{\prime} H^{\cdot} H^{*}, \cdots
\end{aligned}
$$

- No-go theorem - no derivative interaction cannot be introduced in dRGT theory due to the appearance of the BD ghost. (RK \& Yamauchi 2013, de Rham et al. 2013)
- A Staring point of proof is FP theory in both [RK, Yamauchi 2013] \& [de Rham et al. 2013]

GENERAL SPIN-2 THEORY

- Our Lagrangian

$$
\begin{aligned}
S & =\int \mathrm{d}^{4} x\left(-\mathcal{K}^{\alpha \beta \mid \mu \nu \rho \sigma} h_{\mu \nu, \alpha} h_{\rho \sigma, \beta}-\mathcal{M}^{\mu \nu \rho \sigma} h_{\mu \nu} h_{\rho \sigma}\right) \\
\mathcal{K}^{\alpha \beta \mid \mu \nu \rho \sigma}= & \kappa_{1} \eta^{\alpha \beta} \eta^{\mu \rho} \eta^{\nu \sigma}+\kappa_{2} \eta^{\mu \alpha} \eta^{\rho \beta} \eta^{\nu \sigma}+\kappa_{3} \eta^{\alpha \mu} \eta^{\nu \beta} \eta^{\rho \sigma}+\kappa_{4} \eta^{\alpha \beta} \eta^{\mu \nu} \eta^{\rho \sigma} \\
\mathcal{M}^{\mu \nu \rho \sigma}=\mu_{1} \eta^{\mu \rho} \eta^{\nu \sigma}+\mu_{2} \eta^{\mu \nu} \eta^{\rho \sigma}, & \kappa_{i}, \mu_{1,2}: \text { (constant) free parameters }
\end{aligned}
$$

General relativity

Linearized Einstein-Hilbert term
Gauge symmetry

Fierz-Pauli theory

Kinetic term = Linearized Einstein-Hilbert term
Gauge invariance is broken by the FP mass term $\mu_{1}=-\mu_{2}$

Finding THEORY

- SVT decomposition

$$
\begin{gathered}
h_{00}=h^{00}=-2 \alpha, \quad h_{0 i}=-h^{0 i}=\beta_{, i}+B_{i} \quad\left(B^{i}{ }_{, i}=0\right) \\
h_{i j}=h^{i j}=2 \mathcal{R} \delta_{i j}+2 \mathcal{E}_{, i j}+F_{i, j}+F_{j, i}+2 H_{i j} \quad\left(F^{i},{ }_{, i}=0, \quad H^{i}{ }_{i}=H^{i j}{ }_{, j}=0\right) \\
\longrightarrow S=S^{S}[\alpha, \beta, \mathcal{R}, \mathcal{E}]+S^{V}\left[B_{i}, F_{i}\right]+S^{T}\left[H_{i j}\right]
\end{gathered}
$$

- Tensor sector

$$
S^{T}\left[H_{i j}\right]=4 \int \mathrm{~d} t \mathrm{~d}^{3} k\left[\kappa_{1} \dot{H}_{i j}^{2}-\left(\kappa_{1} k^{2}+\mu_{1}\right) H_{i j}^{2}\right]
$$

- Ghost-free condition $\kappa_{1}>0$
- Tachyonic instability is absent when $\mu_{1} \geq 0$
- Degrees of freedom $=2$

VECTOR SECTOR

- B_{i} and F_{i} has 4 DOFs
- We need to eliminate one of them
(Otherwise, ghost or gradient instabilities appears in B or F.)

$$
\begin{gathered}
S^{V}\left[B_{i}, F_{i}\right]=\int \mathrm{d} t \mathrm{~d}^{3} k\left[-\left(2 \kappa_{1}+\kappa_{2}\right) \dot{B}_{i}^{2}+2 \kappa_{1} \dot{F}_{i}^{2}+2 \kappa_{2} k B_{i} \dot{F}_{i}\right. \\
\left.+2\left(\kappa_{1} k^{2}+\mu_{1}\right) B_{i}^{2}-\left(k^{2}\left(2 \kappa_{1}+\kappa_{2}\right)-2 \mu_{1}\right) F_{i}^{2}\right] \\
2 \kappa_{1}+\kappa_{2}=0
\end{gathered}
$$

- Canonical momenta

$$
\begin{aligned}
& \pi_{B_{i}}=0, \xrightarrow{\text { Primary constraints }} \\
& \pi_{F_{i}}=4 \kappa_{1}\left(\dot{F}_{i}-k B_{i}\right)
\end{aligned} \quad \mathcal{C}_{1}^{B_{i}}=\pi_{B_{i}}=0
$$

- Secondary constraints

$$
\mathcal{C}_{2}^{B_{i}} \equiv \dot{\mathcal{C}}_{1}^{B_{i}}=\left\{\mathcal{C}_{1}^{B_{i}}, H_{T}\right\}=\left\{\mathcal{C}_{1}^{B_{i}}, H\right\}=k \pi_{F_{i}}+4 \mu_{1} B_{i} \approx 0
$$

- Time-evolution of the secondary constraints

$$
\dot{\mathcal{C}}_{2}^{B_{i}}=\left\{\mathcal{C}_{2}^{B_{i}}, H_{T}\right\}=\left\{\mathcal{C}_{2}^{B_{i}}, H\right\}+\lambda_{B_{j}} \frac{\left\{\mathcal{C}_{2}^{B_{i}}, \mathcal{C}_{1}^{B_{j}}\right\}}{=4 \mu_{1} \delta_{i j}} \approx 0
$$

Case V1: $\mu_{1} \neq 0$

$$
\text { vector } \text { DOFs }=\frac{4 \times 2-4(2 \text { primary \& } 2 \text { secondary })}{2}=2
$$

Case V2 : $\mu_{1}=0$

$$
\text { vector } \text { DOFs }=\frac{4 \times 2-4(2 \text { primary \& } 2 \text { secondary }) \times 2(\text { first-class })}{2}=0
$$

SCALAR SECTOR

- Classification based on the Hamiltonian analysis

Case	DOF	Conditions	Free parameters	Comments
SI \& V1	$3=2+0+1$	$\mu_{1}=0$	$\kappa_{3}, \kappa_{4}, \mu_{2}$	New theories
SIIa \& V1	$2=2+0+0$	"Condition $3 " \& \mu_{1}=\mu_{2}=0$	κ_{3}	General relativity is included
SIIb \& V1	$2=2+0+0$	"Condition $3 " \& \mu_{1}=0 \& \mu_{2} \neq 0$	κ_{3}, μ_{2}	New theories
SIIc \& V2	$5=2+2+1$	"Condition $3 \& 4 " \& \mu_{1} \neq 0$	κ_{3}, μ_{1}	Fierz-Pauli is included

[Condition 2] : $2 \kappa_{1}+\kappa_{2}=0$
[Condition 3] : $4 \kappa_{1}^{2}-4 \kappa_{1} \kappa_{3}+8 \kappa_{1} \kappa_{4}+3 \kappa_{3}^{2}=0$
[Condition 4] : $\mu_{2}=-\frac{\mu_{1}}{4 \kappa_{1}^{2}}\left(4 \kappa_{1}^{2}-6 \kappa_{1} \kappa_{3}+3 \kappa_{3}^{2}\right)$

- All theories satisfies "Condition 2" (for healthy vector modes)
- I, IIa, \& Ilb has gauge symmetries (containing first-class constraints)
- Massless limit $\mu_{1} \rightarrow 0$ of the case IIc reduces to the case IIa
(\# of DOF is different.)

PARTIALLY MASSLESS CASE (CASE I)
 ($\mathrm{DOF}=3$ case)

scalar DOFs $=\frac{4 \times 2-3(1 \text { primary \& } 1 \text { secondary \& } 1 \text { tertiary }) \times 2(\text { first class })}{2}=1$

- Gauge symmetry

$$
h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \quad \text { with } \quad \partial^{\mu} \xi_{\mu}=0
$$

(Transverse diffeomorphisms [J. J. Van der Bij. et.al, 1982])

- Lagrangian with gauge invariant variables

$$
\kappa_{1}=1 / 8, \quad \kappa_{3}=1 / 4, \quad \kappa_{4}=1 / 8
$$

$$
\mathcal{L}_{\mathrm{I}}^{S}=-3 \dot{\mathcal{R}}^{2}+k^{2} \mathcal{R}^{2}+2 k^{2} \tilde{\alpha} \mathcal{R}+\dot{\tilde{\mathcal{E}}}^{2}-\left(k^{2}+4 \mu_{2}\right) \tilde{\mathcal{E}}^{2}
$$

Non-dynamical parts
Dynamical parts

$$
\tilde{\mathcal{E}}=\left.\operatorname{Tr} h_{\mu \nu}\right|_{\text {scalar }}
$$

MASSLESS CASE (CASE IIa)

(Massless, DOF=2 case)
scalar DOFs $=\frac{4 \times 2-4(2 \text { primary \& } 2 \text { secondary }) \times 2(\text { first-class })}{2}=0$

- Gauge symmetry

$$
\begin{gathered}
h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}+b \partial^{\rho} \xi_{\rho} \eta_{\mu \nu} \\
b=-\frac{2 \kappa_{1}-\kappa_{3}}{2\left(\kappa_{1}-\kappa_{3}\right)}
\end{gathered}
$$

General relativity
Linearlized Einstein-Hilbert term

$$
\begin{gathered}
\kappa_{2}=-\kappa_{3}=2 \kappa_{4}=-2 \kappa_{1} \\
h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}
\end{gathered}
$$

MASSLESS CASE (CASE IIb)

(Massless, DOF $=2$ case)
scalar DOFs $=$
$\frac{4 \times 2-3(1 \text { primary \& } 1 \text { secondary \& } 1 \text { tertiary }) \times 2 \text { (first-class) }-2(1 \text { primary \& } 1 \text { secondary })}{2}=0$

- Gauge symmetry

$$
h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \quad \text { with } \quad \partial^{\mu} \xi_{\mu}=0
$$

(Transverse diffeomorphisms [J. J. Van der Bij. et.al, 1982])

- Lagrangian with gauge invariant variables $\quad \kappa_{1}=1 / 8, \quad \kappa_{3}=1 / 4$

$$
\mathcal{L}_{\text {IIa }}^{S}=-3 \dot{\mathcal{R}}^{2}+k^{2} \mathcal{R}^{2}+2 k^{2} \tilde{\alpha} \mathcal{R}-4 \mu_{2} \tilde{\mathcal{E}}^{2}
$$

Non-dynamical
Non-dynamical

$$
\tilde{\mathcal{E}}=\left.\operatorname{Tr} h_{\mu \nu}\right|_{\text {scalar }}
$$

FiELD REDEFINITION

- Possible field redefinition of $h_{\mu \nu}$

$$
\tilde{h}_{\mu \nu}=h_{\mu \nu}+\Gamma \operatorname{Tr}\left[h_{\alpha \beta}\right] \eta_{\mu \nu}
$$

- One can map the new theory to GR \& FP theory

Linearized GR

$$
\Gamma=-\frac{2 \kappa_{1}-\kappa_{3}}{4 \kappa_{1}}
$$

Case IIc

Fierz-Pauli theory

These theories can be mapped from GR and Fierz-Pauli theories
(In the absence of the coupling to extra field, these are the same theories)

SUMMARY

- New kinetic and mass interactions for spin-2 theories
- 4 independent classes
- Case I: $\mathrm{DOF}=3$ [2 tensor +1 scalar]
- Case IIa : DOF $=2$ [2 tensor] (include GR)
- Case Ilb : DOF = 2 [2 tensor]
- Case IIc : DOF $=5$ [2 tensor +2 vector +1 scalar $]$ (include FP)
- Class IIa and IIc can be mapped with field redefinition from linearized general relativity and Fierz-Pauli theory
- Matter coupling might be a problem for case IIc...

$$
\mathcal{L}^{(\mathrm{DL})}=\mathcal{L}_{\text {tensor }}^{(\mathrm{DL})}[\tilde{h}]-\frac{6 c_{1}}{\kappa_{1}}\left(\partial_{\mu} \pi\right)^{2}+\frac{1}{M}\left[\tilde{h}_{\mu \nu} T^{\mu \nu}-\frac{c_{1}}{\kappa_{1}-\kappa_{3}} \pi T\right]+\frac{b}{\Lambda_{3}^{3}} \square \pi T
$$

S U M MARY

- No-go theorem \leftarrow true ?
- The starting point of the previous work was Fierz-Pauli theory
- Nonlinear counterparts of case Iic

$$
\begin{aligned}
& S=\int \mathrm{d}^{4} x \sqrt{-} {\left[a_{1} R+a_{2} h R+a_{3} h_{\mu \nu} R^{\mu \nu}\right.} \\
&\left.+\mathfrak{K}^{\alpha \beta \mid \mu \nu \nu \rho \sigma} \nabla_{\alpha} h_{\mu \nu} \nabla_{\beta} h_{\rho \sigma}+\mathfrak{M}^{\mu \nu \rho \sigma} h_{\mu \nu} h_{\rho \sigma}+\mathcal{O}\left(h^{2} R, h^{3}\right)\right] \\
& h_{\mu \nu}= g_{\mu \nu}-\eta_{\mu \nu} \\
& \mathfrak{\Re}^{\alpha \beta} \mid \mu \nu \rho \sigma=b_{1} g^{\alpha \beta} g^{\mu \rho} g^{\nu \sigma}+b_{2} g^{\mu \alpha} g^{\rho \beta} g^{\nu \sigma}+b_{3} g^{\alpha \mu} g^{\nu \beta} g^{\rho \sigma}+b_{4} g^{\alpha \beta} g^{\mu \nu} g^{\rho \sigma}, \\
& \mathfrak{M}^{\mu \nu \rho \sigma}= \mu_{1} g^{\mu \rho} g^{\nu \sigma}+\mu_{2} g^{\mu \nu} g^{\rho \sigma}, \\
& \kappa_{3}= b_{3}-a_{1}-a_{2}-\frac{1}{2} a_{3}, \quad \kappa_{4}=b_{4}+\frac{1}{2} a_{1}+a_{2} . \\
& \kappa_{1}=b_{1}-\frac{1}{2} a_{1}+\frac{1}{2} a_{3}, \quad \kappa_{2}=b_{2}+a_{1}-a_{3}
\end{aligned}
$$

- Does nonlinear theories contain ghost or not ?

